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Balancing efficiency and resilience objectives in pursuit 
of sustainable infrastructure transformations 
Samuel A Markolf1, Alysha Helmrich2, Yeowon Kim3,  
Ryan Hoff2 and Mikhail Chester2   

Efficiency (i.e. optimized use of resources) and resilience 
principles (i.e. redundancy, diversity, etc.) are often at odds with 
one another. Despite being particularly acute within 
infrastructure systems, this tension appears to be under- 
explored. However, recent advances in ecological and social 
sciences provide some novel insights into navigating 
efficiency–resilience trade-offs. Overall, efficiency and 
resilience are both vital for a system’s longevity and striking a 
dynamic balance between the two appears to be crucial. 
Striking this balance in infrastructure systems can be catalyzed 
by the treatment of resilience as a public good, as well as 
incorporating exploratory models and stakeholder 
coproduction in the design and implementation process. 
Ultimately, the dynamic balance between efficiency and 
resilience can play a central role in our infrastructure’s ability to 
successfully operate in environments that increasingly fluctuate 
between stable and unstable conditions. 
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Introduction and background 
Recent events like COVID-19 and the 2021 Winter 
Storm in Texas highlight a fundamental tension be-
tween efficiency (i.e. optimized system performance and 

use of resources) and resilience (i.e. capacity to identify, 
anticipate, prepare for, mitigate, and adapt to potentially 
disruptive changes and hazards) [1]. For instance, past 
recommendations for higher electricity generation re-
serve levels and increased weatherization of system 
components (i.e. resilience efforts) in the Texas power 
grid [2] were not heeded prior to the widespread outages 
that occurred during February 2021. The lack of resi-
lience efforts was likely due, in part, to the perception 
that these actions were unnecessary or unjustifiably 
costly (i.e. not aligned with efficiency objectives) [3]. 
This tension is intrinsic to the contradictory natures of 
efficiency and resilience. Efficiency strives to minimize 
waste (in the form of time, money, effort, resources, and 
other inputs) and maximize outputs/outcomes [4]. Con-
versely, resilience is characterized by traits such as ro-
bustness, redundancy, diversity, flexibility, agility, and 
learning that appear to be antithetical to efficiency ob-
jectives [5–9]. A description of each of these traits is 
provided in Table 1. Efficiency is particularly well suited 
for stable operating conditions and environments, while 
resilience is conducive to conditions of instability, 
complexity, and chaos [10]. Likewise, efficiency is bol-
stered by processes of mechanization and standardiza-
tion [11], while resilience is often bolstered by factors 
like creativity, improvisation, and extensibility [7,12]. 

Infrastructure systems are often built and managed ac-
cording to predetermined codes and practices (i.e. stan-
dardization). Additionally, they are often designed and 
built with the intent of lasting several decades — partly 
due to assumptions of system and environmental stability  
[14–16]. As a result, many of these systems appear to 
(implicitly or explicitly) emphasize efficiency in their de-
sign and implementation — potentially at the expense of 
resilience. Contrary to other disciplines (e.g. ecology, lea-
dership, and organizational change), the body of knowl-
edge/practice related to infrastructure systems does not 
appear to contain much exploration of the efficiency–resi-
lience tension. Although outside the scope of our analysis, 
we acknowledge that there is associated work in many 
areas of literature including (but not limited to) reliability 
engineering, robust control, risk management, multicriteria 
decision making, and decision making under deep un-
certainty. Nonetheless, this article places particular em-
phasis on applying knowledge from the ecological and 
social sciences to the engineering/infrastructure domain. 

]]]] 
]]]]]] 

www.sciencedirect.com Current Opinion in Environmental Sustainability 56 (2022) 101181 

http://www.sciencedirect.com/science/journal/18773435
mailto:smarkolf@ucmerced.edu
https://www.sciencedirect.com/journal/current-opinion-in-environmental-sustainability/special-issue/103K6D6559Q
https://doi.org/10.1016/j.cosust.2022.101181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosust.2022.101181&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosust.2022.101181&domain=pdf


Considering the increasingly complex, uncertain, and un-
stable conditions our infrastructure systems are likely to 
experience [17], we strive to stimulate more explicit con-
sideration and management of the efficiency–resilience 
tension within infrastructure systems — and ultimately 
help strike a dynamic balance between the two. As de-
tailed below, we explore and synthesize key bodies of 
knowledge on this topic and posit how they can be applied 
more directly to engineering and infrastructure systems. 

Prior to exploring these topics in more detail, we define our 
conceptualization of infrastructure systems, and provide 
more context about the scope of our analysis. Infrastructure 
systems are composed of two key elements: 1) the physical 
assets/components and 2) the institutions, organizations, 
and processes that design, construct, manage, use, and de-
commission the physical assets [8,17,18]. There is also a 
network component to each of these elements. The phy-
sical assets are often connected to each other by the flow of 
energy and materials, while the institutional assets are often 
connected to each other (and to the physical assets) by the 
flow of information [19]. Generally, we consider infra-
structure systems to comprise a wide range of entities: 
power systems, energy systems, water systems, transporta-
tion systems, information/communication (ICT) systems, 
healthcare systems, finance systems, education systems, etc. 
However, in the context of this article, emphasis is placed 
on systems that provide crucial goods and services (e.g. 
reliable access to power/energy, clean water, mobility/ac-
cessibility, ICT connectivity, and health care) via large- 
scale and interconnected physical and institutional 
networks. Given this context, the remainder of this article is 
organized as follows. The next section synthesizes some of 
the key literature from ecology and ecological economics 
related to efficiency and resilience. This discussion is par-
ticularly applicable to the physical components of infra-
structure systems. Subsequently, we synthesize some of the 
key literature from business, management, and organiza-
tional theory related to efficiency and resilience. This dis-
cussion is particularly applicable to the institutional 
components of infrastructure systems. The final section 
posits how some of the key themes from these diffuse 
bodies of knowledge can be applied to help instill more 
balance between efficiency and resilience in engineering 
and infrastructure systems. 

Ecological sciences and the ‘window of 
vitality’ as a basis for efficiency and resilience 
across the physical elements of infrastructure 
Regarding physical systems and networks, there is an 
established body of knowledge rooted in ecology and 
ecological economics that espouses the importance of 
both efficiency and resilience for the longevity of species 
and ecosystems [11,20–24]. Efficiency enhances the 
speed and amount of matter, energy, and information 
that species and ecosystems can process, while resilience 
enables species and ecosystems to persevere (and pos-
sibly transform) in the face of hazards, stressors, and 
extreme events. Traits linked to efficiency include 
centralization, streamlining, and specialization, while 
resilience is facilitated by traits like dispersity and re-
dundancy 11,25,26. Notably, diversity and connectivity 
(i.e. higher transmission speed, capacity, and density 
among system components) appear to be two key fea-
tures linking efficiency and resilience [5,21,23]. In gen-
eral, higher connectivity and homogeneity (i.e. 
decreased diversity) contribute to increased system ef-
ficiency and decreased system resilience [23]. Con-
versely, higher diversity and decreased connectivity 
translate to systems that are less efficient under stable 
conditions, but more adaptive to environmental shifts, 
crashes, shocks, or stressors [23,27–29]. In sum, effi-
ciency and resilience are complementary but often at 
odds with one another — greater resilience may result in 
less efficiency, and vice versa [21]. 

Given the opposing directions in which efficiency and 
resilience can pull with respect to diversity and con-
nectivity, tensions and trade-offs emerge between the 
two. However, these tensions may not always play out in 
straightforward manners. For example, greater con-
nectivity can sometimes facilitate the flow of resources 
and assistance after a disruptive event — thereby con-
tributing to system resilience [5,23,28]. Similarly, spe-
cies/ecosystem resilience can sometimes lead to 
undesirable outcomes if it contributes to the preserva-
tion of deleterious system dynamics [11,30]. Overall, the 
ecological literature posits that systems benefit from 
both efficiency and resilience. In an unconstrained 
world, the maximization of both would be advantageous. 
However, in reality, systems must typically strike a 

Table 1 

Description of various traits associated with resilience.    

Resilience Traits Description  

Robustness System’s ability to absorb disturbances, often via strengthening and hardening of system components 
Redundancy The capacity or functionality of system components to compensate for each other 
Diversity The variety, balance, and disparity of elements within a system 
Flexibility System’s ability to respond to both regular and irregular (non-incremental) changes 
Agility System’s ability to transform in response to unexpected changes or opportunities 

Source: Adapted from [5–9,13].   
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dynamic balance between efficiency and resilience. 
Systems that exhibit sufficient (and balanced) efficiency 
and resilience have been described as functioning within 
the ‘window of vitality’ [20–22,24]. Empirical examina-
tions of the ‘window of vitality’ indicate that the effi-
ciency–resilience spectrum in natural systems tends to 
lean slightly toward resilience [20–22,24]. Given the 
evolutionary pathway that has led to the ‘window of vi-
tality’, human/engineered systems may benefit from 
mimicking natural systems by placing additional em-
phasis on the resilience end of the spectrum. 

In a similar vein, the concept of ‘safe operating spaces 
(SOS)’ has emerged as an approach for actively mon-
itoring and navigating multiple misaligned objectives 
under dynamic and uncertain conditions [31–33]. The 
idea of safe operating spaces has traditionally been ap-
plied to coupled social-ecological systems (e.g. fisheries, 
watersheds), and centers on supporting human well- 
being (e.g. equitable access to food, water, shelter, en-
ergy, education, economic opportunity) while staying 
within biophysical planetary boundaries (e.g. land use 
change, loss of biodiversity, ocean acidification, climate 
change, nitrogen and phosphorous cycles). Moving for-
ward, there appear to be opportunities to apply elements 
of the safe operating spaces concept to the effi-
ciency–resilience spectrum. For instance, one could 
envision a safe operating space bound by a ‘floor’ com-
prising performance and efficiency objectives and a 
‘ceiling’ related to physical, sociotechnical, and en-
vironmental constraints. Similarly, properties of resi-
lience and adaptive capacity would be crucial to 
remaining within (and possibly expanding or shifting) 
this safe operating space under variable or extreme 
conditions. 

Social sciences and ‘organizational 
ambidexterity’ as a basis for efficiency and 
resilience within the institutional aspects of 
infrastructure 
Paralleling the translation of ecologically based concepts 
to the physical components of infrastructure, leadership 
and organizational theory appear well positioned to ex-
amine efficiency and resilience within the institutional 
context of infrastructure. These bodies of knowledge 
introduce and explore the tension between exploitation 
(i.e. risk-averse decisions) and exploration (i.e. risk- 
seeking decisions) as a space to ensure organizational 
longevity [34–37]. Exploitative behaviors resemble as-
pects of efficiency and include rule enforcement, con-
formity through routines, rapid decision-making, and 
disciplinary approaches. Conversely, explorative beha-
viors include variability in the process, acceptance of 
failures, and diverse community building — resembling 
aspects of resilience [38,39]. The effective management 
of the tension between exploitation and exploration is 

known as ambidexterity. The crux of ambidexterity is to 
1) establish formal (e.g. organizational structures, rules, 
and regulations) and informal governances (e.g. leader-
ship, trust) that sponsor explorational pursuits while si-
multaneously maintaining services, and 2) integrate 
successful explorative endeavors through institutional 
repositioning [37,40,41]. 

Organizational ambidexterity is supported by the Law of 
Requisite Complexity [42], and its predecessor, the Law 
of Requisite Variety [43]. The Law of Requisite Variety 
states that a system (re: organization) can appropriately 
adapt if the organization’s range of responses is equiva-
lent to — or greater than — the states in which it must 
operate [43]. Subsequently, the Law of Requisite 
Complexity states that, to be adaptable, an organiza-
tion’s internal complexity must match or surpass ex-
ternal complexity [42]. Achieving the requisite 
complexity (or variety) relies on an organization’s ability 
to sense, learn, and react to the demands of its en-
vironment [43,44] — capacities that can align with both 
efficiency and resilience. Organizations can strive to re-
duce the range and variety of stimuli to which they are 
exposed via processes that align with exploitation such 
as routinization, streamlining, and simplification [36,42]. 
Similarly, organizations can strive to expand internal 
capacities to respond to a wider range and variety of 
stimuli via processes that align with exploration, such as 
increasing system diversity, variety, and com-
plexity [36,45]. 

Due to the relative stability of the past, most infra-
structure organizations and institutions appear to em-
phasize exploitative actions and outcomes [18,37], which 
in turn can accelerate and exacerbate organizational de-
ficiencies in today’s increasingly turbulent environments  
[44]. Ambidexterity and the Law of Requisite Com-
plexity emphasize the importance of striking a dynamic 
balance between exploitative (efficiency-oriented) pro-
cesses and explorative (resilience-oriented) processes. 
Too much emphasis on exploitive processes can result in 
an oversimplistic perception of external conditions, and 
hinder an organization’s ability to effectively respond to 
changes, shocks, and surprises [42,32,33]. Conversely, 
too much emphasis on exploratory processes can be 
physically and cognitively expensive, and result in an 
overly responsive organization (i.e. responding to all 
stimuli regardless of their relevance; inability to distin-
guish the signal from the noise) [32,42]. Papachroni et al.  
[46] posit that exploitation–exploration are not mutually 
exclusive, but instead are complementary and inter-
related — further emphasizing that organizations should 
pursue both behaviors to remain relevant. Similarly, 
Anderies et al. [33] suggest that different combinations 
of knowledge systems and policy types are needed to 
move between multiple safe operating spaces and avoid 
‘dead operating spaces’ [33]. These perspectives parallel 
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the ecological concept of the ‘window of vitality’ (dis-
cussed above), where a system’s long-term persistence 
requires a balance between efficiency and resilience. 

Toward a dynamic balance between 
efficiency and resilience in infrastructure 
systems 
Ultimately, the diverse suite of literature reviewed in 
this article converges on the idea that both efficiency and 
resilience are vital for the long-term viability of systems 
— especially as they navigate recurrent fluctuations be-
tween conditions of stability and instability. 
Additionally, the importance of a dynamic balance be-
tween efficiency and resilience applies to both the 
physical and institutional components of (infrastructure) 
systems. For instance, relating the ‘window of vitality’ to 
the physical aspects of infrastructure systems reveals 
that a shift toward the resilience end of the spectrum is 
perhaps warranted — aligning infrastructure systems 
with the observed tendencies of natural systems. This 
shift would diverge from the current (implicit or explicit) 
emphasis on efficiency within infrastructure systems, 
which is likely due to several factors. For one, many 
infrastructure systems were designed under the as-
sumption of long-term stability and rigidity. Considering 
factors like climate change, technological change, and 
population shifts, these assumptions appear to be in-
creasingly at odds with the environments in which in-
frastructure must function [15,47]. Said differently, 
hidden fragilities tend to emerge in systems that become 
well adapted to a particular set of inputs/forcing (i.e. the 
Law of Conservation of Fragility) [13,48,49,32,33]. 
Second, resilience is a system property that is often not 
readily observable until a disturbance occurs, whereas 
efficiency is typically easier to quantify (and oper-
ationalize) [11,30,50,51]. Similarly, emphasis on near- 
term conditions and outcomes can reinforce a proclivity 
toward established governance structures and opera-
tional practices [29,30,52,53,54,31,32,33]. As a result, 
incentives and inertia emerge that tend to align with 
efficiency and depart from resilience. One potential re-
sponse would be to place additional emphasis on metrics 
of variability such as shifts in the magnitude, frequency, 
duration, and direction of system performance and exo-
genous factors (e.g. temperature and precipitation). 
Significant movement in these so-called ‘early warning 
signs’ has been posited as an indication of declining 
system stability and resilience, as well as the possibility 
of an impending threshold [31]. 

The above factors can also be catalyzed and exacerbated 
(either consciously or unconsciously) by motivational ef-
fects (i.e. stakeholder motives that result in the con-
sideration of certain alternatives and the ignorance or 
misjudgment of others), focused thinking (i.e. deliberate 
attention to specific issues and perspectives at the 

expense of others), and narrow thinking (i.e. uninten-
tional or deliberate disregard for potential alternatives)  
[55–58]. For example, the costs (e.g. time, resources, 
conflict) of pluralistic governance and decision-making 
can sometimes be perceived as outweighing the benefits 
(e.g. increased capacity, creativity, and reflexivity) [54]. 
In turn, this perception can lead to a closing down of 
problem/solution spaces and a propensity toward ex-
isting incentive structures and models of analysis [54]. 
Finally, misalignments between incentives and impacts 
can arise from a variety of scale (geographic, temporal, 
and network) issues. For both efficiency and resilience, 
what is favorable for one actor or firm may not be fa-
vorable for the broader system(s)– and vice versa. Si-
milarly, what is favorable in the near-term may not align 
with what is favorable in the long-term [13,30]. Effi-
ciency-oriented efforts like standardization align with 
goals of reducing system variability and increasing pre-
dictability. On timescales conforming to things like 
terms of office, funding cycles, and immediate human 
needs, reduced system variability is appealing. However, 
reduced system variability in the near-term can lead to 
increased variability and risk of crossing critical thresh-
olds in the long-term [32]. Therefore, managing varia-
bility appears to be inextricably linked to managing 
efficiency in the short run and resilience in the long run. 
Regardless of the impetus for efficiency-focused design 
and operation, there are a number of potentially dubious 
outcomes: 1) incomplete assessment or consideration of 
system context, dynamics, uncertainties, and trade-offs; 
2) missed information and learning opportunities, system 
lock-in, diminished hardiness to shocks and stressors, 
and reduced safe operating spaces; 3) inequitable parti-
cipation in the planning and implementation of inter-
ventions; 4) defining ‘success’ from an overly narrow or 
exclusionary perspective that primarily aligns with 
dominant agendas and powerful stakeholders; and 5) 
closing off potential solution pathways and outcomes in 
favor of ‘traditional’/established approaches [30–33]. We 
conclude our discussion by outlining some potential 
approaches for assuaging these outcomes. 

Within individual organizations and systems, infra-
structure managers can enact the Complex Leadership 
Theory (CLT) framework to enhance organizational 
ambidexterity and navigate efficiency–resilience ten-
sions [37,59]. Although exploitative and explorative be-
haviors are both practiced, infrastructure institutions 
tend to favor administrative leadership (i.e. exploitative 
behavior) that reduces complexity [39]. CLT can ad-
vance resilience efforts by prompting infrastructure 
managers to consider the long-term consequences of 
decision making. In particular, CLT can facilitate the 
emergence of enabling leaders, who embrace both ad-
ministrative and entrepreneurial leadership as operating 
conditions swing between stable and unstable [37,39,59]. 
An enabling leader is not simply someone who can partake 
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in either behavior. Instead, they are pathfinders who can 
identify productive tensions and integrate knowledge 
toward continuous shifts in formal and informal gov-
ernance under dynamic operating environments [37]. 
These continuous shifts and responses can be facilitated 
by exploratory modeling and analyses. Example ap-
proaches include design of experiments, stress-testing, 
worst-case scenario discovery, multiobjective decision 
making, and robust decision making [47,55]. These ex-
ploratory approaches can enable careful examination of 
rival decision paths, elucidation of system sensitivities 
and key decision criteria, identification of decisions and 
actions that produce (un)satisfactory trade-offs between 
multiple objectives, determination of scenarios that 
produce key performance thresholds (either positive or 
negative) and enhance overall confidence in decisions 
and methodological choices [47,55]. 

Exploratory modeling can be helpful (but not necessarily 
prerequisite) for infrastructure managers to recognize 
and embrace the importance of boundary setting, 
boundary thresholds, and boundary spanning (when 
necessary) [31,60]. Whether pursuing efficiency, resi-
lience, or any other objectives, there can be merit in 
recognizing that infrastructure systems impact, and are 
impacted by, surrounding social, ecological, and tech-
nological systems (SETS) [61]. Considering infra-
structure systems as coupled SETS builds upon work 
within socioecological systems [62–66] and provides an 
opportunity for further exploring concepts of enabling 
leadership within complex systems. Effectively identi-
fying and operating within SETS boundaries can be 
aided by the practice of coproduction — “processes that 
iteratively bring together diverse groups and their ways 
of knowing and acting to create new knowledge and 
practices to transform societal outcomes [54]”. Hall-
marks of coproduction include (but are not limited to) 
culturally appropriate engagement with all relevant sta-
keholders, open and flexible processes, frequent feed-
back from participants, acknowledging and addressing 
power dynamics, establishing pertinent boundary ob-
jects, clear and frequent communication, and sufficient 
resources to support sustained coordination and colla-
boration [54]. Many of these practices (e.g. involving 
others, group discussion, connectedness, diversity, 
boundary spanning, etc.) are also linked with cultivating 
enabling leadership [39]. Although the science and 
practice of coproduction continue to evolve, potential 
outcomes of this approach include increased equity, 
improved processes and capacities, enhanced creativity 
and reflexivity among stakeholders, creation of new 
knowledge, deepened awareness of various issues, and 
broader understanding [54]. Coproduction may also fa-
cilitate the cultivation of new knowledge systems and 
policy mechanisms needed to navigate from one safe 
operating space to another [33]. Ultimately, these pro-
cesses and their outcomes can potentially help various 

stakeholders navigate and establish a dynamic balance 
between efficiency and resilience across multiple SETS 
and safe operating spaces under varying conditions. 

Although CLT, exploratory modeling, and coproduction 
can be undertaken in an ad-hoc and ‘organic’ manner, 
one possible approach for catalyzing these transforma-
tions within infrastructure systems is the formal con-
sideration (and possible regulation) of resilience as a 
public/common good, and the lack of resilience as a 
negative externality [11,67,68,54]. The steady improve-
ments in air and water quality achieved via the Clean Air 
Act and Clean Water Act (and related policies) could 
serve as aspirational templates for establishing standards 
and policies for more explicitly addressing and reducing 
the negative externalities associated with a dearth of 
resilience. Doing so can complement, and be com-
plemented by, exploratory modeling and coproduction. 
Ultimately, establishing resilience as a common good can 
help create incentives for implementing and coprodu-
cing attributes like diversity, redundancy, and robust-
ness within infrastructure systems–resilience enhancing 
traits that can complement efficiency-oriented practices 
already in place. 

The review and synthesis of diverse bodies of knowl-
edge conducted in this analysis underscore the im-
portance of striving to achieve a dynamic balance 
between efficiency and resilience within infrastructure 
systems. Furthermore, approaches such as CLT, copro-
duction, exploratory modeling techniques, and the es-
tablishment of resilience as a public good appear to be 
well positioned to help navigate tensions between effi-
ciency and resilience. However, none of these concepts 
are a silver bullet. There will be systems and situations 
where other factors (in addition to or instead of effi-
ciency and resilience) will take precedence. There will 
also be systems and situations where exploratory mod-
eling and/or coproduction may not be necessary or ap-
propriate. Finally, we acknowledge that the challenges, 
opportunities, and shortcomings of infrastructure sys-
tems cannot be fully distilled down to the tension be-
tween efficiency and resilience — especially given the 
complex, multiobjective, and varied nature of infra-
structure systems. Nevertheless, we posit that efficiency 
and resilience are two of the most crucial ‘levers’ at our 
disposal for achieving system longevity, and perhaps 
more importantly, desirable outcomes for as many 
people as possible under as many conditions as possible. 
We are optimistic that the topics and discussions in this 
article can catalyze continued research and practice 
aimed at further exploring and critically examining the 
appropriate balance between efficiency and resilience 
(among other objectives) — as well as the tools, frame-
works, and approaches for doing so. Collectively, these 
efforts can empower infrastructure institutions and sys-
tems to adapt to a wide range of stresses, shocks, and 
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surprises, while helping them thrive under conditions of 
both stability and instability. 
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