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Ultrasound imaging has long been playing a central role in detecting abdominal aortic aneurysms (AAAs). With a
recent trend of reducing prevalence of AAAs, ultrasound screening is only recommended for men aged 65 to 75
years with previous smoking history, and a national level of a screening program for women is currently not
recommended in the US. In the 2000s, several research groups demonstrated the utility of finite element stress
analysis using patient-specific images, which was promising for an accurate assessment of the rupture risk, but
physical models remain to be enhanced by considering patient variability and multi-physical characteristics. This

review aims to provide a survey of emerging and alternative technologies and new methodologies, such as
personalized medicine and data-driven approaches, that may make potential breakthroughs on detection of small
AAAs, monitoring of patients during the follow-ups, prediction of AAA growth, assessment of the rupture risk,
and post-surgical prognosis for AAA patient management.

1. Introduction

Abdominal aortic aneurysm (AAA) disease is one of the leading
causes of death and several countries have national screening programs
to help reduce deaths from AAAs and overall health cost (Jacomelli
et al., 2016; Guirguis-Blake et al., 2019). In AAA screening programs,
patient’s aortic diameter is measured by ultrasound imaging and an AAA
is diagnosed when its size is at least 3.3 cm. Once the patient is diag-
nosed, an individual is generally followed by surveillance scan with a
duration of 3-12 months depending on the size of the maximum diam-
eter. Surgical operations are then recommended when the maximum
diameter is larger than 5.5 cm (Jacomelli et al., 2016). Although the
criterion of maximum diameter 5.5 cm is commonly used to determine
the surgical time, in the 2000s, several researchers suggested that the
use of the finite element (FE) method in noninvasive assessment of AAA
rupture risk is superior to that of maximum diameter criterion (Fillinger
et al., 2003; Raghavan and Vorp, 2000; Wang et al., 2002; Bluestein
et al., 2009; Doyle et al., 2009).

While those national screening programs have been beneficial to
detecting patients early, during the last decade its prevalence has been
decreased, partly due to reduced smoking, and there have been
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challenges in expanding the national level of the screening program with
ultrasonography (Owens et al., 2019; Sprynger et al., 2019; Watson
et al., 2020). The current ultrasound screening also has drawbacks
(Wilmink et al., 2002; Litmanovich et al., 2009) and deterministic
models of mechanical stress analyses have some limitations (Conlisk
et al.,, 2016; Polzer et al., 2021; Attarian et al., 2019). Many AAAs
exhibit a nonlinear growth and their growth patterns are patient-specific
and the prediction of AAA growth is challenging (Vega de Céniga et al.,
2006; Kurvers et al., 2004). Specific biomechanical and biological fac-
tors influence the disease progression and local weakening (Golledge
et al., 2007; Basalyga et al., 2004). Meanwhile, over the past decade,
there has been a considerable shift in research direction, fueled by
advanced mechanobiology, personalized medicine, and digital evolu-
tion, which provide a powerful complement to traditional ways of ul-
trasound screen/follow-up imaging. Biomechanical models offer an
enhanced assessment of disease stage classification, growth prediction,
and clinical decision-making for AAA patient management.

This review aims to provide a survey of the current state-of-the-art
technologies and knowledge on detection, monitoring, growth predic-
tion, rupture risk assessment, and post-surgical prognosis. The emerging
machine learning methodology applicable to each of these problems is
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summarized, capitalizing new concepts, such as personalized, predictive
medicine and digital twin, that may make potential breakthroughs in the
AAA patient management.

2. Machine Learning (ML)

Machine learning (ML) is a collection of data-science tools for
analyzing the relationship between input and output data as well as
detecting significant patterns within complex datasets. Some traditional
ML utilities are regression, dimensionality reduction, classification, and
density estimation of datasets (Deisenroth et al., 2020). Various ML
approaches have been rapidly gaining popularity in cardiovascular
bioengineering and medicine to improve computational cardiovascular
modeling speed/accuracy (Madani et al., 2019; Habibi et al., 2021;
Dabiri et al., 2019), increase model credibility by quantifying compu-
tational model uncertainties (Schiavazzi et al., 2016; Eck et al., 2016;
Maher et al., 2021), or facilitate identification of predictive biomarkers
of disease progression and risk assessment (Heo et al., 2020; Liang et al.,
2017; Weng et al., 2017; Detmer et al., 2020). Common ML techniques
and their acronyms are listed at Table 1 (Koohy, 2018; Krittanawong
et al., 2020; Al’Aref et al., 2019).

Although ML became popular because computation is abundant and
cheap, gathering a large reliably-labeled human dataset relevant to
biomedicine is challenging (Shaikhina et al., 2015; Seo et al., 2020; Chen
et al., 2021). However, rich experiences in animal models and cardio-
vascular biomechanics models based on partial differential equations
have helped us understand disease progression and risk assessment
(Zhang et al., 2016; Humphrey and Holzapfel, 2011; Egido et al., 2011).
Over various fields, hybrid approaches of data-driven and physics-based
ML have been proposed to reveal the physical process given with
incompleteness of data and balance the prediction performance and
computational cost (Liu et al., 2020; Gavrishchaka et al., 2019; Kissas
et al., 2020).

Personalized medicine is an emerging concept which involves man-
aging the health of patients based on their individual characteristics and
identifying high-risk individuals (Tada et al., 2021). Precise disease
classification and understanding of individual variations in disease pa-
thology were aimed for the development of targeted therapeutics, driven
by many national initiatives, where ML and artificial intelligence pro-
vide necessary tools to analyze dynamic patterns of health and disease
and to create more efficient clinical models to tailor medical treatment
for individuals (Blaus et al., 2015; Ginsburg and Phillips, 2018). Under
the vision of precision medicine, “digital twin” of individual patients
could be built to draw diagnosis and prognosis, monitor current health
status and data, and provide an accurate projection of the pathways to
restore health by model predictions (Corral-Acero et al., 2020; Hose
et al., 2019).

Table 1
Common machine learning techniques and their acronyms.
Technique Abbreviation  Category
Random Forest RF Supervised
Support Vector Machine SVM Supervised
Artificial Neural Network ANN Supervised & Unsupervised
Convolutional Neural CNN Supervised & Unsupervised
Network
Principal Component PCA Dimensionality Reduction
Analysis (unsupervised)
Linear Regression LR Supervised
Markov Model MM Unsupervised
Decision Tree DT Supervised
Gradient Boosting GB Supervised
Naive Bayes NB Supervised
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3. Screening and detection
3.1. Current state-of-the-art

The US Preventive Services Task Force (USPSTF), which is the most
updated in the US, recommends one time screening for AAA with ul-
trasonography in men aged 65 to 75 years with previous smoking history
(Owens et al., 2019). Recent population-based studies in men older than
60 years have found an AAA prevalence of 1.2-3.3% and its prevalence
has been reduced over time, in part, due to the decrease in smoking.
Similarly, a fall in UK incidence (from 4.9-7.2% to 1.3%) has been re-
ported in the recent studies of the National Abdominal Aortic Aneurysm
Screening Programme (NAAASP) (Benson et al., 2016) and the Glou-
cestershire Aneurysm Screening Programme (GASP) (Oliver-Williams
et al., 2018). With the current trend of reducing prevalence, screening of
AAA with ultrasonography in women aged 65 to 75 years and whether a
national program is beneficial for women is questionable (Owens et al.,
2019; Sweeting et al., 2018). While the prevalence of AAAs in women is
much lower than that of men, AAAs in women grow faster and are more
likely to rupture at a smaller aortic diameter (Solberg et al., 2005; Soares
Ferreira et al., 2018; Mofidi et al., 2007). There is still no consensus over
the optimal screening and treatment for small AAAs in women.

While the ultrasonography screening program is recommended for
the targeted group, there are still the other key groups with known AAA
risk factors who are not screened. Meanwhile, many AAAs were found in
the physical examination and alternative technologies have been
explored to detect or screen for AAAs using low-cost means. Below is a
brief summary of physical detection and alternative methods:

3.1.1. Focused palpation

Asymptomatic AAAs can be detected upon physical examination if
abdominal palpation can reveal a pulsatile mass in or above the um-
bilical region (Aggarwal et al., 2011; Carpenter, 2005). The examination
of palpation appears to be safe and has not been reported to induce
rupture. Probability of detection increases with increasing aneurysm
diameter, in which its sensitivity was reported ranging from 29% for
AAAs of 3.0 to 3.9 cm to 50% and as high as 82% for AAAs of 5.0 cm or
larger with a range of specificity 68-82% in the physical examination
(Fink et al., 2002; Lederle and Simel, 1999).

3.1.2. Blood sample biomarkers

Circulating biomarkers have become attractive for diagnosing AAA
due to their cost-effectiveness compared to ultrasound imaging. A few
biomarkers (e.g., growth differentiation factor-15 (GDF-15), cystatin-B
(CSTB), myeloperoxidase (Vergaro et al., 2020), desmosine (Mordi
etal., 2019), insulin-like growth factor 1 (Guo et al., 2020), complement
factor of C5a (Zagrapan et al., 2021), mean corpuscular volume (MCV),
and mean corpuscular hemoglobin (MCH) (Vezzoli et al., 2017)) have
potentials for screening and prognosis. From an AAA screening study,
ninety-one cardiovascular specific proteins in plasma samples were
measured. The combination of GDF-15 and CSTB showed the best ability
to discriminate AAA from non-AAA with a sensitivity of 80% and
specificity of 52% (Memon et al., 2020).

3.1.3. Pulse wave imaging

Pulse wave imaging showed potentials to screen for and detect AAAs
since previous studies (Kadoglou et al., 2012; Li et al., 2013; Nandlall
et al., 2014) found that vascular stiffness of the aorta is altered during
the growth and after endovascular surgery in humans. Particularly,
implications on smart wearables provide a method for measuring pulse
wave velocity (PWV) using circulatory waveform signals derived from
multiple photoplethysmography (PPG) sensors, which allows an eco-
nomic setting to estimate vascular stiffness (McCombie et al., 2006;
Elshafeey et al., 2021). Li et al. (2016) used a fluid-solid interaction
numerical model to show the relationship between the aneurysmal sac
geometry and vessel stiffness to simulate the PWV and flow wave
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propagation.
3.2. ML in screening and detection

There has been an exploration of ML using low-cost means such as
utilizing previous history of patient-specific data and light sensor mea-
surements to detect or select patients who have a high probability of
AAA prevalence. For instance, Kerut et al. (2019) investigated the po-
tential to detect AAA patients using neural networks from an AAA
screening database of 10,329 patients who self-reported patient infor-
mation (basic patient information, medical history, and smoking). The
result of sensitivity analysis showed that the cohort of Caucasian males
contributed most significantly to the accuracy of the ML algorithm, but it
may not be reliable when evaluating non-Caucasian populations or
Caucasian females. Another study from Li et al. (2018) tested a proof of
concept of using a ML framework to integrate personal genomes and
electronic health record data to screen for general population and pro-
vide quantitative and actionable guidelines on lifestyle to minimize
disease risk. The developed framework, called HEAL (hierarchical esti-
mate from agnostic learning), was constructed using ML and network
analysis techniques, hierarchically modeling individual mutation effects
and identifying mutational genes. HEAL not only identified
disease-associated components in AAAs by aggregated learning from
population genomes but also predicted disease status from personal
genomes, which could potentially be developed into a clinically test for
early screening of AAA.

Wang et al. (2021) tested the feasibility of ML-based pulse wave
(PW) analysis for early detection of AAAs using a database of in silico
PWs. They constructed a one-dimensional model of main arterial vessels
in the systemic blood circulation and created three subsets of database of
in silico PWs for baseline subset, increased global stiffness subset, and
AAA subset. A recurrent neural network (RNN) was proposed to train
and test using the peripheral PPG PW derived from the in-silico PW
database and evaluate the prediction performance of detecting AAAs.
The in-silico study predicted the magnitudes of the 5% and the 6™ har-
monics of the digital PPG PW to strongly influence various cardiovas-
cular parameters in addition to the AAA size. By using the RNN, the
in-silico analysis resulted in a sensitivity of 86.8% and a specificity of
86.3% in AAA detection. This study, however, used idealized vessel wall
properties and morphological geometries and did not consider calcified
or thrombus regions. The use of a virtual patient database was, then,
extended for detecting major forms of arterial diseases, carotid arterial
stenosis, subclavian artery stenosis, peripheral arterial disease, and
AAAs with ML algorithms (RF, GB, NB, SVM, Logistic Regression, and
Multi-layer Perception). The test results of best prediction performance
were from the tree-based methods (RF and GB) (Jones et al., 2021).
While the study used a virtual cohort of subjects, the test results were
promising for AAA monitoring and screening through wearable devices.

4. Monitoring and assessment of disease status
4.1. Current state-of-the-art

Measuring the maximum diameter has a central role in AAA man-
agement and surgical recommendation, and other geometrical variables
such as AAA volume (Lindquist Liljeqvist et al., 2016; Martufi et al.,
2013), growth rate (Limet et al., 1991; Brown et al., 2003), thrombus
(Parr et al., 2011; Haller et al., 2018), and asymmetry and tortuosity
(Doyle et al., 2009) can be taken into account for improving the
assessment of aneurysm development and rupture risk. The maximum
diameter measurement, however, has not been standardized yet. In
general, diameter measurement methodology is implemented according
to four parameters: plane of acquisition, axis of measurement, position
of calipers placement, and selected diameter (Long et al., 2012). The
value may vary depending on the combinations of parameters, which
can differ by up to 8 mm for an individual AAA (Matthews et al., 2021).
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Although all parameters affect the diameter measurement, the plane of
diameter acquisition (e.g., axial plane or the plane orthogonal to the
centerline of an AAA) affects the measurement difference the most.
Particularly, for the orthogonal maximum diameter measurement, it can
depend on the construction of the centerline, which can be highly var-
iable. For instance, an error of 5'in determining the orthogonal plane can
lead to 15 mm of miscalculation in measuring maximum diameter. To
reduce the variability in measurement, Gharahi et al. (2015) suggested
exploiting a maximally inscribed sphere method to generate the
centerline and measure the maximum axial, orthogonal, and spherical
diameters. The axial diameter measurement determines the maximum
diameter without generating the centerline, and the maximum orthog-
onal diameter represents the principal curvature of the vascular wall.
The associated maximum diameters were correlated with the rupture
risk assessment parameters such as peak wall stress (PWS) and peak wall
rupture risk (PWRR) (Novak et al., 2017). Other factors that are influ-
ential to the measurements include posture and adjacent tissues (the
vertebral columns, inferior vena cava). AAA tissues can be pressed by
adjacent tissues affecting the maximum diameter measurement (Kwon
et al., 2015).

While the maximum diameter is a convenient and important
biomarker for clinical management, other physiological and biological
features were sought to better estimate the disease process and detect
early signs of adverse events during patient follow-up. In particular, the
field of molecular imaging has been rapidly expanding over the past few
decades to provide cellular activities related to pathological disease
progression. Imaging techniques such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) identify process-specific
and cell-specific probes that are associated with disease activities such as
calcification and inflammation. Paramagnetic MRI agents (such as
gadolinium) are widely used in clinical practice, where T2-weighted
gadolinium-enhanced MRI delineates morphological regions such as
blood, thrombus, and fibrous cap (Kramer et al., 2004; Forsythe et al.,
2016). For more advanced technology, ultrasmall superparamagnetic
particles of iron oxide (USPIOs) can visualize tissue inflammation. Focal
areas of USPIO uptake were associated with a more rapid AAA expansion
in a pilot study with 29 patients (Richards et al., 2011). Since PET has a
lower spatial resolution, fusion techniques (PET-CT and PET-MRI)
visualize a high intensity of macrophage activities using cell-specific
PET tracers such as 18F-ﬂuorodeoxyglucose (18F-FDG) and a novel
marker of vascular calcification activities using PET tracer of ®F-solium
fluoride (*8F-NaF) (Forsythe et al., 2016; Nchimi et al., 2014). These
cellular and molecular imaging techniques may have the potential to
provide better stratification of disease stages and assist in patient
management.

Increased central artery stiffness is widely accepted as an indicator of
cardiovascular risk and the associated differential hemodynamic forces
account for local vascular remodeling through physio-pathological
process (Dua and Dalman, 2010; Zieman et al., 2005; Boczar et al.,
2021). PWV is a measure of arterial stiffness and higher levels of PWV
were shown in AAA patients (Kadoglou et al., 2012). Konofagou and
co-workers tested the utility of ultrasound imaging-based techniques to
measure the regional PWV for monitoring and staging AAAs (Li et al.,
2013; Nandlall et al., 2014; Li et al., 2011). Petterson et al. (2021)
developed a workflow where multi-perspective biplane ultrasound im-
aging created a sparse, high resolution 3D map of wall motion and
estimated wall elastic modulus via a personalized FE model using the 3D
ultrasound imaging. Using a workflow of time resolved 3D
ultrasound-based segmentation, Fonken et al. (2021) further imple-
mented patient-specific fluid-structure interaction (FSI) simulations that
estimate wall mechanics and hemodynamics variables such as
time-averaged wall shear stress (TAWSS) and oscillatory shear index
(OSI). The study found that incorporation of pre-stress in FSI signifi-
cantly enhanced estimations of wall mechanics and hemodynamic
variables.

Sonesson et al. (1997) developed an experimental setup to reduce the
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pressure in a sealed chamber in the lower body while measuring the
inner radius of the abdominal aorta in vivo. This lower-body negative
pressure technique caused vasoconstriction and physical exercise caused
the dilated condition. Using the experimental setup and the dataset,
Gade et al. (2021) identified nonlinear mechanics of the aorta in vivo via
altering smooth muscle activities, which has a potential for monitoring
physical status of the aorta.

4.2. ML approaches in follow-up and monitoring

The “digital twin” concept could be used as a comprehensive
framework for integrating ML, physics-based modeling, and follow-up
data to create a continuously evolving digital representation of biolog-
ical systems such as AAAs. A digital twin is defined as a virtual repre-
sentation of its living counterpart (physical twin), and it is dynamically
updated with new data to maintain a relevant representation of the
physical twin (The AIAA, 2020; Niederer et al., 2021). A digital twin
needs to facilitate decision-making, and therefore should be predictive.
In the context of AAA follow-up monitoring, one could create a digital
twin representation of AAA by creating a patient-specific hemodynamics
model during baseline. Subsequently, predictive hemodynamic bio-
markers such as structural stress and wall shear stress together with
other relevant biomarkers could be used to simulate AAA growth and
inform AAA monitoring strategies. Finally, the digital twin should be
able to incorporate new imaging data during follow-up sessions to up-
date its representation and remain predictive. Establishing such digital
twins requires a synergistic blend of data-driven and physics-based
modeling approaches. A similar workflow has been used by Chakshu
et al. (2021) where data collected using wearable devices were
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combined with 1D blood flow modeling and deep learning to create a
digital twin representation of the cardiovascular system and monitor
AAA severity (Fig. 1).

5. Growth prediction
5.1. Current state-of-the-art

AAA expansion rate is generally considered as a risk factor but it is
still debatable whether the growth is directly connected to wall weak-
ening or rupture risk (Sharp and Collin, 2003). Estimation of patient’s
aneurysm growth is however important for patient’s management,
particularly for deciding the time of surgery.

The mean expansion rate of AAAs ranges from 2.6 to 4.7 mm/year
depending on the cohort groups (Vega de Céniga et al., 2006; Mofidi
et al., 2007; Masuda et al., 1992; Bhak et al., 2015). Although AAA
growth generally increases in their size (Powell et al., 2011; Bown et al.,
2013), a high variability has been reported in the expansion rate of each
AAA; some aneurysms found no expansion over several years, whereas
others showed a rapid increase in size. The risk factors for increasing
expansion rate were the initial diameter of aneurysms (Masuda et al.,
1992), diabetic patients had a significantly smaller AAA growth rate
than non-diabetics (Vega de Ceéniga et al., 2006), and intraluminal
thrombus was associated with AAA growth (Parr et al., 2011; Zambrano
et al., 2016). The pathophysiological processes of AAA growth involve
degradation of elastin, thrombosis, inflammation, and lipid metabolism,
which has been recognized from serum circulating and histological
biomarkers (Deeg et al., 2016; Vega de Céniga et al., 2009; Flondell-Sit
etal., 2010; Lindholt et al., 2011; Wanhainen et al., 2017). A systematic
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Fig. 1. Schematic workflow of one approach in creating a digital twin representing of the cardiovascular system. Blood pressure waveforms are measured at
accessible locations as inputs and various waveforms are inversely estimated in the systemic circulation using ML with the aid of long short-term memory (LSTM)
networks. The figure is reproduced from Chakshu et al. (Chakshu et al., 2021) under a Creative Commons Attribution (CC BY) license.
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review and meta-analysis of 25 studies found the most significant as-
sociation with AAA growth rates as biomarkers of D-dimers, LDL-C,
HDL-C, TC, ApoB, and HbAic (Nana et al., 2021). These biomarkers
can be easily and cost-effectively implemented in clinical practice, and
the recognized biomarkers, which are correlated to various stages of
AAA progression could become attractive candidates for future studies
of AAA growth prediction. Finally, patient-specific computational fluid
dynamics models have shown a connection between near-wall hemo-
dynamic parameters (e.g., TAWSS) and pathogenesis/growth (Arzani
et al., 2014; Meyrignac et al., 2020; Zambrano et al., 2022; Tanweer
et al., 2014; Salman et al., 2019).

5.2. ML in predicting AAA growth

A recent consensus has been reached that research priority may focus
on obtaining an accurate prediction of AAA growth rate as a feasible task
that is central for deciding the time of surgery (Lee et al., 2017). The new
shift was motivated by recent papers that have demonstrated a proof of
concept, which were promising for an enhanced prediction capability on
AAA growth rate by using ML tools (Lareyre et al., 2020; Raffort et al.,
2020). Through an effective surveillance strategy, the prediction of AAA
growth can aid surgeons and specialists in better management of pa-
tients in a personalized manner.

ML techniques have been applied to predict future growth in indi-
vidual patients using the retrospective sets of follow-up images and/or
other variables. A majority of studies used morphological variables (e.g.,
diameter profiles, AAA volume, parameters related to ILT characteris-
tics, and tortuosity) to train ML algorithms to predict AAA growth for a
future time-point of one or two years (Akkoyun et al., 2020; Akkoyun
et al., 2021; Zhang et al., 2020). Akkoyun et al. (2020) utilized a
two-step Bayesian inference (a generalized linear model (GLM)) using
an exponential growth function to calibrate against a dataset of AAA
growth from 25 patients. For the first Bayesian inferences, the posterior
distribution was obtained for the general AAA growth pattern of the
whole population. Then the results were again used as the prior distri-
butions for the second regression model to train with additional
geometrical measurements and enhance the AAA growth prediction.
The study found that the geometrical parameter, tortuosity, was a sig-
nificant factor enhancing the prediction. The prediction error of the
GLM method was 2.79 mm. Another study by Zhang et al. (2020)
investigated the relationship between the characteristics of ILT and AAA
expansion. A retrospective, follow-up CT image dataset of 26 AAA pa-
tients was classified into three stages (early, mild, severe, fatal) based on
the maximum diameter and homogeneous multistate continuous-time
Markov chain models. The study concluded that surgical intervention
would be recommended when the ILT’s areal fraction was larger than
60%. The other group of studies utilized other features with the
morphological variables to predict growth. For instance, an ML tech-
nique (nonlinear kernel support vector regression) was applied to pre-
dict future AAA growth based on individual patients’ baseline flow
mediated dilatation (FMD) and AAA diameter as input variables for 94
patients (Lee et al., 2018). The algorithm predicted the individual’s
AAAs diameter within 2 mm error in 85 and 71% of patients at 12 and 24
months, respectively. Garcia-Garcia et al. (2017) used various data,
clinical and morphometric, and mechanical stress characterization to
exploit ML algorithms for predicting AAA growth rate. AAA’s images
were classified into three groups of slow, medium, and quick aneurysms
and an ensemble of decision trees (‘LPBoost’) algorithm showed the best
performance predicting the aneurysm growth rate.

Over the past two decades, various FE formulations were proposed
by multiple groups presenting vascular growth models to simulate AAA
shape evolution (Watton et al., 2004; Baek et al., 2006; Kuhl et al., 2007;
Stevens et al., 2017; Grytsan et al., 2015). Several studies used FE
models of growth and remodeling (G&R) for aortic tissue, characterizing
homogenized aortic elements for mechanical behavior of main constit-
uents (fibrous collagen, elastin, and smooth muscle cells), and simulated
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long-term shape evolutions of AAAs (Baek et al., 2006; Zeinali-Davarani
et al., 2011; Wilson et al., 2013, 2012; Baek and Humphrey, 2010;
Zeinali-Davarani and Baek, 2012; Braeu et al., 2017, 2019; Martufi and
Gasser, 2012). Recently, a few studies integrated these growth FE-based
models with ML approaches. Baek and coworkers have obtained
follow-up 118 CT scan images from 25 AAA patients and have investi-
gated a general pattern of long-term shape evolution of AAAs. Based on
those observations, it was found that an exponential function is superior
to a linear one in predicting maximum diameter changes (Akkoyun
et al., 2021). Further, they explored various data-driven ML models (GL,
Bayesian inference, continuous-time Markov chain) (Akkoyun et al.,
2020; Zhang et al., 2020; Do et al., 2019) and physics-based ML using
the FE-based G&R model (Jiang et al., 2020, Zhang et al., 2019) to test
the prediction of maximum diameter and AAA shape evolution for the
cohort group (Fig. 2). Among different models, the physics-based ML
using an FE-method G&R model (implemented in Bayesian calibration
and deep learning) showed a significant reduction of errors in the pre-
diction of aneurysm shape evolution compared to the data-driven
models. The best prediction of AAA enlargement for 1 year was using
a deep learning method where the average relative error was 3.1%
(approximately about 2 mm error), which outperforms the classical
mixed-effect model by 65% (Jiang et al., 2020).

The specific ML techniques of the growth prediction models and their
accuracy performance are compared and summarized in Table 2.

6. Rupture risk assessment
6.1. Current state-of-the-art

The concept of rupture potential is central for disease risk assessment
and clinical management of AAAs. The rupture potential index is,
however, a more conceptual idea and there were several ways of
implementation. The rupture potential index is generally defined by the
maximum principal stress (or the von Mises stress) divided by the aortic
wall strength for biomechanical risk assessment of aortic aneurysms
(Raghavan and Vorp, 2000; Lu et al., 2007; Rissland et al., 2009). The
superiority of peak wall stress (PWS) and peak wall rupture index
(PWRI) over the criterion of the maximum transverse diameter have
been shown in different studies using retrospective AAA images from
patient groups (Erhart et al., 2015; Gasser et al., 2010; Ventatasu-
bramanian et al., 2004; Truijers et al., 2007). More detailed comparisons
between PWS and PWRI along with other physical/morphological
indices can be found from recent studies (Leemans et al., 2017; Singh
et al., 2021; Rengarajan et al., 2020).

While the image-based biomechanical stress analyses enable the
prediction of rupture risk, the wall strength depends on patient-specific
material properties that are not easy to estimate. Also, for the stress
analysis, there can be improvements for the accurate prediction of
rupture. The calculation of PWRR typically utilizes an isotropic material
model, which may not be accurate for aortic tissues as many experi-
mental studies have revealed that aortic wall strengths in the circum-
ferential and axial direction are significantly different (Polzer et al.,
2021; Teng et al., 2015; Kim et al., 2012; Liu et al., 2020). For instance,
uniaxial tensile tests on aneurysmal tissues from 45 patients, harvested
during AAA repair, were performed in circumferential and axial di-
rections. The test results found that both the first Piola-Kirchhoff
strength and ultimate tension were significantly higher in the circum-
ferential direction (Polzer et al., 2021). In another study, 38 abdominal
aortas harvested during autopsy were inflated up to their rupture. The
AAAs ruptured at least higher than 590 mm Hg (mean = 1,035 mm Hg)
and normal aortas were ruptured above 840 mm Hg (1,405 mmHg)
(Gomes et al., 2021). One study investigated the influence of
patient-specific AAA wall thickness on the predicted clinical outcomes.
In 4 out of 8 patients, the unformed wall model underestimated stress by
as much as 55%. In the remaining cases, it overestimated stress by up to
40% (Conlisk et al., 2016).
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Fig. 2. A Bayesian calibration framework implemented to predict AAA growth with confidence range (adapted from Zhang et al., 2019).

Table 2

Comparison of different growth prediction studies using ML.

Paper

Aim

Method

Dataset

Training/
testing

Features

Accuracy

Garcia-Garcia
et al. (2017)

Lee et al. (2018)

Do et al. (2019)

Zhu et al. (2019)

Zhang et al.
(2019)

Zhang et al.
(2020)

Akkoyun et al.
(2020)

Jiang et al. (2020)
Akkoyun et al.
(2021)

Stoecker et al.
(2021)

Liljeqvist et al.
(2021)

Classification of
AAA growth groups

Prediction of AAA
growth

Prediction of AAA
growth

Prediction of AAA
growth
Prediction of AAA
growth

Transition of disease
progression

Prediction of rapid
growing AAA

Prediction of AAA
growth

Prediction of AAA
growth

Prediction of AAA
growth

Prediction of AAA
growth

PCA, DT, SVM, and
others

Nonlinear SVM
regression

Dynamic LR

Statistical analysis

Bayesian LR

MM

LR

Deep belief network

Statistics analysis,
linear vs. exponential
models

Extreme GB

LR and SVM

CTA images from
38 patients

94 patients

Follow-up CT
images from 7
patients

80 patients (with
41 followed)
Follow-up CT
scans from 4
patients
Follow-up CT
scans from 26
patients
Follow-up CT
scans from 25
patients
Follow-up CT
scans from 20
patients
Follow-up CT
scans from 25
patients

10 patients CTAs

189 patients (CT
and CTA follow-
up)

No separate
groups

No separate
groups

No separate
groups

No separate
groups
No separate
groups

No separate
groups

No separate
groups

14/6

20/5

No separate
patient
groups
No separate
groups

Clinical, morphological,
biomechanical, and texture
features

Max. AAA diameters and flow
mediated dilation

Point-clouds of AAA wall
surfaces

ILT signal intensity of MRI
Inscribed sphere diameter
Max diameter, ILT
characteristics

Morphological characteristics

Inscribed sphere diameters

Morphological characteristics

Image-derived geometric
parameters

Geometric, biomechanical
variables with sex, smoking
and diabetes

Best result was from DT. Only one
case was clinically missed for the
classification.

Prediction of max. AAA diam.
within 2mm error was 85% and
71% at 12 and 24 months

The overall Hausdorff distance was
10.3mm (mean) and 3.64mm (SD)

3-fold increase of growth rate
compared with stable AAAs

Most of relative errors of diameter
growth prediction were less than
5%

ILT areal fraction was found as the
most significant biomarker for
predicting transitions

86% of scans were predicted in
95% CI cases

2.3-4.3% of relative prediction
error at 12 months

Max diameter was predicted to 15
of 16 validation scans with a 95%
CI

Mean relative error in predicting
max. diameter growth was 10.5%

Improved predictions of reaching
surgical threshold and diameter
growth rate

Moreover, other factors influencing rupture assessment were
thrombus, calcified regions (Buijs et al., 2013), surrounding tissues (Kim
et al., 2013), and other patient variables (sex, age, pre-deposited
vulnerability, ethnicity) (Sweeting et al., 2012; Marcaccio and Scher-
merhorn, 2021). Forneris et al. (2021), therefore, suggested that an
accurate prediction of a local wall weakening and aortic rupture should
be taken into account in the presence of multifactorial, heterogeneous
spatial factors. The study proposed an index of regional aortic weakness
(RAW), which captures local changes in the tissue mechanical behavior
and luminal hemodynamics, which were compared with qualitative and
statistical analyses of microstructure and gene expression data. The new

approach was demonstrated to capture changes in the tissue mechanical
behavior, microstructure, and gene expression, which account for the
regional variability and tissue heterogeneity.

6.2. Statistical and ML approaches for rupture risk assessment

Although biomechanical indices such as PWS and PWRI based on FE
modeling can be used for classifying the AAA groups (non-symptomatic/
symptomatic or ruptured/intact), FE modeling has a deterministic na-
ture, thus restricting the use of uncertainty for risk assessment. AAA
rupture risk assessment is especially involved in a multitude of risk
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factors from individual patients, and model constructions (e.g., seg-
mentation, wall thickness, and boundary conditions) and the constitu-
tive parameters are associated with uncertainties for the prediction
capability (Seyedsalehi et al., 2015; Chen et al., 2013; Reeps et al.,
2013).

Using the state-of-the-art deterministic biomechanical models,
Polzer and Gasser (2015) proposed to enhance the prediction capability
by incorporating probability density functions of wall thickness, wall
strength, and peak wall stress, in which their uncertainties were inte-
grated into the assessment of probabilistic rupture risk index (PRRI).
Using 7 ruptured AAAs and 7 intact AAAs, their study found that PRRI
was significantly higher in ruptured AAAs than intact AAAs, whereas
PRRI showed a high sensitivity and specificity to discriminate between
ruptured and intact AAA cases. Biehler et al. (2015) presented an un-
certainty quantification framework based on multi-fidelity sampling and
Bayesian formulation, where constitutive parameters of the aneur-
ysmatic arterial wall were modeled as a univariate 3D, non-Gaussian
random field taking into account inter-patient as well as intra-patient
variations of the two parameters. However, because patient-specific
parameters, such as wall thickness, wall strength, and constitutive
properties, were not easily accessible, they instead utilized the
well-developed regression models in a combination with noninvasively
assessable, explanatory variables from basic patient information, med-
ical history, laboratory test, and geometrical parameters (Biehler et al.,
2017). Using a probabilistic biomechanical framework and a regression
algorithm of selecting non-invasive features (similar to Bichler et al.,
2017), Bruder et al. (2020) evaluated the PRRI for 18 asymptomatic and
18 symptomatic/ruptured patient groups, retrospectively. With 8
selected variables; maximum diameter, maximum thrombus thickness,
AAA length, subrenal diameter, thrombocytes, hemoglobin, mean
corpuscular hemoglobin, and mean corpuscular volume, they were able
to differentiate the risk group from the asymptomatic group. They
further showed that this method outperformed the other classifiers such
as maximum diameter and traditional rupture potential indices.

Therefore, the maximum diameter may be insufficient in predicting
AAA rupture risk, and integrated approaches using geometrical, phys-
ical, and biological data from follow-up imaging or monitoring can
capture important features useful in assessing the rupture risk. A pri-
mary task is, therefore, to identify a set of key variables for morpho-
logical, biomechanical, and patient-specific variables from a multi-
factorial dataset. For this purpose, ML algorithms were implemented
and tested to select predictive variables with discriminatory potential
for rupture risk assessment. Using retrospective CT image datasets
consisting of geometric, biomechanical, patient-specific information
data, different ML algorithms tested the performance on the classifica-
tion analysis discriminating the dataset between asymptomatic and
symptomatic AAAs (Rengarajan et al., 2020) and between the group at
risk of rupture and the group not at risk of rupture (Jalalahmadi et al.,
2020). These ML classifications could provide selection of key markers
and predict the rupture.

7. Post-procedural complications and prognosis
7.1. Current state-of-the-art

Surgical management options for AAAs are open surgical repair
(OSR) and endovascular aneurysm repair (EVAR). A recent review of
systematic and meta-analysis of perioperative results concluded that the
minimally invasive operation procedure shows an improvement of
short-term (30 days) mortality for EVAR compared with OSR, but for
very long-term outcomes there has been no mortality difference between
them (Li et al., 2019). Although there may be no difference in the
long-term mortality, EVAR becomes the more preferable choice due to
the less invasive nature of the procedure, resulting in advantages such as
fewer cardiopulmonary complications and reduced lengths of stay in
intensive care units, an important factor for the elderly population
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(Salata et al.,, 2019). EVAR is, however, often associated with
endograft-specific complications, including endoleak, graft migration,
and fracture (Ultee et al., 2018). Endoleaks are the most commonly
occurring complications following EVAR and, among five types of
endoleaks, type I and II endoleaks are the most common and occur in
15-30% of patients in the first 30 days after the procedure. Type I
endoleaks occur because of an incompetent seal at the proximal or distal
endograft attached and type II endoleaks are characterized by persistent
flow out of the residual aneurysm sac via patent aortic side branch
vessels (Daye and Walker, 2018). Many type II endoleaks shrink and,
hence, only about 20% of cases are needed for reinterventions (Biancari
et al., 2015; Bryce et al., 2018). Nonetheless, owing to the relatively
higher frequency of post-EVAR complications, patients are generally
recommended for regular, long-term surveillance and early detection or
significant features of their complications would be important for EVAR
management. Risk factors of post-EVAR complications were reported as
aneurysm sac enlargement, patent inferior mesenteric and lumbar ar-
teries, and other patient-specific factors such as smoking and hyper-
cholesterolemia (Miiller-Wille et al., 2015; Guo et al., 2017; Lalys et al.,
2017). Patient-specific derived hemodynamics have also been linked to
EVAR outcomes. For example, endoleak location corresponded to local
peak wall stress on the endograft (Lu et al., 2016) and lowered aneurysm
wall stress correlated to aneurysm shrinkage in follow-up (Molony et al.,
2009). Nevertheless, managing EVAR complications still represents an
unsolved clinical problem (Forbes, 2020). There have been several
extensive reviews available on EVAR techniques, their complications,
post-EVAR management, computational modeling, and pre- and
post-EVAR vascular adaptation (Kim et al., 2019; Rengier et al., 2014;
Roy et al., 2012; Kwon et al., 2011; Avril et al., 2021). The readers
should refer to these references for more details.

7.2. ML in detection of endoleaks and post-surgical prognosis

Multiple studies have established the proof of concept for utilizing
ML in detecting and differentiating endoleaks. Those groups used
datasets of retrospective computed tomography angiography (CTA) to
train ML algorithms (SVM Charalambous et al., 2021 and CNN Hahn
et al., 2020; Talebi et al., 2020) to detect endoleaks and differentiate
aggressive type II endoleaks. The performance of model prediction was
more than 90% from those studies, and the ML-based approaches
showed similar performance for endoleak diagnosis compared to those
from specialists. The mortality risk of patients is associated with various
factors and ML algorithms can aid medical staff in discriminating high
risk of re-intervention and estimate in-hospital mortality. Attallah and
Ma (2014) used a Bayesian neural network to predict re-intervention
and classify the patients into high-risk and low-risk groups using a set
of collected clinical conditions. Monsalve-Torra et al. (2016) grouped
various data into four clusters: patient’s basic data, clinical history,
surgical data, and postsurgical data, and trained an ML algorithm (su-
pervised ANN) to predict in-hospital mortality in patients after open
surgery. The test results showed a predictive accuracy of 95%.

8. Closing remarks

Approximately 30% of asymptomatic small AAAs are discovered as a
pulsatile abdominal mass on physical examination. Abdominal ultraso-
nography has been a choice for detecting AAAs because of its sensitivity
and specificity but with a trend of reducing AAA prevalence over the
past decade the decision to screen for AAAs is challenging for the na-
tional screening program. Alternative techniques such as blood circu-
lating sample analysis and PWV measurement provide low-cost methods
in detecting and identifying biomarkers that are correlated to AAA
disease progression and prediction of its rupture. Genome sequencing
analysis and molecular imaging techniques enable identifying key ge-
netic components, process-specific and cell-specific markers. ML tech-
niques provide synergy for improving clinical decisions by identifying
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important morphological and biomarkers, classifying patients into high
and low risk groups, and estimating the rupture risk of individual pa-
tients with a confidence range. Notably, physics-based ML models (FE
modeling and vascular G&R models) play central roles in enhancing
prediction capability for AAA growth and rupture risk assessment and
were shown to outperform the pure data-driven ML models for small-
size datasets.

While various ML approaches were proven to be effective for AAA
detection and clinical management, ML in biomedical applications is
still in its infancy and further studies are necessary before their routine
use. Here, we suggest current limitations and, hence, potential future
directions for the enhancement of ML methodology and physics-based
modeling:

8.1. Development of an automatic pipeline from segmentation to FEM-
based growth and stress analysis

Significant progress has been made in developing more accurate ML
algorithms for medical image segmentation (Seo et al., 2020). For AAAs,
multiple groups have investigated the feasibility of automatic segmen-
tation of medical images including the aorta, aneurysm sac,
intra-luminal thrombus using CT or CT angiograms to train and test CNN
algorithms (Salvi et al., 2021; Lopez-Linares et al., 2018; Mohammadi
et al., 2019; Brutti et al., 2022; Adam et al., 2021). These approaches
were implemented based on deep learning CNN to extract geometric
features. The first layers extract the low-level features such as edges,
lines, and corners, and as the layers get deeper, the CNN increases in its
complexity, identifying other portions of the images. However, deep
neural networks require a large amount of training data and the methods
are not yet fully validated, which is a main limitation. To deal with the
patient morphology variability, new feature-based approaches via
generating a set of synthetic data have been suggested within deep
learning frameworks to enhance the accuracy of prediction and, more
importantly, speed up the development of an automatic pipeline, from
the segmentation process, morphological data analysis to FE-based
growth and rupture risk analysis (Lareyre et al., 2019; Rengarajan
et al., 2021).

8.2. Development of specific goal-driven ML techniques and integration
toward the digital twin approach

This review summarized the high potential for alternative technol-
ogies on detection/monitoring of AAAs and data-driven/physics-based
ML approaches, which are complementary to the traditional practice
of ultrasound screening. Specific physical & morphological, biochem-
ical, imaging, and genetic markers were recognized for different aims
that will enhance surveillance strategies for patients, identify early signs
of small aneurysm’s rupture, provide post-surgical management, and
enhance therapeutic treatments. Predictive ML technologies based on
these markers could be ultimately integrated into health digital twins
that enhance personalized treatments for the susceptible groups and
AAA patients in the near future (Coorey et al., 2021).

8.3. Improvement of ML methodologies

ML frameworks still need improvement before being implemented in
routine clinical practice. For instance, the developmental stages of new
ML algorithms should be transparent and be tested with different ML
algorithms using the same or similar set of independent variables. The
selection of ML algorithms should be made based on the questions of
interest and the structure of the dataset: how large the population is,
how many cases exist, how many available variables there are, whether
the data is longitudinal or not, if the clinical outcome is binary or time to
event, etc. (Krittanawong et al., 2020). There is, hence, a pressing need
for standardizing ML methodologies (e.g., training/testing, validation,
and evaluation metrics) (Kerut et al., 2019; Nana et al., 2021). The
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developed ML algorithms can be also validated in large multicenter
cohorts (and compared to other algorithms) to confirm their general-
ization to out of sample data (Lareyre et al., 2020).

8.4. Enhanced efficiency for physics-based modeling

Significant progress in understanding multi-physical biochemical
characterizations of pathogenesis, G&R, and wall weakening by using
computational modeling based on partial differential equations has been
made, but these physical computational models require significant
computational resources and time. Especially, considering the patient
variability and various uncertainties, physics-based ML through tradi-
tional approaches becomes prohibitive for clinical practice. Therefore,
multiple approaches such as surrogate/multi-fidelity modeling and
physics-informed ML have been introduced and showed promise in
various biomedical applications to reduce the computational cost and
enable solutions to difficult problems (Ye et al., 2022; Jiang et al., 2021;
Arzani et al., 2021; Liu et al., 2020). Expanding these models will be a
high priority in improving physics-based ML for predictive.

AAA modeling applications.

In conclusion, the different identified biomarkers not only aid clin-
ical decisions for early diagnosis, monitoring, growth prediction, and
risk assessment but may also further guide intervention (lifestyle
changes or targeted medicine) and provide better insights into the dis-
ease. We hope that this review will motivate improvement of technol-
ogies and ML approaches for detection, growth prediction, and risk
assessment of AAA patients.
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