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ABSTRACT

Federated learning is a distributed learning framework that is com-
munication efficient and provides protection over participating
users’ raw training data. One outstanding challenge of federate
learning comes from the users’ heterogeneity, and learning from
such data may yield biased and unfair models for minority groups.
While adversarial learning is commonly used in centralized learning
for mitigating bias, there are significant barriers when extending it
to the federated framework. In this work, we study these barriers
and address them by proposing a novel approach Federated Adver-
sarial DEbiasing (FADE). FADE does not require users’ sensitive
group information for debiasing and offers users the freedom to
opt-out from the adversarial component when privacy or compu-
tational costs become a concern. We show that ideally, FADE can
attain the same global optimality as the one by the centralized algo-
rithm. We then analyze when its convergence may fail in practice
and propose a simple yet effective method to address the problem.
Finally, we demonstrate the effectiveness of the proposed frame-
work through extensive empirical studies, including the problem
settings of unsupervised domain adaptation and fair learning.
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1 INTRODUCTION

The last decade witnessed the surging adoption of personal devices
such as smartphones, smartwatches, and smart personal assistants.
These devices directly interface with the users, collect personal
data, conduct light-weighted computations, and use machine learn-
ing models to offer personalized services. The challenges from
privacy concerns of sensitive personal data, limited computational
resources, performance issues of localized learning all together lead
to the federated learning (FL) paradigm [4, 34]. FedAvg [32], for
example, provides an efficient and privacy-aware FL framework.
Users train models locally, upload them to a central server iter-
atively aggregated to form a global model. FL greatly alleviated
privacy concerns because the server can only access model param-
eters from the users instead of the raw data used for training.

One major challenge of FL comes from the user heterogeneity
where users provide statistically different data for training local
models [5, 9]. Such heterogeneity may come from different sources.
For example, the users may collect data under various conditions
according to preferential or usages differences. Consider the learn-
ing of handwashing behavior from accelerometers of smartwatches,
where patterns can drastically change when using different basins
worldwide. Such domain shift [19] can lead to negative impacts
during knowledge transfer among users [37]. Another common
source of heterogeneity comes from the sensitive group informa-
tion such as age, gender, and social groups, which are variables
typically not to be identified during learning. Heterogeneity from
this source is often associated with critical fairness issues [6] after
deploying the models, where groups with less resource or smaller
computation capability may be biased or even ignored during the
learning [29], and the resulting global model may perform worse
in minority groups.

Adversarial learning [12] has been a powerful approach to miti-
gate bias in centralized learning, in which an adversarial objective
minimizes the information extracted by an encoder that can be
maximally recovered by a parameterized model, discriminator. For
example, it has been applied to disentangle task-specific features
that may cause negative transfer [27], to perform unsupervised do-
main adaptation [11, 42], and recently to achieve fair learning [46].



However, there are significant barriers when applying adversarial
techniques in FL: 1) Most existing approaches follow a top-down
principle. In the context of FL, the adversarial objective requires
the server to access the sensitive group variable (e.g., gender) to
construct an adversarial loss. This requirement directly violates
the privacy consideration design for FL, and users may not want
to disclose their sensitive group variables. 2) adversarial learning
demands extra information from users for training the adversar-
ial component and imposes an additional computational burden
on smart devices that may not be able to afford. 3) besides, it re-
mains unknown how the introduction of an adversarial component
would impact the distributed learning behavior (e.g., convergence
property) of FL.

To address the challenges mentioned above, we propose a novel
adversarial framework for debiasing federated learning following a
bottom-up principle, called Federated Adversarial DEbiasing (FADE).
Besides the benefits from typical FL on communication efficiency
and data privacy, FADE aims to achieve the following goals:

e Privacy-Protecting: The learning algorithm conforms to
the privacy design of FL and does not require users’ group
variable to achieve debiasing w.r.t. the group variable.

e Autonomous: A user can choose to join and opt-out from
the adversarial component anytime (e.g., due to computa-
tional budget or privacy budget) while still participate in the
regular federated learning.

e Satisfiable: Under above restrictions, the distributed learn-
ing should output a debiased and accurate model, despite
the user heterogeneity and unpredictable user participation.

To achieve these goals, we first propose a generic algorithm for
FADE and show that ideally, it can attain the same global optimality
as the one by the central algorithm. We then show how its conver-
gence may fail in practice and propose a simple yet effective method
to address the problem. Finally, we demonstrate the effectiveness
of the proposed framework through extensive empirical studies on
various applications.

2 RELATED WORK

Federated Learning (FL) [32] is a distributed learning framework
that allows users with different capabilities to collaboratively train
a model without sharing their own data. A critical challenge in FL
is the heterogeneity among users. Viewing the learning process of
FL as knowledge transfer among different users, heterogeneity in
user data leads to negative transfer between users and compromises
generalization [3]. One idea to alleviate the negative effect from
the heterogeneity during the training, is to find the consensus
among users. For example, in [10, 14, 21, 26], the consensus on
task knowledge is achieved by distillation. In this work, we seek
an alternative and efficient approach by adversarial debiasing the
users of different groups.

Adversarial Learning has been widely applied in various domains,
such as neural language recognition [27], image-to-image (dense)
prediction [31], image generation [12], and etc. Conceptually, ad-
versarial learning aims to solve a two-player (or multi-player) game
between two adversarial objectives, which typically leads to a min-
max optimization problem. Existing approaches can be briefly cate-
gorized as: 1) Sample-to-Sample (S2S) adversarial learning, where

the adversarial objective quantifies the difference between synthetic
and real samples. Examples include adversarial learning against
adversarial attacks [30] and generative adversarial networks [12].
2) Group-to-Group (G2G) adversarial learning, which aims to reduce
the max discrepancy (bias) between group distributions, for exam-
ple, adversarial domain adaptation [11], adversarial fairness [46]
and adversarial multi-task learning [27]. All these variants assume
the availability of adversarial groups in the same computation node,
e.g., by aggregating data in Fig. 1a, and thus cannot be directly
extended to federated learning to the violation of privacy design
(requiring access of the sensitive group information). A recent effort
is done by [38] where embeddings of different groups are shared
(see Fig. 1b). Nevertheless, both sharing data and embeddings could
induce additional privacy risk and communication costs. The pro-
posed FADE eliminated these requirements, leading to private and
efficient distributed collaboration between users/groups.

3 FEDERATED ADVERSARIAL DEBIASING

In this section, we first formulate the proposed Federated Adversar-
ial Debiasing (FADE) framework. We work on the standard feder-
ated learning problem setting which learns one model from a set of
distributed participating users. Users conduct local learning based
on their own data and send the parameters of learning models to a
server periodically. The server aggregates the local models to form
a global model. We assume the users have non-iid data and each
user belongs to one of the E user groups as indicated by a group
variable (e.g., age, gender, race) that is not to be shared outside of
the local learning.

The model of each user consists of three components: a decoder
f for the learning task (e.g., classification target), an encoder G, and
a group discriminator D, as illustrated in Fig. 1c. In the two-group
setting (a data point belongs to either group 0 and 1), D outputs
a scalar in (0, 1) approximating the probability of an input data
point x belong to the group 0. More generally, for E groups, we
use a softmax mapping in the last layer of D which outputs an
E-dimensional vector. The FADE objective learns f, D, G by:

. E mg
min £(£.6)= D, D10 Lig f. ) (1)

Lig(f,G) = L¥K(£,G) + A max L}V (G, D), )

where L?‘Sk (f, G) is the task loss for the i-th user, Lli"‘;"(G, D) is the
adversarial loss, and m, is the number of users in group g. Note that
we absorb the variable model D into L; 4 in Eq. (2), and the objective
is still an optimization over f, D, G. For classification tasks, the task
loss can be defined as LIFaSk(f, G) 2 E(x,y)~pi(x,p) [E(F (G (X)), )],
where & denotes the cross-entropy loss and p; is the data distri-
bution of user i. The adversarial loss is defined as LigV(G, D) £
Ex~p; (x) [log Dg(G(x))], where Dg(G(x)) is the g-th output of the
softmax vector. The optimal solution for the min-max problem is
the adversarial balance when D is unable to tell the difference of
G(x) among groups. For the two-group case, the adversarial loss
can be modified as:

L2%(G, D) = Byp, () [1(g = 0) log D(G(x))
+1(g = 1) log(1 = D(G(x)))], 3)
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Figure 1: Illustrations of different adversarial learning frameworks for debiasing. f, D and G are classifier (task model), dis-
criminator and encoder, respectively. C;,C2, C3 represents the task supervisions, for example, ground-truth classes, in the
corresponding users. g; and g, represents the two groups of users. The encoders are adversarially trained such that the embed-
dings are informative for distinguishing Ci, Cy, C3 but not g1, go. The proposed FADE tackles a more challenging problem than
other two because of isolated and non-sharing group/user data (or embeddings) and class-wise non-iid users within groups.

where I(+) is the indicator function.

One fundamental difference between traditional adversarial learn-
ing and FADE is that FADE only has one group data in the loss
function. Hence, users have no sense of what an adversary (a user
from other groups) looks like. Directly optimizing this objective
may fail in finding the right direction towards convergence. In the
worst case, the optimal solution may not be the adversarial bal-
ance. In the next section, we will provide principled analysis to the
adversarial balance that is achievable under appropriate conditions.

We summarize the server and user update strategies in Algo-
rithms 1 and 2. The server is responsible for aggregating users’
models and dispatching the global models to users. Meanwhile,
users train the received global model and the adversarial compo-
nent using local data. Note that we use the reversal gradient strategy
to implement the min-max optimization in Algorithm 1. Our algo-
rithm enjoys the two nice properties:

Autonomous: Different from vanilla FL, FADE allows the users to
decide whether or not to join the learning of the discriminator D at
each iteration. A user can opt-in the discriminator learning at a low
frequency or completely opt-out when privacy becomes a concern
or learn with restrictive computational resources. For example, in
the adversarial domain adaptation setting [38] where some users
have supervision and some others not, some supervised user may
not want to help unsupervised users. FADE will significantly re-
duce the communication cost and privacy risk overhead involved
by cutting down the interactions form these users.

Privacy: In the proposed FADE framework, the group label g will be
restricted to local learning and the group debiasing is done through
the discriminator model D. Thus, users will not be able to obtain
the other users’ sensitive attributes including the group variable.
Moreover, following [33], the privacy of FADE can be strictly pro-
tected by directly injecting Differential-Privacy noise during the
gradient descent procedure.

4 OPTIMALITY ANALYSIS

Despite the fact that FADE enables autonomous and improves pri-
vacy in learning, it is critical to ask if the algorithm gives a satisfiable
solution and what is the optimal solution of Eq. (1). Remarkably,
FADE differs from traditional adversarial learning by Eq. (3), where

Algorithm 1 FADE User Update

Input: f, G, D received from server, learning rate 7, adversarial
parameter A, user data distribution p;
1: ﬁ),D(), G() = f, D, G
2: fort=1,...,Kdo
3 Sample a batch by x ~ p;(x) or (x,y) ~ pi(x,y)

4: z «— G(x)
aL?Sk aL?dv
5: Vf — T, VD «— oD
6: if adversarial game D is accepted by user i then
oz [oL™k oL

7: VG(—m(alz +/1<9'Z
8: Dyy1 « Dy + I]VD

9: Gt+1 — G[ - l]VG
10: else .

. Iz aLi'as
11: Vg « el
12: Dyy1 < Dy
13: G[+1 — Gt - UVG
14: ﬁ+1 «— ﬁ — I]Vf

Output: fx1, Gk+1, Dx+1

Algorithm 2 FADE Server Aggregation

Input: Initial models f, D, G, momentum parameter j
1: fortel, -+, Tpax do

2: Select m active users uniformly at random into A
3 Broadcast 0; = (f;, G, Dy) to m users

4 for user i in A in parallel do

5 User updates by Algorithm 1

6: Aggregate {(91{c = (fti, G;,Dl’;)}i’il and average

m nj ;
O =B N0 = po
Output: f;, G, D;

only one group is used to evaluate the adversarial objective. This
imposes a unique challenge in learning as it may compromise the
convergence of learning. Below we give formal analysis of the opti-
mality when Algorithm 2 is iterated with users from two groups in



non-zero probability. Since most of multi-group adversarial prob-
lems can be transformed into two-group problems, we focus on
discussing the two-group case for the ease of analysis.

Consider the case when each group only has one user. The data
distributions for the two users are p; and py, respectively. We single
out the min-max optimization in Eq. (1) as:

min max By, [log D(G(x))] +Ep, [log(1 — D(G(x)))].

For simplicity, we denote G(x) by z and slightly abuse p;(x) by
p1(2) in our discussion. Hence, we can define:

Dp,.p, = maxEp, [log D(z)] +Ep, [log(1 — D(2))].

which is the maximal discrepancy between p1(z) and p,(z) that
D can characterize. Now, we can rewrite the min-max problem as
ming Dy, p, (G) which minimizes the distribution distance over z.
Alternatively, we can formulate it by miny, 5, Dp, p, since p; and
p2 are parameterized by G.

Because users may participate federated learning at varying
frequencies, we use an auxiliary random variable & € {0, 1} for
i = 0,1 to denote whether the user is active for training. We assume
&; is subject to the Bernoulli distribution, B(1, a;). Plug &; into Dy, p,
to obtain Dy, p, = maxp Ep, [£11og D(z)] + Ep, [&2log(1 — D(2))]
and take expectation:

1~)P1’P2 2 E§1,§z [Dpl,Pz]
= mlz)ix Ep, [a1log D(2)] +Ep, [az21og(1 - D(2))]. (4

Therefore, our problem is transformed as minimizing ﬁpl,pz-
Note that with p; and p; given, the solution of the maximization
in Dp, p, is:
a1p1(z)
a1p1(2) + azpa(z)’

with which we can derive the optimality sufficiency as below.

Dgy e, (2) = ®)

Theorem 4.1. The condition p1(z) = p2(z) is a sufficient condition
for minimizing Dy, p, and the minimal value is a1 log a1 +az log ap+
(o1 + az) log(ag + a2).

Theorem 4.1 shows that even if some users are inactive, the distri-
bution matching, p; = py, remains a sufficient optimality condition.
We remark that the above result can be generalized to multiple
users when all users are iid and &; represent the ratio of group i in
users. In addition, we notice Theorem 4.1 does not guarantee a sta-
ble convergence or exclude other undesired solutions. We discuss
these issues in the following.

4.1 The effect of imbalanced groups

Although Theorem 4.1 shows the optimality of the matched distri-
bution, the optimization may still fail to converge especially when
one group of users are relatively inactive, e.g., @1 < az. When
a1 < ap or reverse, we call the situation as imbalanced groups. The
imbalanced groups happens because the users are free to quit or
joint the training. From Eq. (5), we observe that D*(x) will be less
sensitive to changes of p1 (x) if @1 < ag, and vice versa. Meanwhile,
log D*(x) — —oo and Dy, 5, approaches the minimum even if p;
and p; are quite different.

Theorem 4.2. Let € be a positive constant. Suppose |log p1(x) —
log p2(x)| < € for any x in the support of p1 and p,. Then we have
Dy, p, = O(a1€/ (a1 + a2)) when a1 < a.

Theorem 4.2 reveals that the imbalance between groups could
greatly reduce the sensitivity of the discrepancy e between p; and
p2. A less sensitive discriminator will ignore the minor differences
between groups. The importance of discrepancy sensitivity for the
adversarial convergence was also discussed in [2]. It is easy to see
the negative impact of the low sensitivity: 1) higher communication
cost incurs due to more communication rounds are required to
check the discrepancy; 2) the optimization possibly fails to converge
due to vanished gradients (scaled by a7).

4.2 Squared adversarial loss

In Eq. (4), when a1 — 0 and @z — 1, we notice that ]3111,1]2

approaches 0 while Ep, [log D(z)] — —co. In other words, the

large value of Ep, [log D(2)] is neglected due to its coefficient ;.

To re-emphasize the value, a heuristic method is to increase the

weight when [E,, [log D(z)]]| is large. Thus, we propose to replace
d .
L?’g"(G, D) by:

adv L ady 2

L95(D.6) = — (L (G.D)) ©)

which we call squared adversarial loss. We can write the correspond-

ing discrepancy ﬁglﬂz as:

min @By, [log D(2)] + azEj, [log(1 - D(2))].

Though we derive the squared adversarial loss in a heuristic
manner, the loss can be explained in the view of resource-fair fed-
erated learning [22]. Because the adversarial objective pays more
attention to the frequent group, we can interpret the problem as
the unfairness between groups. Following [22], we generalize our
adversarial loss function as:

1
L%(D,G) = (-T2, [(D,G:v)| )
-9 q k
where g > 1. If ¢ = 1, the loss degrades to the vanilla one.

4.3 The effect of non-iid users

It is well-known that typical federated learning approaches suf-
fer from very heterogeneous users since they sample data from
very different distributions. The adversarial objective captured and
decreases the group heterogeneity by design. Another kind of het-
erogeneity is related to the users’ tasks. We argue that the hetero-
geneity is natural and could be essential for the task discriminability
but may be accidentally eliminated by adversarial learning. For ex-
ample, three users are non-iid by three classes. After FADE training,
the non-iid users collapse to the similar distributions due to the
wrong sense of the group discrepancy.

To prove the existence of user-collapsed solution for FADE, we
consider z ~ p(z|T = t), or simply z ~ p(z|t), where t is a discrete
hidden variable related to users’ tasks. For example, each user has
one class of samples in classification tasks. Then ¢ is the correspond-
ing class. In addition, we define p;(z) = % i2q p(z|t) which is
a p.d.f. For simplicity, we assume all users always participate the



learning, i.e., a; = 1 for all users. Hence, we can obtain Dy, ,, as

max )" Ep(eyp) [og D(2)] +Ep, llog(1 - D())]
= max mEj, () [log D(z)] + Ep, [log(1 - D(2))],

mpi ()
mp1 (2)+p2(2)
derivations as in Theorem 4.1, we can show that p;(z) = p2(z) isa

sufficient optimality condition, which implies:

D bl = mpa(2). ®)

m

First, we can still obtain p1(z) 22, p(t|z)/p(t) = mpa(z) from

p(tlz) m p(t|z)
P 2= 0
we can get the vanilla solution, p1(z) = p2(z).

Except for the vanilla solution, a trivial solution to Eq. (8) is
p(z|t) = p2(z). However, the solution could hurt the task utility
since it may eliminate the inherent difference between tasks. For
instance, if ¢ represents the classification label, the solution will
vanish the discriminability of the representation z. We call the
scenario as the user collapse. It worth noticing that user collapse
could happen even if the p; and p; are matched.

whose maximizer is given by: D*(z) = Use similar

Eq. (8) where we use p(z|t) = p1(z) = m, then

4.4 Mitigate user collapse

m  p(t]z)
t=1 p(t)

need to constraint the feasible solutions such that the collapsed
ptlz) _ _pt2)

p() — p(z)p(1)
the mutual information between t and z. Conceptually, we can
modify the adversarial loss to:

L2(D,G) = L;.*fg‘yz (D, G) + I(G(x); t]i),

Since there are arbitrarily many solutions to }; =m, we

solution will be eliminated. Notice is related to

where I(G(x); t]i) is the mutual information conditioned on user i.
Because mutual information is hard to estimate in practice (espe-
cially given few samples), we provide some surrogate solutions.

If the t represents the class labels and supervision is available,
then I(G(x); t|i) is already encouraged by Ltask 1f supervision is not
available, we may maximize the entropy of the output of classifier
f such that the correlation between user’s tasks and representa-
tions will not disappear during training. Useful techniques were
previously exploited for unsupervised domain adaptation, e.g., [28],
and we defer the technique details to Section 5.2.

4.5 Privacy risks from malicious FADE users

Our analysis suggests the feasibility of using adversarial training in
the federated setting. The distribution matching is achievable under
variety of cases including imbalanced groups, although the success
rate may vary. But such power also implies potential privacy over-
head associated with FADE. Consider a malicious user i who wants
to steal data from others, FADE can match p; (x) with a victim’s data
pj(x). The empirical study in [16] also discussed the risk where a
malicious attacker may take advantage of the discriminator to steal
other users’ data. Our results in Theorem 4.1 theoretically show
that the attack is possible in general. During the learning of the
adversarial discriminator, injecting predefined noise is known to be
effective to defend such attacks [41]. Meanwhile, users could quit or
frequently opt-out the federated communication when the privacy
budget (quantified by noise and Differential Privacy metric [7]) is

low. Based on Theorem 4.2, when more and more users opt-out
the communication, the adversary’s discriminator can hardly sense
one victim’s distribution.

5 EXPERIMENTS ON UNSUPERVISED
DOMAIN ADAPTATION

In this section, we evaluate the FADE algorithms on Unsupervised
Domain Adaptation (UDA) [10, 24, 38]. UDA aims to mitigate the
domain shift between supervised and unsupervised data such that
the trained classifiers can generalize to unlabeled data. We call the
supervised user (domain) as the source user (domain). Each domain
may include multiple users.

Related work. [38] is among the first to discuss the adversarial
UDA under federated constraint, through sharing the embedding
of samples. However, we consider a more challenging problem,
a federated adversarial learning without sharing data. Recently,
learning without access to the source data has gained increasing
attention. [24] (SHOT) considered the domain adaptation only using
the source-domain model which surprisingly outperformed most
traditional UDA with source supervisions. However, its success
relies on the pre-matched representation distribution (but not well
discriminated) by batch normalization (BN) layers. In the FADE
setting, the BN layers will fail to match representations since the
local estimate of their mean will be easily biased. In addition, in
[10], distillation is used to avoid directly passing data. Differing
from [10], FADE is more efficient since it does not need to upload
all models from source domain to target domain. For example, if Mj
users (M;) in source (target) domain take part in training, sending
models will involves MsM; communication. Instead, FADE only
use Ms + M; times to communicate between domains.

Network architectures. We adopt the same network architec-
ture as the state-of-the-art of UDA [23]. As presented in Fig. 4, we
first use a backbone network to extract sample features. Specifically,
we use modified LeNet [28] for digit recognition, ResNet50 [15] for
Office and Office-Home datasets, and ResNet101 for the VisDA-C
dataset. We use an one-layer bottleneck to reduce the feature dimen-
sion. After the bottleneck, we get a representation of 256-dimension.
A single fully-connected layer is used for classification at the end.
The discriminators are small-scale networks to match the capability
of the classifiers. The networks and algorithms are implemented
using PYTORcH 1.7. The ResNet backbones pre-trained on ImageNet
are retrieved from the torchvision 0.8 package.

5.1 Digit recognition with imbalanced groups

As discussed in Section 4.1, group imbalance could result in the
mismatch of group distributions. Here, we empirically evaluate the
effect of the imbalanced groups on convergence, adversarial losses
and utility performance.

Digit dataset is a standard UDA benchmark built on digit images
collected from different environments. 10 digits, from 0 to 9, are
included. We follow the UDA protocol of [17] and use two subsets:
MNIST and USPS. MNIST dataset contains 60, 000 training images
and 10, 000 testing 28 X 28 gray-scale images. USPS consists of 7291
training and 2007 testing 16 X 16 gray-scale images. We augment
the USPS training set by resizing and random rotation.
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Figure 2: Comparison of vanilla adversarial loss versus the squared adversarial loss on MNIST-to-USPS (top) and USPS-to-
MNIST (bottom) UDA. We vary the probability of target users. For both UDA experiments, the SOTA central methods [23] can
achieve over 98% accuracies. From left to right, the columns are target domain accuracies, classification losses and adversarial

losses of target domain users.

Table 1: Averaged classification UDA accuracies (%) on Office and OfficeHome dataset with 3 non-iid target users and 1 source
user. Underlines indicate the occurrence of non-converged results. Standard deviations are included in brackets.

Method A—D A->W D—A D->W W—-A W-D Re—Ar Re—Cl Re—Pr Avg.
Federated methods
Source only 79.5 73.4 59.6 91.6 58.2 95.8 67.0 46.5 78.2 72.2

non-iid target users w/ 20 (Office) or 45 (OfficeHome) classes per user

FADE-DANN
FADE-CDAN

85.4(1.9) 81.8(1.8) 43.1(33) 97.7(0.5) 64.8(0.5) 99.7(0.2) 46.4(37) 34.9(27) 78.8(0.1) 70.3
92.3 (1.2) 91.6 (0.5) 65.9 (9.3) 98.9 (0.2) 70.2 (0.8) 99.9(0.1) 70.3 (1.6) 54.9 (4.6) 82.2(0.1) 80.7

FedAvg-SHOT 83.6(0.5) 83.1(0.5) 64.7 (14) 91.7(02) 64.7(2.2) 97.4(0.5) 70.7 (0.5) 55.4 (0.5) 80.1(0.3) 76.8
iid target users

FADE-DANN
FADE-CDAN

84.2(1.5) 81.3(0.4) 66.3(0.3) 97.5(1.2) 59.4(10.6) 99.9 (0.2) 67.3(0.9) 51.3(0.4) 79.0(0.6) 76.2
93.6 (0.8) 92.2 (1.3) 71.2 (1.0) 98.7 (0.4) 71.3 (0.7) 100 (0.0) 70.6 (1.3) 55.1(1.0) 82.3 (0.2) 81.7

FedAvg-SHOT 96.3 (0.5) 94.3 (1.1) 70.9 (2.0) 98.4(0.4) 72.7 (0.9) 99.8 (0.0) 74.8 (0.3) 60.0 (0.1) 84.9 (0.2) 83.6

Central methods

ResNet [15] 68.9 68.4 62.5 96.7
Source only [23]  80.8 76.9 603 95.3
DANN [11] 79.7 82.0 68.2 96.9
CDAN [28] 92.9 9.1 71.0 98.6
SHOT [23] 94.0 90.1 74.7 98.4

60.7 99.3 53.9 41.2 59.9 67.9
63.6 98.7 65.3 45.4 78.0 73.8
67.4 99.1 63.2 51.8 76.8 76.1
69.3 100 70.9 56.7 81.6 81.7
74.3 99.9 73.3 58.8 84.3 83.1

Setup. We assume 2 users from source and target domain, respec-
tively. In each round, we select one user with predefined probability.
For example, the case that source and target users are of 0.05 and
0.95 probability implies severe imbalance. If a user/group has high
probability, that means the user/group will actively participate in
the adversarial learning and the other will activate less. The experi-
ment can also be generalized to multiple users in same frequency
while one domain has more users. Both situations imply the imbal-
ance between two groups. In experiments, we fix the batch size to
32 and run one user per communication round. In total, we train
the users for global 8600 rounds. In each global round, the users
will train locally for 10 iterations. Experiments are repeated 3 times

with three fixed seeds. At the beginning, we train the models with
adversarial coefficient A = 0 when all source users are involved
until the classification loss converges. Then, we follow [11, 23]
to use the decaying schedule of learning rates and schedule the
adversarial coefficient A from 0 to 1.

Results are reported in Fig. 2. Left two figures show the nega-
tive impact of imbalanced groups. When the imbalance is severe
(large or small target probability), the drop in target accuracies
is more obvious. In the middle pane, the convergence curves of
imbalanced groups fluctuate more significantly and fail to converge.
In the last pane, the imbalanced cases have large adversarial losses
which barely decrease by federated iterations. It explains why the



corresponding classification tasks fail to converge. When using
the squared adversarial losses, the ignored adversarial losses of
low-frequent users are reduced during federated learning. Mean-
while, the convergence of utility losses are faster. Thus, the negative
impact of imbalanced groups is mitigated.

5.2 Object recognition with non-iid users

In Section 4.3, we prove that the non-iid distribution of users will
lead to a trivial solution which may lose the natural discrepancy
between users. For federated classification learning where each
user only has a partial set of classes, the loss of user discrepancy
will make the representations non-discriminative to classes. Here,
we conduct experiments to reveal the impact of the non-iid users.

Dataset. We adopt three object recognition datasets, Office [40]
(small size), Office-Home [44] (medium size) and VisDA-C [39]
(large size), including image of office products. The former two
are standard benchmarks widely used for UDA. The Office dataset
contains three domains: Amazon (A), DSLR (D) and Webcam (W)
with 2817, 498, 795 images, respectively. 31 object classes of im-
ages are taken under different office environments (corresponding
to domains). The Office-Home datasets have 65 categories and 4
domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr),
and Real-World images (Re) with 2427, 4365, 4439 and 4357 images,
respectively. The VisDA dataset is a challenging large-scale bench-
mark. The source domain comprises 12-way synthetic classification
data. In total, 1.5 X 10° images are synthesized by rendering 3D
models and are adapted to 55, 000 unlabeled real-world images.

Setup. In total, 4 users are generated from two domain datasets.
First, we let the single source domain user with all classes. Second,
we generate 3 non-iid target domain users with partial set of classes
following the standard federated setting [32]. For Office dataset,
each user has 20 classes and adjacent users have consecutive classes
with 10-class stride. For instance, user 1 has class 0 to 20 and user 2
has class 10 to 30. For OfficeHome dataset, each user has 45 classes
with 20-class stride. For VisDA-C dataset, each user has 5 classes
with 4-class stride. All users in the same domain will have the
same number of samples. We select 2 users per communication
round when training on OfficeHome. For VisDA-C dataset, we
adopt 1 user per round. In this case, the major difficulty comes from
non-iid distributions of users conditioned on the subset of classes.
In experiments, the parameters for SHOT follows [23]. Details of
network architectures and learning rate schedules are discussed
in Appendix B.

Baselines. We compare different UDA methods extended by
FADE upon the presence of non-iid users. DANN [11] is the first
work on adversarial domain adaptation based on which many recent
methods are developed. CDAN [28] is the first to condition the
discriminator prediction on the estimated classes, which aligns
with our purpose to maximize the mutual information between
user (related to classes) and representation. SHOT [23] (extended
by FedAvg [32]) is the current state-of-the-art method in domain
adaptation which does not use source data, assuming approximately
mitigated domain shift.

Results. We summarize the results in Tables 1 and 2. Note that
the straightforward extension of DANN without constraints will

Table 2: Comparison of target accuracies on Visda-C dataset.

Methods  Source only DANN SHOT CDAN
Central 46.6 57.6 82.9 73.9
FADE 543 564  69.2  73.1 (+SHOT)

suffer from the user heterogeneity. Therefore, we observe cata-
strophic failures by DANN, for example, D—A with only a low
accuracy. This kind of failures happens when both D (498) is of less
samples than A (2817). The possible reason is that the discrimina-
tors fail to sense the position of target domain batches which is a
small ratio of all target-domain samples and changes frequently
by iterations. In comparison, when regulated by estimated classes,
SHOT and methods combined with SHOT perform better. Notably,
because SHOT relies on BN states to mitigate domain shift, its ac-
curacies are much worse than its central version. Since SHOT can
provide pseudo supervisions which conditions on the estimated
users’ local classes, DANN+SHOT outperforms DANN. In reverse,
DANN helps SHOT to mitigate the domain shift. We further ex-
plore CDAN+SHOT, which conditions group discrimination on
local classifier outputs (correlated to users’ classes). As a result,
CDAN+SHOT outperforms other methods and is close to the cen-
tral version of CDAN. Plus, CDAN+SHOT achieves the best average
accuracies when the number of users per round varies from 1 to 4.
Remarkably, in the hardest case where only one user is trained per
round, CDAN+SHOT gains the best accuracies on 8 out of 9 tasks.
In a more challenging large-scale VisDA-C dataset, CDAN+SHOT
also shows its advantage against other baselines (see Table 2). We
note that adversarial methods are more robust to the non-iid users.

6 EXPERIMENTS ON FAIR FEDERATED
LEARNING

The fair federated learning is motivated by the imbalanced groups
in training. For example, when vendor rallies people to use their
software and train model with locally collected data, the global
model may be biased by the majority, e.g., male users. When a user
from another gender uses the software, she/he may find that the
model performs poorly. As a result, the minority group vanishes
while majority continues to dominate. Thus, a method actively
debiasing w.r.t. the groups will be essential to defend the tendency.

Related work. The fairness in federated learning was first dis-
cussed in [22] where users are thought to have different capability
for computation. Fairness was enforced by increasing the weights
of large loss, which was less optimized. In this experiment, we
consider the unfairness brought by the difference of group distribu-
tions. With FADE, we use a discriminator locally to justify whether
the user’s representations are biased from the other group. Related
central algorithms have been exploited [8, 29, 45]. To the best of
our knowledge, we are the first to encourage such group-based
fairness in federated setting. Importantly, our method preserve the
privacy of group variables. The concerns of the privacy of group
variables was previously discussed [13]. In [13], Hashimoto et al. as-
sumes the group membership and number of groups are unknown
to the central learning server, when users interact with the system
and contribute data. Our FADE extends the setting to a distributed
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Figure 3: FADE with/without adversarial losses. In each subfigure, left is fairness measured by AEO where smaller values
indicates better fairness; right is the trade off between fairness and utility where left-top is the preferred balance.

framework where the private group information is still unknown
to other parties including the aggregation server.

We utilize the Equalized Odds (AEO) to evaluate the degree of
fairness. Consider a binary classifier f : Z — {0, 1} predicting
label variable y when representations (z € Z) are sampled from
two groups. We denote the conditional p.d.f. p(z|g, y) as zg,, which
shapes the probability of z at group g and class y. An algorithm is
said to be fair if the positive AEO (defined below) is close to 0.

AEO £ [Ezy, [f(2)] = Bz, [f(2)]]
+ |EZO,1 [1-f(=)]- Ez, [1- f(z)” )]

which comprises the absolute difference in false positive rates and
the absolute difference in false negative rates.

6.1 Fair adult income prediction

Dataset. We evaluate our algorithm on the UCI Adult dataset!
which is a standard benchmark for fair classification. The dataset
consists of over 40,000 vector samples from the 1994 US Census.
Each sample includes 14 attributes predicting if his/her income is
over 50,000 dollars.

Setup. We adversarially disentangle the unfair representations
from the gender. When keeping the total data size fixed, we con-
struct one female user and vary the number of male users. Each
synthesized user evenly split the samples in the group. We run
FADE for 8,000 communication rounds. In every round, 2 users are
selected to train for 1 local iteration on a batch of 64 samples. The
accuracies and fairness are evaluated on the left-out 10% samples.
The network structure is in Fig. 5. We set hyper-parameters as
B = 0.5 and the initial learning rate as 1073,

Results are depicted in Fig. 3a. Without adversarial training,
the unfairness is aggravated when the imbalance between groups
worsens. When more male users are involved, the squared adversar-
ial loss is able to further improve the fairness. Instead, the vanilla
adversarial learning performs better when the two groups are bal-
anced. Both adversarial losses will maintain the utility performance
close to the non-adversarial method.

6.2 Fair MCI detection

Dataset. Mild Cognition Impairment (MCI) is the pre-symptom of
Alzheimer’s Disease (AD) which typically happens on elders. Early
detection of MCI is important for prevention of AD occurrence and
treatment [1, 43]. Details of the dataset is comprised in Appendix B.3

Thttps://archive.ics.uci.edu/ml/datasets/adult

where females forms the majority group (over 94%). The prediction
task here is to classify the disease condition, Normal Cognition
(NC) or MCI, based on the daily activities (walking speed, etc.).

Setup. In the original dataset, there are 88 users with different
number of samples. We notice the imbalance between NC and
MCI users will greatly degrade the model quality. To focus on our
fairness task, we manually select 26 users such that 13 users was
diagnosed as NC at least once and the other 13 ones are stable
MCI patients. Because male users are much fewer than female ones,
we prefer to select male users when balancing the two classes.
After downsampling, users have 39 samples on average. Among
the 26 users, there are 6 males and 20 females in total. Details
of features, preprocessing and network architectures are deferred
to Appendix B.3. We set hyper-parameters as = 0.5, the initial
learning rate as 10”2 and batch size as 16. In the 700 communication
rounds, we first train without adversarial losses for 400 rounds and
then schedule the A and learning rates as the Adult experiments.

Results. We compare the convergence of the training F;-score
(utility) and AEO (fairness) by varying the number of users per
round. As shown in Fig. 3b, the unfairness is obvious with AEO over
0.2 when no adversarial losses are used. We see that the vanilla ad-
versarial loss failed to debias in most cases. In contrast, the squared
adversarial loss stably debias the unfair performance in all cases.
When the number of users per round is less than 10, even the
non-adversarial loss is more fair. The natural debiasing could be
attributed to the random selection of users, which breaks the domi-
nation of one group in a short span.

7 CONCLUSION

In this work, we propose a unified framework for federated ad-
versarial learning called FADE. Our framework preserves the user
privacy and allows user to freely opt-in/out the learning of the
adversarial component. To our best knowledge, we are the first to
study the properties of adversarial learning in the federated setting.
We presented the potential challenge and solution for the FADE,
and identified a gap between FADE and its centralized counterpart
as an open question for our future work.
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A PROOFS

ProOF OF THEOREM 4.1. Substitute Dy, ,. (2) into Eq. (4):

By, s = Epy o log #&M
+Ep, [z log #Z(sz(z)
=KL [Pl %]
+ a2KL [pz %]

+ a1 logag + az log ay

+ (a1 + a2) log(a1 + a2)
> a1 loga + azlogap

+ (a1 + a2) log(ag + a2)

where the last inequality is from the non-negative property of KL

divergence.
Note when p; = p, both KL divergence is 0. Thus, we can
conclude that p; = p is the sufficient condition. O

Proor or THEOREM 4.2. For the ease of derivation, we assume
a1 and ap are normalized s.t. @1 + @z = 1. From |log p1(x) —
log p2(x)| < €, we can get

e € < p1(x)/pa(x) < €,
e € < pa(x)/p1(x) < €.
Thus,

1
KL [p1 la1p1 + azpa] = | p1l __ P
[1|11 22] /xlog(ll 22)

</ 1 !
- xpl o8 ay +age”€

= ¢ —log(ae€ + o).

Similarly,

2
KI a1pl +a = log [ — P2
[p2 la1p1 + azp2] /xpz Og( B 2)

</ 1 !
- xpz o8 are” € +ap

=€ —log(a; + aze®).
Therefore,
ﬁPI)PZ = ai[e - log(aie +az)]
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+ aq logag + azlog ay
=¢e—ajlog(e® +az/m)
—azlog(e€ + ar/az)
<0((1-az)e)
= O0(a€/ (a1 + a2))

where we manually add (a7 + @) to normalize ;. O

B EXPERIMENT DETAILS
B.1 Dynamic schedules

We use dynamic schedules for learning rates and the adversarial
parameter A following previous work [11]. Specifically,

1
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where K is the number of local iterations and Ty, is the number
of global rounds. Notably, 7, is schedule locally and A; is scheduled
globally.

B.2 Network architectures
Federated UDA. The network architectures are presented in Fig. 4.
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Figure 4: Network architectures for digit and object datasets.
WN denotes the weight-norm layer [23] and FC 256 denotes
fully-connected layer with 256 units. GRL is the gradient re-
versal layer [11].

Batch normalization in FADE. During training, we share the
parameters of ResNet between users. Notably, in ResNet, batch nor-
malization (BN) layer is densely embedded in different depth. The
BN layer is known to be important for transferring between distinct
domains, because the hidden representations will be normalized
with mean and variance estimated from a batch. Because such esti-
mation could be easily biased by a small batch, running estimation
by accumulating results from previous batches is a common prac-
tice. Thus, it is also important for all users to get the global estimate
of the mean and variance by communication. However, sharing
such a running estimate of representation mean and standard vari-
ance may leak the private information [35, 36]. For example, given
a feature vector at a specific layer, the input image can be reverted
using a conditional generative network [35, 36]. Instead of sharing
the mean and variance (BN states), we keep the values the same
as values pre-trained on ImageNet. In addition, we freeze the BN
states both during pre-training on the source domain user. In ??, we
compare the transferring of source model with or without frozen
BN states during pre-training. It turns out that freezing the BN
states will improve the zero-shot transferring in terms of target
accuracies.

Fair federated learning. We depict the network architectures
for Adult and MCI datasets in Fig. 5. For the Adult dataset, we
aim to evaluate the performance of deep networks. Thus, we use
a deeper network other than a shallow one for central algorithms
[29]. Because of the small size of the MCI dataset, we adopt a



small network architecture where only two layers of LSTM are
used for feature extraction and one layer for classification or group
identifying.
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Figure 5: Network architectures for Adult and MCI datasets.
LSTM 100 indicates a Long Short-Term Memory (LSTM) cell
with 100 hidden units.

B.3 Details of MCI datasets

Dataset Due to the mild symptoms and expansive cost of clinic
diagnosis, early detection of MCI is a hard task. To address the
challenge, MCI detection models is built on a MCI dataset, which
is collected with Intelligent Systems for Assessing Aging Change
(ISAAC), a longitudinal cohort study [18, 20]. A total of 152 partici-
pants were enrolled beginning in 2017. 12 variables are extracted
from the participants’ sensor data and clinical diagnoses was done
once a year. Meanwhile, four kinds of demographic information
are also recorded, including age, gender, education, and ethnicity,
which are potentially unfair features for each patient.

Though prior work has shown the effectiveness of machine
learning methods in diagnosis prediction [18, 25], the possibility
of training such a model fairly in a distributed framework remains
unknown. We assume the sensor data can be immediately trained
locally and only the trained models are sent to the server. The
distributed framework brings in several new challenges. First, users’
data are kept locally and many users only have one-class data which
makes the local model less discriminative. For example, 13 users
are always diagnosed as MCI during his/her recording. Second, it
is difficult to do adversarial learning like Fig. 1b. Because the users’
group information, e.g., gender, can not be revealed to others, the

server has no idea who will be the adversarial group. Therefore,
we utilize the FADE framework to tackle these issues as illustrated
in Fig. 1c. As far as privacy is concerned, in the ISAAC protocol,
the sensor data were collected periodically by engineers such that
the user data are kept away from others. But we argue that our
extension to federated setting is practical because the data are not
directly shared.

Preprocessing. Since the records of some patients are missing
due to occasionally off-line of sensor systems, and these incomplete
samples can introduce uncertainty in our experiments, we choose
to remove some samples according to a certain missing value. To

generate samples, hundreds of days of records for each patient
will then be sliced by a moving window, and each slice is used

as a sample for training or to be predicted. The slicing is done
inside each person’s sequence without overlap. The time window
is moved in a step of 7 days. Only a subsequence of a small enough
ratio of missing values will be maintained for the current study.
The number of sequences for each patient is related to the amount
of data the patient has. For some of the patients, they have only
a small number of records. We also remove the samples of those
patients to avoid inaccurate prediction.

We have 12 varaibles in total, including gender (Rsex), years of
education (Ryrschool), race/ethnicity (Rethnic), age at each date
(ageyrs), total computer use (compuse), computer sessions (numc-
sess), track sensor line (linenum), walks (numwalks), mean walking
speed (meanws), upper quartile of walking speed (wsq3), coeffi-
cient of var of walking speed (wscv) and std deviation of walking
speed (wsstddev). We preprocess special variables in the following
specified methods. For linenum which is a sensor metric identity
value, its integer values are transformed into a one-hot encoding
form that uses the position of a single one to indicate the ID value.
RSex and Rethic variables are encoded in the same way. The ages
are transformed by 3-bin discretization. All continuous variables
are normalized within [—1,1] by min-max scaling such that no
significant variance will occur between different variables and their
coefficients could be trained in a numerically robust way.

All the data features are collected in a relatively redundant way,
for which they should be carefully selected for better prediction
performance. We select features using mutual information, which
measures the dependency between the variables. It is equal to zero
if and only if two random variables are independent, and the higher
value means higher dependency. A special case is the linenum
variable which only makes sense when other walking speed features
are used. As a result, when a walking feature is selected according to
the above metrics, the linenum variable is automatically included.



