
Mechanical Systems and Signal Processing 168 (2022) 108709

A
0

a

b

I

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Physics-informed deep learning for signal compression and
reconstruction of big data in industrial conditionmonitoring
Matthew Russell a, Peng Wang a,b,∗
Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA

A R T I C L E I N F O

Communicated by D. Wang

Keywords:
Physics-informed deep learning
Prognostics and health management
Data compression
Big data

A B S T R A C T

The onset of the Internet of Things enables machines to be outfitted with always-on sensors that
can provide health information to cloud-based monitoring systems for prognostics and health
management (PHM), which greatly improves reliability and avoids downtime of machines and
processes on the shop floor. On the other hand, real-time monitoring produces large amounts
of data, leading to significant challenges for efficient and effective data transmission (from
the shop floor to the cloud) and analysis (in the cloud). Restricted by industrial hardware
capability, especially Internet bandwidth, most solutions approach data transmission from the
perspective of data compression (before transmission, at local computing devices) coupled
with data reconstruction (after transmission, in the cloud). However, existing data compression
techniques may not adapt to domain-specific characteristics of data, and hence have limitations
in addressing high compression ratios where full restoration of signal details is important for
revealing machine conditions. This study integrates Deep Convolutional Autoencoders (DCAE)
with local structure and physics-informed loss terms that incorporate PHM domain knowledge
such as the importance of frequency content for machine fault diagnosis. Furthermore, Fault
Division Autoencoder Multiplexing (FDAM) is proposed to mitigate the negative effects of multi-
ple disjoint operating conditions on reconstruction fidelity. The proposed methods are evaluated
on two case studies, and autocorrelation-based noise analysis provides insight into the relative
performance across machine health and operating conditions. Results indicate that physically-
informed DCAE compression outperforms prevalent data compression approaches, such as
compressed sensing, Principal Component Analysis (PCA), Discrete Cosine Transform (DCT),
and DCAE with a standard loss function. FDAM can further improve the data reconstruction
quality for certain machine conditions.

1. Introduction

With ever-accelerating connectivity and the onset of low-power devices, the Internet of Things (IoT) promises to usher in
ndustry 4.0, providing real-time information streams from distributed device networks [1]. These streams send machine metrics to
cloud-based resources for industrial condition monitoring and Prognostics and Health Management (PHM). Fused via state-of-the-
art data analysis algorithms, these inputs will facilitate optimization of maintenance activities, eliminate downtime, and improve
production efficiency [2]. While the value of Big Data for industrial PHM and other applications has been well demonstrated in smart
manufacturing paradigms [3], the new data transmission and analysis pipelines significantly challenge the network infrastructure
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on the shop floor with staggering volumes of data for real-time and offline analysis. A popular solution to address this challenge
adopts the pairing of data compression (before data transmission, on the shop floor) and data reconstruction (after transmission,
in the cloud). However, data compression may run the risk of losing too many details and distorting the data characterization,
corrupting the data analytics and PHM decision-making after data reconstruction. The extent of the risk is influenced by raw
data quality (e.g., signal-to-noise ratio), compression ratio, balance among data from different conditions, etc. Viable solutions
should demonstrate robustness to these uncertainty sources while achieving high-ratio compression. Furthermore, in the context of
industrial PHM, a good data compression and reconstruction algorithm must also be able to preserve the important characteristics
of faulty data for later analysis, i.e., distinction from normal data and differentiation among faulty conditions [4]. This necessitates
special attention be given to protecting critical characteristics of the data when designing an appropriate compression mechanism.

Data compression and reconstruction algorithms can be generally classified into two groups: model-driven and data-driven
achine Learning (ML) algorithms. In contrast to model-driven algorithms like the Fourier Transform (FT), the Discrete Wavelet
ransform (DWT), and the Discrete Cosine Transform (DCT), various ML algorithms allow the data compression to be trained for a
pecific application scenario with certain data characteristics. For example, an ML model could focus on vibration signals in milling
rocess’s range of operating frequencies instead of relying on a representation designed to universally compress one-dimensional,
ime-varying signals. Hence, ML algorithms typically outperform model-driven algorithms in specific applications.
ML—and especially emerging Deep Learning (DL)—algorithms can compress the data adaptively according to the information

evealed by the data itself. As a representative of linear ML techniques, Principal Component Analysis (PCA) can decompose signals
nto explanatory components depending on the extent of information richness. Then the components with the largest coefficients
an be used as the compressed signal. Advancing from linear data compression, Autoencoders (AEs) have emerged as powerful,
onlinear, DL extension of PCA that can find more nuanced mappings [5]. AEs use an encoder neural network (NN) to map an
nput signal into a latent vector (usually smaller than the input), while imposing a mixture of dimensionality, denoising, sparsity,
nd continuity constraints. The latent encoding is then mapped back to the input space for data reconstruction by a decoder NN,
hich usually mirrors the structure of the encoder. AE-based methods naturally have received much attention for compression of
oth one-dimensional time series and two-dimensional images [6]. Interestingly, most 1D time-varying AE compression research is
ominated by biometric signals, such as electrocardiograms (ECG) for heart monitoring and electroencephalograms (EEG) for brain
onitoring. A standard AE was investigated to compress EEG signals and demonstrated its superiority over DCT, DWT, and PCA
ethods [7]. AE has also been implemented in a DL architecture, for example with a stack of multiple convolutional and pooling
ayers in the encoder and multiple upsampling layers in the decoder, to compress and reconstruct time-domain ECG signals [8]. A
imilar deep AE architecture was used to compress the Fast Fourier Transform (FFT) of ECG signals [9]. These studies evidence the
otential benefits of AEs and their DL implementations for data compression and reconstruction.
Despite the similarities between biometric data and industrial sensing signals, AE-based data compression has not been fully

nvestigated for industrial PHM. Both domains rely on quasi-periodic signals with large volumes of raw data, but contemporary
pplications of AEs in PHM have focused instead on unsupervised anomaly detection and feature learning. An early application of AE
or health management is presented in [10], which observed that an AE trained on healthy spacecraft telemetry would produce poor
econstructions of off-nominal inputs. This higher reconstruction error could be utilized to identify faults. This work was extended to
anufacturing by training an AE to reconstruct FFTs of healthy acoustic emissions [11]. Anomalous sounds in this application were
etected by checking if there was a drop in the reconstruction accuracy. For the purpose of feature learning, AE was demonstrated
or hierarchical, unsupervised feature extraction that improved fault diagnosis in wind turbine gearboxes [12], reliability analysis
f mechanical truss structures [13], and bearing remaining useful life prediction [14]. AE has also been implemented in different
L (e.g., fully connected NN) and DL architectures (e.g., convolutional and recurrent neural networks) for different application
eeds [15]. Furthermore, many trials have been done to improve AE’s performance on feature extraction when facing a certain
hallenge (e.g., severe noise contamination and outliers), such as a modified denoising AE that was developed for rolling bearing
ault diagnosis in [16]. As with all data-driven approaches, AE techniques can suffer from shifts in the data, which led [17] to
esearch how the normalization of the neural network Laplacian might improve AE generalization in spite of imbalanced training
ata.
Several broadly applicable extensions of AEs apply optimization constraints that regularize the training of NN or DL network

arameters. Weight decay is one such technique used across many NN architectures and was adopted by [7] in their AE
or compressing EEG data. A contractive autoencoder (CAE) has been developed to encourage a smooth latent manifold by
egularizing higher-order derivatives of the network weights [18] and has been incorporated in some AEs for PHM vibration signal
ompression [19]. Also, sparsity penalties on the latent vector using the L1 norm have been investigated as regularization for feature
xtraction [16,20]. Leveraging these general variations of AEs can be valuable, but more targeted approaches are needed for the
ompression of data with varying characteristics in the PHM field. Surprisingly, little work has been done to discover new loss
erms that might improve the performance (e.g., signal reconstruction quality, convergence, robustness) of AEs in the context of
HM with [21] providing a rare contribution by investigating a correntropy term that improves robustness against noise-induced
utliers in vibration signals. Study [4] sought to integrate the Pearson’s Correlation Coefficient (PCC) into the optimization loss (in
ddition to MSE loss), but provided no quantitative analysis of PCC’s effect. To explicitly handle the variation among fault classes,
hey also concatenated the compressed representation with a one-hot vector encoding of the fault condition before reconstructing
he input signal. However, they provided no substantial analysis or discussion to evaluate the impact of this choice. Despite the
eed for regularization, existing studies have not sufficiently formulated and discussed a viable approach for PHM-oriented data
2

ompression, in which faulty data has varying representations and characteristics and need to be specifically treated.
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The need for robust, generalizable constraints in PHM motivates the consideration of how incorporating the underlying physics
ould act as an effective, domain-influenced regularizer during AE training. In general, Physics-Informed (PI) ML techniques can
e grouped into three categories [22]: (1) data preprocessing (e.g., FFT); (2) network architecture design [23]; and (3) additional
oss terms [24]. Although the FFT is a well-known signal preprocessing tool, FFT-augmented ML or DL has not been well-studied in
he PHM field. A few prior works incorporated physical degradation models into recurrent neural networks for fault prognostics of
luminum aircraft wings [25] and wind turbine bearings [26]. As these studies indicated, the inherent connection of PHM processes
o underlying physics supports the notion that PI methods can produce improved PHM models. More work is necessary to close this
esearch gap, especially in the context of PHM data compression.
To address the need for advanced compression techniques for industrial condition monitoring, this study contributes several key

omponents to Physics-Informed Autoencoder (PIAE)-based PHM data compression:

• Novel application of PCC loss to machine condition monitoring that demonstrates quantitative performance gains across two
case studies when compared to standard Mean Squared Error (MSE) loss;

• Development of PI loss terms motivated by the physical significance of frequency content in condition monitoring along with
intuitive discussions to explain how these terms influence AE training and experimental evaluation of impact across consistent
DL network configurations;

• Introduction of Fault Division Autoencoder Multiplexing (FDAM), which further improves reconstruction performance by
learning to compress each operating condition separately;

• Quantitative explanations for differences in reconstruction quality among operating conditions by estimating incompressible
signal noise via autocorrelation.

The proposed data compression and reconstruction architecture and the PI elements are summarized in Fig. 1. In addition to
a PCC-based local structure loss, PI loss terms incorporating autocorrelation and two FFT-based metrics have been investigated
to leverage domain knowledge of PHM signal periodicity. Although these loss terms can improve the ability of a single AE to
reconstruct signals from distinct fault conditions, the novel FDAM architecture provides an extension that isolates compression
on each condition to find an optimal representation for individual fault. In all compression problems, a natural tradeoff emerges
to balance reconstruction fidelity and the level of compression. Evaluating the proposed ideas across multiple compression ratios
elicits information about their robustness to this tradeoff. Finally, model performance often varies across operating conditions, and
thus a quantitative analysis of noise and reconstruction quality discerns whether differences in quality indicate shortcomings in the
model itself or inherent incompressibility in the data. To evaluate the proposed methods on Big Data condition monitoring signals,
case studies should be performed on data sets representative of the high-volume, high-velocity streams that threaten to overwhelm
network resources. While extensively used for fault diagnosis case studies, the Case Western Reserve University (CWRU) Bearing
Data Set has not been thoroughly utilized for state-of-the-art, DL-based compression algorithms and provides high-sampling-rate
vibration data typical of rotating machinery on a smart factory floor. Therefore, the CWRU Bearing Data Set offers an appropriate
case study for multi-condition, high-velocity signal compression, and estimation of relative noise content among the conditions
reveals the noise disparity between normal and fault conditions that could prove difficult for a unilateral compression algorithm,
necessitating an approach like FDAM. To supplement the bearing case study, a second evaluation considers vibration data from a
milling process with varying process parameters to further characterize the generalization behavior of the proposed techniques.

Table 1 provides a definition of acronyms used throughout the study. The remainder of this paper is organized as follows:
Section 2 presents the theoretical background for the core concepts of AE, PIAE, FDAM, PCC loss, and PI loss. Section 3 outlines the
network architectures, experimental design, and testing environment for the two case studies. Section 4 presents the results of both
tudies and discusses the variability of reconstruction across fault conditions. Section 5 summarizes the key findings in the context
of AE-based compression, PI methods, PHM applications, and the Industrial IoT.

2. Deep autoencoders for data compression

This section elaborates the fundamentals of PIAE, starting from standard AE implemented in a NN architecture to deep AE
implemented in a deep convolutional neural network architecture, various PI loss terms that could augment AE’s performance in
data compression and reconstruction, and FDAM specifically developed for the varying data characteristics issue associated with
industrial PHM.

2.1. Autoencoder neural networks

Autoencoders (AEs) implemented in a standard NN architecture seek to learn a nonlinear latent representation of the input data
through a series of fully-connected layers. In this context, AEs are considered as unsupervised learning, seeking a representation
capable of reproducing the original input data rather than learning classification or regression from labeled data. An AE has two
primary components: an encoder that generates latent or encoded representation, and a decoder that reconstructs an approximation
of the original data from the latent code. Imposing constraints on the latent space encourages the representation to have desirable
characteristics, which could vary with the application area and problem domain. In most application scenarios, the goal of applying
standard AEs is to extract a simplified feature representation that can be useful for downstream analysis [5]. As the feature vector is
smaller than the original input length, the feature extraction process done by the encoder can be regarded as data compression. To
ensure the quality of the feature representation and minimize the information loss during the compression, the decoder must then
3
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Fig. 1. Overview of the proposed study for vibration signal compression. Deep Convolutional Autoencoder (DCAE) and Fault Division Multiplexing (FDAM)
architectures are compared along with combinations of loss terms extending the traditional AE MSE loss. In the FDAM section, ‘‘demux’’ refers to a demultiplexer
with output line determined by the fault class, and ‘‘mux’’ refers to a multiplexer with input line selected by the fault class. Each node in the loss term tree
represents a tested loss term combination consisting of the sum of all loss components up to that node in the tree.

Table 1
List of acronyms and terms used in this study.
Acronym Definition

AC Autocorrelation
AE Autoencoder
AWGN Additive White Gaussian Noise
CAE Contractive Autoencoder
CS Compressed Sensing
CNN Convolutional Neural Network
CWRU Case Western Reserve University
DCAE Deep Convolutional Autoencoder
DCGAN Deep Convolutional Generative Adversarial Network
DCT Discrete Cosine Transform
Demux Demultiplexer
DL Deep Learning
DWT Discrete Wavelet Transform
ECG Electrocardiogram
EEG Electroencephalogram
FDAM Fault Division Autoencoder Multiplexing
FFT Fast Fourier Transform
FT Fourier Transform
GAN Generative Adversarial Network
IoT Internet of Things
ML Machine Learning
MSE Mean Squared Error
Mux Multiplexer
NN Neural Network
PCA Principal Component Analysis
PCC Pearson’s Correlation Coefficient
PI Physics-Informed
PIAE Physics-Informed Autoencoder
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SNR Signal-to-Noise Ratio

expand this encoding back to the original dimensionality and reproduce the input. Reconstruction metrics, such as the Mean Squared
Error (MSE) between the output and the original input, serve as the loss functions during the network training. Mathematically, the
AE can be represented as the composition of two function approximators (i.e., encoding and decoding) implemented in NN:
4
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𝒙̂ = 𝑔−1𝜙 (𝑔𝜃(𝒙)) (1)

where 𝑔𝜃 ∶ R𝑛 ↦ R𝑚 (with 𝑚 < 𝑛) is the encoder with parameters 𝜃, 𝑔−1𝜙 ∶ R𝑚 ↦ R𝑛 is the decoder with parameters 𝜙, 𝒙 is the input
tensor, and 𝒙̂ is the output tensor (i.e., the AE’s approximation of the input). Following this notation, the MSE loss function can be
written as

𝐽MSE = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝒙̂(𝑖) − 𝒙(𝑖)‖‖
‖

2

2
(2)

or 𝑁 training examples 𝒙(1),𝒙(2),… ,𝒙(𝑁). Backpropagation techniques can then be used for numerical optimization to find the
arameters 𝜃 and 𝜙 of the NN function approximators. Typically, the better the reconstruction is, the smaller MSE achieved.

.2. Deep convolutional autoencoders

While a shallow, fully-connected NN encoder and decoder may be sufficient to develop a useful latent representation for
igh-dimensional discrete features [7,10,19], advances in DL techniques have enabled deep AE designs [17,21] for time-series
ignal compression. Intuitively speaking, AE can be implemented in advanced DL network architectures, such as Convolutional
eural Networks (CNN) or Recurrent Neural Networks (RNN), by leveraging their superior capabilities in discovering temporal
nd/or spatial patterns underlying signal. Both a one-dimensional (1D) CNN and RNN can be leveraged as the basic network
tructure for realizing AE-based continuous signal compression and reconstruction. In this study, 1D CNN is preferred, as CNN
s better at preserving local features [27]. 1D CNN consists of two major types of layers: 1D convolutional layer and 1D pooling
e.g., maxpooling) layer. A 1D convolutional layer correlates a 1D kernel with the input signal to determine if the input contains a
pecific pattern, generating a feature vector. Given a 1D kernel ℎ ∈ R𝐿 and an input signal 𝑥 ∈ 𝑅𝑛, the output of the convolutional
ayer can be written as

𝑦𝑘 =
𝐿−1
∑

𝑙=0
ℎ𝑙𝑥𝑠𝑘+𝑙 (3)

here 𝑠 is the stride length as the kernel steps across the input. Padding can be added to the beginning and end of the signal
o preserve the length. By using multiple kernels at each layer, an ensemble of channels can be generated in parallel through
he network to detect different features with increasing levels of abstraction. Each CNN layer can change the dimensionality
y using a stride greater than one or by inserting pooling layers after each convolution operation. For example, with correct
adding, a stride of two would halve the signal length by taking larger steps, while maxpooling with a kernel size and a
tride of two would downsample the signal by taking the maximum value within each two-point window. The well-known
uccesses of CNNs for image processing have justified their exploration within deep AE architectures [4,6,8,9], and there are two
rimary ways they can be used to construct Deep Convolutional Autoencoders (DCAE). The encoder and decoder could consist of
onvolution/maxpooling and upsampling/convolution, respectively [8], or the encoder could consist of convolution layers (using
tride to reduce dimensionality), and the decoder could use transposed convolution (deconvolution) layers as presented in the
ontext of Generative Adversarial Networks (GAN) [28]. When these methods are compared, convolution layers with dimensionality
eduction controlled by stride (i.e., stride greater than one) can achieve better validation performance at the end of training as
ompared to following the convolution operation with maxpooling (see Fig. 2). This is especially relevant for signal compression,
ince stride-based dimensionality reduction does not discard potentially relevant information like pooling layers do. Thus, while
ooling operations may prove effective in classification problems for destructively summarizing regions, the softer approach of
onvolution with a non-unity stride is intuitively more suited for PHM signal compression tasks.

.3. Reconstruction correlation loss

For a deep AE or DCAE, MSE loss can only evaluate the reconstruction performance from the perspective of averaged signal
ehavior, and an AE with only MSE loss could easily lose local details (especially high-frequency dynamics) during the encoding
rocess that can be critical for industrial PHM. Hence, additional loss terms could enforce the constraints on signal compression to
inimize the loss of this critical information, and thereby augment the reconstruction quality.
One potential metric to improve the signal reconstruction quality and convergence rate of AEs is the addition of Pearson’s

orrelation Coefficient (PCC) loss [4]. For a set of samples 𝑥𝑘 and 𝑦𝑘 for 𝑘 = 1, 2,… , 𝑛, the PCC is defined as

𝜌 =
∑𝑛

𝑘=1(𝑥𝑘 − 𝑥̄)(𝑦𝑘 − 𝑦̄)
√

∑𝑛
𝑘=1(𝑥𝑘 − 𝑥̄)

∑𝑛
𝑘=1(𝑦𝑘 − 𝑦̄)

(4)

Since the desired PCC is 𝜌 = 1 for signal reconstruction (i.e., the input and reconstruction are exactly correlated), the PCC-derived
loss term for AE becomes

𝐽PCC = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

1 − 𝜌(𝑖)‖‖
‖

2

2
(5)

(𝑖)
5

where 𝜌 is the PCC of the 𝑖th input and corresponding output reconstruction of the AE.
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Fig. 2. Comparing validation RMSE between DCAE with stride-based dimensionality reduction and DCAE with maxpooling (DCAE-Pool). The results were collected
on the Case Western Reserve University (CWRU) bearing data set using input examples of length 512 and a DCAE with four convolutional layers with 32, 64,
128, and 256 channels, respectively, and a final convolutional layer with number of channels determined by the compression rate (e.g., 128, if the rate was 4:1).
The model was trained with the Adam optimizer and a learning rate of 0.001 for 75 epochs. The advantage of DCAE over DCAE-Pool decays as the compression
factor increases indicating that at higher ratios the final size of the encoding dominates the reconstruction accuracy rather than the encoder architecture.

Several advantages of adding a correlation-based loss term are apparent. As indicated by the physical meaning of the metric,
igh correlation means that corresponding elements in the input and reconstruction at the same sample index move up and down
ogether, tracking each other. This introduces a locality to the metric that is notably absent from MSE, which could return identical
alues for error concentrated at a single sample index and error evenly distributed throughout the signal. Thus, PCC provides a locally
ensitive approach for comparing two signals. This is especially critical for machine condition monitoring applications where data
ources include rapidly changing vibration or acoustic signals with valuable frequency information. Adding PCC explicitly guides
he network to match the shape and structure (i.e., variation) of the output reconstruction with that of the input, elevating the
nfluence of frequency content during training. In addition, [4] alluded to PCC’s applicability to small magnitude signals, although
he reasoning is not fully explained in their study. More precisely, this advantage stems from the consistent magnitude of PCC-based
oss, since PCC will always between −1 and 1 regardless of signal amplitude. This is particularly salient within PHM, because machine
ata can have dramatically different amplitudes depending on the operating or fault condition. Thus, PCC as a variance-normalized
etric can provide a more consistent evaluation of the reconstruction quality, and adding PCC to the loss function would augment
SE to encourage the AEs to achieve higher performance.

.4. Physics-informed frequency-domain loss

In addition to structural loss terms like PCC, AEs operating on sensing signals (e.g., vibration) can leverage domain knowledge
f the underlying physical processes. In many cases, the frequency content of the signal is crucial for identifying the machine
ondition [29]. Therefore, the expected time-domain reconstruction of sensing signals in the PHM field must preserve the dominant
requency content of the original signal. Including a loss term during AE training that is sensitive to frequency content introduces a
hysically informed objective that constrains the weight optimization space (see Fig. 3). This loss term could be indirectly sensitive
to frequency, e.g., autocorrelation, or explicitly representative of the frequency domain, e.g., through the Fast Fourier Transform
(FFT).

2.4.1. Autocorrelation loss
Autocorrelation (AC) is the convolution of the signal using the signal itself as the kernel. (Note that the convolutional kernel is

equivalent to the flipped filter: ℎkernel(𝑘) = ℎfilter(−𝑘)). This operation essentially searches the original signal for copies of itself at
each possible time lag. Signals with large levels of white noise would have AC values near zero at lags other than zero, since the
random noise will not display repeating patterns. Also, periodic signals would have large AC values as the component frequencies
shift in and out of phase. Therefore, AC is an indirect, time-domain evaluation metric for highlighting periodicity. More precisely,
the AC of 𝒙 ∈ R𝑛 is defined as

𝑟𝒙𝒙(𝑙) =
𝑛
∑

𝑘=𝑙
𝑥𝑘𝑥𝑘−𝑙 (6)

for 𝑙 = 0, 1,… , 𝑛 − 1. Since 𝒙 is real, expanding this definition to include negative lags would produce symmetry around 𝑙 = 0, so
only 𝑙 ≥ 0 are considered. For AE training, AC loss can be expressed as

𝐽AC = 1
𝑁
∑

‖

‖

‖

𝒓(𝑖)𝒙̂𝒙̂ − 𝒓(𝑖)𝒙𝒙
‖

‖

‖

2

2
(7)
6

𝑁 𝑖=1
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Fig. 3. Each unique loss term constrains the search space the training algorithm must explore to find good solutions. By combining multiple constraints, the
solution space becomes limited to the intersection of the component solution spaces. Note that while this illustration represents solution spaces as contiguous,
the high-dimensionality of the network weight space will often produce many disconnected local minima regions.

where 𝒓(𝑖)𝒙̂𝒙̂ ∈ R𝑛 is the vector of the AC of the 𝑖th output reconstruction for lags 0 to 𝑛 − 1, and 𝒓(𝑖)𝒙𝒙 ∈ R𝑛 is the corresponding AC
vector for the 𝑖th input signal. As a loss term, AC acts as a rudimentary filter that suppresses uncorrelated white noise (since the
AC of white noise is zero except with zero lag) and highlights the presence of repeating patterns. By comparing the AC values of
the input and reconstruction, the loss becomes less sensitive to noise content and more easily able to access the periodicity of the
input signal from the time domain. In turn, this produces a metric more suited to training the AE to preserve the frequency content
needed for PHM than MSE, for which frequency preservation is a side-effect of attempting to minimize error between time-domain
samples.

2.4.2. Fast Fourier transform loss
Directly optimizing the AE network parameters with respect to frequency content, or in other words, explicitly preserving

frequency components of interest during signal compression and reconstruction, can be accomplished by including a loss term
generated in the Fourier Transform domain. While a time-domain signal and its Fourier transform are theoretically equivalent,
this does not imply that they are functionally identical for the numerical optimization task of training a DL model. Practically,
each domain provides a distinct perspective on the quality of the output reconstruction at each step of the optimization process,
and therefore distinct weight updates. As a result, this numerical, rather than analytical, nature of training DL models suggests
that having two such viewpoints on the reconstruction objective could improve the speed and quality of model convergence by
modifying the loss landscape to avoid local minima or saddle points. Frequency components can be efficiently computed for use in
the loss function via the Fast Fourier Transform (FFT) in a form of complex-valued outputs. One loss term based on the FFT relies
on magnitude:

𝐽FFT1 = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

|

|

|

𝑋̂(𝑖)
𝑓
|

|

|

− |

|

|

𝑋(𝑖)
𝑓
|

|

|

‖

‖

‖

2

2
(8)

where 𝑋(𝑖)
𝑓 and 𝑋̂(𝑖)

𝑓 are the FFTs of the 𝑖th input signal and output reconstruction, respectively. This will encourage the reconstruction
to contain frequency components with the correct magnitudes—a critical task for rotating machinery PHM, as the faulty information
can be well revealed by the frequency components. While this magnitude-based approach might be sufficient to match power
spectra, it is conceivable that the time-domain reconstruction could still be inaccurate—magnitude optimization fails to account for
phase information that shifts the sinusoids in the time domain and localizes signal features. Most fault detection and classification
applications can successfully rely on the identification of changes in magnitudes of frequency components, while phases of frequency
components are unnecessary. However, phase of FFT spectra is vital for signal reconstruction tasks as studied here, as phase plays a
role in determining the signal shapes and manifolds. Multiple signals can produce the same frequency amplitudes, so using only the
amplitudes would reinforce an ambiguous network training objective with multiple local minima. Thus, a second version of the FFT
loss term that includes the real and imaginary loss is proposed to capture both the magnitude and phase information, disambiguating
the frequency-domain optimization criteria for the purpose of accurate signal reconstruction:

𝐽FFT2 = 1
𝑁

𝑁
∑

𝑖=1

[

‖

‖

‖

‖

ℜ
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‖

2

2
+
‖

‖

‖

‖

ℑ
[

𝑋̂(𝑖)
𝑓 −𝑋(𝑖)

𝑓

]

‖

‖

‖

‖

2

2

]

(9)

While the magnitude-only FFT loss only encourages similar frequency components, incorporating the phase information ensures that
7

these components appear with the correct offsets to constructively interfere and produce the local features present in the input signal.
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Both of these FFT-based methods offer frequency-domain constraints for AE network parameter optimization and are motivated by
the domain-relevance of frequency analysis for industrial PHM.

2.5. Fault division autoencoder multiplexing

Despite PI loss terms, the heterogeneous machine operating conditions and sensing data patterns may also necessitate larger,
rchitectural innovations to maintain acceptable PHM performance. Condition monitoring techniques often suffer from the Achilles
eel of data-driven ML and DL: performance is dictated by the quality, quantity, and diversity of the data. If the data is homogeneous
e.g., all normal operating examples), DL methods will absorb information from the training examples and likely perform well
n data from the same domain. While in many cases data diversity improves generalization, data sets with a wide variety of
istinct modes (e.g., multiple faulty conditions alongside the normal condition) might lead to non-optimal condition-wise solutions.
he best solution for all the data may not be the best solution for each individual condition. In an attempt to reach the lowest
oss for heterogeneous fault signals with varying characteristics, the network will eventually reach a point where any further
mprovement for one condition is prone to diminish performance across the other conditions. In AE compression applications,
his translates to reduced compression efficiency and reconstruction accuracy when a single AE must compress data from distinct
onditions. Thus, while accurate reconstruction of data from different faulty conditions is critical, these faulty data might be the
ost difficult to reconstruct accurately using a single AE, as one network is not enough to learn multiple (maybe contradictory)
atterns associated with different conditions, especially when the amount of normal training samples surpasses the number of faulty
raining samples [4,19].
To address this challenge, Fault Division Autoencoder Multiplexing (FDAM) is proposed to improve compression performance on

ata sets with these disjoint conditions. FDAM applies separate AEs for individual operating conditions and trains a fault classifier
longside them (see Alg. 1). This classifier allows FDAM to select the condition-appropriate AE to encode and decode a signal sample.
uring inference, the fault classifier identifies the sample’s operating condition, and then encodes it with the encoder trained for
hat condition. The compressed code is transmitted along with the fault class, and the receiver uses a corresponding decoder to
econstruct the original signal (see Alg. 2). Fig. 1 summarizes the FDAM concept. In its simplest form, each individual AE can have
the same DCAE architecture (e.g., number of layers, number of channels, etc.), but the AEs could be adapted to best suit each
condition class if needed. Together with PI loss terms, FDAM seeks to improve compression performance across disjoint conditions
by leveraging domain knowledge.
Algorithm 1: FDAM Training

Input: Labeled data set  with 𝐶 disjoint conditions, label space  = {1, 2,… , 𝐶}, minibatch size 𝑚, and learning rate 𝜆
Result: 𝐶 trained AEs
Train a 𝐶-way classifier 𝑓 ∶  ↦  ;
Initialize AEs 𝐺𝑖 = 𝑔−1𝜙𝑖 ◦𝑔𝜃𝑖 for 𝑖 = 1, 2,… , 𝐶;
for 𝑿 ∈ R𝑚×𝑛, 𝒚 ∈ 𝑚 in  do

for 𝑖 ∈  do
𝑿𝑖 = {𝑋𝑗,∶ | 𝑦𝑗 == 𝑖};
𝑿̂𝑖 = 𝐺𝑖(𝑿𝑖);
Update 𝐺𝑖 encoder weights: 𝜃𝑖 + 𝜆∇𝜃𝑖𝐽 (𝑿̂𝑖,𝑿𝑖) → 𝜃𝑖;
Update 𝐺𝑖 decoder weights: 𝜙𝑖 + 𝜆∇𝜙𝑖𝐽 (𝑿̂𝑖,𝑿𝑖) → 𝜙𝑖;

end
end

Algorithm 2: FDAM Testing
Input: 𝐶 trained AEs 𝐺𝑖 = 𝑔−1𝜙𝑖 ◦𝑔𝜃𝑖 for 𝑖 = 1, 2,⋯ , 𝐶, condition classifier 𝑓 ∶  ↦ 𝑌 = {1, 2,⋯ , 𝐶} and signal 𝒙 ∈ R𝑛 to

compress
Result: Reconstructed (decompressed) signal 𝒙̂
Classify condition: 𝑦 = 𝑓 (𝒙);
Encode signal: 𝒛 = 𝑔𝜃𝑦 (𝒙);
Transmit (𝒛, 𝑦) to decoder;
Recover signal: 𝒙̂ = 𝑔−1𝜙𝑦 (𝒛);

3. Experimental case studies

The proposed DCAE and FDAM architectures augmented by physics-informed loss terms are evaluated on two PHM-related data
ets.
8
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3.1. Bearing data set

The bearing fault data set from Case Western Reserve University (CWRU) [30] is selected to compare the effectiveness of FDAM
nd the proposed loss functions to a single-AE baseline. While the faults within the CWRU data set are not difficult to diagnosis with
L classifiers, the high-sampling rate vibration signals accurately reflect the high-velocity Big Data that compression algorithms must
andle to reduce traffic on cloud networks. Therefore, even though the CWRU data contains simple faults that make it ineffective
or studying state-of-the-art fault diagnosis techniques, the presence of multiple normal and fault conditions in the 12 kHz vibration
ata along with varying levels of fault-related background noise make the bearing data set a suitable choice for evaluating the
roposed compression methods. In the CWRU data set, accelerometer vibration data was collected while operating a 2-horsepower
HP) motor under 0-, 1-, 2- and 3-HP loads. In addition to normal operating conditions, ball faults, inner race faults, and outer
ace faults in the drive-end bearing were tested with 0.007′′, 0.014′′, and 0.021′′ crack sizes. Outer race faults could occur at the
o’clock, 6 o’clock, and 12 o’clock positions; data from 6 o’clock faults were used in this study. With these loads, conditions, and
everities, the data represents 40 unique operating configurations. Both drive-end and fan-end accelerometer data are available, and
he 12 kHz fan-end data are used in this case study.
In order to split each multi-second vibration time series into input samples for the AEs, a 512-point window is slid across each

ime series with a step of 32 points. As a result, a total of 48 000 samples with even distribution on normal and faulty conditions
three severities each) and all four loads are generated. Thus, the entire data set is compiled from 12000 normal samples (300 per
oad), 12 000 ball fault samples (100 per load per severity), 12 000 inner race fault samples (100 per load per severity), and 12000
uter race fault samples (100 per load per severity). The entire data set is separated using an 80% training, 10% validation, and
0% testing split. A Min–Max scaling is applied to scale the training signal to the range [−1,1] and the same Min–Max boundaries
re applied without modification to the validation and testing data splits. These splits are cached to disk to ensure that each model
s trained on the same subset of examples.

.2. Milling data set

To provide additional insight into the proposed methods, a second case study is performed on the Milling Data Set from the
rognostics Data Repository at NASA Ames Research Center [31]. Vibration and acoustic emission data were collected during a
ariety of milling runs. Each run used either steel or cast iron with a feed rate of 0.5 mm/s or 0.25 mm/s and a depth of cut of
.75 mm or 1.5 mm, giving eight unique configurations of process parameters. For the vibrations, each run consisted of 36 s of
ccelerometer data collected at 250 Hz. This case study uses spindle vibration signals for milling operations on cast iron with all
ombinations of feed rate and depth of cut. The first and last 10 s of each run were discarded to avoid transient effects. Following
he same preprocessing steps as the bearing data, the signals are split into 512-point windows with a sliding step of 32 points. Each
ample is zero-meaned and normalized between −1 and 1. To keep the data balanced across process parameter combinations, 1853
amples are generated for each of the four combinations of feed rate and depth of cut, for a total of 7412 examples. The splits among
raining, validation, and testing samples adopt the same strategy as with the bearing data.

.3. DCAE network architecture

The baseline DCAE architecture is shown in Fig. 4. Five convolution layers are used in the encoder, each doubling the number
f channels and halving the length of the signal. Rectified Linear Unit (ReLU) activations are used at each step except the final
ncoding output, which uses a linear activation. The decoder directly mirrors in the encoder, using convolution transpose layers to
ouble the length of the signal while halving the number of channels. As with the encoder, the decoder uses ReLU activations at
ach step except the final output, which uses a tanh activation to limit the values from −1 to 1. This architecture is derived from
he popular Deep Convolutional Generative Adversarial Network (DCGAN) presented in [28]. For compression applications, the
CGAN approach of convolution and convolution transpose layers is a more logical choice than using of convolution, maxpooling,
nd upsampling because it avoids discarding information through the maxpooling operation. Avoiding this preemptive removal of
nformation allows a richer formulation of the encoding at the last layer of the encoder network.

.4. FDAM network architecture

The FDAM implementation shown in Fig. 5 consists of a condition classifier and four DCAEs, corresponding to normal, ball fault,
nner race fault, and outer race fault conditions in the bearing case study. Each DCAE used the same baseline DCAE architecture
s depicted in Fig. 4. The condition classifier presented in Fig. 6 consists of four convolution layers with a kernel size of 3 and
stride of 1, each followed by a maxpooling layer with a stride of 2 to halve the signal length. (Maxpooling is appropriate here
or the classifier—the DCAE networks retain stride-based dimensionality reduction, since they are doing compression.) The first
onvolutional layer generates 32 output channels, and successive convolution layers double the number of channels. The CNN
utput features are then passed to a 128-neuron fully-connected layer before reaching the output layer with four nodes, one for
ach condition class. ReLU activations are used throughout.
9
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3

Fig. 4. Deep Convolutional Autoencoder (DCAE) used for the single-AE baseline architecture and for each condition-specific AE in the FDAM architecture.
Convolution layers with a stride of 2 were used instead of pairing stride-1 layers with maxpooling layers which would have discarded information.

Fig. 5. FDAM architecture consisting of a classifier and multiplexed fault-specific DCAEs. Each DCAE (encoder–decoder pair) follows the architecture shown in
Fig. 4. This implementation is equivalent to the concept shown in Fig. 1 but without transmission channel modeling.

.5. Training configurations

All models are implemented using PyTorch [32] and PyTorch Lightning [33] with rich data capture via Neptune [34]. Network
training runs are accomplished on a Linux computer with a 2.1 GHz, 16-core Intel Xeon Gold 6130 CPU with 192 GB of RAM and
an NVIDIA Tesla V100 GPU with 24 GB of RAM. Consistently using 16-bit tensors enables the trainer to leverage the native 16-bit
precision of the GPU. Every configuration (i.e., every model/compression rate combination) is repeated five times to broadly gauge
variability. The random seed is changed in each trial to randomly shuffle the samples into batches and initialize weights, while
maintaining a deterministic choice of underlying cudaNN algorithms.

For the bearing data set, the fault classifier is trained once and reused for all the FDAM-based models to compute validation
metrics. After 50 epochs with a learning rate of 0.0001 and the Adam optimizer, it achieves an accuracy of 98.25% on the test data
set. While this study does not attempt to identify an optimal compression rate, which would be application-dependent due to other
constraints, each architecture and loss function is tested with a variety of compression rates to characterize relative performance as
the size of the latent vector is reduced. To this end, the experiments considered compression rates of 2:1, 4:1, 8:1, 16:1, and 32:1
10
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Fig. 6. Architecture of FDAM fault condition classifier.

hich correspond to latent vector lengths of 256, 128, 64, 32, and 16 given the input data length of 512. Nine different variations of
he single-AE DCAE and multi-AE FDAM architectures with different loss functions are tested: DCAE, DCAE-C, DCAE-C-AC, DCAE-C-
FT1, DCAE-C-FFT2, FDAM-C, FDAM-C-AC, FDAM-C-FFT1, and FDAM-C-FFT2. In these identifiers, C, AC, FFT1, and FFT2 represent
he inclusion of PCC (Eq. (5)), AC (Eq. (7)), FFT magnitude (Eq. (8)), and FFT real and imaginary loss (Eq. (9)), respectively. While
he baseline DCAE model includes only MSE loss, the corresponding complete loss functions for the additional loss terms are:

𝐽C = 𝐽MSE + 𝐽PCC (10a)

𝐽C-AC = 𝐽MSE + 𝐽PCC + 𝐽AC (10b)

𝐽C-FFT1 = 𝐽MSE + 𝐽PCC + 𝜆1𝐽FFT1 (10c)

𝐽C-FFT2 = 𝐽MSE + 𝐽PCC + 𝜆2𝐽FFT2 (10d)

ach loss function seeks to leverage different perspectives on the signal to improve reconstruction. Eq. (10a) adds PCC loss to the
standard MSE metric to leverage PCC’s sensitivity to signal structure and invariance across signal amplitudes. From a time-domain
perspective, AC loss in Eq. (10b) extends Eq. (10a) with information about signal periodicity to guide preservation of frequency
content. Both Eqs. (10c) and (10d) opt for a more direct frequency domain objective that supplements the time-domain MSE and
CC terms and facilitate numerical optimization, with the FFT2 term in Eq. (10d) incorporating magnitude and phase information
or an unambiguous quantification of frequency reconstruction fidelity. Upon evaluating the validation metrics, appropriate scaling
alues are found to be 𝜆1 = 0.001 and 𝜆2 = 0.1. Each model is trained five times for 75 epochs with the Adam optimizer and using
learning rate of 0.001.
Since the milling data set does not contain normal and faulty conditions, only the baseline DCAE architecture is evaluated. Five

ifferent variations of DCAE are trained: DCAE, DCAE-C, DCAE-C-AC, DCAE-C-FFT1, and DCAE-C-FFT2. Each variation is trained
ive times for 50 epochs with the Adam optimizer and using a learning rate of 0.002.

. Results

The results for each case study were evaluated using the Signal-to-Noise Ratio (SNR) in decibels (dB). In the context of
ompression, the noise is not the noise in the original signal, but the noise introduced by the compression process and quantified
n terms of the reconstruction error. Thus, the calculation becomes

SNRdB = 10 log10

(

𝜎2𝒙
𝜎2𝑒

)

(11)

where 𝜎2𝒙 is the power of the input signal, and 𝜎2𝑒 is the power of the residual error 𝒙̂−𝒙. This metric contextualizes the compression
performance by accounting for the amplitude of the original signal when calculating the distortion caused by the compression
11
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Fig. 7. Reconstructions of normal bearing data with a 0 HP load with a 2:1 compression ratio.

Compressed Sensing (CS) [35], Principal Component Analysis (PCA) [36], and Discrete Cosine Transform (DCT) [37] are common
echniques related to compression, and are hence used as non-DL reference methods for performance comparison. CS is implemented
y randomly selecting sampling indices to achieve the desired compression factor while using the DCT as the sparse transform
omain [38]. Since CS-based compression process is subject to randomness, ten different sets of sampling indices are tried for each
ompression rate. For PCA, the number of output components is chosen according to the compression factor, and the model is fit to
he training data set. The DCT-based approach computes the transform coefficients across the training set, averages the coefficient
agnitudes, and finds the positions of the largest coefficients to achieve the desired compression rate. Test data is compressed using
hese coefficients; the rest are zeroed out. This method potentially could be improved by adaptively selecting coefficients for each
xample; however, this would necessitate either increasing the amount of data transmitted or stored to include the locations of the
oefficients or reducing the number of coefficients to keep the same compression ratio. Together, these three methods provide a way
o determine if the DL methods had any advantage over traditional signal processing techniques in both the bearing and milling
ase studies.

.1. Bearing case study

For the bearing case study, 285 model instances are created, including five trials of nine DL configurations across the five
ompression factors (225 DL networks), PCA across the five factors, DCT across the five factors, and 10 trials of CS across five factors
50 CS instances). Figs. 7–10 present examples of signal reconstructions in various operating conditions for 2:1 and 32:1 compression
12

atios. Even without quantitative metrics, CS clearly produces the lowest quality reconstructions. PCA and DCT generate relatively
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Fig. 8. Reconstructions of inner race fault bearing data with a 3 HP load with a 2:1 compression ratio.

ood visual approximations to the signals at a lower, 2:1, compression ratio (Figs. 7 and 8), but demonstrate significantly degraded
econstructions at the 32:1 ratio (Figs. 9 and 10). The SNR vs. compression factor plot in Fig. 11 supports this conclusion, and
Tables 2–5 present these results numerically. As the compression rate increased, linear approaches like PCA and DCT struggle to
effectively encode the necessary information in the latent representation, observing a 81% and 82% decrease in SNR dB, respectively,
when moving from 2:1 to 32:1 compression. This performance drop is consistent across all the operating conditions as shown in
Fig. 11. Thus, top-performing non-DL techniques appear inadequate for high compression rates and significantly distort the original
signal.

4.1.1. Performance of baseline DCAE model
As expected, the standard DCAE model which uses only MSE loss demonstrates advantages over the non-DL methods. The

reconstructions are visually closer to the original signal at the 2:1 compression rate than CS, PCA, and DCT (see Fig. 7), and the
improvement is confirmed by an SNR dB improvement of 10% over the top non-DL PCA model across the four fault conditions.
The visual superiority of DCAE over CS, PCA, and DCT when compressing normal signals at 32:1 is also apparent in Fig. 9. While
continuing to perform well relative to the non-DL models at high compression rates (e.g., 20% better than PCA at 32:1), DCAE
struggles to consistently reconstruct faulty signals with high fidelity at these higher rates (see Fig. 10). The pattern is supported
by Fig. 12, which shows that DCAE produces a lower SNR than PCA and/or DCT for faulty signals across most compression rates.
This poor performance on faulty signals impacts the overall SNR for increasing compression rates, and Fig. 11 reveals that DCAE
falls much closer to the performance of the non-DL models than the proposed techniques. Furthermore, the DCAE results exhibited
higher variability than other methods, especially at the 8:1 compression ratio, as indicated by the standard deviations in Tables 2–5
13
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Fig. 9. Reconstructions of normal bearing data with a 1 HP load with a 32:1 compression ratio.

nd the error bars in Fig. 12. While a lower learning rate and more epochs may have resolved this issue, it implies that for a given
et of hyperparameters, DCAE training may be less stable or reproducible than alternative methods. This performance dropoff and
ariability suggests that the standard, MSE-based DCAE model is not an obvious choice for PHM compression applications.

.1.2. Performance impacts of PCC loss
The first of the proposed loss functions, the PCC loss term substantially improves the reconstructions across all operating

onditions, as the DCAE-C model results indicate in Fig. 12. DCAE-C produces consistently higher SNR than the baseline DCAE—
eaching at 84% higher SNR at the 8:1 and 16:1 ratios—while providing 77%, 47%, 25%, and 230% condition-wise improvements
t the 32:1 ratio across normal, ball faults, inner race faults, and outer race faults, respectively. Furthermore, the variation of the
CAE-C results is consistently smaller than the baseline DCAE, proving better model stability. The results can be attributed to the
tructural focus of PCC, which provides a second perspective (in addition to averaged reconstruction quality evaluated by MSE loss)
nd further constrains network parameter optimization during training. Notably, while DCAE underperforms non-DL approaches
or high compression rates and faulty signals, DCAE-C continues to surpass the non-DL methods in these scenarios, an outcome
onsistent with the observation that PCC may be better when signals could differ in amplitude, as is the case between normal and
aulty signals. Thus, the proposed PCC loss term quantifiably enhances the signal reconstructions over the MSE-only DCAE model,
nd these gains trend upward as the compression rate increases.

.1.3. Performance impacts of FDAM architecture
The proposed FDAM model architecture also achieves higher levels of SNR than the baseline DCAE model in all cases and proves

apable of further increasing the performance over the DCAE-C method. At the 4:1 compression rate, FDAM-C outperforms the
14
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Fig. 10. Reconstructions of outer race fault bearing data with a 1 HP load with a 32:1 compression ratio.

Fig. 11. Comparing reconstruction SNR across all five compression factors for the bearing data set.
15
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Fig. 12. Class-wise reconstruction SNR across all five compression factors for the bearing data set.

aseline DCAE by 43%, 16 points higher than the advantage yielded by DCAE-C. Similarly, FDAM-C reaches almost double the SNR
f DCAE when compressing signals at 8:1, and that 96% jump is a 12-point improvement over DCAE-C. As the compression rate
ontinues to increase, the impact of FDAM-C becomes particularly apparent with respect to reconstructing normal signals—when
sing a 16:1 rate, the SNR increases by 131% over the baseline DCAE, 14 percentage points higher than the 117% increase in SNR
iven by DCAE-C, and the 32:1 rate places FDAM-C a comfortable nine points above the DCAE-C model. From a compression ratio
tandpoint, FDAM-C allows signals to be compressed with the same fidelity as DCAE, but with half the required signal length or less
e.g., compressing the vibration signals with FDAM-C at 32:1 is comparable to compressing them with DCAE at 8:1.) Fig. 12 reflects
this discussion, with the FDAM-C models appreciably exceeding the DCAE-C model, particularly for the 4:1 compression factor. This
behavior matches the theoretical motivations of FDAM. By using separate AEs for each operating condition, FDAM learns to properly
reconstruct each discrete condition without needing to simultaneously learn information only relevant to the other signal types. The
original signals in Figs. 8–10 clearly show that the difference between normal and faulty signals (see Figs. 9 vs. 10) is greater than
the differences among the three faulty signals (e.g., see Figs. 8 vs. 10). Therefore, the reconstruction of normal signals would stand
16
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Fig. 13. Post-reconstruction bearing fault classification accuracy. CS achieves high accuracy on inner race faults and low accuracy elsewhere simply because it
generated a degenerate representation that exclusively looks like this single fault to the classifier.

the most to gain from FDAM, since this would be the most different task. The experimental results confirm this reasoning and
indicate the measurable advantages of the proposed FDAM architecture.

4.1.4. Performance impacts of additional PI loss terms
When combined with PCC, the proposed PI frequency-focused loss terms also demonstrate positive impacts on the reconstruction

idelity for DCAE and FDAM, particularly through the FFT2 term with real and imaginary loss. The addition of AC loss to create
CAE-C-AC and FDAM-C-AC does not produce significant changes in SNR over DCAE-C and FDAM-C, respectively (see Tables 2–5),

with improvement over the baseline holding at 75% to 85% for compression factors of 8:1 and up. One plausible explanation is that
the MSE and PCC loss terms already provided similar time-domain-based information to the optimization algorithm, so AC does not
generate a novel enough perspective to noticeably alter the reconstructions. Interestingly, while AC simply falls short of increasing
SNR, FFT1 (magnitude-only loss) tends to both reduce the reconstruction SNR and increase variability, as evidenced by Fig. 12.
In fact, the addition of the FFT1 term to FDAM-C at 32:1 drops the SNR increase over the baseline DCAE from 79% to 58%. This
17
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Fig. 14. Comparison of SNR across compression factors for the milling data set.

is consistent with the understanding that FFT1’s lack of phase information results in an ambiguous optimization objective when
attempting to reconstruct input signals. Moreover, rather than being negligible, this property actively hinders the model’s ability to
converge to a good solution, leading to decreased SNR and more inconsistent results. If this reasoning is correct, models using FFT2
would be expected to outperform those using FFT1, since the FFT2 term includes magnitude and phase via the real and imaginary
parts of the FFT, and this is what the results illustrate. In many configurations, DCAE-C-FFT2 and FDAM-C-FFT2 surpass the SNR
of DCAE-C-FFT1 and FDAM-C-FFT1, and FDAM-C-FFT2 provides the most consistent and significant advantages, specifically in the
reconstruction of normal signals (see Table 2). FDAM-C-FFT2 yielded the highest SNR for normal signal reconstruction across all
tested models for 2:1, 4:1, 8:1, and 32:1 compression ratios. Overall, FDAM-C-FFT2 performs 89% better than the baseline DCAE
model when signals are compressed at 16:1, two percentage points above FDAM-C and 20 points beyond FDAM-C-FFT1. Similar
differences appear at the 32:1 ratio, with FDAM-C-FFT2 achieving 81% higher SNR than the baseline, once again two points higher
than FDAM-C and more than 20 points higher than FDAM-C-FFT1. Therefore, the proposed FFT2 loss term separates itself as a useful
addition when reconstructing PHM vibration signals.

4.1.5. Post-reconstruction classification accuracy
In practical applications, the usefulness of the reconstructed machine signals will often be determined by how well they can be

used to assess machine health and condition. Therefore, the operating condition of reconstructions should be identifiable. Fig. 13
shows the accuracy of the fault classifier when applied to reconstructions of the signals from each operating condition under the
increasing compression factors. Even at high compression rates, the classifier can identify normal signals with near 100% accuracy.
Most DCAE and FDAM models with advanced loss functions outperform the non-DL methods and the baseline DCAE model. In
particular, the DCAE-C-FFT1 model distinguishes itself by consistently having higher post-reconstruction accuracy than DCAE-C that
does not frequency-informed loss terms. Its superiority over DCAE-C-FFT2, which outperforms FFT1 in the reconstruction task, can be
attributed to the change in task, which is now classification. Its FDAM counterpart, FDAM-C-FFT1, demonstrates some instability as
it is the only DL model to struggle to produce reconstructions preserving the condition information. Among the non-DL methods, CS
appears to produce reconstructions that are effective for the inner race fault condition, but the extremely poor performance elsewhere
would indicate that CS in fact only generates signals that look like inner race faults, regardless of the actual input signal condition.
While most methods only result in classification accuracies between 40% and 70% among the fault conditions at a compression ratio
over 4:1, the results seem to indicate that the classifier is able to correctly distinguish between normal and faulty conditions when
compressing and reconstructing the signal with the DCAE and FDAM models with advanced loss functions, although this could be
susceptible to false negatives. Moreover, an informed choice of a PI loss term, e.g., adding FFT1 to DCAE-C in this case, could make
a substantial positive impact on the post-reconstruction classification accuracy, a vital part of the ability to monitor the machine
condition from compressed data.

4.2. Milling case study

To evaluate the algorithms over the milling data set, 185 model instances are created from five trials of five DCAE configurations
across the five compression factors (125 DCAE instances), PCA across the five factors, DCT across the five factors, and 10 trials of CS
across five factors (50 CS instances). Results show better performance for PCA and DCT at low compression factors, but demonstrate
the advantage of DCAE-based compression at higher ratios (see Fig. 14 and Table 6). DCT and PCA achieve a ∼35% increase in SNR
over the DL methods at the lowest compression rate of 2:1. However, this advantage quickly drops to around 4% at the 4:1 rate. At
the highest rate of 32:1, DCAE-C, DCAE-C-AC, and DCAE-C-FFT2 outperform PCA by over 40% in SNR. A possible reason why PCA
and DCT sustain excellent performance at low compression rates is that the spindle vibration signal shows relatively uniform patterns
18

across different combinations of feed rate and depth of cut, compared to the vibration signal from different bearing conditions. Thus
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Table 2
Bearing data set model performance over normal operating condition in SNR dB.
Condition = Normal

Model Compression factor

2 4 8 16 32

CS 1.11 ± 0.01 1.09 ± 0.02 0.79 ± 0.03 0.19 ± 0.07 −0.31 ± 0.04
PCA 8.73 6.14 4.36 2.15 1.45
DCT 7.70 5.39 3.56 1.91 1.44
DCAE 12.81 ± 1.09 9.51 ± 1.40 4.94 ± 2.77 4.22 ± 0.25 3.86 ± 0.07
DCAE-C 18.31 ± 0.73 14.51 ± 0.48 12.17 ± 0.19 9.16 ± 0.08 6.84 ± 0.10
DCAE-C-AC 18.38 ± 0.54 14.29 ± 0.67 12.23 ± 0.26 9.15 ± 0.08 6.87 ± 0.03
DCAE-C-FFT1 18.41 ± 0.32 15.12 ± 0.28 12.08 ± 0.11 9.02 ± 0.05 6.70 ± 0.03
DCAE-C-FFT2 18.32 ± 0.87 14.51 ± 0.59 12.03 ± 0.24 9.05 ± 0.21 6.84 ± 0.03
FDAM-C 18.74 ± 0.18 17.96 ± 0.20 13.55 ± 0.02 9.76 ± 0.03 7.18 ± 0.06
FDAM-C-AC 18.74 ± 0.17 17.92 ± 0.18 13.53 ± 0.02 9.76 ± 0.02 7.18 ± 0.06
FDAM-C-FFT1 15.57 ± 6.50 17.62 ± 0.13 13.44 ± 0.02 8.27 ± 2.90 6.09 ± 2.16
FDAM-C-FFT2 18.93 ± 0.11 18.24 ± 0.22 13.56 ± 0.01 9.74 ± 0.06 7.19 ± 0.04

Table 3
Bearing data set model performance over ball fault condition in SNR dB.
Condition = Ball fault

Model Compression factor

2 4 8 16 32

CS 1.29 ± 0.01 1.26 ± 0.01 0.82 ± 0.02 0.15 ± 0.05 −0.36 ± 0.04
PCA 10.18 6.61 4.82 3.69 2.82
DCT 9.80 6.08 4.40 3.12 2.25
DCAE 9.86 ± 0.07 6.61 ± 0.05 4.05 ± 2.26 3.27 ± 0.58 2.60 ± 0.46
DCAE-C 10.52 ± 0.15 7.22 ± 0.02 5.42 ± 0.03 4.38 ± 0.04 3.81 ± 0.03
DCAE-C-AC 10.53 ± 0.12 7.18 ± 0.05 5.42 ± 0.03 4.39 ± 0.06 3.81 ± 0.03
DCAE-C-FFT1 10.49 ± 0.11 7.02 ± 0.01 5.17 ± 0.10 4.23 ± 0.02 3.66 ± 0.07
DCAE-C-FFT2 10.59 ± 0.14 7.16 ± 0.07 5.38 ± 0.03 4.37 ± 0.03 3.79 ± 0.03
FDAM-C 9.80 ± 0.24 7.32 ± 0.15 5.69 ± 0.02 4.76 ± 0.03 4.15 ± 0.02
FDAM-C-AC 9.76 ± 0.22 7.31 ± 0.14 5.69 ± 0.01 4.75 ± 0.02 4.14 ± 0.01
FDAM-C-FFT1 10.21 ± 0.25 7.42 ± 0.04 4.83 ± 1.28 4.01 ± 1.09 3.51 ± 1.00
FDAM-C-FFT2 10.58 ± 0.27 7.37 ± 0.14 5.63 ± 0.03 4.76 ± 0.03 4.16 ± 0.00

Table 4
Bearing data set model performance over inner race fault condition in SNR dB.
Condition = Inner race fault

Model Compression factor

2 4 8 16 32

CS 1.84 ± 0.01 1.04 ± 0.02 0.11 ± 0.01 −0.41 ± 0.01 −0.67 ± 0.02
PCA 8.84 4.66 2.79 1.77 1.01
DCT 8.47 4.34 2.60 1.54 0.89
DCAE 8.74 ± 0.16 5.00 ± 0.10 2.62 ± 1.47 1.86 ± 0.17 1.37 ± 0.02
DCAE-C 9.23 ± 0.08 5.60 ± 0.07 3.93 ± 0.02 2.74 ± 0.07 1.71 ± 0.05
DCAE-C-AC 9.28 ± 0.07 5.57 ± 0.08 3.91 ± 0.11 2.74 ± 0.06 1.74 ± 0.09
DCAE-C-FFT1 9.20 ± 0.05 5.58 ± 0.04 3.75 ± 0.04 2.49 ± 0.11 1.48 ± 0.05
DCAE-C-FFT2 9.20 ± 0.09 5.56 ± 0.11 3.97 ± 0.10 2.79 ± 0.04 1.75 ± 0.09
FDAM-C 9.09 ± 0.17 5.99 ± 0.04 4.26 ± 0.10 2.38 ± 0.12 1.72 ± 0.02
FDAM-C-AC 9.08 ± 0.12 5.95 ± 0.08 4.21 ± 0.19 2.39 ± 0.06 1.72 ± 0.05
FDAM-C-FFT1 9.23 ± 0.09 5.88 ± 0.06 4.19 ± 0.07 2.47 ± 0.13 1.47 ± 0.30
FDAM-C-FFT2 8.87 ± 0.65 5.94 ± 0.08 4.26 ± 0.11 2.56 ± 0.07 1.78 ± 0.02

at low compression rates, the linear ML techniques can easily learn a way to preserve critical signal characteristics, while the DCAE
methods might complicate the compression process. However, at high compression rates, linear ML techniques would lose too many
signal details to accurately reconstruct the original signal, while the DCAE methods can preserve more details through a nonlinear
transformation approach.

While not showing as dramatic of increases as on the bearing data set, DCAE-C increases the SNR over the baseline DCAE by
.3%, 7.3%, 1.5%, 0.71%, and 2.1%, at the five compression rates, respectively. As with the bearing data, DCAE-C-FFT1 falls on
he lower performance end of the DCAE spectrum. DCAE-C-AC and DCAE-C-FFT2 slightly outperform the DCAE-C, starting from
19

f compression factor of 4:1. Together with the results on the bearing data set, the milling data results reinforce that PCC loss
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Table 5
Bearing data set model performance over outer race fault condition in SNR dB.
Condition = Outer race fault

Model Compression factor

2 4 8 16 32

CS 2.31 ± 0.01 1.42 ± 0.01 0.41 ± 0.01 −0.26 ± 0.03 −0.67 ± 0.04
PCA 9.36 5.42 3.56 2.48 1.93
DCT 8.81 5.06 3.25 2.10 1.65
DCAE 9.57 ± 0.16 5.66 ± 0.12 2.84 ± 1.59 1.59 ± 0.79 0.85 ± 0.28
DCAE-C 10.28 ± 0.10 6.62 ± 0.08 5.07 ± 0.06 3.88 ± 0.08 2.81 ± 0.10
DCAE-C-AC 10.31 ± 0.10 6.61 ± 0.09 5.04 ± 0.04 3.85 ± 0.15 2.80 ± 0.16
DCAE-C-FFT1 10.25 ± 0.06 6.75 ± 0.05 4.99 ± 0.06 3.89 ± 0.12 2.64 ± 0.07
DCAE-C-FFT2 10.26 ± 0.15 6.63 ± 0.09 5.07 ± 0.12 4.04 ± 0.09 2.86 ± 0.12
FDAM-C 9.44 ± 0.08 6.90 ± 0.13 4.81 ± 0.07 3.52 ± 0.07 2.46 ± 0.04
FDAM-C-AC 9.49 ± 0.08 6.88 ± 0.06 4.94 ± 0.12 3.56 ± 0.05 2.46 ± 0.06
FDAM-C-FFT1 9.48 ± 0.13 6.90 ± 0.12 4.66 ± 0.69 3.55 ± 0.46 2.63 ± 0.32
FDAM-C-FFT2 10.10 ± 0.47 6.93 ± 0.12 4.85 ± 0.11 3.60 ± 0.12 2.57 ± 0.03

Table 6
Milling data set model performance in SNR dB.
Milling case study

Model Compression factor

2 4 8 16 32

CS 1.55 ± 1.20 1.45 ± 1.04 1.00 ± 0.57 0.26 ± 0.11 −0.29 ± 0.14
PCA 8.57 ± 1.66 5.85 ± 1.65 4.54 ± 1.30 3.51 ± 0.95 2.80 ± 0.68
DCT 8.78 ± 1.61 5.65 ± 1.59 4.24 ± 1.25 3.16 ± 0.76 2.20 ± 0.60
DCAE 5.79 ± 1.59 5.19 ± 1.61 4.66 ± 1.59 4.17 ± 1.52 3.84 ± 1.45
DCAE-C 6.27 ± 1.12 5.57 ± 1.12 4.73 ± 1.15 4.20 ± 1.17 3.92 ± 1.13
DCAE-C-AC 6.27 ± 1.11 5.63 ± 1.13 4.73 ± 1.15 4.22 ± 1.18 4.01 ± 1.19
DCAE-C-FFT1 6.46 ± 1.16 5.48 ± 1.14 4.66 ± 1.15 4.08 ± 1.13 3.74 ± 1.08
DCAE-C-FFT2 6.15 ± 1.15 5.64 ± 1.19 4.78 ± 1.17 4.30 ± 1.25 3.98 ± 1.18

Table 7
Performance in SNR dB for imbalanced bearing data set with 70% normal data. The relatively high standard deviations are not a reflection of true stochasticity,
but of the model’s varying ability to compress the different operating conditions.
Imbalanced bearing case study

Model Compression factor

2 4 8 16 32

CS 1.63 ± 0.46 1.19 ± 0.14 0.54 ± 0.30 −0.11 ± 0.26 −0.50 ± 0.20
PCA 10.53 ± 4.14 6.54 ± 3.32 4.44 ± 2.39 3.27 ± 2.28 2.50 ± 2.17
DCT 10.27 ± 4.14 6.14 ± 3.02 4.02 ± 2.21 2.86 ± 1.93 2.07 ± 1.68
DCAE 7.03 ± 2.74 5.42 ± 3.29 3.75 ± 3.42 3.01 ± 2.81 2.49 ± 2.31
DCAE-C 8.14 ± 3.25 6.28 ± 3.73 5.06 ± 3.32 4.07 ± 2.77 3.10 ± 2.25
DCAE-C-FFT2 8.01 ± 3.17 6.26 ± 3.65 5.03 ± 3.25 4.07 ± 2.72 2.95 ± 2.26
FDAM-C 6.89 ± 3.68 6.58 ± 4.08 5.55 ± 3.71 4.45 ± 3.09 3.45 ± 2.33
FDAM-C-FFT2 6.76 ± 3.53 6.54 ± 3.86 5.56 ± 3.78 4.47 ± 3.09 3.47 ± 2.30

consistently improves compression performance; additional PI loss terms have the potential to further improve results, with level
of impact governed by the characteristics of the underlying signals.

4.3. Performance on imbalanced classes

In most condition monitoring applications, perfectly balanced normal and faulty data would not be available. Some situations
ermit the use of data augmentation techniques to artificially increase the number of faulty samples. For example, using a smaller
indow step when preprocessing fault signals than for normal signals will increase the relative amount of minority-class data,
lthough such samples will be more correlated than the more widely spaced normal samples. However, when data augmentation
s not possible, special attention must be given to designing and training DCAE-based models. In the unbalanced case, the network
s inclined to learn how to accurately characterize the samples from the majority condition, leading to a deteriorated performance
n the minority conditions. FDAM seeks to mitigate this by using separate DCAEs for the majority and minority class(es). While
his may enable the DCAEs to focus on a single cohesive condition, care must be taken to avoid overfitting when working with
20
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Fig. 15. SNR dB vs. compression factor for traditional and DL approaches on 70% normal/30% fault imbalanced bearing data set.

mall-sample-size minority classes. Reducing the number of CNN layers or adopting dropout (i.e., randomly masking layer outputs
o limit the capacity of the NN during training) can help regularize the network training. To explore method performance, CS, PCA,
CT, DCAE, DCAE-C, DCAE-C-FFT2, FDAM-C, and FDAM-C-FFT2 are tested on an imbalanced data set consisting of 70% bearing
ormal data and 30% bearing faulty data, by reducing the number of fault samples from 36000 to approximately 5100. To mitigate
verfitting, all DCAE models use four (instead of five) convolution layers and add a dropout rate of 0.2.
Fig. 15 and Table 7 survey the results of these experiments. Similar to the milling data results, PCA and DCT achieve the best

erformance at the 2:1 compression rate, but quickly drop below the DCAE-based methods at higher rates. As seen in Fig. 15, the
CAE-C noticeably outperforms DCAE across nearly all operating conditions and compression rates. The FDAM networks appear
o produce higher SNR on normal and ball faulty conditions at all compression factors—inner race and outer race fault results are
ore comparable to the single-AE DCAE methods. These results indicate that the addition of PCC and other loss terms can improve
erformance on imbalanced data when compared to traditional compression and baseline DCAE methods, and future studies can
larify the role of PI loss terms in this scenario.
21
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Fig. 16. Mean autocorrelation peak ratios as a proportion of the peak ratio for normal signals. Compare with Fig. 12 to see how the AC peak ratio inversely
mirrors the SNR dB on the operating conditions.

4.4. Operating condition compressibility

For nearly all the DCAE models, the SNR results obtained from the bearing data set reveal a consistent pattern. Sorted in
descending order gives the ranking of normal, ball fault, outer race fault, and inner race fault. A key consideration is whether
this ordering of performance is caused by some aspect of DCAE models that make them less effective at outer race and inner race
faulty data, or if it is a result of inherent unpredictability (i.e., noise) in the vibration data of these faults. Although signal noise
information is not available for the bearing data set, relative noise magnitudes between the operating conditions can be estimated
using autocorrelation (AC). The peak AC value of a signal with additive white gaussian noise (AWGN) occurs at a lag of zero. At
this lag, the AC represents the combined power of the signal and noise. As the lag increases, the noise becomes uncorrelated, and
its power no longer affects the magnitude of the AC. Thus, at nonzero lags, the AC represents a scaled version of only the signal
power. Consequently, the ratio between the top two AC peaks produces a qualitative metric representing the noise content of the
signal:

𝑅 =
𝑟𝒙𝒙(𝑙1)
𝑟𝒙𝒙(𝑙2)

(12)

where 𝑙1 and 𝑙2 are the locations (i.e., lags) of the first and second largest values of the AC.
Fig. 16 shows the mean top-two peak ratio across the testing samples of each operating condition, normalized by the peak ratio

of the normal condition. Significantly, the values of the peak ratio, which represent an estimate of the relative noise in the signal,
inversely follow the pattern of SNR results shown in Fig. 12. This is expected since as the noise content increases, the algorithms
are unable to compress the noise, causing the SNR of the reconstructed signal to decrease. Therefore, it is reasonable to assume
that the relative differences in SNR among operating conditions could be attributable to the underlying signal noise, and are not
indicative of any model’s structural inability to represent the information in these signals.

5. Conclusion

This study demonstrates how incorporating local structure and physics-informed (PI) loss terms in addition to standard Mean
Squared Error (MSE) loss can improve the PHM sensing signal compression performance by Deep Convolutional Autoencoder
(DCAE). These domain-informed terms, e.g., FFT real and imaginary component loss, can improve network results by constraining
the weight optimization space. In addition, Fault Division Autoencoder Multiplexing (FDAM) is proposed to further improve the
performance of preserving characteristics of heterogeneous data across different machine conditions. Two case studies with repre-
sentative high-velocity vibration signals typical of rotating machinery demonstrate that proposed methods noticeably outperform
traditional non-DL data compression methods, and all DCAE models with PI loss terms outperform the baseline DCAE structure.
Several key findings and recommendations can be outlined in light of the results:

• The inclusion of PCC loss, which was first quantitatively examined for PHM machine condition monitoring in this study, can
improve reconstruction SNR by over 80%;

• PI loss terms can successfully provide secondary perspectives during model training, with the proposed real and imaginary
FFT loss yielding additional SNR improvements over the baseline;

• The novel FDAM architecture can produce 10 to 15 percentage point SNR improvements over the corresponding DCAE
architecture;

• Combinations of these techniques can allow data to be compressed up to two to four times smaller with the same level of
22

reconstruction fidelity than if compressed using the baseline DCAE model.
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Furthermore, the autocorrelation-based analysis provides insight into the differences in reconstruction performance across the
perating conditions, indicating that the reconstruction performance is inversely proportional to the noise level of the sensing signal.
he future research will further explore the effects of data imbalance on the DCAE and FDAM architectures, consider fusing the
CAE methods with classical compression techniques to improve their performance at high compression rates, and demonstrate
he feasibility of this solution by implementing a complete IoT pipeline for cloud-based, physics-informed DL-enabled machine
ondition monitoring and PHM. Integrating improved compression algorithms into smart manufacturing infrastructure is an enabling
echnology for sending high-volume, high-velocity Big Data from connected factories to the cloud.
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