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described below), a low-resolution mesh was used and the diffusion 
coefficient and/or kinematic viscosity was increased by 10% to repre
sent a dissipative simulation. Additionally, for the Fluent simulations 

(finite volume), the least-square cell-based method was selected for 
gradient calculation in the high-fidelity simulations, whereas the less 
accurate Green-Gauss cell-based method was used for the low-fidelity 

Fig. 1. A schematic overview of the proposed multi-fidelity approach using physics-informed neural networks, data coming from low-fidelity CFD solver strategies, 
and transfer learning (TL). 

Fig. 2. The mesh and geometries used are 
shown. The ground-truth (high-fidelity) and 
low-fidelity mesh are shown in the left and 
right panels, respectively. All geometric 
lengths are dimensionless. a) Lid-driven cav
ity (test case 1). b) The fluid and solid do
mains in test cases 2 and 6 (flow over a fin). c) 
Aneurysm flow (test case 3). d) Rotating 
porous medium (test case 4). e) Rotating 
porous medium with heat transfer (test case 
5). The same low-fidelity mesh was used for 
test cases 4 and 5.   
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3.4. Test case 4: 2D fluid flow in a rotating heterogeneous porous medium 

The solution for the fluid flow in a rotating porous medium is shown 
in Fig. 6. The results show that the multi-fidelity procedure significantly 
improves the accuracy and leads to results indistinguishable from the 
high-fidelity results with minor errors in the bottom corners of the box. 
Also, the plotted graph in Fig. 6c shows that the given low fidelity data 
can accelerate PINN and improve the training efficiency of both equa
tion and BC loss. 

3.5. Test case 5: 2D convection in a rotating porous medium 

The velocity and temperature results from test case 5 simulations are 
shown in Fig. 7. It could be seen that the multi-fidelity procedure 
remarkably improves the accuracy of low fidelity velocity and 

temperature data. Similar to test case 4, localized velocity errors are 
only observed in the corners of the box. Also, the graph in Fig. 7e and 
Table 1 show that low-fidelity initialization can improve PINN perfor
mance. However, compared to test case 4, this improvement is less when 
heat transfer is included. It should be noted that here the equation loss 
consists of momentum and energy equations combined. 

3.6. Test case 6: 2D multiphysics heat transfer in a fin 

The temperature results for test case 6 are shown in Fig. 8. The ve
locity results were similar to test case 2 (Fig. 4) and are not included here 
for brevity. We could see localized regions near the boundary between 
the fin and the fluid where the reduction in error is not as significant as 
some of the other examples. This could be due to the multiphysics nature 
of this problem where the energy equations (heat conduction in the solid 

Fig. 3. a) The ground truth (high-fidelity 
CFD), low-fidelity CFD, and multi-fidelity 
(PINN) velocity results for the 2D lid- 
driven cavity problem (test case 1) are 
shown. Normalized velocity vectors are also 
plotted to show the flow direction. b) The 
absolute errors with respect to the ground- 
truth data are shown for the low-fidelity 
and PINN results. c) The mean square error 
(MSE) loss versus the epoch (iteration) 
number is plotted to compare PINN 
convergence with random initialization and 
low-fidelity data initialization. The equation 
and boundary condition loss contributions 
are shown separately.   

Fig. 4. a) The ground truth (high-fidelity CFD), low-fidelity CFD, and multi-fidelity (PINN) velocity results for the flow over a fin problem (test case 2) are shown. 
Normalized velocity vectors are also plotted to show the flow direction. b) The absolute errors with respect to the ground-truth data are shown for the low-fidelity 
and PINN results. c) The mean square error (MSE) loss versus the epoch (iteration) number is plotted to compare PINN convergence with random initialization and 
low-fidelity data initialization. The equation and boundary condition loss contributions are shown separately. 
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