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High-fidelity models of multiphysics fluid flow processes are often computationally expensive. On the other
hand, less accurate low-fidelity models could be efficiently executed to provide an approximation to the solution.
Multi-fidelity approaches combine high-fidelity and low-fidelity data and/or models to obtain a desirable bal-
ance between computational efficiency and accuracy. In this manuscript, we propose a multi-fidelity approach
where we combine data generated by a low-fidelity computational fluid dynamics (CFD) solution strategy (solver
settings and resolution) and data-free physics-informed neural networks (PINN) to obtain improved accuracy.
Specifically, transfer learning based on low-fidelity CFD data is used to initialize PINN. Subsequently, PINN with
this physics-guided initialization is used to obtain the final results without any high-fidelity training data. The
accuracy of the final results relies on the governing equations encoded in PINN together with the low-fidelity
CFD data initialization. To investigate the accuracy of this approach, several partial differential equations
were solved to predict velocity and temperature in different fluid flow, heat transfer, and porous media transport
problems. Comparison with reference high-fidelity CFD data revealed that the proposed approach not only
significantly improves the accuracy of low-fidelity CFD data but also improves the convergence speed and ac-

curacy of PINN.

1. Introduction

In various engineering and scientific modeling applications, funda-
mental governing equations are either not known, or if known they are
in an approximate form. Additionally, in many physical settings, a high-
fidelity numerical solution to problems where the exact governing
equations are known tends to be either challenging or computationally
demanding. As a result, often numerical simulations of physical systems
only provide an approximation to the true solution. In this manuscript,
we focus on a common situation where one needs to provide a compu-
tationally fast approximate solution to a problem with well-defined
governing equations. This could be either a multi-query problem
where the solver needs to be called multiple times (e.g., optimization
and uncertainty quantification) or a compromised solution strategy
where high-performance computing facilities and high-fidelity solvers
are not available. In these scenarios, low-resolution computational
meshes, lower order solver settings, and relaxed tolerances could be
employed to enable approximate solutions with low computational cost.
However, these low-fidelity solver settings are known to reduce
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accuracy and miss important physics (Khan et al., 2015).

Machine learning—enhanced modeling and simulation is one of the
forefronts of scientific machine learning research (Baker et al., 2019).
Physics-informed neural networks (PINN) (Raissi et al., 2019; Karnia-
dakis et al., 2021) is a recent paradigm in this area where governing
differential equations are encoded to provide a hybrid physics-based and
data-driven deep learning framework for solving forward and inverse
problems. Another common approach is to use traditional physics-based
models to pre-train neural networks and therefore reduce the need for
large datasets (Willard et al., 2020). Overall, in challenging data-driven
modeling problems, low-fidelity data or models interact with their more
expensive and less accessible high-fidelity counterparts (Peherstorfer
et al., 2018).

Applying PINN in a multi-fidelity data/model setting with the po-
tential use of transfer learning offers an attractive solution to many of
the aforementioned challenges. Towards this goal, various multi-fidelity
PINN approaches have been proposed. Multiple neural networks were
used to learn the correlation between input low fidelity and high-fidelity
data (Meng and Karniadakis, 2020). A similar PINN framework was used

Received 3 March 2022; Received in revised form 12 May 2022; Accepted 19 May 2022

Available online 25 May 2022
0142-727X/© 2022 Elsevier Inc. All rights reserved.



M. Aliakbari et al.

in material modeling (Liu and Wang, 2019). Another interesting
approach was proposed where PINN was initialized with approximated
and simpler governing equations and subsequently transfer learning was
used with few high-fidelity training data (Chakraborty, 2021). Finally,
in a very different approach (Penwarden et al., 2021), the neural
network architecture in PINN was proposed as parameters related to
model fidelity.

Most of the above approaches require high-fidelity training data.
Additionally, low-fidelity CFD solver settings have not been considered
as the low-fidelity model. We propose to use PINN along with the data
generated by low-fidelity CFD solvers to enhance CFD data accuracy and
simultaneously improve PINN’s accuracy and training cost. In other
words, we will show that PINN can increase the fidelity of low-fidelity
CFD data and at the same time the low-fidelity CFD data will improve
PINN’s accuracy and convergence compared to the traditional PINN
approach. Similar to prior data-free PINN approaches for solving dif-
ferential equations (Jin et al., 2021), our multi-fidelity approach does
not require high-fidelity training data and instead relies on the data
generated from the low-fidelity solver to initialize PINN for a faster and
more accurate solution. Our approach could be perceived as a physics-
guided initialization method (Willard et al., 2020), where it has been
shown that pre-training neural networks with even incorrect parameters
could improve performance (Jia et al., 2021). Finally, we focus on
multiphysics fluid flow problems integrating fluid flow (Navier-Stokes
equations), heat transfer (energy equation), and heterogeneous porous
media transport (generalized Darcy law). While fluid flow (Cai et al.,
2022), heat transfer (Cai et al., 2021), and porous media (Gasmi and
Tchelepi, 2021) have all been studied with PINN, multi-fidelity
modeling of multiphysics flows with PINN has received less attention.

The rest of the paper is organized as follows. The problem statement,
introducing the PINN framework, and numerical experiments are rep-
resented in Section 2. In Section 3, the results showing the performance
of the proposed approach are presented. Finally, the proposed approach
and results are discussed in Section 4.

2. Methods
2.1. Problem statement

Let’s consider a general form of PDEs describing the behavior of a
physical system

Lu)=f xeQ, (1a)
Bu)=g x€0Q, (1b)

where L is a differential operator, B is a boundary condition operator
that determines the specified boundary conditions, u represents the
unknown variable like velocity or temperature, x € Q is the spatial co-
ordinates in the domain of interest, and 0Q denotes the boundary. In this
paper, we focus on operators where L is the diffusion, advec-
tion—diffusion, and Navier-Stokes equations and consider multiphysics
problems where these equations are coupled.

The main problem investigated is stated as follows: is it possible to
increase the accuracy of low fidelity CFD solution strategies to multi-
physics fluid flow and transport problems with PINN? Will the data
produced by low fidelity solvers accelerate PINN convergence to a so-
lution that is more accurate than the provided low-fidelity data? In our
study, numerical simulations were performed in the commercial finite
volume solver Ansys Fluent and the open-source finite element solver
FEniCS. Low fidelity solution strategies (resolution and solver settings)
as explained below were utilized together with transfer learning (TL)
and PINN to obtain more accurate results, which were compared to high-
fidelity simulations. The goal is to use PINN and transfer learning to map
low fidelity data uj, to a high-fidelity level ug
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where x; € Qp,; and xy € Qp are the discretized spatial domains in
terms of the coarser and finer discretizations, respectively.

The proposed multi-fidelity model is composed of three steps. First, a
low-fidelity CFD solution strategy is used to produce low-fidelity results
that approximate the physics in the problem of interest. Next, a purely
data-driven deep neural network is used to learn a nonlinear mapping
from the input coordinates to the low fidelity data generated by CFD.
Finally, transfer learning is utilized to initialize PINN with the learned
low fidelity map and obtain a more accurate solution.

2.2. Physics-informed neural network (PINN)

In this part, we provide a brief overview of the PINN framework.
Fig. 1 shows the schematic of the multi-fidelity approach using PINN.
PINN is a flexible deep learning approach that encodes physics via PDE-
based regularizations using automatic differentiation (Raissi et al.,
2019), and as such provides a hybrid setting for integrated data-driven
and physics-based solutions of forward and backward problems. In
this work, we are interested in 2D, steady, multiphysics forward prob-
lems where we use PINN to approximate temperature T(x,y) and ve-
locity u(x,y) fields as a function of space.

First, the low fidelity simulation data is used to train a fully con-
nected neural network that approximates temperature and velocity

(T,u) = Fi(x,y;0,), 3)

where ©; denotes the network’s trainable parameters (i.e., weights and
biases of each layer). To increase the expressive power of the networks,
separate neural networks (F) were used to approximate velocity com-
ponents and temperature. This step is purely data-driven where the loss
function used in optimizing the ©; parameters is a standard mean-
squared error (MSE) loss based on the low-fidelity data defined on the
computational nodes of the low-fidelity CFD solver.

In the transfer learning step, Fy, is used to initialize the final neural
networks Fy(x,y; ®n) that output the high-fidelity velocity and tem-
perature results. The parameters @y are optimized using the following
MSE loss function

L =L 5+ WL e, @

where the residual of the multiphysics PDEs described below define the
physics loss function ¥’ > and boundary conditions for velocity and
temperature are enforced using £ 4. 4, > 0 is a hyperparameter that is
applied to weight the relative contribution of the boundary condition
regularization. Swish activation functions and Adam optimization were
used in all cases and all test cases described below were implemented in
Pytorch. We should mention that in this approach, we do not need to
match the low-fidelity and high-fidelity CFD meshes. PINN can take
arbitrary points as input, and therefore the low-fidelity CFD mesh nodes
and the corresponding data are used in the pre-training step, whereas
the high-fidelity CFD mesh nodes are used as collocation points for PINN
training in the next step.

2.3. Test-case problem formulation

In this section, the different test case problems are described. For all
test cases, two sets of CFD simulations were performed. The high-fidelity
CFD simulation was used to verify the results and the low-fidelity CFD
simulation was used for the multi-fidelity PINN initialization. Addi-
tionally, a traditional PINN simulation with random initialization (the
Kaiming approach) was used to compare the convergence speed and
accuracy of the two PINN approaches. In all PINN models, the same
nodes as the high-fidelity CFD mesh were used for collocation points. In
the low fidelity CFD simulations performed with FEniCS or Fluent (as
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Fig. 1. A schematic overview of the proposed multi-fidelity approach using physics-informed neural networks, data coming from low-fidelity CFD solver strategies,
and transfer learning (TL).

described below), a low-resolution mesh was used and the diffusion (finite volume), the least-square cell-based method was selected for
coefficient and/or kinematic viscosity was increased by 10% to repre- gradient calculation in the high-fidelity simulations, whereas the less
sent a dissipative simulation. Additionally, for the Fluent simulations accurate Green-Gauss cell-based method was used for the low-fidelity
. Fig. 2. The mesh and geometries used are
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low-fidelity mesh are shown in the left and
right panels, respectively. All geometric
lengths are dimensionless. a) Lid-driven cav-
ity (test case 1). b) The fluid and solid do-
] mains in test cases 2 and 6 (flow over a fin). ¢)
Aneurysm flow (test case 3). d) Rotating
porous medium (test case 4). e) Rotating
porous medium with heat transfer (test case
5). The same low-fidelity mesh was used for
test cases 4 and 5.
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cases. The first and second order upwind methods were selected for the
low-fidelity and high-fidelity simulations, respectively (for both mo-
mentum and energy equations). Similarly, linear and second order dis-
cretization was selected for the pressure equation of the low-fidelity and
high-fidelity models, respectively. The residual convergence criteria
were set to 10° for the continuity, 10~ for the momentum, and 10>
for the energy equation in the high-fidelity simulations, and 10~* for all
equations in the low-fidelity models. In the FEniCS simulations (finite
element), quadratic and linear shape functions were used in the high-
fidelity and low-fidelity simulations, respectively. Overall, the options
selected for the low-fidelity simulations offer a much faster simulation
approach but in general, only provide a crude quantitative approxima-
tion of the physics.

2.3.1. Test case 1: 2D lid-driven cavity

Numerical solution to the lid-driven cavity flow problem has been
extensively studied (Schreiber and Keller, 1983; Ghia et al., 1982) and
used as a benchmark for CFD codes. For this problem, a square in the
region [0,1] x [0,1] (expressed in dimensionless form) filled with a fluid
with a density of p =998.2 and kinematic viscosity of v = 0.001 is
considered. The steady-state 2D Navier-Stokes equations govern the
motion of the fluid

ou ov

a"!‘@—(h (53)
w1 (Gu o -
“ox Vo T Tpox P\ae o)

v ov 1 dp v v

= (@ ) ®9

where p is pressure, and u and v represent velocity in the x and y di-
rection, respectively. No-slip boundary condition is applied to all the
walls except for the top wall that drives the flow with u = 0.001. The
high-fidelity mesh shown in Fig. 2a consisted of 40 k quadrilateral ele-
ments, while 484 elements were used for the low-fidelity simulations
both carried out in Fluent. The low-fidelity data were used to initialize
the neural networks with 100 epochs and a constant learning rate of 3 x
1073, Subsequently, the optimizer in PINN was run for 10000 epochs
with a dynamic learning rate varying between 3 x 10~% and 3 x 107°.
Five hidden layers and 70 neurons per layer were used for each network
representing u, v, and p. 4, = 20 was used to weigh the boundary con-
dition loss.

2.3.2. Test case 2: 2D fluid flow over a fin

As a second example, we consider the steady 2D Naiver-Stokes
equations to solve the flow field over a rectangular fin ([0.84, 1.12] x
[0, 0.5]) located inside a fluid domain ([0, 2.8] x [0, 1]) with a
dimensionless density p = 1 and kinematic viscosity v = 0.01. A para-
bolic velocity profile with a peak Reynolds number of Re = 50 was
applied at the inlet. No-slip boundary condition was assumed at the
walls. CFD simulations were carried out in Fluent with a total number of
265 and 20 k elements for the low and high-fidelity cases, respectively,
as shown in Fig. 2b. All neural network parameters were similar to the
last example except that 150 neurons per layer and 4 = 30 were used.

2.3.3. Test case 3: 2D flow in an aneurysm

We consider a 2D fluid flow problem inside a channel with a sudden
focal enlargement. This test-case resembles a very idealized blood flow
problem in an aneurysm (Arzani and Shadden, 2012), which is a com-
mon cardiovascular disease and has been previously modeled with PINN
(Fathi et al., 2020; Arzani et al., 2021). A parabolic velocity profile with
Re = 600 was defined at the inlet with no-slip at the walls. High-fidelity
and low-fidelity simulations were modeled in Fluent with a total number
of 59 k and 184 elements, respectively (Fig. 2c). Six hidden layers with
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170 neurons per layer were selected for the neural networks. The low-
fidelity neural network was trained with 200 epochs and a constant
learning rate of 3 x 1073, and a variable learning rate (3 x 10~ to 3 x
10-%) with 10000 epochs was used for the PINN training with 4, = 70.

2.3.4. Test case 4: 2D fluid flow in a rotating heterogeneous porous medium

As the next example, fluid flow through a heterogeneous porous
medium in a rotating box is considered (Vadasz, 1993). In homogeneous
porous media where the permeability is constant, the effect of rotation
does not affect the flow, therefore, resulting in a uniform distribution of
filtration velocity. However, for heterogeneous porous media, the
spatial variability of permeability leads to a secondary flow due to the
Coriolis effect. For this problem, the fluid is forced by an axial (in x-
direction) pressure gradient into a fluid-saturated heterogeneous porous
box having a square cross-section (in y-z plane) of [0,1] x [0,1]
expressed in dimensionless form. The dimensionless density and
permeability are p =1 and k = e 7* , respectively, where y =—1 was
used in all computations. Consequently, the variation of the perme-
ability is considered in the vertical z-direction only. An asymptotic
expansion of the variables for large porous media Ekman numbers

(Ek = 2('{’; % Where ¢ is porosity, v« is the fluid’s kinematic viscosity, - is
the imposed angular velocity, and k- is a reference value of the perme-
ability) produces a hierarchy of differential equations, by using Darcy’s
law extended to include the Coriolis and centrifugal effects. The steady-
state solution at the leading zeroth order was obtained analytically in
Vadasz (1993) producing an axial flow, up = k(z),vo =0,wp = 0. At the
first order, the axial velocity turns out to vanish (axial velocity is part of
the zeroth order solution) and secondary flow occurs in the cross-
section, suggesting the introduction of a stream function y,;, defined
byvi = %,wl = 7%, where v; and w, are filtration velocity in the y
and z direction, respectively. The latter yields the following equation
governing the secondary flow (see (Vadasz, 1993) for details)

Py, P _
0y 07 dz

d(Ink) oy, dk
0z kdz' 5d)

Impermeability boundary condition was imposed at all walls (zero
Dirichlet boundary condition for y, ). The simulations were conducted in
FEniCS with 26 k and 100 triangular elements for high-fidelity and low-
fidelity cases, respectively, as shown in Fig. 2d. The neural networks
used in approximating the stream function had 5 hidden layers with 70
neurons per layer. In the initialization step, 100 epochs with a constant
learning rate of 3 x 1072 were used. In the final PINN model, the
learning rate was chosen to vary between 3 x 10~* and 3 x 10~° and the
simulation was run for 10000 iterations with 4, = 20.

2.3.5. Test case 5: 2D convection in a rotating porous medium

Herein, we consider a steady state free convection problem in a long
rotating homogeneous porous box (Vadasz, 1993) where temperature
gradients and convection result from the differential heating of the
horizontal walls subject to centrifugal body force (Vadasz, 2021). A
main flow is generated in the axial direction accompanied by secondary
flow in the cross-section, which is the focus here. The cross-section is a
square [0,1] x [0,1] (dimensionless). The box is heated from the top and
cooled from the bottom with insulated side wall walls. The governing
equation for this problem is Darcy’s law extended to include centripetal
and Coriolis accelerations. The present problem focuses on the Coriolis
effect on the convective flow and is solved for large values of the Ekman
number. An asymptotic expansion of the variables for large porous
media Ekman numbers produces a hierarchy of differential equations
where the leading zeroth order solution uses the Boussinesq approxi-
mation to solve for the axial flow (Vadasz, 1993). The first order effect,
solves for the secondary flow in the y-z plane. A stream function is
defined similar to the previous example to derive the following set of
differential equations (see (Vadasz, 1993))
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a2‘//1 02‘//1

o +5a = Rawx, )
T, Ty oy,

a2 + Z - oy (8)

where x = 0.5 is the position of the cross-section. The rotation Rayleigh
_ Pr.ATcw?LH:-K« My
@e0lo
is the thermal expansion coefficient, AT,is a characteristic temperature
difference, o, is the characteristic angular velocity of the rotating box, L+
is the length of the box, H- is the height of the box, K- is the perme-
ability, My is the ratio between the heat capacity of the fluid and the
effective heat capacity of the porous domain, a.o is the effective thermal
diffusivity, and vy is the kinematic viscosity of the fluid. Ra,, = 100 was
assumed in this example. These coupled equations were solved for y;
(flow) and T; (temperature) with zero Dirichlet boundary condition on

number in porous media was defined as Ra,, where S,

all boundaries for y;,T; =0onz=0andz =1, and‘% =0ony=0and
y=1.

Finally, the total temperature (T) and filtration velocity (v,w) in the
cross section were computed by adding the zeroth order effect with the
above first order Ekman number effect using the original boundary
conditionsT=0(zZ=0andT=1(z=1)

T=z+Ek'xT, ©)]
w=w X Ek, (10)
v=1 x Ek". an

It was reported by Vadasz (1993) that the Coriolis effect on free
convection is controlled by the combined dimensionless group ¢ =
Ra,Ek™! and a value of ¢ = 10 was assumed in the calculations. High-
fidelity and low-fidelity simulations were conducted in FEniCS with a
total number of 40 k and 100 triangular elements, respectively (Fig. 2e).
The neural networks used in approximating the stream function had 4
hidden layers with 70 neurons per layer, whereas 5 hidden layers and 70
neurons per layer were selected to approximate temperature. Learning
rates, number of epochs, and 1, were set similar to the previous test case.

2.3.6. Test case 6: 2D multiphysics heat transfer in a fin

As the last example, we solved a 2D steady state problem for a
rectangular fin in a fluid domain where conduction in the solid is
coupled with convection in the fluid. The same geometric dimension
used in test case 2 was considered. The continuity and momentum
equations (Eq. 5) together with the energy equations (advec-
tion—diffusion in the fluid and diffusion in the solid domain) were solved

ar; T, T Iy
s +v 3y —a( P + P ) =0, (12a)
T, 0T,

5+ e =0, (12b)

where u and v are velocity in x and y direction, T; and T; denote tem-
perature in the fluid and solid domains, respectively, and a thermal
diffusivity of a =0.02 was considered. As boundary conditions, a
parabolic velocity profile with a peak Reynolds number of Re = 50 was
prescribed at the inlet. No-slip boundary condition was applied at the
walls. For thermal boundary conditions, the inlet temperature was set to
zero and the base temperature of the fin was set to one (non-dimen-
sional). At the fluid-solid interface, equal heat flux and temperature of
the solid and fluid were enforced.

The simulations were carried out in Fluent. The number of grid el-
ements to solve high-fidelity simulation was 20 k in each domain (total
number 40 k) and to solve the low-fidelity problem the number of ele-
ments was 265 and 24 in the fluid and solid domains, respectively
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(Fig. 2b). The low-fidelity neural network was run for 200 epochs with a
constant learning rate of 3 x 103, whereas the final PINN simulation
had 10000 epochs with a learning rate varying between 3 x 10~* and
3 x 107°. The number of hidden layers to approximate velocity and
pressure was 7 with 150 neurons per layer, while 6 hidden layers and
140 neurons per layer were selected for approximating temperature.
Ap = 30 was used to weigh the boundary condition loss.

3. Results

In the following sections, we present the results for the different test
case problems. The average error for all cases is presented in Table 1.

3.1. Test case 1: 2D lid-driven cavity

The results for test case 1 are shown in Fig. 3. The velocity contours
for the ground-truth (high-fidelity) CFD simulation, low-fidelity CFD
data, and PINN predictions are shown. The absolute errors with respect
to the ground-truth CFD data are shown in Fig. 3b, which demonstrate
the improved accuracy achieved with PINN compared to low-fidelity
data. The loss vs. epoch plot in Fig. 3c shows that the given low-
fidelity data can accelerate PINN convergence and improve accuracy
compared to when the network is randomly initialized. In this case, the
equation loss sees a more notable improvement compared to the
boundary condition (BC) loss.

3.2. Test case 2: 2D fluid flow over a fin

Fig. 4 shows the test case 2 results. The multi-fidelity PINN approach
provides accurate results compared to the ground-truth simulation with
only a small localized region in the top left corner of the fin where the
localized high error in the low-fidelity data persists. The improvement in
multi-fidelity PINN convergence and accuracy (equation and BC loss) is
evident compared to the original random initialization approach (Fig. 4c
and Table 1). The absolute error in the low-fidelity data could be
perceived as what multi-fidelity PINN needs to correct. In other words,
this error is the new physics that PINN has to learn to provide the more
accurate solution. Compared to case 1 (Fig. 3b), it could be seen that in
case 2 this new physics (error) is qualitatively different from the ground-
truth physics of the problem.

3.3. Test case 3: 2D blood flow in an aneurysm

The 2D aneurysm results are shown in Fig. 5. Similar trends could be
seen where the multi-fidelity approach improves data accuracy and
improves PINN convergence. However, compared to the previous two
test cases, less improvement could be seen in this example. The complex
pattern in the low-fidelity data error (Fig. 5b) explains this observation
as PINN has to learn a more complex pattern to bridge the gap between
the low-fidelity data and high-fidelity solution.

Table 1

The spatial average of the absolute error (with respect to high-resolution CFD)
for different simulations is reported. V and T represent velocity and Tempera-
ture, respectively.

Test cases Multi-fidelity PINN Traditional PINN Low-fidelity CFD
Test case 1 (V) 6.83e—6 1.33e-5 1.12e—4

Test case 2,6 (V) 7.6e—3 0.0106 0.0819

Test case 3(V) 0.0293 0.0415 0.2105

Test case 4(V) 7.61e—6 3.21e-5 0.0156

Test case 5 (V) 1.81e-5 6.0le—4 0.1566

Test case 5 (T) 2.89e—-5 7.46e—4 7.44e-3

Test case 6 (T) 1.7e—4 le—3 0.0160
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Fig. 3. a) The ground truth (high-fidelity
CFD), low-fidelity CFD, and multi-fidelity
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Fig. 4. a) The ground truth (high-fidelity CFD), low-fidelity CFD, and multi-fidelity (PINN) velocity results for the flow over a fin problem (test case 2) are shown.
Normalized velocity vectors are also plotted to show the flow direction. b) The absolute errors with respect to the ground-truth data are shown for the low-fidelity
and PINN results. ¢) The mean square error (MSE) loss versus the epoch (iteration) number is plotted to compare PINN convergence with random initialization and
low-fidelity data initialization. The equation and boundary condition loss contributions are shown separately.

3.4. Test case 4: 2D fluid flow in a rotating heterogeneous porous medium

The solution for the fluid flow in a rotating porous medium is shown
in Fig. 6. The results show that the multi-fidelity procedure significantly
improves the accuracy and leads to results indistinguishable from the
high-fidelity results with minor errors in the bottom corners of the box.
Also, the plotted graph in Fig. 6¢ shows that the given low fidelity data
can accelerate PINN and improve the training efficiency of both equa-
tion and BC loss.

3.5. Test case 5: 2D convection in a rotating porous medium

The velocity and temperature results from test case 5 simulations are
shown in Fig. 7. It could be seen that the multi-fidelity procedure
remarkably improves the accuracy of low fidelity velocity and

temperature data. Similar to test case 4, localized velocity errors are
only observed in the corners of the box. Also, the graph in Fig. 7e and
Table 1 show that low-fidelity initialization can improve PINN perfor-
mance. However, compared to test case 4, this improvement is less when
heat transfer is included. It should be noted that here the equation loss
consists of momentum and energy equations combined.

3.6. Test case 6: 2D multiphysics heat transfer in a fin

The temperature results for test case 6 are shown in Fig. 8. The ve-
locity results were similar to test case 2 (Fig. 4) and are not included here
for brevity. We could see localized regions near the boundary between
the fin and the fluid where the reduction in error is not as significant as
some of the other examples. This could be due to the multiphysics nature
of this problem where the energy equations (heat conduction in the solid
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Fig. 5. a) The ground truth (high-fi-
delity CFD), low-fidelity CFD, and

multi-fidelity (PINN) velocity results
for the idealized aneurysm problem
(test case 3) are shown. Normalized
velocity vectors are also plotted to
show the flow direction. b) The abso-
lute errors with respect to the ground-
truth data are shown for the low-
fidelity and PINN results. ¢) The
mean square error (MSE) loss versus
the epoch (iteration) number is
plotted to compare PINN convergence
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0

with random initialization and low-
fidelity data initialization. The equa-
tion and boundary condition loss
contributions are shown separately.
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(PINN) velocity results for the rotating het-
erogeneous porous medium problem (test case
4) are shown. Normalized velocity vectors are
also plotted to show the flow direction. b) The
absolute errors with respect to the ground-
truth data are shown for the low-fidelity and
PINN results. ¢) The mean square error (MSE)
loss versus the epoch (iteration) number is
plotted to compare PINN convergence with
random initialization and low-fidelity data
initialization. The equation and boundary
condition loss contributions are shown
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coupled with heat convection in the fluid) are dependent on the solution
to the Navier-Stokes equations. However, according to the graph in
Fig. 8c, this complexity does not prevent the low fidelity data to accel-
erate PINN convergence.

3.7. The effects of neural network size and freezing layers

The effect of the number of hidden layers and neurons is shown in
Fig. 9. Figs. 9a and Figs. 9b show this effect for test cases 5 and 6,
respectively. It could be seen that interestingly in these examples
increasing the network size reduced the accuracy of the results.

During transfer learning, an efficient way to keep some information
during training is to freeze some layers (Aggarwal, 2018). In this case,
the optimizer does not update the parameters in the frozen layers. To
study this effect, two initial layers were frozen in PINN and only later
layers were updated for test cases 1 and 4. The equation and BC loss are
plotted in Fig. 9c and Fig. 9d for test case 1 and 4, respectively. In both
cases, freezing layers does not lead to a notable change in PINN’s ac-
curacy. However, since weights and biases of fewer layers need to get
updated, the total simulation run time is reduced.

4000 6000 8000 10000

Epoch

separately.

4. Discussion

In this work, we presented a multi-fidelity physics-informed neural
network approach for solving various multiphysics partial differential
equations. The proposed approach consisted of low-fidelity data coming
from low-fidelity solvers combined with transfer learning and PINN. In
particular, the proposed approach consists of three steps. First, low-
fidelity simulations are carried out with multiphysics CFD solvers
(herein, Fluent and FEniCS). Then, deep neural networks are used to fit
the low-fidelity data. The last step uses the transfer learning method to
initialize the deep neural networks in PINN and execute PINN with these
initializations. Six problem sets were presented to demonstrate the
performance of the proposed approach. Our problems consisted of fluid
flow, heat transfer, porous media transport, and their multiphysics
combinations. To illustrate the performance of the proposed approach,
the results obtained from our approach were compared with ground-
truth (high-fidelity) CFD simulations. Additionally, a traditional PINN
solution (random initialization) was conducted to compare the conver-
gence rate. For all of the considered problems, the proposed approach
was able to enhance prediction accuracy and also speed up and improve
PINN convergence. We had fixed the total number of epochs for the two
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Fig. 7. a) The ground truth (high-fidelity CFD), low-fidelity CFD, and multi-fidelity (PINN) velocity results for the rotating porous medium with heat transfer
problem (test case 5) are shown. Normalized velocity vectors are also plotted to show the flow direction. b) The absolute velocity errors with respect to the ground-
truth data are shown for the low-fidelity and PINN results. ¢) The corresponding temperature results and d) absolute errors in temperature are shown. e) The mean
square error (MSE) loss versus the epoch (iteration) number is plotted to compare PINN convergence with random initialization and low-fidelity data initialization.
The equation and boundary condition loss contributions are shown separately where the equation loss contains all governing equations.
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PINN approaches, therefore the total runtime was similar. However, the
multi-fidelity approach reached a lower MSE loss in fewer epochs, which
could be leveraged to reduce the multi-fidelity total runtime.

Our proposed approach was able to improve traditional PINN
convergence. Currently, PINN’s training cost and accuracy (compared to
machine precision) are two main hurdles in applying PINN to complex
problems. We were able to use low-fidelity and therefore computa-
tionally cheap CFD simulations to accelerate PINN. Additionally, the
number of epochs that were used to fit the low-fidelity CFD data into the
neural networks was low (~200 epochs). The low number of epochs in
the pre-training step is required not only to justify the speedup gained in
the multi-fidelity approach but also the early stopping helps avoid
overfitting. As the low-fidelity data are just a crude approximation to the
final solution, an approximated fitting of these data is attractive for our
transfer learning method. It should be noted that various other methods
such as adaptive loss (Bischof and Kraus, 2021), XPINN (Jagtap and
Karniadakis, 2020), and optimal sampling (Nabian et al., 2021) have
been recently proposed to improve PINN convergence. These methods
could be used along with our multi-fidelity approach to further improve
PINN training efficiency and accuracy.

¢)

Fig. 8. a) The ground truth (high-fidel-
ity CFD), low-fidelity CFD, and multi-
fidelity (PINN) temperature results for
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the heat transfer in a fin problem (test
case 6) are shown. b) The absolute errors
with respect to the ground-truth data are
shown for the low-fidelity and PINN re-
sults. ¢) The mean square error (MSE)
loss versus the epoch (iteration) number
is plotted to compare PINN convergence
with random initialization and low-
fidelity data initialization. The equation
loss for the fluid and solid domains and
boundary condition loss contributions

0

4000 6000 8000 10000
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2000 are shown separately.

Other studies have incorporated low-fidelity physics solvers into
neural network models using different approaches. Low-fidelity models
have been added to intermediate layers of a deep neural network as an
input to augment network training, where the panel method (inviscid
flow theory) was used as a low-fidelity model to improve the learning of
aerodynamics models (Pawar et al., 2021). As another example, parareal
PINN has been proposed to accelerate time-integration in unsteady
problems (Meng et al., 2020). Parareal PINN uses a similar concept to
our work but in the time domain. Specifically, it leverages coarse-
grained time integrators (low-fidelity time integrators) to obtain
approximate solutions, and subsequently, PINN corrects the low-fidelity
predictions. It is also possible to use low-fidelity equations directly in
PINN. For example, Reynolds-averaged Navier-Stokes (RANS) equa-
tions have been used to model turbulence with PINN (Eivazi et al.,
2021).

Transfer learning has been used in PINN problems beyond multi-
fidelity modeling. A popular application is to use transfer learning to
accelerate PINN solutions to problems with variations in parameters or
boundary conditions (Goswami et al., 2020; Jin et al., 2021). Curriculum
learning, which leverages transfer learning has been wused to
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Fig. 9. The effect of network size and freezing layer are shown in select test cases. For each case, the mean square error (MSE) loss versus the epoch number is
plotted. a) The rotating porous media with heat transfer problem loss is plotted. The 4-layers case had 70 neurons per layer and the 6-layers case had 100 neurons per
layer. b) The multiphysics heat transfer in a fin problem loss is plotted. The 7-layers case had 150 neurons per layer and the 9-layers case had 220 neurons per layer.
c) The effect of freezing two initial layers is shown for the lid-driven cavity problem. d) The effect of freezing two initial layers is shown for the rotating hetero-

geneous porous media problem.

progressively add complications to the PINN loss equation and therefore
facilitate PINN training in complex differential equations (Krishnap-
riyan et al., 2021). For example, the contribution of advection to
modeling transport is increased during different iterations to facilitate
the final solution (Krishnapriyan et al., 2021). This could be compared
to our approach where a higher diffusion coefficient (lower Peclet
number) was used in our low fidelity solver. Finally, similar models in
the context of experimental fluid mechanics could be developed (Eivazi
and Vinuesa, 2022) where robustness to noise becomes an important
issue.

In conclusion, the proposed multi-fidelity approach shows great
promise for increasing the accuracy of low-fidelity solvers and
improving PINN convergence. The proposed approach was used for
solving 2D steady state problems with simple geometries. Future in-
vestigations are needed to check the efficiency of this method for 3D
time-dependent problems. Currently, PINN training is still significantly
slower than CFD modeling (approximately 1-2 days vs. 20 min for the
results in the current study). With improvements in newer generations of
PINNs and improved GPU hardware, the proposed framework in this
study could lead to novel cyberinfrastructure where the proposed
framework could be executed parallel to a low-fidelity and fast CFD
solver to provide accurate results with reduced computational cost.

Data availability

The Pytorch codes and data used to generate the results presented are
available on Githubhttps://github.com/amir-cardiolab/PINN_multiph

ysics_multifidelity.
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