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ABSTRACT
Federated learning is a distributed learning framework that is com-

munication efficient and provides protection over participating

users’ raw training data. One outstanding challenge of federate

learning comes from the users’ heterogeneity, and learning from

such data may yield biased and unfair models for minority groups.

While adversarial learning is commonly used in centralized learning

for mitigating bias, there are significant barriers when extending it

to the federated framework. In this work, we study these barriers

and address them by proposing a novel approach Federated Adver-

sarial DEbiasing (FADE). FADE does not require users’ sensitive

group information for debiasing and offers users the freedom to

opt-out from the adversarial component when privacy or compu-

tational costs become a concern. We show that ideally, FADE can

attain the same global optimality as the one by the centralized algo-

rithm. We then analyze when its convergence may fail in practice

and propose a simple yet effective method to address the problem.

Finally, we demonstrate the effectiveness of the proposed frame-

work through extensive empirical studies, including the problem

settings of unsupervised domain adaptation and fair learning.
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1 INTRODUCTION
The last decade witnessed the surging adoption of personal devices

such as smartphones, smartwatches, and smart personal assistants.

These devices directly interface with the users, collect personal

data, conduct light-weighted computations, and use machine learn-

ing models to offer personalized services. The challenges from

privacy concerns of sensitive personal data, limited computational

resources, performance issues of localized learning all together lead

to the federated learning (FL) paradigm [4, 34]. FedAvg [32], for

example, provides an efficient and privacy-aware FL framework.

Users train models locally, upload them to a central server iter-

atively aggregated to form a global model. FL greatly alleviated

privacy concerns because the server can only access model param-

eters from the users instead of the raw data used for training.

One major challenge of FL comes from the user heterogeneity

where users provide statistically different data for training local

models [5, 9]. Such heterogeneity may come from different sources.

For example, the users may collect data under various conditions

according to preferential or usages differences. Consider the learn-

ing of handwashing behavior from accelerometers of smartwatches,

where patterns can drastically change when using different basins

worldwide. Such domain shift [19] can lead to negative impacts

during knowledge transfer among users [37]. Another common

source of heterogeneity comes from the sensitive group informa-

tion such as age, gender, and social groups, which are variables

typically not to be identified during learning. Heterogeneity from

this source is often associated with critical fairness issues [6] after

deploying the models, where groups with less resource or smaller

computation capability may be biased or even ignored during the

learning [29], and the resulting global model may perform worse

in minority groups.

Adversarial learning [12] has been a powerful approach to miti-

gate bias in centralized learning, in which an adversarial objective

minimizes the information extracted by an encoder that can be

maximally recovered by a parameterized model, discriminator. For
example, it has been applied to disentangle task-specific features

that may cause negative transfer [27], to perform unsupervised do-

main adaptation [11, 42], and recently to achieve fair learning [46].



However, there are significant barriers when applying adversarial

techniques in FL: 1) Most existing approaches follow a top-down

principle. In the context of FL, the adversarial objective requires

the server to access the sensitive group variable (e.g., gender) to

construct an adversarial loss. This requirement directly violates

the privacy consideration design for FL, and users may not want

to disclose their sensitive group variables. 2) adversarial learning

demands extra information from users for training the adversar-

ial component and imposes an additional computational burden

on smart devices that may not be able to afford. 3) besides, it re-

mains unknown how the introduction of an adversarial component

would impact the distributed learning behavior (e.g., convergence

property) of FL.

To address the challenges mentioned above, we propose a novel

adversarial framework for debiasing federated learning following a

bottom-up principle, called Federated Adversarial DEbiasing (FADE).
Besides the benefits from typical FL on communication efficiency

and data privacy, FADE aims to achieve the following goals:

• Privacy-Protecting: The learning algorithm conforms to

the privacy design of FL and does not require users’ group

variable to achieve debiasing w.r.t. the group variable.

• Autonomous: A user can choose to join and opt-out from

the adversarial component anytime (e.g., due to computa-

tional budget or privacy budget) while still participate in the

regular federated learning.

• Satisfiable: Under above restrictions, the distributed learn-

ing should output a debiased and accurate model, despite

the user heterogeneity and unpredictable user participation.

To achieve these goals, we first propose a generic algorithm for

FADE and show that ideally, it can attain the same global optimality

as the one by the central algorithm. We then show how its conver-

gence may fail in practice and propose a simple yet effective method

to address the problem. Finally, we demonstrate the effectiveness

of the proposed framework through extensive empirical studies on

various applications.

2 RELATED WORK
Federated Learning (FL) [32] is a distributed learning framework

that allows users with different capabilities to collaboratively train

a model without sharing their own data. A critical challenge in FL

is the heterogeneity among users. Viewing the learning process of

FL as knowledge transfer among different users, heterogeneity in

user data leads to negative transfer between users and compromises

generalization [3]. One idea to alleviate the negative effect from

the heterogeneity during the training, is to find the consensus

among users. For example, in [10, 14, 21, 26], the consensus on

task knowledge is achieved by distillation. In this work, we seek

an alternative and efficient approach by adversarial debiasing the

users of different groups.

Adversarial Learning has beenwidely applied in various domains,

such as neural language recognition [27], image-to-image (dense)

prediction [31], image generation [12], and etc. Conceptually, ad-

versarial learning aims to solve a two-player (or multi-player) game

between two adversarial objectives, which typically leads to a min-

max optimization problem. Existing approaches can be briefly cate-

gorized as: 1) Sample-to-Sample (S2S) adversarial learning, where

the adversarial objective quantifies the difference between synthetic

and real samples. Examples include adversarial learning against

adversarial attacks [30] and generative adversarial networks [12].

2) Group-to-Group (G2G) adversarial learning, which aims to reduce

the max discrepancy (bias) between group distributions, for exam-

ple, adversarial domain adaptation [11], adversarial fairness [46]

and adversarial multi-task learning [27]. All these variants assume

the availability of adversarial groups in the same computation node,

e.g., by aggregating data in Fig. 1a, and thus cannot be directly

extended to federated learning to the violation of privacy design

(requiring access of the sensitive group information). A recent effort

is done by [38] where embeddings of different groups are shared

(see Fig. 1b). Nevertheless, both sharing data and embeddings could

induce additional privacy risk and communication costs. The pro-

posed FADE eliminated these requirements, leading to private and

efficient distributed collaboration between users/groups.

3 FEDERATED ADVERSARIAL DEBIASING
In this section, we first formulate the proposed Federated Adversar-

ial Debiasing (FADE) framework. We work on the standard feder-

ated learning problem setting which learns one model from a set of

distributed participating users. Users conduct local learning based

on their own data and send the parameters of learning models to a

server periodically. The server aggregates the local models to form

a global model. We assume the users have non-iid data and each

user belongs to one of the 𝐸 user groups as indicated by a group

variable (e.g., age, gender, race) that is not to be shared outside of

the local learning.

The model of each user consists of three components: a decoder

𝑓 for the learning task (e.g., classification target), an encoder𝐺 , and

a group discriminator 𝐷 , as illustrated in Fig. 1c. In the two-group

setting (a data point belongs to either group 0 and 1), 𝐷 outputs

a scalar in (0, 1) approximating the probability of an input data

point 𝑥 belong to the group 0. More generally, for 𝐸 groups, we

use a softmax mapping in the last layer of 𝐷 which outputs an

𝐸-dimensional vector. The FADE objective learns 𝑓 , 𝐷,𝐺 by:

min

𝑓 ,𝐺
L(𝑓 ,𝐺) =

∑𝐸

𝑔=1

∑𝑚𝑔

𝑖=1
𝐿𝑖,𝑔 (𝑓 ,𝐺), (1)

𝐿𝑖,𝑔 (𝑓 ,𝐺) = 𝐿task𝑖 (𝑓 ,𝐺) + 𝜆max

𝐷
𝐿adv𝑖,𝑔 (𝐺, 𝐷), (2)

where 𝐿task
𝑖
(𝑓 ,𝐺) is the task loss for the 𝑖-th user, 𝐿adv

𝑖,𝑔
(𝐺,𝐷) is the

adversarial loss, and𝑚𝑔 is the number of users in group 𝑔. Note that

we absorb the variable model𝐷 into 𝐿𝑖,𝑔 in Eq. (2), and the objective

is still an optimization over 𝑓 , 𝐷,𝐺 . For classification tasks, the task

loss can be defined as 𝐿task
𝑖
(𝑓 ,𝐺) ≜ E(𝑥,𝑦)∼𝑝𝑖 (𝑥,𝑦) [E(𝑓 (𝐺 (𝑥)), 𝑦)],

where E denotes the cross-entropy loss and 𝑝𝑖 is the data distri-

bution of user 𝑖 . The adversarial loss is defined as 𝐿adv
𝑖,𝑔
(𝐺,𝐷) ≜

E𝑥∼𝑝𝑖 (𝑥) [log𝐷𝑔 (𝐺 (𝑥))], where 𝐷𝑔 (𝐺 (𝑥)) is the 𝑔-th output of the

softmax vector. The optimal solution for the min-max problem is

the adversarial balance when 𝐷 is unable to tell the difference of

𝐺 (𝑥) among groups. For the two-group case, the adversarial loss

can be modified as:

𝐿adv𝑖,𝑔 (𝐺,𝐷) = E𝑥∼𝑝𝑖 (𝑥)
[
I(𝑔 = 0) log𝐷 (𝐺 (𝑥))

+ I(𝑔 = 1) log(1 − 𝐷 (𝐺 (𝑥)))
]
, (3)



(a) Central (b) Federated with shared embeddings [38] (c) Federated Adversarial Debiasing (proposed)

Figure 1: Illustrations of different adversarial learning frameworks for debiasing. 𝑓 , 𝐷 and 𝐺 are classifier (task model), dis-
criminator and encoder, respectively. 𝐶1,𝐶2,𝐶3 represents the task supervisions, for example, ground-truth classes, in the
corresponding users. 𝑔1 and 𝑔2 represents the two groups of users. The encoders are adversarially trained such that the embed-
dings are informative for distinguishing𝐶1,𝐶2,𝐶3 but not 𝑔1, 𝑔2. The proposed FADE tackles a more challenging problem than
other two because of isolated and non-sharing group/user data (or embeddings) and class-wise non-iid users within groups.

where I(·) is the indicator function.
One fundamental difference between traditional adversarial learn-

ing and FADE is that FADE only has one group data in the loss

function. Hence, users have no sense of what an adversary (a user

from other groups) looks like. Directly optimizing this objective

may fail in finding the right direction towards convergence. In the

worst case, the optimal solution may not be the adversarial bal-

ance. In the next section, we will provide principled analysis to the

adversarial balance that is achievable under appropriate conditions.

We summarize the server and user update strategies in Algo-

rithms 1 and 2. The server is responsible for aggregating users’

models and dispatching the global models to users. Meanwhile,

users train the received global model and the adversarial compo-

nent using local data. Note that we use the reversal gradient strategy

to implement the min-max optimization in Algorithm 1. Our algo-

rithm enjoys the two nice properties:

Autonomous: Different from vanilla FL, FADE allows the users to

decide whether or not to join the learning of the discriminator 𝐷 at

each iteration. A user can opt-in the discriminator learning at a low

frequency or completely opt-out when privacy becomes a concern

or learn with restrictive computational resources. For example, in

the adversarial domain adaptation setting [38] where some users

have supervision and some others not, some supervised user may

not want to help unsupervised users. FADE will significantly re-

duce the communication cost and privacy risk overhead involved

by cutting down the interactions form these users.

Privacy: In the proposed FADE framework, the group label𝑔will be

restricted to local learning and the group debiasing is done through

the discriminator model 𝐷 . Thus, users will not be able to obtain

the other users’ sensitive attributes including the group variable.

Moreover, following [33], the privacy of FADE can be strictly pro-

tected by directly injecting Differential-Privacy noise during the

gradient descent procedure.

4 OPTIMALITY ANALYSIS
Despite the fact that FADE enables autonomous and improves pri-

vacy in learning, it is critical to ask if the algorithm gives a satisfiable

solution and what is the optimal solution of Eq. (1). Remarkably,

FADE differs from traditional adversarial learning by Eq. (3), where

Algorithm 1 FADE User Update

Input: 𝑓 , 𝐺 , 𝐷 received from server, learning rate 𝜂, adversarial

parameter 𝜆, user data distribution 𝑝𝑖
1: 𝑓0, 𝐷0,𝐺0 = 𝑓 , 𝐷,𝐺

2: for 𝑡 = 1, . . . , 𝐾 do
3: Sample a batch by 𝑥 ∼ 𝑝𝑖 (𝑥) or (𝑥,𝑦) ∼ 𝑝𝑖 (𝑥,𝑦)
4: 𝑧 ← 𝐺 (𝑥)
5: ∇𝑓 ←

𝜕𝐿task
𝑖

𝜕𝑓
, ∇𝐷 ←

𝜕𝐿adv
𝑖

𝜕𝐷

6: if adversarial game 𝐷 is accepted by user 𝑖 then

7: ∇𝐺 ← 𝜕𝑧
𝜕𝐺

(
𝜕𝐿task

𝑖

𝜕𝑧 + 𝜆
𝜕𝐿adv

𝑖

𝜕𝑧

)
8: 𝐷𝑡+1 ← 𝐷𝑡 + 𝜂∇𝐷
9: 𝐺𝑡+1 ← 𝐺𝑡 − 𝜂∇𝐺
10: else
11: ∇𝐺 ← 𝜕𝑧

𝜕𝐺

𝜕𝐿task
𝑖

𝜕𝑧
12: 𝐷𝑡+1 ← 𝐷𝑡
13: 𝐺𝑡+1 ← 𝐺𝑡 − 𝜂∇𝐺
14: 𝑓𝑡+1 ← 𝑓𝑡 − 𝜂∇𝑓

Output: 𝑓𝐾+1, 𝐺𝐾+1, 𝐷𝐾+1

Algorithm 2 FADE Server Aggregation

Input: Initial models 𝑓 , 𝐷,𝐺 , momentum parameter 𝛽

1: for 𝑡 ∈ 1, · · · ,𝑇max do
2: Select𝑚 active users uniformly at random into A
3: Broadcast 𝜃𝑡 = (𝑓𝑡 ,𝐺𝑡 , 𝐷𝑡 ) to𝑚 users

4: for user 𝑖 in A in parallel do
5: User updates by Algorithm 1

6: Aggregate {𝜃𝑘𝑡 = (𝑓 𝑖𝑡 ,𝐺𝑖𝑡 , 𝐷𝑖𝑡 )}𝑚𝑖=1 and average

𝜃𝑡+1 ← 𝛽
∑𝑚

𝑖=1

𝑛𝑖

𝑁
𝜃𝑖𝑡 + (1 − 𝛽)𝜃𝑡

Output: 𝑓𝑡 ,𝐺𝑡 , 𝐷𝑡

only one group is used to evaluate the adversarial objective. This

imposes a unique challenge in learning as it may compromise the

convergence of learning. Below we give formal analysis of the opti-

mality when Algorithm 2 is iterated with users from two groups in



non-zero probability. Since most of multi-group adversarial prob-

lems can be transformed into two-group problems, we focus on

discussing the two-group case for the ease of analysis.

Consider the case when each group only has one user. The data

distributions for the two users are 𝑝1 and 𝑝2, respectively. We single

out the min-max optimization in Eq. (1) as:

min

𝐺
max

𝐷
E𝑝1 [log𝐷 (𝐺 (𝑥))] + E𝑝2 [log(1 − 𝐷 (𝐺 (𝑥)))] .

For simplicity, we denote 𝐺 (𝑥) by 𝑧 and slightly abuse 𝑝1 (𝑥) by
𝑝1 (𝑧) in our discussion. Hence, we can define:

D𝑝1,𝑝2 = max

𝐷
E𝑝1 [log𝐷 (𝑧)] + E𝑝2 [log(1 − 𝐷 (𝑧))],

which is the maximal discrepancy between 𝑝1 (𝑧) and 𝑝2 (𝑧) that
𝐷 can characterize. Now, we can rewrite the min-max problem as

min𝐺 D𝑝1,𝑝2 (𝐺) which minimizes the distribution distance over 𝑧.

Alternatively, we can formulate it by min𝑝1,𝑝2 D𝑝1,𝑝2 since 𝑝1 and
𝑝2 are parameterized by 𝐺 .

Because users may participate federated learning at varying

frequencies, we use an auxiliary random variable 𝜉𝑖 ∈ {0, 1} for
𝑖 = 0, 1 to denote whether the user is active for training. We assume

𝜉𝑖 is subject to the Bernoulli distribution,𝐵(1, 𝛼𝑖 ). Plug 𝜉𝑖 intoD𝑝1,𝑝2
to obtain D𝑝1,𝑝2 = max𝐷 E𝑝1 [𝜉1 log𝐷 (𝑧)] + E𝑝2 [𝜉2 log(1 − 𝐷 (𝑧))]
and take expectation:

D̃𝑝1,𝑝2 ≜ E𝜉1,𝜉2 [D𝑝1,𝑝2 ]
= max

𝐷
E𝑝1 [𝛼1 log𝐷 (𝑧)] + E𝑝2 [𝛼2 log(1 − 𝐷 (𝑧))] . (4)

Therefore, our problem is transformed as minimizing D̃𝑝1,𝑝2 .
Note that with 𝑝1 and 𝑝2 given, the solution of the maximization

in D̃𝑝1,𝑝2 is:

𝐷∗𝛼1,𝛼2 (𝑧) =
𝛼1𝑝1 (𝑧)

𝛼1𝑝1 (𝑧) + 𝛼2𝑝2 (𝑧)
, (5)

with which we can derive the optimality sufficiency as below.

Theorem 4.1. The condition 𝑝1 (𝑧) = 𝑝2 (𝑧) is a sufficient condition
for minimizing D̃𝑝1,𝑝2 and the minimal value is 𝛼1 log𝛼1+𝛼2 log𝛼2+
(𝛼1 + 𝛼2) log(𝛼1 + 𝛼2).

Theorem 4.1 shows that even if some users are inactive, the distri-

bution matching, 𝑝1 = 𝑝2, remains a sufficient optimality condition.

We remark that the above result can be generalized to multiple

users when all users are iid and 𝜉𝑖 represent the ratio of group 𝑖 in

users. In addition, we notice Theorem 4.1 does not guarantee a sta-

ble convergence or exclude other undesired solutions. We discuss

these issues in the following.

4.1 The effect of imbalanced groups
Although Theorem 4.1 shows the optimality of the matched distri-

bution, the optimization may still fail to converge especially when

one group of users are relatively inactive, e.g., 𝛼1 ≪ 𝛼2. When

𝛼1 ≪ 𝛼2 or reverse, we call the situation as imbalanced groups. The
imbalanced groups happens because the users are free to quit or

joint the training. From Eq. (5), we observe that 𝐷∗ (𝑥) will be less
sensitive to changes of 𝑝1 (𝑥) if 𝛼1 ≪ 𝛼2, and vice versa. Meanwhile,

log𝐷∗ (𝑥) → −∞ and D𝑝1,𝑝2 approaches the minimum even if 𝑝1
and 𝑝2 are quite different.

Theorem 4.2. Let 𝜖 be a positive constant. Suppose | log𝑝1 (𝑥) −
log 𝑝2 (𝑥) | ≤ 𝜖 for any 𝑥 in the support of 𝑝1 and 𝑝2. Then we have
D̃𝑝1,𝑝2 = O(𝛼1𝜖/(𝛼1 + 𝛼2)) when 𝛼1 ≪ 𝛼2.

Theorem 4.2 reveals that the imbalance between groups could

greatly reduce the sensitivity of the discrepancy 𝜖 between 𝑝1 and

𝑝2. A less sensitive discriminator will ignore the minor differences

between groups. The importance of discrepancy sensitivity for the

adversarial convergence was also discussed in [2]. It is easy to see

the negative impact of the low sensitivity: 1) higher communication

cost incurs due to more communication rounds are required to

check the discrepancy; 2) the optimization possibly fails to converge

due to vanished gradients (scaled by 𝛼1).

4.2 Squared adversarial loss
In Eq. (4), when 𝛼1 → 0 and 𝛼2 → 1, we notice that D̃𝑝1,𝑝2
approaches 0 while E𝑝1 [log𝐷 (𝑧)] → −∞. In other words, the

large value of E𝑝1 [log𝐷 (𝑧)] is neglected due to its coefficient 𝛼1.

To re-emphasize the value, a heuristic method is to increase the

weight when |E𝑝1 [log𝐷 (𝑧)] | is large. Thus, we propose to replace

𝐿adv
𝑖,𝑔
(𝐺,𝐷) by:

𝐿adv𝑖,𝑔,2 (𝐷,𝐺) = −
1

2

(
𝐿adv𝑖,𝑔 (𝐺,𝐷)

)
2

, (6)

which we call squared adversarial loss. We can write the correspond-

ing discrepancy D̃(2)𝑝1,𝑝2 as:

min

𝐷
𝛼1E

2

𝑝1
[log𝐷 (𝑧)] + 𝛼2E2𝑝2 [log(1 − 𝐷 (𝑧))] .

Though we derive the squared adversarial loss in a heuristic

manner, the loss can be explained in the view of resource-fair fed-

erated learning [22]. Because the adversarial objective pays more

attention to the frequent group, we can interpret the problem as

the unfairness between groups. Following [22], we generalize our

adversarial loss function as:

𝐿adv𝑖,𝑔,2 (𝐷,𝐺) ≜ (−1)
𝑞−1 1

𝑞
E𝑥

[
ℓ
𝑞

𝑘
(𝐷,𝐺 ;𝑥)

]
, (7)

where 𝑞 ≥ 1. If 𝑞 = 1, the loss degrades to the vanilla one.

4.3 The effect of non-iid users
It is well-known that typical federated learning approaches suf-

fer from very heterogeneous users since they sample data from

very different distributions. The adversarial objective captured and

decreases the group heterogeneity by design. Another kind of het-

erogeneity is related to the users’ tasks. We argue that the hetero-

geneity is natural and could be essential for the task discriminability

but may be accidentally eliminated by adversarial learning. For ex-

ample, three users are non-iid by three classes. After FADE training,

the non-iid users collapse to the similar distributions due to the

wrong sense of the group discrepancy.

To prove the existence of user-collapsed solution for FADE, we

consider 𝑧 ∼ 𝑝 (𝑧 |𝑇 = 𝑡), or simply 𝑧 ∼ 𝑝 (𝑧 |𝑡), where 𝑡 is a discrete
hidden variable related to users’ tasks. For example, each user has

one class of samples in classification tasks. Then 𝑡 is the correspond-

ing class. In addition, we define 𝑝1 (𝑧) = 1

𝑚

∑𝑚
𝑡=1 𝑝 (𝑧 |𝑡) which is

a p.d.f. For simplicity, we assume all users always participate the



learning, i.e., 𝛼𝑖 = 1 for all users. Hence, we can obtain D𝑝1,𝑝2 as

max

𝐷

∑𝑚

𝑡=1
E𝑝 (𝑧 |𝑡 ) [log𝐷 (𝑧)] + E𝑝2 [log(1 − 𝐷 (𝑧))]

= max

𝐷
𝑚E𝑝1 (𝑧) [log𝐷 (𝑧)] + E𝑝2 [log(1 − 𝐷 (𝑧))],

whose maximizer is given by: 𝐷∗ (𝑧) = 𝑚𝑝1 (𝑧)
𝑚𝑝1 (𝑧)+𝑝2 (𝑧) . Use similar

derivations as in Theorem 4.1, we can show that 𝑝1 (𝑧) = 𝑝2 (𝑧) is a
sufficient optimality condition, which implies:∑𝑚

𝑡=1
𝑝 (𝑧 |𝑡) =𝑚𝑝2 (𝑧). (8)

First, we can still obtain 𝑝1 (𝑧)
∑𝑚
𝑡=1 𝑝 (𝑡 |𝑧)/𝑝 (𝑡) = 𝑚𝑝2 (𝑧) from

Eq. (8) where we use 𝑝 (𝑧 |𝑡) = 𝑝1 (𝑧) 𝑝 (𝑡 |𝑧)𝑝 (𝑡 ) . If
∑𝑚
𝑡=1

𝑝 (𝑡 |𝑧)
𝑝 (𝑡 ) =𝑚, then

we can get the vanilla solution, 𝑝1 (𝑧) = 𝑝2 (𝑧).
Except for the vanilla solution, a trivial solution to Eq. (8) is

𝑝 (𝑧 |𝑡) = 𝑝2 (𝑧). However, the solution could hurt the task utility

since it may eliminate the inherent difference between tasks. For

instance, if 𝑡 represents the classification label, the solution will

vanish the discriminability of the representation 𝑧. We call the

scenario as the user collapse. It worth noticing that user collapse

could happen even if the 𝑝1 and 𝑝2 are matched.

4.4 Mitigate user collapse
Since there are arbitrarily many solutions to

∑𝑚
𝑡=1

𝑝 (𝑡 |𝑧)
𝑝 (𝑡 ) =𝑚, we

need to constraint the feasible solutions such that the collapsed

solution will be eliminated. Notice
𝑝 (𝑡 |𝑧)
𝑝 (𝑡 ) =

𝑝 (𝑡,𝑧)
𝑝 (𝑧)𝑝 (𝑡 ) is related to

the mutual information between 𝑡 and 𝑧. Conceptually, we can

modify the adversarial loss to:

𝐿̂adv𝑖,𝑔,2 (𝐷,𝐺) = 𝐿
adv

𝑖,𝑔,2 (𝐷,𝐺) + 𝐼 (𝐺 (𝑥); 𝑡 |𝑖),

where 𝐼 (𝐺 (𝑥); 𝑡 |𝑖) is the mutual information conditioned on user 𝑖 .

Because mutual information is hard to estimate in practice (espe-

cially given few samples), we provide some surrogate solutions.

If the 𝑡 represents the class labels and supervision is available,

then 𝐼 (𝐺 (𝑥); 𝑡 |𝑖) is already encouraged by 𝐿task. If supervision is not
available, we may maximize the entropy of the output of classifier

𝑓 such that the correlation between user’s tasks and representa-

tions will not disappear during training. Useful techniques were

previously exploited for unsupervised domain adaptation, e.g., [28],

and we defer the technique details to Section 5.2.

4.5 Privacy risks from malicious FADE users
Our analysis suggests the feasibility of using adversarial training in

the federated setting. The distribution matching is achievable under

variety of cases including imbalanced groups, although the success

rate may vary. But such power also implies potential privacy over-

head associated with FADE. Consider a malicious user 𝑖 who wants

to steal data from others, FADE canmatch 𝑝𝑖 (𝑥) with a victim’s data

𝑝 𝑗 (𝑥). The empirical study in [16] also discussed the risk where a

malicious attacker may take advantage of the discriminator to steal

other users’ data. Our results in Theorem 4.1 theoretically show

that the attack is possible in general. During the learning of the

adversarial discriminator, injecting predefined noise is known to be

effective to defend such attacks [41]. Meanwhile, users could quit or

frequently opt-out the federated communication when the privacy

budget (quantified by noise and Differential Privacy metric [7]) is

low. Based on Theorem 4.2, when more and more users opt-out

the communication, the adversary’s discriminator can hardly sense

one victim’s distribution.

5 EXPERIMENTS ON UNSUPERVISED
DOMAIN ADAPTATION

In this section, we evaluate the FADE algorithms on Unsupervised

Domain Adaptation (UDA) [10, 24, 38]. UDA aims to mitigate the

domain shift between supervised and unsupervised data such that

the trained classifiers can generalize to unlabeled data. We call the

supervised user (domain) as the source user (domain). Each domain

may include multiple users.

Related work. [38] is among the first to discuss the adversarial

UDA under federated constraint, through sharing the embedding

of samples. However, we consider a more challenging problem,

a federated adversarial learning without sharing data. Recently,

learning without access to the source data has gained increasing

attention. [24] (SHOT) considered the domain adaptation only using

the source-domain model which surprisingly outperformed most

traditional UDA with source supervisions. However, its success

relies on the pre-matched representation distribution (but not well

discriminated) by batch normalization (BN) layers. In the FADE

setting, the BN layers will fail to match representations since the

local estimate of their mean will be easily biased. In addition, in

[10], distillation is used to avoid directly passing data. Differing

from [10], FADE is more efficient since it does not need to upload

all models from source domain to target domain. For example, if𝑀𝑠
users (𝑀𝑡 ) in source (target) domain take part in training, sending

models will involves 𝑀𝑠𝑀𝑡 communication. Instead, FADE only

use𝑀𝑠 +𝑀𝑡 times to communicate between domains.

Network architectures. We adopt the same network architec-

ture as the state-of-the-art of UDA [23]. As presented in Fig. 4, we

first use a backbone network to extract sample features. Specifically,

we use modified LeNet [28] for digit recognition, ResNet50 [15] for

Office and Office-Home datasets, and ResNet101 for the VisDA-C

dataset. We use an one-layer bottleneck to reduce the feature dimen-

sion. After the bottleneck, we get a representation of 256-dimension.

A single fully-connected layer is used for classification at the end.

The discriminators are small-scale networks to match the capability

of the classifiers. The networks and algorithms are implemented

using PyTorch 1.7. The ResNet backbones pre-trained on ImageNet

are retrieved from the torchvision 0.8 package.

5.1 Digit recognition with imbalanced groups
As discussed in Section 4.1, group imbalance could result in the

mismatch of group distributions. Here, we empirically evaluate the

effect of the imbalanced groups on convergence, adversarial losses

and utility performance.

Digit dataset is a standard UDAbenchmark built on digit images

collected from different environments. 10 digits, from 0 to 9, are

included. We follow the UDA protocol of [17] and use two subsets:

MNIST and USPS. MNIST dataset contains 60, 000 training images

and 10, 000 testing 28× 28 gray-scale images. USPS consists of 7291

training and 2007 testing 16 × 16 gray-scale images. We augment

the USPS training set by resizing and random rotation.
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Figure 2: Comparison of vanilla adversarial loss versus the squared adversarial loss on MNIST-to-USPS (top) and USPS-to-
MNIST (bottom) UDA. We vary the probability of target users. For both UDA experiments, the SOTA central methods [23] can
achieve over 98% accuracies. From left to right, the columns are target domain accuracies, classification losses and adversarial
losses of target domain users.

Table 1: Averaged classification UDA accuracies (%) on Office and OfficeHome dataset with 3 non-iid target users and 1 source
user. Underlines indicate the occurrence of non-converged results. Standard deviations are included in brackets.

Method A→D A→W D→A D→W W→A W→D Re→Ar Re→Cl Re→Pr Avg.

Federated methods
Source only 79.5 73.4 59.6 91.6 58.2 95.8 67.0 46.5 78.2 72.2

non-iid target users w/ 20 (Office) or 45 (OfficeHome) classes per user

FADE-DANN 85.4 (1.9) 81.8 (1.8) 43.1 (33) 97.7 (0.5) 64.8 (0.5) 99.7 (0.2) 46.4 (37) 34.9 (27) 78.8 (0.1) 70.3

FADE-CDAN 92.3 (1.2) 91.6 (0.5) 65.9 (9.3) 98.9 (0.2) 70.2 (0.8) 99.9 (0.1) 70.3 (1.6) 54.9 (4.6) 82.2 (0.1) 80.7

FedAvg-SHOT 83.6 (0.5) 83.1 (0.5) 64.7 (1.4) 91.7 (0.2) 64.7 (2.2) 97.4 (0.5) 70.7 (0.5) 55.4 (0.5) 80.1 (0.3) 76.8

iid target users

FADE-DANN 84.2 (1.5) 81.3 (0.4) 66.3 (0.3) 97.5 (1.2) 59.4 (10.6) 99.9 (0.2) 67.3 (0.9) 51.3 (0.4) 79.0 (0.6) 76.2

FADE-CDAN 93.6 (0.8) 92.2 (1.3) 71.2 (1.0) 98.7 (0.4) 71.3 (0.7) 100 (0.0) 70.6 (1.3) 55.1 (1.0) 82.3 (0.2) 81.7

FedAvg-SHOT 96.3 (0.5) 94.3 (1.1) 70.9 (2.0) 98.4 (0.4) 72.7 (0.9) 99.8 (0.0) 74.8 (0.3) 60.0 (0.1) 84.9 (0.2) 83.6

Central methods
ResNet [15] 68.9 68.4 62.5 96.7 60.7 99.3 53.9 41.2 59.9 67.9

Source only [23] 80.8 76.9 60.3 95.3 63.6 98.7 65.3 45.4 78.0 73.8

DANN [11] 79.7 82.0 68.2 96.9 67.4 99.1 63.2 51.8 76.8 76.1

CDAN [28] 92.9 94.1 71.0 98.6 69.3 100 70.9 56.7 81.6 81.7

SHOT [23] 94.0 90.1 74.7 98.4 74.3 99.9 73.3 58.8 84.3 83.1

Setup. We assume 2 users from source and target domain, respec-

tively. In each round, we select one user with predefined probability.

For example, the case that source and target users are of 0.05 and

0.95 probability implies severe imbalance. If a user/group has high

probability, that means the user/group will actively participate in

the adversarial learning and the other will activate less. The experi-

ment can also be generalized to multiple users in same frequency

while one domain has more users. Both situations imply the imbal-

ance between two groups. In experiments, we fix the batch size to

32 and run one user per communication round. In total, we train

the users for global 8600 rounds. In each global round, the users

will train locally for 10 iterations. Experiments are repeated 3 times

with three fixed seeds. At the beginning, we train the models with

adversarial coefficient 𝜆 = 0 when all source users are involved

until the classification loss converges. Then, we follow [11, 23]

to use the decaying schedule of learning rates and schedule the

adversarial coefficient 𝜆 from 0 to 1.

Results are reported in Fig. 2. Left two figures show the nega-

tive impact of imbalanced groups. When the imbalance is severe

(large or small target probability), the drop in target accuracies

is more obvious. In the middle pane, the convergence curves of

imbalanced groups fluctuate more significantly and fail to converge.

In the last pane, the imbalanced cases have large adversarial losses

which barely decrease by federated iterations. It explains why the



corresponding classification tasks fail to converge. When using

the squared adversarial losses, the ignored adversarial losses of

low-frequent users are reduced during federated learning. Mean-

while, the convergence of utility losses are faster. Thus, the negative

impact of imbalanced groups is mitigated.

5.2 Object recognition with non-iid users
In Section 4.3, we prove that the non-iid distribution of users will

lead to a trivial solution which may lose the natural discrepancy

between users. For federated classification learning where each

user only has a partial set of classes, the loss of user discrepancy

will make the representations non-discriminative to classes. Here,

we conduct experiments to reveal the impact of the non-iid users.

Dataset. We adopt three object recognition datasets, Office [40]

(small size), Office-Home [44] (medium size) and VisDA-C [39]

(large size), including image of office products. The former two

are standard benchmarks widely used for UDA. The Office dataset

contains three domains: Amazon (A), DSLR (D) and Webcam (W)

with 2817, 498, 795 images, respectively. 31 object classes of im-

ages are taken under different office environments (corresponding

to domains). The Office-Home datasets have 65 categories and 4

domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr),

and Real-World images (Re) with 2427, 4365, 4439 and 4357 images,

respectively. The VisDA dataset is a challenging large-scale bench-

mark. The source domain comprises 12-way synthetic classification

data. In total, 1.5 × 10
5
images are synthesized by rendering 3D

models and are adapted to 55, 000 unlabeled real-world images.

Setup. In total, 4 users are generated from two domain datasets.

First, we let the single source domain user with all classes. Second,

we generate 3 non-iid target domain users with partial set of classes

following the standard federated setting [32]. For Office dataset,

each user has 20 classes and adjacent users have consecutive classes

with 10-class stride. For instance, user 1 has class 0 to 20 and user 2

has class 10 to 30. For OfficeHome dataset, each user has 45 classes

with 20-class stride. For VisDA-C dataset, each user has 5 classes

with 4-class stride. All users in the same domain will have the

same number of samples. We select 2 users per communication

round when training on OfficeHome. For VisDA-C dataset, we

adopt 1 user per round. In this case, the major difficulty comes from

non-iid distributions of users conditioned on the subset of classes.

In experiments, the parameters for SHOT follows [23]. Details of

network architectures and learning rate schedules are discussed

in Appendix B.

Baselines. We compare different UDA methods extended by

FADE upon the presence of non-iid users. DANN [11] is the first

work on adversarial domain adaptation based onwhichmany recent

methods are developed. CDAN [28] is the first to condition the

discriminator prediction on the estimated classes, which aligns

with our purpose to maximize the mutual information between

user (related to classes) and representation. SHOT [23] (extended

by FedAvg [32]) is the current state-of-the-art method in domain

adaptation which does not use source data, assuming approximately

mitigated domain shift.

Results. We summarize the results in Tables 1 and 2. Note that

the straightforward extension of DANN without constraints will

Table 2: Comparison of target accuracies on Visda-C dataset.

Methods Source only DANN SHOT CDAN

Central 46.6 57.6 82.9 73.9

FADE 54.3 56.4 69.2 73.1 (+SHOT)

suffer from the user heterogeneity. Therefore, we observe cata-

strophic failures by DANN, for example, D→A with only a low

accuracy. This kind of failures happens when both D (498) is of less

samples than A (2817). The possible reason is that the discrimina-

tors fail to sense the position of target domain batches which is a

small ratio of all target-domain samples and changes frequently

by iterations. In comparison, when regulated by estimated classes,

SHOT and methods combined with SHOT perform better. Notably,

because SHOT relies on BN states to mitigate domain shift, its ac-

curacies are much worse than its central version. Since SHOT can

provide pseudo supervisions which conditions on the estimated

users’ local classes, DANN+SHOT outperforms DANN. In reverse,

DANN helps SHOT to mitigate the domain shift. We further ex-

plore CDAN+SHOT, which conditions group discrimination on

local classifier outputs (correlated to users’ classes). As a result,

CDAN+SHOT outperforms other methods and is close to the cen-

tral version of CDAN. Plus, CDAN+SHOT achieves the best average

accuracies when the number of users per round varies from 1 to 4.

Remarkably, in the hardest case where only one user is trained per

round, CDAN+SHOT gains the best accuracies on 8 out of 9 tasks.

In a more challenging large-scale VisDA-C dataset, CDAN+SHOT

also shows its advantage against other baselines (see Table 2). We

note that adversarial methods are more robust to the non-iid users.

6 EXPERIMENTS ON FAIR FEDERATED
LEARNING

The fair federated learning is motivated by the imbalanced groups

in training. For example, when vendor rallies people to use their

software and train model with locally collected data, the global

model may be biased by the majority, e.g., male users. When a user

from another gender uses the software, she/he may find that the

model performs poorly. As a result, the minority group vanishes

while majority continues to dominate. Thus, a method actively

debiasing w.r.t. the groups will be essential to defend the tendency.

Related work. The fairness in federated learning was first dis-

cussed in [22] where users are thought to have different capability

for computation. Fairness was enforced by increasing the weights

of large loss, which was less optimized. In this experiment, we

consider the unfairness brought by the difference of group distribu-

tions. With FADE, we use a discriminator locally to justify whether

the user’s representations are biased from the other group. Related

central algorithms have been exploited [8, 29, 45]. To the best of

our knowledge, we are the first to encourage such group-based

fairness in federated setting. Importantly, our method preserve the

privacy of group variables. The concerns of the privacy of group

variables was previously discussed [13]. In [13], Hashimoto et al. as-
sumes the group membership and number of groups are unknown

to the central learning server, when users interact with the system

and contribute data. Our FADE extends the setting to a distributed
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Figure 3: FADE with/without adversarial losses. In each subfigure, left is fairness measured by ΔEO where smaller values
indicates better fairness; right is the trade off between fairness and utility where left-top is the preferred balance.

framework where the private group information is still unknown

to other parties including the aggregation server.

We utilize the Equalized Odds (ΔEO) to evaluate the degree of

fairness. Consider a binary classifier 𝑓 : Z → {0, 1} predicting
label variable 𝑦 when representations (𝑧 ∈ Z) are sampled from

two groups. We denote the conditional p.d.f. 𝑝 (𝑧 |𝑔,𝑦) as 𝑧𝑔,𝑦 which

shapes the probability of 𝑧 at group 𝑔 and class 𝑦. An algorithm is

said to be fair if the positive ΔEO (defined below) is close to 0.

ΔEO ≜
��E𝑧0,0 [𝑓 (𝑧)] − E𝑧1,0 [𝑓 (𝑧)]��
+
��E𝑧0,1 [1 − 𝑓 (𝑧)] − E𝑧1,1 [1 − 𝑓 (𝑧)]�� (9)

which comprises the absolute difference in false positive rates and

the absolute difference in false negative rates.

6.1 Fair adult income prediction
Dataset. We evaluate our algorithm on the UCI Adult dataset

1

which is a standard benchmark for fair classification. The dataset

consists of over 40,000 vector samples from the 1994 US Census.

Each sample includes 14 attributes predicting if his/her income is

over 50,000 dollars.

Setup. We adversarially disentangle the unfair representations

from the gender. When keeping the total data size fixed, we con-

struct one female user and vary the number of male users. Each

synthesized user evenly split the samples in the group. We run

FADE for 8,000 communication rounds. In every round, 2 users are

selected to train for 1 local iteration on a batch of 64 samples. The

accuracies and fairness are evaluated on the left-out 10% samples.

The network structure is in Fig. 5. We set hyper-parameters as

𝛽 = 0.5 and the initial learning rate as 10
−3
.

Results are depicted in Fig. 3a. Without adversarial training,

the unfairness is aggravated when the imbalance between groups

worsens. When more male users are involved, the squared adversar-

ial loss is able to further improve the fairness. Instead, the vanilla

adversarial learning performs better when the two groups are bal-

anced. Both adversarial losses will maintain the utility performance

close to the non-adversarial method.

6.2 Fair MCI detection
Dataset. Mild Cognition Impairment (MCI) is the pre-symptom of

Alzheimer’s Disease (AD) which typically happens on elders. Early

detection of MCI is important for prevention of AD occurrence and

treatment [1, 43]. Details of the dataset is comprised in Appendix B.3

1
https://archive.ics.uci.edu/ml/datasets/adult

where females forms the majority group (over 94%). The prediction

task here is to classify the disease condition, Normal Cognition

(NC) or MCI, based on the daily activities (walking speed, etc.).

Setup. In the original dataset, there are 88 users with different

number of samples. We notice the imbalance between NC and

MCI users will greatly degrade the model quality. To focus on our

fairness task, we manually select 26 users such that 13 users was

diagnosed as NC at least once and the other 13 ones are stable

MCI patients. Because male users are much fewer than female ones,

we prefer to select male users when balancing the two classes.

After downsampling, users have 39 samples on average. Among

the 26 users, there are 6 males and 20 females in total. Details

of features, preprocessing and network architectures are deferred

to Appendix B.3. We set hyper-parameters as 𝛽 = 0.5, the initial

learning rate as 10
−2

and batch size as 16. In the 700 communication

rounds, we first train without adversarial losses for 400 rounds and

then schedule the 𝜆 and learning rates as the Adult experiments.

Results. We compare the convergence of the training 𝐹1-score

(utility) and ΔEO (fairness) by varying the number of users per

round. As shown in Fig. 3b, the unfairness is obvious with ΔEO over

0.2 when no adversarial losses are used. We see that the vanilla ad-

versarial loss failed to debias in most cases. In contrast, the squared

adversarial loss stably debias the unfair performance in all cases.

When the number of users per round is less than 10, even the

non-adversarial loss is more fair. The natural debiasing could be

attributed to the random selection of users, which breaks the domi-

nation of one group in a short span.

7 CONCLUSION
In this work, we propose a unified framework for federated ad-

versarial learning called FADE. Our framework preserves the user

privacy and allows user to freely opt-in/out the learning of the

adversarial component. To our best knowledge, we are the first to

study the properties of adversarial learning in the federated setting.

We presented the potential challenge and solution for the FADE,

and identified a gap between FADE and its centralized counterpart

as an open question for our future work.
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A PROOFS
Proof of Theorem 4.1. Substitute 𝐷∗𝛼1,𝛼2 (𝑧) into Eq. (4):

D̃𝑝1,𝑝2 = E𝑝1 [𝛼1 log
𝛼1𝑝1 (𝑧)

𝛼1𝑝1 (𝑧) + 𝛼2𝑝2 (𝑧)
]

+ E𝑝2 [𝛼2 log
𝛼2𝑝2 (𝑧)

𝛼1𝑝1 (𝑧) + 𝛼2𝑝2 (𝑧)
]

= 𝛼1KL

[
𝑝1

����𝛼1𝑝1 + 𝛼2𝑝2𝛼1 + 𝛼2

]
+ 𝛼2KL

[
𝑝2

����𝛼1𝑝1 + 𝛼2𝑝2𝛼1 + 𝛼2

]
+ 𝛼1 log𝛼1 + 𝛼2 log𝛼2
+ (𝛼1 + 𝛼2) log(𝛼1 + 𝛼2)
≥ 𝛼1 log𝛼1 + 𝛼2 log𝛼2
+ (𝛼1 + 𝛼2) log(𝛼1 + 𝛼2)

where the last inequality is from the non-negative property of KL

divergence.

Note when 𝑝1 = 𝑝2, both KL divergence is 0. Thus, we can

conclude that 𝑝1 = 𝑝2 is the sufficient condition. □

Proof of Theorem 4.2. For the ease of derivation, we assume

𝛼1 and 𝛼2 are normalized s.t. 𝛼1 + 𝛼2 = 1. From | log 𝑝1 (𝑥) −
log 𝑝2 (𝑥) | ≤ 𝜖 , we can get

𝑒−𝜖 ≤ 𝑝1 (𝑥)/𝑝2 (𝑥) ≤ 𝑒𝜖 ,
𝑒−𝜖 ≤ 𝑝2 (𝑥)/𝑝1 (𝑥) ≤ 𝑒𝜖 .

Thus,

KL [𝑝1 |𝛼1𝑝1 + 𝛼2𝑝2 ] =
∫
𝑥

𝑝1 log

(
𝑝1

𝛼1𝑝1 + 𝛼2𝑝2

)
≤
∫
𝑥

𝑝1 log

(
1

𝛼1 + 𝛼2𝑒−𝜖

)
= 𝜖 − log(𝛼1𝑒𝜖 + 𝛼2).

Similarly,

KL [𝑝2 |𝛼1𝑝1 + 𝛼2𝑝2 ] =
∫
𝑥

𝑝2 log

(
𝑝2

𝛼1𝑝1 + 𝛼2𝑝2

)
≤
∫
𝑥

𝑝2 log

(
1

𝛼1𝑒
−𝜖 + 𝛼2

)
= 𝜖 − log(𝛼1 + 𝛼2𝑒𝜖 ).

Therefore,

D̃𝑝1,𝑝2 = 𝛼1 [𝜖 − log(𝛼1𝑒𝜖 + 𝛼2)]
+ 𝛼2 [𝜖 − log(𝛼1 + 𝛼2𝑒𝜖 )]
+ 𝛼1 log𝛼1 + 𝛼2 log𝛼2

= 𝜖 − 𝛼1 log(𝑒𝜖 + 𝛼2/𝛼1)
− 𝛼2 log(𝑒𝜖 + 𝛼1/𝛼2)
≤ O((1 − 𝛼2)𝜖)
= O(𝛼1𝜖/(𝛼1 + 𝛼2))

where we manually add (𝛼1 + 𝛼2) to normalize 𝛼1. □

B EXPERIMENT DETAILS
B.1 Dynamic schedules
We use dynamic schedules for learning rates and the adversarial

parameter 𝜆 following previous work [11]. Specifically,

𝜂𝑡 =
1

(1 + 10 𝑡
𝑇max𝐾

)0.75

𝜆𝑡 =
2

1 + exp(−10𝑡/𝑇max)
− 1

where 𝐾 is the number of local iterations and 𝑇max is the number

of global rounds. Notably, 𝜂𝑡 is schedule locally and 𝜆𝑡 is scheduled

globally.

B.2 Network architectures
Federated UDA. The network architectures are presented in Fig. 4.
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Figure 4: Network architectures for digit and object datasets.
WN denotes the weight-norm layer [23] and FC 256 denotes
fully-connected layer with 256 units. GRL is the gradient re-
versal layer [11].

Batch normalization in FADE. During training, we share the

parameters of ResNet between users. Notably, in ResNet, batch nor-

malization (BN) layer is densely embedded in different depth. The

BN layer is known to be important for transferring between distinct

domains, because the hidden representations will be normalized

with mean and variance estimated from a batch. Because such esti-

mation could be easily biased by a small batch, running estimation

by accumulating results from previous batches is a common prac-

tice. Thus, it is also important for all users to get the global estimate

of the mean and variance by communication. However, sharing

such a running estimate of representation mean and standard vari-

ance may leak the private information [35, 36]. For example, given

a feature vector at a specific layer, the input image can be reverted

using a conditional generative network [35, 36]. Instead of sharing

the mean and variance (BN states), we keep the values the same

as values pre-trained on ImageNet. In addition, we freeze the BN

states both during pre-training on the source domain user. In ??, we
compare the transferring of source model with or without frozen

BN states during pre-training. It turns out that freezing the BN

states will improve the zero-shot transferring in terms of target

accuracies.

Fair federated learning. We depict the network architectures

for Adult and MCI datasets in Fig. 5. For the Adult dataset, we

aim to evaluate the performance of deep networks. Thus, we use

a deeper network other than a shallow one for central algorithms

[29]. Because of the small size of the MCI dataset, we adopt a



small network architecture where only two layers of LSTM are

used for feature extraction and one layer for classification or group

identifying.
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Figure 5: Network architectures for Adult and MCI datasets.
LSTM 100 indicates a Long Short-Term Memory (LSTM) cell
with 100 hidden units.

B.3 Details of MCI datasets
Dataset Due to the mild symptoms and expansive cost of clinic

diagnosis, early detection of MCI is a hard task. To address the

challenge, MCI detection models is built on a MCI dataset, which

is collected with Intelligent Systems for Assessing Aging Change

(ISAAC), a longitudinal cohort study [18, 20]. A total of 152 partici-

pants were enrolled beginning in 2017. 12 variables are extracted

from the participants’ sensor data and clinical diagnoses was done

once a year. Meanwhile, four kinds of demographic information

are also recorded, including age, gender, education, and ethnicity,

which are potentially unfair features for each patient.

Though prior work has shown the effectiveness of machine

learning methods in diagnosis prediction [18, 25], the possibility

of training such a model fairly in a distributed framework remains

unknown. We assume the sensor data can be immediately trained

locally and only the trained models are sent to the server. The

distributed framework brings in several new challenges. First, users’

data are kept locally andmany users only have one-class data which

makes the local model less discriminative. For example, 13 users

are always diagnosed as MCI during his/her recording. Second, it

is difficult to do adversarial learning like Fig. 1b. Because the users’

group information, e.g., gender, can not be revealed to others, the

server has no idea who will be the adversarial group. Therefore,

we utilize the FADE framework to tackle these issues as illustrated

in Fig. 1c. As far as privacy is concerned, in the ISAAC protocol,

the sensor data were collected periodically by engineers such that

the user data are kept away from others. But we argue that our

extension to federated setting is practical because the data are not

directly shared.

Preprocessing. Since the records of some patients are missing

due to occasionally off-line of sensor systems, and these incomplete

samples can introduce uncertainty in our experiments, we choose

to remove some samples according to a certain missing value. To

generate samples, hundreds of days of records for each patient

will then be sliced by a moving window, and each slice is used

as a sample for training or to be predicted. The slicing is done

inside each person’s sequence without overlap. The time window

is moved in a step of 7 days. Only a subsequence of a small enough

ratio of missing values will be maintained for the current study.

The number of sequences for each patient is related to the amount

of data the patient has. For some of the patients, they have only

a small number of records. We also remove the samples of those

patients to avoid inaccurate prediction.

We have 12 varaibles in total, including gender (Rsex), years of

education (Ryrschool), race/ethnicity (Rethnic), age at each date

(ageyrs), total computer use (compuse), computer sessions (numc-

sess), track sensor line (linenum), walks (numwalks), mean walking

speed (meanws), upper quartile of walking speed (wsq3), coeffi-

cient of var of walking speed (wscv) and std deviation of walking

speed (wsstddev). We preprocess special variables in the following

specified methods. For linenum which is a sensor metric identity

value, its integer values are transformed into a one-hot encoding

form that uses the position of a single one to indicate the ID value.

RSex and Rethic variables are encoded in the same way. The ages

are transformed by 3-bin discretization. All continuous variables

are normalized within [−1, 1] by min-max scaling such that no

significant variance will occur between different variables and their

coefficients could be trained in a numerically robust way.

All the data features are collected in a relatively redundant way,

for which they should be carefully selected for better prediction

performance. We select features using mutual information, which

measures the dependency between the variables. It is equal to zero

if and only if two random variables are independent, and the higher

value means higher dependency. A special case is the linenum

variable which onlymakes sense when other walking speed features

are used. As a result, when a walking feature is selected according to

the above metrics, the linenum variable is automatically included.


