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ABSTRACT. In this paper, we show that the finite subalgebra AR(1), gener-
ated by Sq' and Sq?, of the R-motivic Steenrod algebra AR can be given 128
different AR-module structures. We also show that all of these .A-modules
can be realized as the cohomology of a 2-local finite R-motivic spectrum. The
realization results are obtained using an R-motivic analogue of the Toda real-
ization theorem. We notice that each realization of AR (1) can be expressed as a
cofiber of an R-motivic vi-self-map. The Cz-equivariant analogue of the above
results then follows because of the Betti realization functor. We identify a rela-
tionship between the RO(Cz)-graded Steenrod operations on a Ca-equivariant
space and the classical Steenrod operations on both its underlying space and its
fixed-points. This technique is then used to identify the geometric fixed-point
spectra of the Ca-equivariant realizations of A2 (1). We find another applica-
tion of the R-motivic Toda realization theorem: we produce an R-motivic, and
consequently a Cg-equivariant, analogue of the Bhattacharya-Egger spectrum
Z, which could be of independent interest.
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1. INTRODUCTION
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This paper is a continuation of the work that began in [BGL], where we studied
periodic self-maps of a certain finite R-motivic spectrum y](lf] ) There, we proved
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ON REALIZATIONS OF A%(1) 701
that y](li’l) supports a 1-periodic v(; ni-self-map
(1.1) v 22’13)](%71) — ygl),

whose cofiber realizes the subalgebra A%(1) of the R-motivic Steenrod algebra AR
generated by Sq' and Sq?. Recall from [BGL, Definition 1.7] that a v ni)-self-map
is a vy-self-map which is nilpotent on the geometric fixed-points.

The spectrum ygfm is an R-motivic lift of the classical spectrum

Y = N 73CP? A RP2.

From the chromatic point of view, the spectrum ) is extremely useful because
it supports a wvi-self-map of lowest possible periodicity, that is, one. Famously,
Mark Mahowald used the spectrum ) and the low periodicity of its vp-self-map
to prove the height 1 telescope conjecture at the prime 2 [M1,M2]. However, 1-
periodic vi-self-maps of ) are not unique. In fact, up to homotopy, there are eight
different v;-self-maps supported by Y, all of whose cofibers are realizations of A(1)
(see [DM]). Up to weak equivalence, there are four different finite spectra realizing
A(1), and all of them can be obtained as the cofiber of some v;-self-map of Y.
These four different realizations can be distinguished by their A-module structures.
Therefore, it is natural to ask if all of the vi-self-maps of ) can be lifted to R-
motivic analogues, and whether all of the R-motivic realizations of A%(1) can be
obtained as the cofiber of such a lift.

The answer to the above question is complicated by the fact that there are
multiple R-motivic lifts of the spectrum Y (see [BGL]). Even if we insist on those
lifts which can potentially realize A®(1) as a cofiber of a periodic self-map, we are
left with two choices: y}fnl) and ygl). We state our first result towards answering
these questions after establishing some notations. Further, we shall see that some
realizations of A®(1) must be given as the cofiber of a map between y}f}_n and ygl)
rather than as the cofiber of a self-map of either. ' '

Before describing the results of this article, we present some notation that will
be used throughout.

Notation 1.2. Throughout this paper, we use the following notations:

Sp]R — the oo-category of R-motivic spectra.

SpC2 — the oco-category of genuine Co-equivariant spectra.

HgFy — the R-motivic Eilenberg-Mac Lane spectrum with Fs-coefficients.

HF, — the Cs-equivarient Eilenberg-Mac Lane spectrum at the constant

Mackey functor F,.

° Spﬂiﬁn — the category of cellular HrIFo-complete R-motivic spectra with
finitely many cells.

e We denote the 1-dimensional trivial R-representation of Cy by €, the sign
representation by o, and the regular representation by p.

e Hy™(E) := [E,X""™HgF,] — the R-motivic cohomology of E € Sp* with
constant sheaf Fo, where n is the topological degree and m is the motivic
weight.

) Spg%n — the category of cellular HF,-complete Cy-equivariant spectra with
finitely many cells.

e HE (E) = [E, HF,]2 — the RO(Cy)-graded cohomology of E € Sp°? with

coefficients in the constant Mackey functor. We will often use motivic
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bigrading for Hg, (E) under the identification
(n,m) ~ (n —m)e + mo.
e M5 := 7, ,HgFs. By a calculation of Voevodsky [V]
M5 = Fy[7, p]

with |7| = (0,—-1) and |p| = (-1, —1).
° MS2 := 7, HF,. This computation can be found in [C, Appendix] or [HK|
Proposition 6.2] and is given by

M2 2 Fylue, ag] @ O{ug'ag? 14,5 > 0},
where |ug| = (0, —1), |ag| = (—1,—1) and |©] = (0,2).

e We follow [DI,BIBGI] in grading Ext 4= as Extiiﬁ’w, where s is the stem,
f is the Adams filtration, and w is the motivic weight.

Our first result concerns realizations of A®(1).

Theorem 1.3. There ewists 128 different A®-modules whose underlying A®(1)-
module structures are free on one generator, all of which can be realized as Hy™ (X)

for some X € Spﬂiﬁn.

Ys,2
Ys,2
Ya1
x3,1 Y31
€21
Z1,0
0,0

FIGURE 1.4. We depict a singly-generated free A®(1)-module,
where each e represents a Mb-generator. The black and blue lines
represent the action of motivic Sq* and Sq?, respectively. A dotted
line represents that the action hits the 7-multiple of the given M5-
generator.

Notation 1.5. For the rest of the paper, we fix an M5-basis

{960,07 21,0, 22,1,23,1,Y3,1,Y4,1,Y5,2, y6,2}

of A®(1) as in Figure [[4] so that

b Sql(fo,o) =T1,0 L d Sql(y5,2) = Ys,2 L d Sq2(x271) = TYs1
b Sql(fz,l) = 3,1 b qu(fo,o) =21 b Sq2($3,1) = Y52
b Sql(y3,1) =Ya1 ° Sq2(331,0) =Y31 L d qu(y4,1) = Ys,2-

We now record all 128 A®-modules of Theorem using the basis above.
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Theorem 1.6. For every vector (a3, Bo3, B14, Boss B2s, P26, V36) € V = F5 and

J24 = Bosyze + @o3(B2s + P26),

there exists a unique isomorphism class of A®-module structures on A®(1) deter-
mined by the formulas

(i) Sa*(z0,0) = Bos(p - yz1) + (1 + Boz + Bra)(T - ya1) + cos(p - 3,1)

)
(il) Sa*(21,0) = ys.2 + Bra(p - ya1)
(ili) Sq*(22,1) = Bos(T - Y6,2) + Bas(p - Ys.2) + d2a(p? - ya1)
(iv) Sq*(z3,1) = (Bas + B26)(p - Y6,2)
(v) Sq4(y3 1) = 736(p - Y6,2)
(vi) Sa®(z0,0) = Bos(p? - Y6,2)-

Further, any A®-module whose underlying A®(1)-module is free on one generator
is 1somorphic to one listed above.

Notation 1.7. For any vector ¥ € V, we denote the corresponding A®-module in
Theorem L6 by AZ(1). By A}[¥], we denote an object of Sp]sﬁn, whose cohomology
is isomorphic to AZ(1) as an A®-module. We let

AR = [AT[F] : ¥ € V}/(weak equivalence)

denote the set of equivalence classes of finite R-motivic spectra whose cohomology
are free of rank 1 over A%(1).

Let BE(1) and B5(1) denote the A®-modules H]E’*(y( 1) and Hy ™ (V5,,)), re
spectively. As shown in [BGL, Lemma 4.4], these differ in that the bottom cell of
yéRé 1) Supports a Sq*, whereas the bottom cell of y](R; 1) does not. In [BGL], we

used a method due to Smith (JRI, Appendix C]) to produce the A®-module Ag(1).
Then we observed that A (1) fits into a short exact sequence

S3BE(1) —— AF(1) — BR(1)

that can be realized as a cofiber sequence of finite spectra. The connecting map of
this cofiber sequence is the map (I)). In this paper, we extend the above result of
[BGL] to prove the following.

Theorem 1.8. Given ¥ = (a3, Bo3, 14, Bos, P25, P26, 736) € V, define

_ h if Bas + P2 + 736 = 0 and 5— h if ags + Boz =0
2 if Bos + Bas + v36 = 1, 2 if ags + Pos = 1.

Then there exists a short exact sequence
(1.9) S3BR(1) —— AR(1) — BE(1)

of AR-modules. Moreover, this exact sequence can be realized as the cohomology of
a cofiber sequence

(1.10) Y. AR[¥] SRVE 1

i the category Spgﬁn.
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The map of spectra that underlies the connecting map
(1.11) v: 22’132&51) — y](%,l)

of ([LI0) is a vq-self-map of Y of periodicity 1.

The algebraic part of Theorem [[.8lis a straightforward consequence of Theorem
once we identify the A®-modules BE(1) and BS(1) (we refer to [BGL] Figure 7]
for a complete description). However, the topological assertions in Theorem [[.8] as
well as in Theorem [[.3] require a technical tool, which we refer to as the R-motivic
Toda realization theorem.

Theorem 1.12 (R-motivic Toda realization theorem). Let M be an AR-module
whose underlying My -module is free and finite. There exists X € Spﬂiﬁr1 such that
Hp*(X) 2 M as A®-modules if

(1.13) Ext 27 * (M, M) = 0
for all f > 3.

In this paper, we also prove various weaker versions of the R-motivic Toda re-
alization theorem (see Theorem 2.4] Theorem and Theorem 2.TT]), which are
perhaps more convenient for application purposes.

A realization theorem is often accompanied by a uniqueness theorem, as is the
case with Toda’s classical result (see [BEL Proposition 5.1]). The R-motivic analogue
can be stated as follows:

Theorem 1.14 (R-motivic unique realization theorem). Let X € Spﬂiﬁn such that
—-1,1,0 * % * %k
Ext 4= ! (Hg"(X), Hg" (X)) =0

for any f > 2. Then any spectrum X' € Sp]sﬁn for which there exists an A®-module
isomorphism Hy™ (X') = Hy™(X), is weakly equivalent to X. In other words, the
AR-module Hy ™ (X) is uniquely realized in Spﬂiﬁn up to a weak equivalence.

Proof. The result follows from the fact that the nonzero element
v € Extln? (Hy™ (X)), Hy™ (X))

representing the isomorphism Hy*(X’) = Hp"(X) survives the Adams spectral se-
quence converging to [X, X]. O

The uniqueness theorem applies to the A®-modules B (1) and B5(1) (see Lemma
[A4). However, it does not apply to AY[v] for any ¥ € V. Potentially, there can
be multiple different finite spectra realizing AZ(1) up to a weak equivalence (see
Remark [£3]), making it difficult to get a precise count of the number of 1-periodic
v1-self-maps on y}fﬂ) and y(%J) from Theorem [I.8

Upon applying the Betti realization functor

B: Sp]R — SpCZ

we get various Ca-equivariant maps (3(v) : 22’13}(0521) — y(C;l) (where €,6 € {2,h})
whose underlying maps are vi-self-maps of . We also get Corollary of Theo-
rem (see Remark [AL.g]).
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Corollary 1.15. There exists 128 different A2 -modules whose underlying A2 (1)-
module structures are free on one generator, all of which can be realized as the
RO(C3)-graded cohomology of a 2-local finite Ca-spectrum.

Notation 1.16. Let A2[v] denote the Betti realization B(A¥[¥]), where ¥ € V.

Let ® : Sp© — Sp denote the restriction functor (restricting the Cq-action to
the trivial group) and @ : Sp02 — Sp denote the geometric fixed-point functor (see
Section [B]). Note that the geometric fixed-point spectra

(y(h 1)) = ®(C%(h) A C® (m 1)) =~ Ma(1) v EM2(1)
and

(VG7) = 2(CP(2) A C%(n1,1)) = Ma(1) A Ma(1)
are both of type 1 (see [BGL]). Further, for degree reasons

B(B(v)) : SRV, — BVT)

cannot be a vi-self-map, and hence must be nilpotent7 using [HS]. Therefore, the
fiber ®(A2[7]) is a type 1 spectrum, i.e. A2[¥] is of type (2,1) in the sense of
[BGLJ. Much more can be said about ®(.A2[¥]) than just its type. In this paper,
we give a complete description of the A-module structure of H*(®(A2[¥])) for all
v € V by developing a general method that compares the RO(Cs)-graded squaring
operations of a Cy spectrum with the ordinary squaring operations of its underlying
spectrum as well as its geometric fixed-point spectrum (compare [BW] §3]).
Since R(HF,) ~ HF; we have a natural map

R : He,"(E) ~ [B, X" HE,] —— [R(E), S"R(HE,)] ~ H"(R(E))

for any E € Sp“2. We use Theorem [[I7to identify the spectrum underlying A% [¥]
(see Theorem £.9). Here and in Theorem [LT9, we write Sq™ for the Cy-equivariant
squaring operations, as in Section

Theorem 1.17. ForEe Spg%n and any class u€ Hg, (E), R (Sq" (u)) =Sq" (R« (u))-
Using the fact that the projection map
) : ®(HF,)~ HF,[t] — HF,

is an Eo-ring map, as in the discussion preceding (3], one defines (also see [BW],
(2.7)]) the map

(1.18) o, : HY™(E) — H™(®(E))

which compares the RO(Cz)-graded cohomology of a Cs-spectrum E with the or-
dinary cohomology of its geometric fixed-point spectrum. We show:

Theorem 1.19. For E € sz &n and any class v € HE (E),

. (Sq”" (w)) = Sq" (.. ().
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FIGURE 1.20. Some underlying and fixed A-modules of A?Q
| vevy | H*(R(AT*[¥])) | H*(2(AT>[7))) | Cofiber of |

(0,0,1,0,0,0,0) v:E2 Y1) = Vi

(1,1,0,0,0,0,1) v: X2 Vo0 = Vi)

(0,1,0,1,0,1,0) v: X2 Yo = Vo

~ T EREEE D

(1,0,0,0,0,1,1) (X2 V1) = Vo)
(0,0,0,1,0,1,0) v E21Y01) = Vi
(1,0,0,0,0,0,0) v:E2 Y1y = Ve
(1,0,0,0,0,0,1) v 22 Y01y = Ve
(1,1,1,1,1,0,1) v: X2 Y00y = Ve

Ty [ i TSRS TS TS T

We find Theorem [[L.I7] and Theorem [[.T9 very handy for computational pur-
poses. These results can be applied to understand the RO(Csy)-graded squaring
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operations on the cohomology of a wide variety of Ca-spectra whose underlying
and geometric fixed-point spectra are known. Alternatively, one can identify the
action of the classical Steenrod algebra on the cohomology of the underlying as
well as the geometric fixed-points of a Cg-spectrum from the knowledge of RO(Cs)-
graded Steenrod operations. We apply Theorem [[.T7 and Theorem to identify
the A-module structure of the underlying and the geometric fixed-points of .Alc"‘ [¥]
(see Theorem 9 and Theorem [TT]).

In Figure .20, we provide the A-module structure of the underlying and the
geometric fixed-points of A?Q [¥] for selected values of ¥ € V. We express Sq’, Sq?
and Sq* using black, blue, and red lines respectively.

Remark 1.21 (Appearance of the Joker). We note that the A(1)-module

)

often called the Joker, is a subcomplex of the geometric fixed-point of AF[¥] if and
only if jo4 = 1. Further, when jo4 = 1 then in (IL9), € and 6 cannot both equal h.
This can easily be derived from Theorem and Theorem [T

Remark 1.22. In [BGI], the authors construct AF[0] as a split summand of Q3 us-

ing a certain idempotent of Z,)[X3]. Let Qr € Sp§ﬁn be such that its cohomology

as an A®(1)-module is isomorphic to O, but has the additional relation
Sqt(a)=p-c

(in the notation of [BGI, Figure 2]), as an A®-module. If we replace Qg by a

complex Qg in [BGL], we get AX[¥], where ¥ = (1,1,1,1,1,0,1) (see the last

diagram in Figure [[.20)).

Remark 1.23. The classical spectrum A; is a type 2 spectrum and supports a v32-

self-map [BEM]. It remains to be seen if this ve-self-map can be lifted to AY[¥] for
various Vv € V.

Recently in [BE], the authors introduced a new type 2 spectrum Z which is
notable for admitting a wve-self-map of lowest possible periodicity, that is 1. The
low periodicity of the vs-self-map makes the spectrum Z suitable for the analysis
of the telescope conjecture which, if true, would imply that the natural map from
the telescope of Z to the K(2)-localization of Z is a weak equivalence. While the
telescope conjecture is true for finite spectra of type 1 [MILM2/[M], it is expected to
be false for finite spectra of type > 2 (see [MRS]). In fact, in [BBB™], the authors
study the prime 2, height 2 telescope conjecture using the spectrum Z and lay
down several conjectures (see [BBB™, §9]), whose validity would lead to a disproof
of the telescope conjecture. In this paper, we also construct an R-motivic analogue
of Z which is likely to shed light on some of these conjectures.

Theorem 1.24. There exists Zr € Spﬂiﬁr1 such that the underlying A®(2)-module
structure of its cohomology is isomorphic to

Hy"(Zr) = ar(2) A% (2) EINGS)! M3,

where Q¥ = [Sq*, QF].
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See Subsection for a discussion of the element @5 In future work, we intend
to study the properties of Zg extensively and hope to prove, among other things,
Conjecture [[.25]

Conjecture 1.25. The spectrum Zg is of type (2,2) and admits a v(s nq)-self-map

(O 26’3ZR E— ZR
of periodicity 1.

Organization of the paper. In Section[2] we discuss the R-motivic Toda realiza-
tion Theorem and derive various weak forms that are suitable for applications.
In Section 3] we construct the equivariant Steenrod operations using the equivariant
extended power construction and prove Theorem [[.I7] and Theorem [[.19, which es-
tablish comparisons with the classical Steenrod operations. In Section El we apply
the discussion in Section 2 to obtain the R-motivic topological realizations of A®(1)
and analyze the properties of their Betti realizations using results from Section Bl
In Section Bl we construct the R-motivic spectrum Zg using a method of Smith.
Finally, the short Section [A] lists the Adem relations in the R-motivic Steenrod
algebra.

2. R-moTIvic TODA REALIZATION THEOREM

The classical Toda realization theorem [T] (see also [BEL Theorem 3.1]), is recast
in the modern literature as a special case of Goerss-Hopkins obstruction theory [GH]
(when the chosen operad is trivial). This obstruction theory can be generalized to
the R-motivic setting [MG], and Theorem [[T2] would then be a special case of such
a generalization.

More recent work of [PV] conceptualizes Goerss-Hopkins obstruction theory in
the general setup of stable co-categories with ¢-structures. If we set C = Spﬂiﬁn,
A = Sp,¥,, and let K to be a finite A%-comodule in [PV], Corollary 4.10], then we
get a sequence of obstruction classes

(2.1) 0, € Ext 2" (K, K)

for each n > 0, the vanishing of which guarantees the existence of an Sy, ,-module
whose homology is isomorphic to K as an AF-comodule. Since the t-structure in
Sp® does not change the motivic weight, the obstruction classes in 1) lie in the
Ext-groups of motivic weight 0.

If M is a finite M5-free A®-module then K := homy,z (M, M%) is a finite AR-
comodule,

Ext (K, K) = Bxt 'y (M, M),

and therefore, Theorem follows. Alternatively, one can prove Theorem
simply by emulating the classical proof (as exposed in [BE| §3]).

The purpose of this section is to deduce, from the R-motivic Toda realization
theorem ( Theorem [[T2]), various weaker forms which are perhaps more convenient
for application purposes. Explicit calculation of Ext’;z™" (M, M) can often be dif-
ficult, and one can use a sequence of spectral sequences to approximate these ext
groups. Each such approximation leads to a corresponding weaker form.
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2.1. Weak R-motivic Toda realization — version (I). Let M be an A®-module
whose underlying Mi-module is free and finitely generated. Let By denote its M-
basis and D) denote the collection of bidegrees in which there is an element in By;.
For any element x € M*™ we let t(z) = s + w and define

Ms,, == M5 - {b € By : t(b) > n}
as the free sub M&-module of M generated by {b € By : t(b) > n}.
Note that the A®-module structure of M is determined by the action of A® on
the elements of By and the Cartan formula. This, along with the fact that t(a) > 0

for all a € AR, implies that Ms,, are also a sub A®-module of M. Therefore, we
get an AR-module filtration of M

M:MZkDMZkJ,-lD"'DMZk-H:O

such that we for each i there is a short exact sequences

(22) 0—— M2i+1 MZi @ Z‘b‘Mﬂg — 0
{beBm:t(b)=1}

of A®-modules.

A short exact sequence of A®-modules gives a long exact sequence in Ext. By
splicing the long exact sequences induced by [2.2), we get an “algebraic” Atiyah-
Hirzebruch spectral sequence

(2.3) Ey ol = By @ Ext Sl (M, M) = Ext*5" " (M, M)
and a corresponding weak version of Theorem [[L12] along with a uniqueness crite-

rion, which is a weak form of Theorem [[.T4

Theorem 2.4. Let M denote an A®-module whose underlying My -module is free
and finite. Suppose

Ext’. > (M, M5) = 0
for f > 3 whenever (s,w) € Dy. Then there exists an X € Spg{’ﬁn such that
Hp*(X) 2 M as an A®-module. Further, such a realization is unique if

Ext’: " (M, M5) = 0
for all f > 2 and (s,w) € Dy.

2.2. Weak R-motivic Toda realization — version (II). For any .A®-module M
which is M5-free, the quotient M/(p) is an A®-module. In particular,

AR /(p) = AC
as a graded Hopf-algebra. Therefore, we have a spectral sequence

(25)  PETT = @0 ExtSE T (M/ (), M) == Ext’L" (M, M5)

which is often called the (algebraic) p-Bockstein spectral sequence. Thus we get the
following version of the R-motivic Toda realization and uniqueness theorem which
is weaker than Theorem [2.4]

Theorem 2.6. Let M denote an A®-module whose underlying Ms-module is free
and finite. Suppose

Ext’ > (M/ (p), MS) = 0
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for f >3 and all i > 0 whenever (s,w) € Dy, then there exists an X € Sp]sﬁn such
that Hy™ (X) =2 M as an A®-module. Further, such a realization is unique if

Bt (M (o), M) = 0
forall f >2,i>0 and (s,w) € Dy.

2.3. Weak R-motivic Toda realization — version (III). Similarly to the clas-
sical case, the C-motivic Steenrod algebra enjoys an increasing filtration called the
May filtration (see [DI]), which is easier to express on its dual. On AC, the May
filtration is induced by assigning the May weights

m(ri_1) = m(E2) = 2i — 1
and extending it multiplicatively. The associated graded is an exterior algebra

(2.7) gr(A%) = Ayg(&iji>1,520),

where &; o represents (7;_1). and (&; j11) represents (E,fj )« in the associated graded.
When M = MY in (2I0), then

(2.8) MaYEjzg/@* = Mglh; ;i > 1,5 > 0],

where h; ; represents the class &; ;. The (s, f,w, m)-degrees of these generators are
given by

[hi,;

_ (21 - 27 172i_1 - 1727/ - 1) lf] = 07 and,
O (29(20 —1)—1,1,2071(2 —1),2i — 1) otherwise.

Remark 2.9. After reindexing the May filtration of ([228)) by setting the May weight
of h; ; equal to i, it is consistent with the indexing used in [DI].

When M is a cyclic A®-module, M/(p) is also cyclic as an A®-module, thus the
May filtration induces a filtration on M/(p). Thus, we get a corresponding May
spectral sequence

(210)  MWEPLI™ Bt L (gr(M/ (p)), MS) = ExtSE (M/(p), MS)

computing the input of the p-Bockstein spectral sequence (2.5). Thus we can for-
mulate a version of R-motivic Toda realization theorem which is even weaker than
Theorem

Theorem 2.11. Let M denote an cyclic AR-module whose underlying Mk -module
is free and finite. Suppose

May s —2+4, f,w+i* _
Ei /) =0.

for f >3 and all i > 0 whenever (s,w) € Dy. Then there exists an X € Spg%n
such that Hy* (X) =M as an AR-module. Further, such a realization is unique if

May s —1+i, fyw-+i e _
By M/ =0

for f>2,i>0 and (s,w) € Du.
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3. A COMPARISON BETWEEN Cy-EQUIVARIANT AND CLASSICAL SQUARING
OPERATIONS

For any Cs-equivariant space X € Top*c"’ we can functorially assign two non-

equivariant spaces — the underlying space $(X), which is obtained by restricting
the action of Cy to the trivial group, and the space of Co-fixed-points X©2. For a
Cy-equivariant spectrum E € Sp©2, restricting the action to the trivial subgroup
results in a monoidal functor

R:Sp“? —— Sp

that identifies the underlying spectrum. However, there are two different notions of
fixed-point spectrum — the categorial fixed-points and the geometric fixed-points.
The categorical fixed-point functor is a lax monodial functor

(-)%: Sp“* —— Sp,

which is defined so that 7,(EC?) = 7g?(E), but it does not interact well with
infinite suspensions. The correction term is explained by the tom Dieck splitting
[LMSM, Theorem V.11.1]:

(3.1) (2&X) =~ 2%(X%) v 5% (Xyc,),

where Xyc, is the homotopy orbit space. Let E/)\C/Q = Cof(ECy; — S). The
geometric fixed-point functor

[0 Spc2 —— Sp,

_—_ C
is a symmetric monoidal functor given by ®(E) := (E A ECy) °. When X € Top??,

(3.2) (L X) = BOX
is the first component in [BI]). For any E € Sp“2, there is a natural map of spectra
(g : E¢2 —— @(E)

induced by the map S — EVCQ

The Eilenberg-Mac Lane spectrum HF, is an EQ2-ring ([LMSM, VII]), i.e. a
commutative monoid as a genuine Cg-spectrum. The restriction R(HF,) ~ HFs,
the categorical fixed-points HF,“? ~ HF, and the geometric fixed-points ®(HF,) ~
HF,[t] are Eo-rings. It follows from the knowledge of MS? := 7C2HF, that for
n>0

(S"9HF,)? ~ \/I_, LHFy —— ®(HE,) ~ colim,, ., (S"°HF,)"* ~ HF,][t]

is the inclusion of the first (n + 1) components. The above map clearly splits.

One can endow (E”UHEQ)Cz with an E.-structure isomorphic to the truncated
polynomial algebra HF[t]/(t"*!) so that the splitting map

" : ®(HF,) ~ HFo[t] — ("OHF,)"? ~ HF,[t]/(t"*)
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is an E..-map. Alternatively, 711%2) can be obtained as an E.,-map by applying the

functor H to the map of commutative rings Fa[t] — Fa[t]/(¢"*!). The composition

0
. O

(3.3) HF,“ —2» ®(HF,) —» HF,

is the identity and exhibits ®(HF,) as an augmented HF3-algebra.
For any Cs-space X € Topg"‘7 the restriction functor induces a natural transfor-
mation

R, He (Xp) —— H(R(X)4).

To compare the cohomology of X©2 with the RO(C3)-graded cohomology of X, we
make use of the splitting (B3] to define the natural ring map

. Hy (Xy) —— HI(X$),
which sends u € Hzcj2 (X4) to the composite (as defined in [BW], (2.7)])

coxCa P s L i
¥ooX2 — —— 5 SIQ(HEF,) —» X' 7HF,.
The purpose of this section is to compare the RO(Cs)-graded squaring operations
with the classical squaring operations along the maps R, and ®,.. We begin with

a brief recollection of the construction of the classical and Cy-equivariant squaring
operations.

3.1. A construction of Steenrod squaring operations. The construction of
the classical mod 2 Steenrod algebra, which is the algebra of stable cohomolog
operations for ordinary cohomology with Fs-coefficients, involves the E,-structur
of HF5 and the fact that the tautological line bundle y over RP* is HFy-orientable.
We review here how the mod 2 Steenrod operations are derived from that structure.
A similar discussion can be found in [BMMS| Section VIII.2].

Notation 3.4. For any space or spectrum X and n > 1, we let
D, (X) = (EZ,)4 Ag, (X)),
where %, acts by permuting the factors of X". By convention, Dy(X) = S.

An E-ring structure on a spectrum R gives a collection of maps of the form
Or:D,(R) — R

for each m > 0, which satisfy the usual coherence conditions (see [Ma2]). By
assumption, OF is the unit map of R and OF is the identity map.
The HIF5-orientibility of v implies the existence of an HF5-Thom class

(3.5) up : Th(y®") ~ RP® —— S"HF,

ITechnically, we only make use of the Huo-ring structure that underlies the Eoo-structure of
HIF5.
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for each n > 0. These are compatible as n varies, in the sense that the following
diagram commutes:

um/\u

Th(y®m+m)) —— Th(y®™) A Th(y®") =*==% S™HF, A "HF,

(36) ¥ [
Umn HF,.

For any spectra E and F, there is a natural map
dn : Dp(EAF) —— D, (E) AD,(F)

induced by the diagonal on EY,, and the isomorphism (E A F)A\" & EA? A FA?,
Thus, we may define the map T, as the composition
(3.7)

D, (X"HF>) S Y2 HEF,

lé 2 quT
F.

D2(S™) A Do(HFy) —=— X"RP>° A Do(HF2) R Y2"HF, A HFs.
Definition 3.8. The power operation is the natural transformation
Po: H* (=) —— H>"(D2(-))
which takes a class v € H"(E) to the composite class

D2 (u)

Py(u): Dy(E) Dy (X"HF,) —— L HF,

for any E € Sp.

From (B8], we deduce the commutativity of the diagram
(3.9)

Dy(S"HFy A S™HF,) — Do(S"HF,) A Dy(S™HF,) =258 $20HE, A $2MHF,

lDz(HFz ) l"”’fz

Dy (X +™HE,) n2n+2mHR, .

Tn4+m

As a result, we have
85 (Pa(u) @ Pa(v)) = Pa(u®v)

which leads to the Cartan formula for the Steenrod algebra.

If X € Top, is given the trivial ¥s-action and X A X the permutation action,
the diagonal map X — X A X is Yg-equivariant. Consequently, we have an induced
map

AX : (B22)+ ANX ~ (E22)+ /\Z‘2 X — DQ(X)

Since H*(BX3) = Fo[t], we may write (using the Kunneth isomorphism)

n

(3.10) Ax(Pa(u) =D "7 @Sq' (u),

=0

which defines the natural transformations Sq‘: H"(—) — H"*#(—).
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Remark 3.11. The squaring operation Sq'(u) for any class u € H"(X) is determined
by Sq*(n), where ¢, € H*(K(F2,n)) is the fundamental class, because of the univer-
sal property of K(Fs,n). A priori, Sq*(u) depends on the cohomological degree of
u. However, this dependence is eradicated by the fact that the squaring operations
are stable, i.e. for any u € H*(X)
Sa'(o+(u)) = 0.(Sq" (u)),

where o, : H*(X) = H**!(2X) is the suspension isomorphism. The HF-orientibility
of y implies SqO(L) =1 for the generator « € H'(S'), which, along with Cartan for-
mula, implies stability.

3.2. The Cs-equivariant squaring operations. The construction of the clas-
sical squaring operations can be adapted to construct squaring operations on the
RO(C3)-graded cohomology of a Ca-space.

Remark 3.12. Our ideas are closely related to the construction of the R-motivic
squaring operations due to Voevodsky [V]. Certain parts, such as the construction
of the power operation Definition B.21] though different, can be compared to [W1l,
W2], where the author studies Cy-equivariant power operations on the homology
of spaces.

Notation 3.13. For any group G and a family of subgroups F closed under sub-
conjugacy, there exists a space EF determined up to a G-weak equivalence by its

universal property
— {* ifHeF,

(0 otherwise.

When G =Cy x X, and 7, ={HC G: HNX,, = 1}, we denote EF,, by Ec,%,,.
Note that there is a natural Cy-equivariant map E¥,, — Ec¢,X,.

Notation 3.14. For a based Cy-space or a Co-spectrum X, we let
D2 (X) = (Ec,Za)+ Ax, (XM7)

the n-th equivariant extended power construction on X. There is a natural Co-
equivariant map

82 : DE2 (X AY) —— DS2(X) ADE2(Y)
induced by the diagonal map of Ec, 3, for any pair X and Y of Cq space or spectra.

For a Cs-equivariant space X € Topfz, the inclusions X©? < X and EX,, —
Ec,, together induce a natural map

(3.15) Ax : Da(X%2) — DS2(X),

which is usually not an equivalence.
Example 3.16. When X ~ $°, Ago : (BE2); —— (B, X2)* ~ (BZs)1 ASY
is the inclusion of a summand.

Likewise, when E € Spcz, the map E€? — E induces a natural map

Ap : Do(EC?) — DS2(E)2,
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Using the fact that 1552 is an E.-ring Ca-spectrum we define a map A% as the
composition
(3.17)

D, (®(E)) o(DS?(E))

J{AEFQ AE T

(Da(ECs A E))%2—— (Da(ECs) A Da(E)) " —— (BC5 A Ds(E))"

AR

I

®(D2(E))
By definition, an ES2-ring structure on a spectrum R consists of a system of maps
ORr: DS (R) —— R

for each n > 0, which satisfy certain compatibility criteria [LMSM|, §VIL.2]. The
categorical fixed-point spectrum R®? as well as the geometric fixed-point spectrum
®(R) of an E{2-ring spectrum R are E..-ring spectra with structure maps

R\C2
O i Dy(R%) 2 DY (R) — sy RO
and
g ook
0™ Dy(B(R)) —1s (DS (R)) ——oml s B(R),

respectively. Further, the natural map
(g : R2 —— @(R)

is an E.,-ring map.
Let w denote the sign representation of 3. The equivariant Eilenberg-Mac Lane
spectrum HF, does not distinguish between the Cq-equivariant bundles

€: ECQEQ Xy, (p) —_— BCQEQ

7 : EC2E2 X3y (p & w) — BC2223
i.e. there exists a Ca-equivariant Thom isomorphism (see Remark B20)
(3.18) Th(y) AHEF, ~ Th(€) A HF, ~ ¥°(B¢,%2)+ A HF,.
The above Thom isomorphism results in an HF,-Thom class
u, : Th(x®") —— X"PHF,

for each n > 0, and these Thom classes can be used to define the Cs-equivariant
power operations. Since

D$2(S"°) ~ Th(np & n(p ® w)) ~ T Th(y®"),
we define the map t,, as the composition
(3.19)
D§2 (ZNPHEQ) n ZQTLPHE2

! -]

X"u /\@g2

DS2(S"°) ADS? (HF,) —=— X" Th(y®")ADS?(HF,) —~— ¥©2"°HF, AHF,.

|11
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Remark 3.20. The Thom isomorphism (BI8) does not follow immediately from
the general theory of equivariant Thom isomorphisms [CW] because the basespace
Be, Y2 is not Ca-connected. In such cases, there is no guarantee of an HF,-Thom
class; instead an HF,-orientation is encoded by a family of classes (see [Mall). How-
ever, there is a map of Cs-equivariant R-vector bundles from ¥ to the tautological
Atiyah Real line bundle over BS® = BUg(1), which is Cy-connected. Further, the
tautological Atiyah Real line bundle admits a single HF,-Thom class as HF5 is
Ca-equivariantly contractible. Therefore, ¥ also admits a single HF,-Thom class
which leads to (BI8) using a standard argument involving the Thom diagonal map.

Definition 3.21. The equivariant power operation is the natural transformation
c 2 C
Py HEZ(—) ’ chp(D22(_))a

which takes a class u € H¢? (E) to the composite class

Co w
P (u) : DS?(E) 2 DS (S0 HE,) —™ $2"PHE,

for any E € Sp©2.

When X € Topi32 is given the trivial ¥s-action and X A X is given the per-
mutation action, the diagonal map X — X A X is a Cy X Xs-equivariant map.
Consequently, we have a Cy-equivariant map

AP (Be,Y2)1 AX =~ (Ec,X2)4 As, X —— DS?(X).
By [HK], Lemma 6.27] (also see [W1l Proposition 3.2]),

G ((BeyB2)4) 2 Myl x/(y* = acy + uox),

where |y| = (1,1) and |x| = (2,1). Since Hg, ((Bc,22)+) is MS2-free, we also have
a Kunneth isomorphism

: (BoyXo) 4 A X) = HE, (Bo, X2)+) @00 Hey(X).

Thus, for any v € H (X), we may write (A2)* (P52 (u)) using the formula

n n

(3.22) (Ag(’z)*(ngg (u)) — an—i ® S_qu(u) + Z yxn—i—l ® &21'—5-1(“),
1=0 i=0

which defines the equivariant squaring operations &i for all ¢ > 0. These can
be extended to operations on the entire RO(Csz)-graded cohomology ring as in
[Vl Prop 2.6]).

Remark 3.23. Just like the classical case, one can easily deduce that the RO(Cs)-
graded squaring operations defined this way are natural, stable and obey the Cartan
formula. In fact, Voevodsky [V] uses a similar approach to establish these properties
for the R-motivic Steenrod algebra, which can be emulated in the Cs-equivariant
case using the Betti realization functor.
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3.3. Comparison theorems. Since the restriction functor is monoidal, it induces
a ring map
R, - HE,(Xy) —— HY(R(X)4)
for any X € Top®2.
Example 3.24. When X = %, the map
R, : 72 HFy —— 7, HF; = Fy

sends ug — 1, ag — O and © — 0. This follows from the fact that the cofiber
sequence Co — S0 22 §9 shows that the kernel of R, consists of precisely the
as-divisible elements.

Proposition 3.25. For any X € Topf2 and a class u € HgZ(X)

R (P52 (u) = Po(Ru(u)).
Proof. Since, R(Y) = 2y, it follows that R, (u,,) = uz,. This, along with the fact
that 8‘%(952) = 052 shows R(t,,) = Tan, and the result follows. O

Proof of Theorem [LI7 Let X € TopS? and u € HE (X). Since R(Bg,X2) ~ BX,,
R(AC2) = A, R.(y) =t and R, (x) = t2, it follows that

A (P = 3 vt e SR (u)

i=—n

must equal

R (AT (P (1)) = B 32 ¥ 0 8¢ () + 3 1 0 8¢+ ()

i=—n i=—n

_ Z t2n—2i ® %*(SQQZ(U,))

+ Z t2n—2i—1 ® %*(SqQZ-i-l(u))

i=—n

i=—n
Thus, the result is true for cohomology classes u € HZS(X) for any space X €
TopSQ.

Since the squaring operations are stable, the result extends to arbitrary RO(Cs)-
graded cohomology classes. Moreover, since # commutes with suspensions, in the
sense that o 3 ~ ¥ o, and any E € szc%n is equivalent to X7 "¥& X for
some n and X € Top®?, we conclude the same for any u € HE(E). O

Now we draw our attention towards comparing the action of the Cy-equivariant
Steenrod algebra A2 on H*(X, ) to the action of the classical Steenrod algebra A
on H*(X$?), where X € Top“. Note that

b, HE,(X4) — H(XD)

is a ring map.
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Example 3.26. When X = %, the map
d,: 7C2HF, =~ Folug, ag] ® O{uglag’} — m HFy 2 Fy
sends ag — 1, ug — 0, and © — 0. This is essentially because smashing with
EC, ~ colim{S° 2% 8 2o g2 .}
amounts to inverting a, and the projection T[I(FZ) kills u-.

Remark 3.27. One can deduce from Example that in cohomology, the map
Moo H* (B, 52$2) = Falt][1/ (1% — 1) —» H*((BE,)3) = Falt),

is the quotient map sending ¢ +— 0.

Example 3.28. The map &, : HE, (BeyX2)4) — H*(B0222$2) sends x — t and
y =, ag +— 1 and ug — 0.

Lemma 3.29. The composition
* ~On 3. * ~@®n\C A X * n
HE,(Th(y®")) —— H*(Th(y®")"*) =5 H*(Th(y*"))

sends u,, — up.
Proof. Let (c, : (Bg,Y2)+ — Th(Y®™) denote the zero-section. Under the zero-
section map the Thom class is mapped to the Euler class, and therefore ¢, (u,) =

x". Likewise, the zero-section for the nonequivariant bundle ¢ : (BX3); — Th(y®")
sends u,, — t". By naturality of ®, and A, we get a commutative diagram

He,(Th(y®")) —2 1 (Th(y®) ) 2% 1 (Th(yen)

¢ |« lc*

HE(Bo,B2)4) —— H*(Bc,25?) 5 H*((BX2),).

*

which along with Remark and injectivity of ¢* implies the result. a

Corollary 3.30. For any space X € Top<? and a class u € HEY(X),

(3.31) Pa(® (1)) = A (8+(P3 2 (w))).
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Proof. 1t is enough to show that the following diagram commutes, as the blue path
and the red path indicates the left-hand side and the right-hand side of (B:31)),
respectively.

D (XC2) D (X)"?
D2 (®(u)) (A) 2(D32 ()
D2(2”7Té2>) %ﬂPHEZ C
Dy(S"HF,) +— 2~ Dy(®(X"PHF,)) ®(DS2 (X"PHF,))
82 (B) 52 (©) ®(557)

IADs (7))

D2(S™) A Do (HF2) D5(S") A D2(@(HEF,)) ——— ®(D§?(S"P)) A ®(D§*?(HEF,))

e () wirel™ (F) e

N2 HF, A HFy «+———— S2HF, A &(HF,) «+———— &(S*"PHF,) A &(HF,)

(0) 2n,_(0)
]1/\7'f[F2 = "n]FQ Al

DLTEN (G) 229 (ugy)

D2 HFF, $2n$ (HF,)

2 n 7 (0)
i)

The squares (A), (B) and (C) commute naturally, the squares (E) and (G) commute
because 7T]F2 is an E-ring map, and (F) commutes because of Lemma [3.29] (]

Proof of Theorem [L.19. For any space X € Topf"‘ and a class u € Hg‘;(X)7 we have
a commutative diagram

A
(BE); AXC2 — X2, 1, (XC2))

7\80 VAN HXCQ\L l?\x

(@]
(Bo,32)§2 A X At D§?(X) .
X
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Therefore,
D T @S (D () = Ak, (Pa(Du(w))
i=0

= Aoy (A& (24P ()
= (Mo ® 150 (((AL) )" (8.(PS (u))))
= (Ao ® 1%c, )8 ((AF?)* (P (w)))

= (Mo ® 1xe,)®s (Z "' @ Sq™ (u)

=0

n

= (As0 @ Ixe,) (Z £ ® (S (u)

=0

=3 @ b (Sq% (u),

i=0
and hence, the result is true for all u € H¢ (X) for any X € Top 2.
Since the squaring operations are stable, the result extends to arbitrary RO(Cs)-
graded cohomology classes. Moreover, since the geometric fixed-point functor ®
commutes with suspensions ([B:2), and any E € SpS}in is equivalent to X7"¥ X

for some n and X € Top®?, we conclude the same for any u € HE, (E). O

4. TOPOLOGICAL REALIZATION OF A%(1)

We begin by proving Theorem [[L6, which identifies all possible A®-module struc-
tures on A®(1) up to isomorphism.

0,0 1,0

FIGURE 4.1. This figure displays the free M5-module A®(1), with
Sq' and Sq2-multiplications drawn in only on the ME-module gen-
erators.
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Proof of Theorem [LB. Note that the Cartan formula of A® and finiteness of A% (1)
imply that the A®-module structure on A%(1) is determined once the action of Sq*
and Sq® are specified on its MZ-generators. The following are possible Sq* and
Sq®-actions on the ME-module generators. As can be seen in Figure @] there is
no room for other possible actions.

Sa*(z0,0) = Bos(p - y3,1) + Boa(T - ya1) + coz(p - x31)

Sq*(21,0) = Bra(p - yan1) + B15(ys.2)

Sq*(z2.1) = J2a(p? - ya1) + Bos(p - Ys.2) + Bas(T - y6.2)
Sq*(z3,1) = Bas(p - ¥s.2)

Sq4(y3,1 = 736(p - Y6,2)

= BOG(P : y6,2)

The Adem relation Sq?Sq® = Sq° + Sq*Sq* + pSq®Sq* (see Proposition [A]), when
applied to xgo and x3,1, yields B15 = 1, Bos + Bos + P14 = 1 and B25 + 26 = F36-
The equation
J24 = PosVse + 203536,
is forced by the Adem relation Sq*Sq* = Sq?Sq*Sq? +7Sq*Sq*Sq"! when applied to
20,0. This exhausts all constraints imposed by Adem relations in these dimensions.
O

In Theorem [[.6] there are exactly seven free variables taking values in Fy, and
therefore, there are exactly 128 different A®-module structure on A®(1). Thus,
in order to complete the proof of Theorem [[3, we realize these AR-modules as
spectra using Theorem 2.11] which is a weak form of the R-motivic Toda realization
theorem.

Proof of Theorem [L3. Firstly, note that AZ(1) is a cyclic A®-module for all v € V,
therefore AS(1) := AZ(1)/(p) admits a May filtration. Secondly, note that

gr(AG(1)) 2 Ay (E1,0, €11, E2,0)
as an gr(A%)-module (see (7)) for notation). Consequently,
MSh; ;i >1,j>0]
(h1,0.h1,1,h20)

(42)  MWERE = MVERET/ (hosh, hoo) =

In the notation of Section
DAR(l) = {(0a0)7 (1 O) (2 1) (3 1) (4 1)7 (5a2)7 (6v2>}

)*)*

By directly inspecting the (s, f, w)-degree of M&E" %" we see that the condition

1,AS(1)°
necessary for existence in Theorem [2.17] is satisfied. Hence, the result. (Il
Remark 4.3. The vanishing region of M&E"*** does not preclude the possibility

LAZ(D)
of having a nonzero element in Ext;‘é’zo (M, M). We suspect (even after running
the differentials in (23) and (23)), that the above group is nonzero for a given
AR-module structure on A% (1), and that there are, up to homotopy, multiple real-
izations as R-motivic spectra.

Our next goal is to prove Theorem [[.8] We begin with the following observation.
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Lemma 4.4. The A®-modules BS(1) and BE(1) are uniquely realizable as objects
m Sp]2R7ﬁn.
Proof. Both Bj (1) and BE(1) are cyclic M5-free finite A®-module and

B3(1)/(p) = B (1)/(p)

as A®-module. Let BE(1) := BX(1)/(p). It is easy to see that gr(B¢(1)) is isomor-
phic to Ay (&1,0,&1,1) as an gr(A%)-module, and therefore

(4.5) MYENR) Z Falrllhig i > 1,5 > 0]/(hio, hua).

Using this, along with the fact that

Dpey = 1(0,0),(1,0),(2,1),(3,1), }
shows that the condition necessary for existence as well as uniqueness in Theorem
2ITlis satisfied. Hence, the result. |

Proof of Theorem [L8. Consider the injective A®-module map Z*!B¥(1) — AR
sending the M generator in degree (3,1) to 231 + y3,1. It follows from Theorem
that the quotient is isomorphic to By (1). Thus, we have the exact sequence
(3).

The topological realization of ([L9), i.e. the cofiber sequence ([LI0), would follow
immediately from Lemma 4] once we show that any one of the A®-module maps
in (L9) can be realized as a map in Spﬂiﬁn. Thus, it is enough to show that the
nonzero class in the Eo-page represented by the projection map AX(1) - BE(1) in
degree (0,0,0) of the R-motivic Adams spectral sequence
(4.6) By = Bxt% v (AR(1), BE(1)) = [ygl),A%*[vﬂ

8,w
is a nonzero permanent cycle.

Using (@2, the p-Bockstein spectral sequence (5] for AR[¥] and the Atiyah-
Hirzebruch spectral sequence

Byt @ Bt L (A (¥, ME) = B (A v, BE (1)),

one can easily check E5 LIO — 0 for all f > 2, and thus any nonzero element in

degree (0,0,0) of the Ex-page in (6] is, in fact, a nonzero permanent cycle. [

Our next goal is to analyze the underlying spectrum and geometric fixed-points
spectrum of AS?[¥], the Betti realization of A¥[v].

4.1. The Betti realization of AY. Under the Betti-realization map
(4.7) B : m HrFoy = Folp, 7] —— 7, HF,

p+— ag and T — ugs. Since the functor B is symmetric monoidal and (HgF3) =
HF,, the i-th R-motivic squaring operations maps to the i-th RO(C5)-graded squar-
ing operations under the map

B, : AR —— A2,
Hence, HEQ(AEJ2 [¥]) is M$2-free (as Hy™(AX[¥]) is M5-free) and its A 2-module

structure is essentially given by Theorem (after replacing Sq' with &Z and
M3Z-basis elements by its image under B.).
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Remark 4.8. The map B, of [@1) is only an injection with cokernel the summand
O{uziaz’ :i,j > 0} of MS?. In general, for an A®(1)-module Mg, the number
of A®2-module structures on 3(Mg) can be strictly larger than the number of AR-
module structures on Mg. But this is not the case when Mg = AZ(1) simply for
degree reasons, therefore Corollary holds.

As discussed in Example 3.24] the restriction map
R, MS2 —— Ty

sends ag — 0, ug + 1, and © +— 0. Thus, when Hg (E) is Mzcz—free, R, is simply
“setting ay = 0, us = 1, and © = 0”. This observation, along with Theorem
[LI7 allows us to completely deduce the A-module structure of H* (R(AZ(1))) from
Theorem Together with the fact that the .A-module structures on A(1) are
uniquely-realized, our observations yield Theorem [.9] where the notation A3, j]
is adopted from [BEM].

Theorem 4.9. For v = (a3, Bos, B14, Bos, B25, B26,736) € V (as in Theorem [LG]),
R(AT?[¥]) ~ Ax[1 + Bos + B4, Bac).

Now we shift our attention towards understand the geometric fixed-points of
A$2[7]. As discussed in Example B26] the modified geometric fixed-points functor

B, MS? —— Ty

sends ag — 1, ug + 0, and © + 0. Thus, when Hg (E) is MS2-free, &, is simply
“setting ay = 1, ug = 0, and © = 0”. This, along with Theorem and Theorem
[LI9, gives the following.

Notation 4.10. Because H’éz(Ag32 [¥]) is M$2-free, the HFy-cohomology of ®(A$2[7])
consists of eight Fy-generators, all of which are in the image of ®,. We let

s0 1= DPu(20,0), S1a = Pu(z21), S1:= ‘f*(ﬂh,o), 9= D, (y3,1)
to 1= (i)*($3,1)7 t3q 1= é*(y5,2)7 t3p 1= é’*(y4,1)7 ty 1= ‘i)*(yﬁ,z)-

Note that |s;_y| = |t;—)| = 1.

Il
o>

Theorem 4.11. Let V = (ao3, o3, B14, Bos, P25, P26, V36) € V, and let

J24 = Bosyse + o3(B2s + P2e)

as in Theorem 8. The A-module structure on H*(®(AS?[¥))) is determined by the
following relations, as depicted in Figure [A12:

e Sq'(s0) = 514 * Sq°(s1a) = Baslsa + Joalas
e Sq'(s1p) = 52 e Sq°(s15) = t3a + Sratas

° Sql(tg) = t3q4 ° Sq2(82) = 736t4

o Sql(tsy) =ty * Sq*(t2) = (Bas + Bag)ta

. Sq2(50 = Po3S2 + qsta L] Sq4(50) = Bosts.
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FIGURE 4.12. The A-module H*(®(A2[¥]))

5. AN R-MOTIVIC ANALOGUE OF THE SPECTRUM Z

The type 2 spectrum Z € Sp, g, introduced in [BE, is defined by the property
that its cohomology as an A(2)-module is

B(2) := A(2) ®A(q,) F2,

where Qo = [Sq4,Q1] is dual to the Milnor generator &3 of the dual Steenrod
algebra. They first show that an .A-module structure on A(2) satisfying the criteria
in [BEL Lemma 2.7] leads to an .A-module structure on B(2). In [BE], the authors
show that among the 1600 possible A-module structures on A(2) [R2], there are
some A-modules that satisfy [BEL Lemma 2.7]. Then they use the classical Toda
realization theorem to show that any .A-module whose underlying A(2)-module
structure is B(2) can be realized as a 2-local finite spectrum, which they call Z.

We construct Zr € Spﬂiﬁn by emulating the construction of the classical Z (as in
[BE]) in the R-motivic context. Since there is no a priori A®-module structure on
AR(2), we produce one in Section 5.1l In fact, we construct an R-motivic spectrum
whose cohomology is the desired .A®-module.

5.1. A topological realization of A%(2). Let A%(2) denote the sub-M5-algebra
of the R-motivic Steenrod algebra AR generated by Sq',Sq?, and Sq*. We will
use a method of Smith (exposed in [R1, Appendix C]) to construct an R-motivic
spectrum A% € Spgﬁn such that its cohomology as an A% (2)-module is free on one
generator.

Let h,nm: 1 and vz o denote the first three R-motivic Hopf-elements (these are
denoted w, 1, and v in [DI, Section 8§]).

Lemma 5.1. The R-motivic Toda-bracket (h,m1 1,v32) contains 0.

Proof. In this argument, it will be convenient to refer to the “coweight”, by which
we mean the difference s — w, as in [GI].

Since h and 7;,; have coweight 0 while v3 2 has coweight 1, it follows that the
bracket (h,n11,v32) is comprised of elements in stem 5 with coweight 2. The
only element in stem 5 with coweight 2 is p - 3, [BI]. Since this element is a v 5
multiple, it lies in the indeterminacy, which means that the R-motivic Toda-bracket
does contain zero. ]

Lemma [5.1] implies that we can construct a 4-cell complex I whose cohomology
as an AR-module has the structure described in Corollary and displayed in
Figure
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Corollary 5.2. There ezists K € Spﬂiﬁn such that Hy* (K) is M5-free on four
generators o, x1,x3 and xy, such that Sq" T (x;) = xoip1 fori € {0,1,3}.

T7

z3
Hy"(K) =

T

Zo

FIGURE 5.3. We depict the AR-structure of Hy"(K) by marking
the Sq'-action by black straight lines, the Sq2-action by blue curved
lines, and the Sq*-action by red lines between the MZE-generators.

Let e € Z(2)[¥6] denote the idempotent corresponding to the Young tableaux

213
5

’cnq;»a

which is constructed as follows. Let Yroyw C Xg denote the subgroup comprised
of permutations that preserve each row. Likewise, let Y, denote the subgroup
comprised of column-preserving permutations. Let

(5.4) R= Z r and C= Z (—1)%ene)e
TEXRow CcEX ol
and define

1
e=—R-C,
Iz
where g is an odd integer defined in [RIl, Theorem C.1.3]. We let € denote the

resulting idempotent in Fy[Xg].

Proposition 5.5. The idempotent € € Fo[Sg] has the property that e(VE®) = 0 if
dimp, V < 3 and

8 ifdimg, V=3,

dimp, e(VES) = {64 Fdime, V — 4

Proof. Let R and C denote the images of R and C in F2[X], respectively. Then
€ = R C. It is straightforward that C vanishes on V®¢ if dimV < 2.
Now suppose that V has basis {a,b, c}. Then a basis for (V®9) is given by

(B (B) () - (F) = () = ()
(BF) < ()}
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Finally, suppose that dim V = 4 with basis {a, b, ¢,d}. For any subspace W C V
spanned by three of these basis elements, the space 2(W®) has dimension 8, as we
have just seen. There are 4 choices of W, which together yield a 32-dimensional
subspace of V&6, Now consider Young tableaux in which all four basis elements
appear and only one is repeated. In the case that d is repeated, we generate only
two independent elements:

_ <> _ am
€ and € .
Allowing any basis element to be the repeating one, this gives an 8-dimensional

subspace. Finally, we consider Young tableaux in which all four basis elements
appear and two are repeated. In the case that ¢ and d are repeated, we have the

four elements
_ _ { [alcld] _ —
(BF) < (8F) < (8F) mo <(@F).

As there are (;1) = 6 such choices, this contributes another subspace of dimension
4.6 = 24. O

We define
AY = 2757 1e(KN0) = £75 L (hocolim {K"6 5 KN 5 ..},

which is a split summand of ¥ =% ~'K\¢ as e is an idempotent. We shift the grading
by (=5, —1) to make sure that the A%(2)-module generator of Hy " (A%) is in (0,0)

(see Remark [5.12).
Theorem 5.6. Hy"(A5) 2 AR(2) as an A®(2)-module.

Proof. By [BGL, Corollary 2.2], Hy™"(A%) is a free A%(2)-module if and only if
Hp"(A3) is free as an Mj-module and the Margolis homology M (Hg"(A3) @z
Fo, ) vanishes for z € {QF, ]11%,?1, H§,F;}, where Fi and F; are the elements in
AR dual to &; and &g, respectively.
Let Kg := Hp"(K). The A®-module Hy"(A%) is M5-projective as it is a sum-
mand of
®ur6
HD’%7*(275’C/\6) o~ 275KRMI§

)

which is M5-free. However, M is a graded local ring, and over a local ring,
being projective is equivalent to being free. Hence, Hy"(A%) is M5-free. Since

=1 =1 -
QF, QF,Q5, Py, and P, are primitive modulo (p,7), and for K := Kg Oz F2,
i€{0,1,2} and t € {1, 2}

dims, M(K, QF) = 2 = dimg, M(K, P,),
it follows from Proposition that
M(HE" (A7) @y F2, 2) = M(e(K®°), 2) 2 e(M(K,2)%°) = 0
for z € {QF, ]F,Fi, I§,F;}. Thus, Hy"(A%) is free over A®(2). Proposition (.5

also implies that the M5-rank of Hy™(A%) is 64, and therefore Hy " (A%) has rank
1 over A%(2). O
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5.2. An R-motivic lift of 5(2). Let QE = [Sq*, QF]. Unlike the classical Steenrod
algebra, Q5 does not agree with Q¥. Instead, as in [Vl Example 13.7], these are
related by the formula

Q3 = [Sa*, Q] + pSa’Sq".
However, one can check that both Q% and Qg square to zero, hence generate exterior
algebras. We define (left) A% (2)-modules

B¥(2) == A%(2) ©p(qz) M3
and
(5.7) B¥(2) 1= A%(2) ®, sy M5

Let AY denote Hy"(A%). Tt is easy to check that the left ideal generated by Q%
(likewise QF) in AR(2) is isomorphic to X73BR(2) (likewise X73BR(2)). Tt follows
that there is an exact sequence of A% (2)-modules

(5.8) 0 — NT3Bp —t AR — ™4 By 0,

where Bg is either B%(2) or BR(2). The main purpose of this section is to show
that:

Lemma 5.9. There exists an exact sequence of AR-modules~whose underlying
AR(2)-module exact sequence is isomorphic to (5.8) with Bg = BX(2).

Remark 5.10. In the case of Bg = B®(2), the image of 71B%(2) — Af is a
sub-A®(2)-module, but not a sub-A®-module. See Remark for more details.

Lemma 5.9 and Remark [5.10 are direct consequences of the A®-module structure
of AY which can be deduced from the injection

&z 6
SOIAR o K,
where Kg = Hy™(Kg). We do not want to entirely leave this calculation to the
reader because, without a few tricks, this calculation is likely to require computer
assistance as ¢ has 144 elements in its expression (in terms of the standard Fa-

R
)

QR 6
generators of Fo[¥3]) and K ° has 2'2 elements in its M5-basis. We begin after

setting the following notation.

Notation 5.11. Let z; denote the Mh-generators of Kg in degree i as in Corollary
We use the numbered Young diagram (abbrev. NYD)

i1 [i2]is]
4|5
16

@56
to denote the M5-basis element z;, ® -+ ® z;, € KRMD§ , where i; € {0,1,3,7}.

As in Proposition [5.5] let R and C denote the images of R and C (see (5.4))
in 5[], respectively. Since € = R - C, we record a few properties of R and C.
Note that R annihilates an NYD if it has repeating digits in a row. Likewise, C
annihilates an NYD if there are repeating digits in a column. For instance,

R( )=0=C( ).
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Remark 5.12. The lowest degree NYD which is not annihilated by € is

0[0]0]
1]1]
3

which lives in degree (5,1). Of course, there are multiple NYD’s in bidegree (5, 1)
not annihilated by € but their images are the same. Likewise, the NYD of the
highest degree not annihilated by € is

rdidid
%&J

which lives in bidegree (28,11).

The lowest degree element ¢ := &( ), which serves as the A®-module gen-
3

erator of ¥>1A% can also be expressed as

because the other NYDs present in the expression C( ) are annihilated by R.
3

Since the R-motivic Steenrod algebra is cocommutative we get
R(C(Sq'(—))) = R(Sq'(C(-))) = Sq" (R(C(-)))-

This, along with the Cartan formula, allows us to calculate a - ¢ for any a € AR,
fairly easily. For example,

Sq' -t =R(Sq" )
R
(),
ﬁ(Sq )
=R( m +r( BER + + BEP )
ﬁ(),
Sa' -0 = Risa( [ )
:§++T %5' R+ BRP)
(1]
[S[1]1] [S[1]1]
o
= RO +7 i)

I
]

Il
=

Sq” -
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In this way, we calculate

G =R + B+ )
0] 0]

=R + [P + [ 0 )
0] 0]

where the details are left to the reader.

S

o o o

o o e

o o

o o o

* o o

- M W s U & N ©

e o o

o 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

FIGURE 5.13. M5-module generators of A% (2). Black dots corre-
spond to generators of B¥(2) and orange dots to ©73B%(2).

Remark 5.14. We record (see Figure [(.13]), in the notation introduced in Section
2.1 that
DB’R(Q) ={(0,0),(1,0),(2,1),(3,1),(4,1), (4,2), (5,2), (6,2), (6,3), (7,3), (8,3),
(8,4),(9,4),(10,4), (10, 5), (11,5), (12,5), (12,6), (13,6), (14, 6), (15,7), (16,7) }
and Dpz = {(i + 7€, j + 3€) : (4, j) € Dgr(yy and € € {0,1}}.
Proof of Lemma 5.9 Recall that the image of »73BR(2) in (B5.8) is the (left) AR(2)-
submodule of AY generated by QF. We must check that this is closed under the

action of AR. Since Sq',Sq?, Sq* are in AR(2), it remains to check that for all i > 3
and a € A®(2)

S - (aQf 1) = bQf5 -0
for some b € A®(2). For degree reasons (see Remark[5.14)), we only need to consider
the case when i = 3 and a € {1,Sq",Sq?}. We check

Sq® - (Q5 - 1) = (Sa"Sq" +5q'Sq’Sq*) Q5 - ¢
Sq® - (Sq'Q5 - 1) = (Sq"Sa” + Sq*Sq")Sq' Q5 - ¢
Sq® - (Sa”Q5 - 1) = (Sq*Sq*Sq” + Sq*Sq”Sq* + 7Sq”Sq*Sq")Sq* Q5 - ¢
and thus the result holds. O

Remark 5.15. We notice that

Sa®-(Q5 ) =RO B + +7 @+ oY+ + )
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cannot be equal to bQ5 - for any b € A®(2). This is an easy but tedious calculation.
For the convenience of the reader, we note that an Fo-basis for the elements in degree
1Sq®| = (8,4) of A®(2) is given by

{Sa’sa* 78q"Sq", 7S4°Sq”Sq", pSa”, pSa°Sq', pSa”Sq?, pSa*Sa*Sa’, p?Sq’Sq'}.
5.3. The construction of Zg. Recall the A®-module BY, as given in (5.7), and

let ~
Bj = B3/(p).
Proof of Theorem [[L24. Since BY is cyclic as an A®-module, it admits a May fil-

tration, whose associated graded is isomorphic to

gr(BS) 2 A(&1,0,&1,15 81,2, E2,0, E2.1)
and whose Eo-page of the corresponding May spectral sequence is isomorphic to
MSh; ;i >1,5>0]

5.16 May ot o .
(5.16) 1.B3 (h1,0,h1,1,h12,h20,h2 1)
From this and Remark [5.T4] one easily checks that the condition for Theorem 2.1T]
is satisfied. Thus, there exists Zg € Sp g, such that Hy*(Zp) = BS. O

Remark 5.17. Since, as an A(2)-module
H*(R(B(Zr))) = Ru(B(Hr " (2r))) = B(2),
the underlying spectrum of B(2g) is indeed one of the spectra Z considered in [BE],
and therefore of type 2.
APPENDIX A. THE R-MOTIVIC ADEM RELATIONS

Voevodsky established the motivic version of the Adem relations [Vl Section 10].
However, his formulas contain some typos, so for the convenience of the reader, we
here present the Adem relations, in the R-motivic case.

Proposition A.1. In the R-motivic Steenrod algebra A®, the product Sq*Sq® is
equal to

(1) (a and b both even)
a/2

ZT]‘ mod2 (0—1—1J Sanrbijqj
= a—2j

(2) (a odd and b even)

O -1 b—j
Z ( j>sqa+b—]sq.7 +p< J >Sqa+b_1_18qj.

o a—2j a—2j
(3) (a even and b odd)
a/2 . .
b—1-— - b—1-— ; ,
Z ( 'j>sqa+b—JSq] + p( ].> Sqll'i‘b—]—lsq]'
= a—2j a+1—2j

(4) (a and b both odd)

(a—1)/2 .
S b= 1= I\ gqett-isy
a—2j

=0
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Remark A.2. Given that Sq® = Sq'Sq®™! if a is odd and also that Sq'(7) = p,
cases (2) and (4) follow from (1) and (3), respectively. Note also that (1) is the
classical formula, but with 7 thrown in whenever needed to balance the weights. In
formula (2), the left term appears only when j is even, while the second appears
only when j is odd. In formula (3), the second term appears only when j is odd.

Example A.3. Some examples of the R-motivic Adem relation in low degrees are
Sq’Sq* = 78¢°Sq',  Sq’Sq® = pSq’Sq’,
and
Sq%Sq® = Sq° + Sq*Sq' + pSq*Sq’.
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