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ABSTRACT
Recent years have seen a rapid growth of utilizing graph neural net-

works (GNNs) in the biomedical domain for tackling drug-related

problems. However, like any other deep architectures, GNNs are

data hungry. While requiring labels in real world is often expensive,

pretraining GNNs in an unsupervised manner has been actively

explored. Among them, graph contrastive learning, by maximizing

the mutual information between paired graph augmentations, has

been shown to be effective on various downstream tasks. However,

the current graph contrastive learning framework has two limita-

tions. First, the augmentations are designed for general graphs and

thus may not be suitable or powerful enough for certain domains.

Second, the contrastive scheme only learns representations that

are invariant to local perturbations and thus does not consider the

global structure of the dataset, which may also be useful for down-

stream tasks. In this paper, we study graph contrastive learning

designed specifically for the biomedical domain, where molecular

graphs are present. We propose a novel framework called MoCL,

which utilizes domain knowledge at both local- and global-level to

assist representation learning. The local-level domain knowledge

guides the augmentation process such that variation is introduced

without changing graph semantics. The global-level knowledge

encodes the similarity information between graphs in the entire

dataset and helps to learn representations with richer semantics.

The entire model is learned through a double contrast objective.

We evaluate MoCL on various molecular datasets under both linear

and semi-supervised settings and results show that MoCL achieves

state-of-the-art performance.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Applied computing → Bioinformatics.
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1 INTRODUCTION
Graph neural networks (GNNs) has been demonstrated to achieve

state-of-the-art performance on graph-related tasks such as node

classification [13, 38, 40], link prediction [48] and graph classifica-

tion [9, 38, 42]. It has also been frequently used in the biomedical

domain recently to tackle drug-related problems [18, 30, 32]. How-

ever, like most deep learning architectures, it requires large amount

of labeled data to train whereas task-specific labels in real world

are often of limited size (e.g., in biomedical domain, requiring la-

bels such as drug responses from biological experiments is always

expensive and time consuming). Therefore, pretraining schemes on

GNNs have been actively explored recently.

One line of works focuses on designing pretext tasks to learn

node or graph representations without labels. The predefined tasks

include graph reconstruction [12, 14, 45] and context prediction [11,

22]. The other line follows a contrastive learning framework from

computer vision domain [5, 41], in which two augmentations are

generated for each data and then fed into an encoder and a projec-

tion head. By maximizing the mutual information between the two

augmented views, the model is able to learn representations that

are invariant to transformations. In particular, [44] proposed four

types of augmentations for general graphs and demonstrated that

contrastive learning on graphs is able to produce representations

that are beneficial for downstream tasks.

However, contrastive learning on graphs has its unique chal-

lenges. First, the structural information and semantics of the graphs

varies significantly across domains (e.g., social network v.s. molec-

ular graphs), thus it is difficult to design universal augmentation

scheme that fits all scenarios. It has been shown that general aug-

mentations can be harmful under a specific domain context [44].

Second, most current graph contrastive learning frameworks learn

invariant representations while neglect the global structure of the

https://doi.org/10.1145/3447548.3467186
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entire data [1], e.g., some graphs should be closer in the embedding

space due to their structural similarity. Nevertheless, modeling sim-

ilarity between graphs itself is still a difficult problem [2]. Third, the

contrast schemes are not unique because graph tasks can happen at

different levels, e.g., node-graph contrast [10], node-node contrast

[47], graph-graph contrast [44] are all possible contrast schemes.

Besides these unique challenges for graphs, contrastive learn-

ing itself also has unsolved problems. For example, accurately es-

timating mutual information in high dimension is difficult [23].

The connection between mutual information maximization and

the success of contrastive learning is still not clear. In fact, [37]

found the connection is actually weak, while instead metric learn-

ing shares some intrinsic connections with contrastive learning.

These findings also motivate us to pay more attention to the role

of augmentation schemes and global semantics of the data in order

to improve contrastive learning on graphs.

Therefore, in this paper, we aim to tackle the aforementioned

challenges in the context of biomedical domain, where molecu-

lar graphs are present. Our goal is to improve representations

by infusing domain knowledge into the augmentation and con-

strast schemes. We propose to leverage both local-level and global-

level domain knowledge to assist contrastive learning on molecular

graphs. In particular, unlike general augmentations in which nodes

and edges in a graph are randomly perturbed, we propose a new

augmentation scheme called substructure substitutionwhere a valid

substructure in a molecule is replaced by a bioisostere that intro-

duces variation without altering the molecular properties too much.

The substitution rules are derived from domain resource and we

regard it as local-level domain knowledge. The global-level domain

knowledge encodes the global similarities between graphs. We pro-

pose to utilize such information to learn richer representations via

a double contrast objective.

Leveraging domain knowledge to assist contrastive learning has

rarely been explored in literature and our work is the first to make

this attempt. In summary, our contributions are as follows:

• Wepropose a new augmentation scheme formolecular graphs

based on local-level domain knowledge such that the seman-

tics of graphs do not change in the augmentation process.

• We propose to encode global structure of the data into graph

representations by adding a global contrast loss utilizing the

similarity information between molecular graphs.

• We provide theoretical justifications that the learning objec-

tive is connected with triplet loss in metric learning which

shed light on the effectiveness of the entire framework.

• We evaluate MoCL on various molecular datasets under

both linear and semi-supervised settings and demonstrate

its superiority over the state-of-the-art methods.

2 RELATEDWORK
Self-supervised learning on graphs. A common strategy for

learning node (graph) representation in an unsupervised manner

is to design pretext tasks on unlabled data. For node-level tasks,

You et al. [45] proposed three types of self-supervised tasks: node

clustering, graph partition and graph completion to learn node

representations. Peng et al. [22] proposed to predict the contextual

position of a node relative to the other to encode the global topol-

ogy into node representations. GPT-GNN [12] designed generative

task in which node attributes and edges are alternatively gener-

ated such that the likelihood of a graph is maximized. After that,

the pretrained GNN can be used for any downstream tasks. For

graph level tasks, Hu et al. [11] first designed two tasks, predicting

neighborhood context and node attributes to learn meaningful node

representations, then using graph-level multi-task pretraining to

refine the graph representation. GROVER [28] incorporated GNN

into a Transformer-style architecture and learned node embedding

by predicting contextual property and motif labels. Other works

[31, 35, 43] utilized similar strategies for either node or graph level

pretraining in the context of a more specific task or domain.

Contrastive learning on graphs. Contrastive learning on graphs

can be categorized into two groups. One group aims to encode struc-

ture information by contrasting local and global representations.

For example, DGI [39] proposed to maximize the mutual informa-

tion between node embedding and graph summary vector to learn

node representations that capture the graph semantics. InfoGraph

[34] extended DGI to learn graph-level representations and further

proposed a variant for semi-supervised scenarios. Another group

aims to learn representations that are invariant to transformations,

following the idea of contrastive learning on visual representations

[5, 7, 41], where two augmentations (views) of an image are gener-

ated and fed into an encoder and a projection head, after which their

mutual information is maximized. Similarly, You et al. [44] explored

four types of augmentations for general graphs and demonstrated

that the learned representations can help downstream tasks. In-

stead of general corruption, [10] used graph diffusion to generate

the second view and performed contrast between node and graph

from two views. GCA [47] proposed adaptive augmentation such

that only unimportant nodes and edges are perturbed. However,

GCA is focused on network data and not suitable for molecular

graphs. Instead of focusing on augmentation views, MICRO-Graph

[46] proposed to contrast based on sub-graphs (motifs). GCC [24]

proposed to use random walk to generate subgraphs and contrast

between them.

Evaluation protocols. There exist various evaluation schemes for

graph level self-supervised learning. Most prior works [11, 34, 44,

46] adopt the linear evaluation protocol where a linear classifier

is trained on top of the representations. [34, 44, 46] also adopt

the semi-supervised protocol where only a small fraction of labels

are available for downstream tasks. Other works [11, 28, 44] also

explore the transfer learning setting in which the pretrained model

is applied to other datasets.

3 METHOD
3.1 Problem Definition
A (molecular) graph can be represented as G = (V, E), where
V = {𝑣1, 𝑣2, .., 𝑣 |𝑉 |} and E = V ×V denotes node and edge set

respectively. LetX ∈ R |𝑉 |×𝑑1
be the feature matrix for all nodes in a

graph,A ∈ R |𝑉 |× |𝑉 |
the adjacency matrix and E ∈ R |E |×𝑑2

the edge

features, our goal is to learn a graph encoder h = 𝑓 (X,A, E) ∈ R𝑑′

which maps an input graph to a vector representation without the

presence of any labels. The learned encoder and representations

can be used for downstream tasks directly or via finetune.
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Figure 1: Overall framework of MoCL. First, two augmented
views are generated from local-level domain knowledge.
Then, together with the original view (blue), they are fed
into the GNN encoder and projection head. The local-level
contrast maximizes the mutual information (MI) between
two augmented views. The global-level contrast maximizes
the MI between two similar graphs, where the similarity in-
formation is derived from global-level domain knowledge.

3.2 Contrastive Learning Framework
In a conventional contrastive learning framework (Fig. 1 left), for

each graph𝐺𝑖 , two augmentation operators 𝑡1 and 𝑡2 are sampled

from the family of all operators T , and applied to 𝐺𝑖 to obtain two

correlated views 𝐺1

𝑖
= 𝑡1 (𝐺𝑖 ) and 𝐺2

𝑖
= 𝑡2 (𝐺𝑖 ). We use numbers in

the superscript to represent different views throughout the paper.
The correlated views are fed into a graph encoder 𝑓 , producing

graph representations h1
𝑖
and h2

𝑖
, which are then mapped into an

embedding space by a projection head𝑔, yielding z1
𝑖
and z2

𝑖
. The goal

is to maximize the mutual information between the two correlated

views in the embedding space via Eq (1).

Llocal =
1

𝑛

∑𝑛

𝑖=1
Llocal

𝑖 , (1)

and the loss for each sample Llocal

𝑖
can be written as:

Llocal

𝑖 = L1

𝑖 + L2

𝑖

= − log

𝑒𝑠 (z
1

𝑖 ,z
2

𝑖 )/𝜏∑𝑛

𝑗=1, 𝑗≠𝑖
𝑒
𝑠 (z1𝑖 ,z2𝑗 )/𝜏︸                   ︷︷                   ︸

view 1 contrasts view 2

− log

𝑒𝑠 (z
2

𝑖 ,z
1

𝑖 )/𝜏∑𝑛

𝑗=1, 𝑗≠𝑖
𝑒
𝑠 (z2𝑖 ,z1𝑗 )/𝜏︸                   ︷︷                   ︸

view 2 contrasts view 1

, (2)

where 𝑛 is the batch size, 𝑠 (·, ·) is a function which measures the

similarity of the two embeddings, 𝜏 is a scale parameter. The two

correlated views z1
𝑖
and z2

𝑖
are regarded as positive pair while the

rest pairs in the batch are regarded as negative pairs. The objective

aims to increase the probability of occurrences of positive pairs

as opposed to negative ones. Note that the negative pairs can be

formed in two directions. If z1
𝑖
is the anchor, all z2

𝑗
in view 2 are

contrasted; if z2
𝑖
is the anchor, all z1

𝑗
in view 1 are contrasted. Thus

the loss for each sample consists of two parts as showed in Eq (2).

xX

(a) Drop Node (b) Perturb Edge

(c) Extract subgraph (d) Mask Attributes

(e) Substitute Substructure

Replace Functional Group Add (Drop) General Carbon

Figure 2: Augmentation comparison. Upper: conventional
augmentations that may alter the graph semantics. Lower:
proposed augmentation in which valid substructures are re-
placed by bioisosteres that share similar properties.

3.3 Local-level Domain Knowledge
Most existing approaches adopt random corruption during augmen-

tation. For example, [47] proposed four types of augmentations for

general graphs (Fig. 2 upper). However, such random corruption

may alter the semantics of molecular graphs. For node dropping

and edge perturbation, the resulting molecule is rarely biologi-

cally proper, e.g., dropping a carbon atom in the phenyl ring of

aspirin breaks the aromatic system and results in an alkene chain

(Fig. 2a); perturbing the connection of aspirin might introduce a

five-membered lactone (Fig. 2b), which may drastically change the

molecular properties. For subgraph extraction, the resulting struc-

ture is arbitrary and not representative for molecular functionality,

e.g., methyl acetate is a sub group of aspirin (Fig. 2c), but also fre-

quently shown in other compounds such as digitoxin and vitamin

C with diverse chemical structures and biological effects. Enforcing

high mutual information between such augmentation pairs may

produce suboptimal representations for downstream tasks. This

phenomenon has also been observed in [47] that edge perturbation

deteriorates the performance of certain molecular tasks. Among

the general augmentations, only attribute masking (Fig. 2d) does

not violate the biological assumptions since it does not change the

molecule, it only masks part of the atom and edge attributes.

Therefore, we aim to infuse domain knowledge to assist the

augmentation process. We propose a new augmentation operator

called substructure substitution, in which a valid substructure in a

molecule is replaced by a bioisostere [17] which produces a new

molecule with similar physical or chemical properties as the original

one (Fig. 2e). We compile 218 such rules from domain resource
1
.

Each rule consists of a source substructure and a target substructure

represented by SMARTS string
2
. A sample rule is as follows:

[#6:2][#6:1](=O)[O;-,H1] >> [*:2][c:1]1nn[nH]n1

indicating the transition from left substructure (carboxylic acid) to

the right one (nitrogen heterocycle). The substitution rules have

1
https://www.schrodinger.com/drug-discovery

2
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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Group # source # target Formula

CA 1 68 RCOO

Ester 1 7 RCOOR’

Ketone 1 15 ROR’

Phenyl 22 36 Aromatic Rings

Tbutyl 1 10 C4

dsAmide 4 18 RONR’R”

msAmide 2 32 RONR’

nsAmide 4 32 RON

Total 36 218 -

Table 1: Source and target statistics for substitution rules.
R/R’/R” represent arbitrary carbon-containing groups.

36 unique source substructures which can be categorized into 8

groups. We summarize the statistics of the rules in Table 1. Note

that target substructures are all unique and different. The original

218 substitution rules mostly happen at molecular positions where

heteroatoms (heavy atoms that are not C or H) and aromatic rings

are presented, therefore the variation for general carbon groups is

limited. Under the common assumption that changing a few general

carbon atoms will not alter the molecular property too much, we

add 12 additional rules to subtract and add general carbon groups

from and to a molecule. Some sample rules are:

[*:1][CH2][CH2][*:2] >> [*:1][*:2] (drop)
[*:1]-[*:2] >> [*:1]CC[*:2] (add)

Thus, MoCL consists of 230 rules in total to generate molecule

variants that share similar properties. All the rules and code are

available at https://github.com/illidanlab/MoCL-DK.

Moreover, since the source substructures in the rules are very

common, a molecule may contain multiple source substructures or

multiple copies of the same substructure in the rule, the proposed

augmentation can be applied multiple times to generate variants

with much more diversity. A notable difference between proposed

augmentation and general augmentation is that the proposed rules

are not guaranteed to be applicable to a molecule after it changes,

therefore when applying proposed augmentation multiple times,

we need to update the rule availability accordingly at each round.

We summary the proposed augmentation procedure in Alg. 1.

3.4 Global-level Domain Knowledge
Maximizing mutual information between correlated views learns

transformation-invariant representations. However, it may neglect

the global semantics of the data. For example, some graphs should

be closer in the embedding space since they share similar graph

structures or semantics from domain knowledge. For molecular

graphs, such information can be derived from multiple sources. For

general graph structure, extended connectivity fingerprints (ECFPs)

[27] encode the presence of substructures for molecules and are

widely used to measure the structural similarity between molecular

graphs. Drug-target networks [25] record the drug-protein interac-

tion information which is one of the most informative biological

activity measures. In this section, we first define graph similar-

ity from general molecular graphs, then we propose two ways to

incorporate the global semantics into our learning framework.

Algorithm 1: Pseudocode of domain augmentation.

Input: Molecule graph 𝐺 , repeat time 𝑅, rules T
Output: Augmented graph 𝐺 ′

1 for 𝑟 = 1 to 𝑅 do
2 while T do
3 sample 𝑡 ∼ T # one augmentation rule

4 {𝐺1,𝐺2, ..,𝐺𝑘 } = 𝑡 (𝐺) # all possible products

5 random choose 𝐺 = 𝐺𝑖

6 update available T # rules may no longer be valid

7 break;

8 𝐺 ′ = 𝐺

9 return 𝐺 ′

3.4.1 Similarity calculation. Given the ECFP of two molecules,

𝑒1, 𝑒2 ∈ {0, 1}𝑚 where𝑚 is the vector length and 1 indicates the

presence of certain substructures, the similarity of 𝑒1 and 𝑒2 can be

calculated as the Tanimoto coefficient [3]:

𝑠 (𝑒1, 𝑒2) =
𝑁12

𝑁1 + 𝑁2 − 𝑁12

, (3)

where 𝑁1, 𝑁2 denotes the number of 1s in 𝑒1, 𝑒2 respectively, and

𝑁12 denotes the number of 1s in the intersection of 𝑒1, 𝑒2. The

resulted coefficient 𝑠 (𝑒1, 𝑒2) ∈ [0, 1] and a larger value indicates

higher structural similarity. Similarly, for drug-target network, 𝑒1, 𝑒2
∈ {0, 1}𝑚 becomes the interaction profile of a drug to all proteins

where𝑚 is the total number of proteins. The drug similarity can be

calculated the same as Eq. (3).

3.4.2 Global-level Objective. We propose two strategies for using

the global similarity information. One strategy is to use it as direct

supervision. Given embeddings of two original graphs z𝑖 and z𝑗 ,

we measure the similarity between them as 𝜃 (z𝑖 , z𝑗 ) =
z𝑇
𝑖
z𝑗

∥z𝑖 ∥ ∥z𝑗 ∥ .

We optimize the similarity using least square loss as follows:

Lglobal

𝑖
=
∑

𝑗≠𝑖
Lglobal

𝑖 𝑗
=
∑

𝑗≠𝑖
∥𝜃 (z𝑖 , z𝑗 ) − 𝑠𝑖, 𝑗 ∥22 ,

where 𝑠𝑖, 𝑗 is the similarity from Eq. (3).

The second strategy is to utilize a contrastive objective in which

similar graph pairs have higher mutual information as compared

to the background. The objective is written as:

Lglobal

𝑖
= − log

∑𝑛
𝑗=1, 𝑗 ∈N𝑖

𝑒𝑠 (z𝑖 ,z𝑗 )/𝜏∑𝑛
𝑗=1, 𝑗∉N𝑖

𝑒𝑠 (z𝑖 ,z𝑗 )/𝜏
,

where N𝑖 refers the neighbors of graph 𝑖 . The neighbors can be

derived from global similarity by setting a threshold or a neighbor-

hood size. The global loss for all graphs thus becomes:

Lglobal =
1

𝑛

∑𝑛

𝑖=1
Lglobal

𝑖
. (4)

Finally, the full objective of the proposed MoCL can be written as:

L = Llocal + 𝜆Lglobal, (5)

where 𝜆 is a tuning parameter that controls the emphasis between

local loss and global loss. We summarize the pseudo code of the

entire framework in Alg. 2.
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Algorithm 2: Pseudocode of proposed framework.

Input: Molecule graphs 𝐺 , rules T , hyper parameter 𝜆,

number of epochs𝑀

Output: Graph encoder 𝑓

1 for𝑚 = 1 to𝑀 do
2 for 𝑖𝑡𝑒𝑟 = 1 to max_iter do
3 𝐺1 = Alg.1(𝐺,T),𝐺2 = Alg.1(𝐺,T)
4 h1 = 𝑓 (𝐺1), h2 = 𝑓 (𝐺2), h = 𝑓 (𝐺)
5 z1 = 𝑔(h1), z2 = 𝑔(h2), z = 𝑔(h)
6 Calculate local loss by Eq. (1)

7 Calculate global loss by Eq. (4)

8 Optimize 𝑓 and 𝑔 using Eq. (5)

9 return 𝑓

3.5 Connection to Metric Learning
It has been well studied that optimizing objective Eq. (1) is equiv-

alent to maximizing a lower bound of the mutual information be-

tween the correlated views, also a lower bound of the mutual in-

formation between input and the hidden representations [6, 20].

Formally, denote Z1 and Z2 as the random variables for the embed-

dings of augmentations, X the variable for original input features:

Llocal ≤ 𝐼 (Z1;Z2) ≤ 𝐼 (X;Z1,Z2) .

Beyond mutual information maximization, in this section, we

provide additional justification for the proposed method from the

perspective of metric learning, which unifies the local and global

objectives. We show the following important result:

Lemma 1. Assume the projection head 𝑔 is an identity mapping,
i.e., z = 𝑔(h) = h, and the similarity function 𝑠 (·, ·) is inner product,
i.e., 𝑠 (z𝑖 , z𝑗 ) = z𝑇

𝑖
z𝑗 . Consider 1-nearest neighbor of each graph in

the batch for global structure information, and 𝜆 = 1, the objective
L𝑖 is equivalent to the following:

L𝑖 ∝
∑
𝑗≠𝑖

∥z1𝑖 − z2𝑖 ∥
2 − ∥z1𝑖 − z2𝑗 ∥

2︸                         ︷︷                         ︸
local contrast view 1

+ ∥z2𝑖 − z1𝑖 ∥
2 − ∥z2𝑖 − z1𝑗 ∥

2︸                         ︷︷                         ︸
local contrast view 2

+
∑

𝑗≠𝑘,𝑘∈N𝑖

∥z𝑖 − z𝑘 ∥2 − ∥z𝑖 − z𝑗 ∥2︸                        ︷︷                        ︸
global contrast

+𝐶𝑜𝑛𝑠𝑡 .

The lemma above connects the objective design to the metric

learning. The equation consists of three triplet losses [4] which

corresponds to the two local losses and the global loss respectively.

As such, the MoCL objective aims to pull close the positive pairs

while pushing away the negative pairs from both local and global

perspective. Detailed proofs can be found in Appendix.

4 EXPERIMENT
In this section, we conduct extensive experiments to demonstrate

the proposed method by answering the following questions:

Q1.Does local-level domain knowledge (MoCL-DK) learns better

representations than general augmentations? How does combina-

tion of different augmentations behave?

Dataset # Tasks Size Avg. Node Avg. Degree

bace 1 1513 34.1 36.9

bbbp 1 2050 23.9 25.8

clintox 2 1483 26.1 27.8

mutag 1 188 17.8 19.6

sider 27 1427 33.6 35.4

tox21 12 7831 18.6 19.3

toxcast 617 8597 18.7 19.2

Table 2: Basic statistics for all datasets

Q2. Does global-level domain knowledge (MoCL-DK-G) further

improve the learned representations? Do the two proposed global

losses perform the same?

Q3. How do the hyper-parameters (𝜆, neighbor size) involved in

MoCL affect the model performance?

4.1 Evaluation Protocols
The evaluation process follows two steps. We first pretrain a model

based on any comparison method, and then evaluate the learned

model on downstream tasks. We adopt two evaluation protocols:

• Linear protocol: fix the representation from pretrainedmodel

and finetune a linear classifier on top of it.

• Semi-supervised protocol: sample a small set of labels of

the downstream task and use the weights of learned graph

encoder as initialization meanwhile finetune all the layers.

which are most commonly used in literature [11, 34, 44, 47].

4.2 Experimental Setup
Datasets and Features.We use 7 benchmark molecular datasets

in the literature [11, 34, 44] to perform the experiments, which

covers a wide range of molecular tasks such as binding affinity,

response in bioassays, toxicity and adverse reactions:

• bace [33]: a dataset containing the binding results between

molecules and human proteins .

• bbbp [16]: a dataset measuring the blood-brain barrier pene-

tration property of molecules.

• mutag [29]: a dataset recording the mutagenic effect of a

molecule on a specific gram negative bacterium.

• clintox & tox21 & toxcast [8, 19, 26]: datasets that contains

the molecule toxicity from FDA clinical trials (clintox) and

in vitro high-throughput screening (tox21 and toxcast).

• sider [15]: a dataset containing the adverse drug reactions

(ADR) of FDA approved drugs.

The basic statistics of the datasets (size, tasks, molecule statistics)

are summarized in Table 2. In this paper, we mainly focus on clas-

sification tasks as prior works [11, 34, 44], therefore we use AUC

[36] as the major evaluation metric.

For molecular graphs, we use both atom features and bond fea-

tures as inputs. We use i) atomic number and ii) chirality tag as

features for atoms and i) bond type and ii) bond directions as fea-

tures for chemical bonds [11].

Model Architectures. We use GIN [42] as our graph encoder 𝑓

which has been shown to be the most expressive graph neural

network layer in prior works [11]. It also allows us to incorporate

edge features of molecules into the learning process. The update

rule for each GIN layer can be written as:
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Figure 3: Augmentation combination under linear evaluation protocol. Each cell represents the performance difference be-
tween i) a vanilla GNN trained from scratch (upper-bound) and ii) learned representations (fixed) from the pretrained model
plus a linear classifier, under a given augmentation combination. Each number is averaged from 5 runs. Blue represents nega-
tive value and red positive. Higher value is better. MoCL-DK is the proposed augmentationwith local-level domain knowledge.

x𝑙+1𝑖 = MLP𝜃

(
x𝑙𝑖 +

∑
𝑗 ∈N𝑖

ReLU

(
x𝑙𝑗 + e𝑗,𝑖

))
,

where x𝑙
𝑖
is the node representation at 𝑙-th layer, N𝑖 denotes the

neighbor nodes of 𝑖-th node and e𝑗,𝑖 represents the edge feature
between node 𝑖 and 𝑗 . MLP𝜃 is a two-layer perceptron parameter-

ized by 𝜃 . Note that MLP here is for a single GIN layer in order to

make the GIN layer the most expressive. After obtaining the node

representations for all atoms in a molecule, we average them to get

the graph representation h.
We use another two-layer perceptron for the projection head 𝑔 in

our framework following literature [5, 44]. It has been shown that

a projection head with nonlinear transformation is necessary for a

better representation of the layer before it due to information loss

in the contrastive learning loss [5]. After adding a projection head,

the representations at previous layer, ie., h, can benefit more for

downstream tasks. We use cosine similarity for the critic function

𝑠 (z𝑖 , z𝑗 ) = z𝑇
𝑖
z𝑗/∥z𝑖 ∥∥z𝑗 ∥ [44].

Baselines. For both linear and semi-supervised evaluation proto-

cols, we adopt three types of baselines for comparison:

• Vanilla GNN (Scratch): train a standard nonlinear GNNmodel

on labeled data of the downstream task.

• General GNN self-supervised learning or pretraining base-

lines: i) InfoGraph [34], which maximizes the mutual infor-

mation between nodes and graph; ii) Edge Pred & Context

Pred [11]: which uses the node embeddings to predict graph

edge and neighbor context in order to learn meaningful node

representations; iii) Masking [11]: which masks the atom at-

tributes and tries to predict them.

• Graph contrastive learning baselines: we adopt the four types

of general augmentations for graph in [44]: i) node dropping;

ii) edge perturbation; iii) subgraph extraction; iv) attribute

masking for comparison. We also add linear procotol resutls

reported in MICRO-Graph [46] which is a motif-based con-

trastive method for comparison (no public code available).

Implementation Details. We use 3 layers of GIN for all methods

since 3-hops neighborhood covers most aromatic rings and is usu-

ally sufficient for molecular structure learning [27]. The dimensions

for GIN layer and embedding layer are 512 and 128 respectively.

We use Adam as optimizer with initial learning rate of 0.001 for

all methods. We use dropout ratio 0.5 for GIN layers and default

settings for baselines. The batch size is 32 across all scenarios. For

pretraining models, the running epoch is fixed to 100. For down-

stream tasks, we use early stop via validation set. We implement

all models using Pytorch [21] and run them on Tesla K80 GPUs.

The variation of results for a dataset comes from two sources,

the pretrained model and the downstream task. By comparing them,

we find the variation of pretrained model (by applying different

seeds) is much smaller than the variation of downstream task (by
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Protocol Linear Protocol Semi-supervised Protocol

Method | Dataset bace bbbp clintox mutag sider tox21 toxcast bace bbbp clintox mutag sider tox21 toxcast

scratch 0.785 0.861 0.647 0.918 0.606 0.820 0.710 0.525 0.695 0.494 0.803 0.552 0.670 0.530

InfoGraph 0.594 0.611 0.458 0.771 0.502 0.615 0.562 0.614 0.735 0.487 0.887 0.523 0.589 0.535

contextpred 0.522 0.724 0.506 0.819 0.498 0.554 0.542 0.566 0.731 0.502 0.846 0.525 0.659 0.514

edgepred 0.662 0.592 0.504 0.622 0.502 0.500 0.501 0.604 0.694 0.486 0.915 0.545 0.615 0.529

masking 0.678 0.764 0.581 0.826 0.566 0.722 0.617 0.621 0.776 0.585 0.879 0.551 0.640 0.538

drop_node 0.746 0.843 0.635 0.775 0.577 0.728 0.633 0.603 0.767 0.492 0.836 0.542 0.656 0.525

perturb_edge 0.657 0.833 0.630 0.799 0.605 0.715 0.619 0.527 0.748 0.516 0.938 0.547 0.629 0.516

subgraph 0.629 0.815 0.603 0.914 0.583 0.727 0.625 0.565 0.769 0.539 0.918 0.548 0.656 0.514

mask_attributes 0.796 0.826 0.671 0.916 0.621 0.726 0.623 0.622 0.710 0.478 0.897 0.549 0.666 0.543

MICRO-Graph 0.708 0.830 0.735 - 0.573 0.718 0.595 - - - - - - -

MoCL-DK 0.801 0.870 0.727 0.950 0.615 0.740 0.636 0.650 0.765 0.588 0.903 0.546 0.645 0.539
MoCL+AttrMask 0.831 0.892 0.695 0.947 0.623 0.768 0.653 0.630 0.748 0.549 0.909 0.536 0.661 0.536

MoCL-DK-G(LS) 0.831 0.892 0.724 0.958 0.623 0.777* 0.659* 0.662 0.766 0.623 0.907 0.558 0.666 0.547*
MoCL-DK-G(CL) 0.845* 0.905 0.750* 0.969* 0.628* 0.768 0.653 0.706* 0.809* 0.623* 0.916 0.565 0.686 0.546

MoCL+AttrMask-G(CL) 0.833 0.911* 0.747 0.962 0.625 0.774 0.654 0.695 0.806 0.618 0.913 0.567* 0.687* 0.544

Table 3: Averaged test AUC of comparison methods under linear and semi-supervised protocol (5 runs). Bold number denotes
the best performance for local-level (augmentation) comparison. Bold* number denotes the best performance after incorpo-
rating global similarity information (MoCL-G). LS and CL represents least-square and contrastive global loss, respectively.

different training-testing splits). Therefore, for each dataset, we

use its molecular graphs to pretrain a model (1 seed) and then

apply it to downstream task on the same dataset using different

splits (5 seeds). We do not evaluate transfer learning setting in

this paper where a pretrained model is applied to another dataset.

During downstream task, we split the dataset into training (0.8),

validation (0.1) and testing (0.1) set, we use validation set for early

stop and evaluate the AUC on testing set. For semi-supervised pro-

tocol where only a small fraction of labels is used to train, since

the data sizes are different, the ratio is picked from {0.01, 0.05, 0.5}

such that around 100 molecules being selected for each dataset.

For local-level domain knowledge, we use augmentation ratio 0.2

for general augmentations as prior work [44] and different aug-

mentation times {1, 2, 3, 5} for the proposed method. For example,

MoCL-DK3 denotes applying domain augmentation 3 times. For

global-level domain knowledge part, we try 𝜆 = {0.5, 1.0, 5.0, 10.0}
and 4 different nearest neighbor sizes for each dataset based on

its size. We use ECFP with dimension 1024 to calculate the global

similarity. The complete implementation details can be found in

Appendix.

4.3 Local-level domain knowledge (Q1)
We first examine whether the proposed augmentation helps learn a

better representation. Since the contrastive framework involves two

correlated views, different augmentation schemes can be applied

to each view. Figure 3 shows the results of different augmentation

combinations under linear protocol for all datasets (the results of

toxcast is similar as tox21 therefore we remove it due to space limit).

MoCL-DK represent applying domain augmentation by only once.

We can see that i) the representations from MoCL-DK (diagonals)

plus a linear classifier yield prediction accuracies which are on-par

with a deep learning model train from scratch (bace, bbbp, sider),

or even better than it (clintox, mutag). ii) the proposed augmenta-

tion MoCL-DK combined with other augmentations almost always

produce better results compared to other combinations (rows and

columns that contain MoCL-DK are usually higher). iii) Attribute

masking and MoCL-DK are generally effective across all scenarios,

bace bbbp clintox mutag sider tox21 toxcast
0.5
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0.7

0.8

0.9
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T = 2
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T = 5

(a) Linear protocol
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0.3

0.4

0.5
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0.8
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T = 2
T = 3
T = 5

(b) Semi-supervised protocol

Figure 4: Average test AUC of MoCL-Local across different
augmentation strengths (repeat times) for all datasets.

combining them often yields even better performance. This verifies

our previous assumption that MoCL-DK and attribute masking does

not violate the biological assumption and thus works better than

other augmentations. Moreover, harder contrast, e.g., combination

of different augmentation schemes benefits more as compared to

one augmentation schemes (MoCL-DK + AttrMask often produce

the best results). This phenomenon is reasonable and also observed

in prior works [44].

For semi-supervised protocol, the results are weaker, we did not

include the augmentation combination figure due to space limit.

But the complete results for all comparison methods for both linear

and semi-supervised protocol can be found in Table 3, where the

next-to-bottom panel represents results for proposed augmentation

and the bottom panel presents global results which we will mention

in the next subsection.

The proposed augmentation MoCL-DK can be applied multiple

times to generate more complicated views. We tried over a range of

different augmentation strengths and report the corresponding re-

sults for all datasets in Figure 4. We can see that for most datasets, as

we apply more times the proposed augmentation, the performance

first increases and then decreases. MoCL-DK3 usually achieves bet-

ter results than others. For certain datasets (clintox, toxcast) the

trend is not very clear between the two evaluation protocols.
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Figure 5: Average test AUC gain from global domain knowl-
edge for different augmentations across all datasets.

4.4 Global-level domain knowledge (Q2)
We next study the role of global-level domain knowledge by exam-

ining the following sub-questions: i) Does global similarity helps

general (baseline) augmentations? Does it helps the proposed aug-

mentation? Are the effectiveness the same? ii) How do different

global losses behave, i.e., direct supervision as least square loss v.s.

contrastive loss, across all datasets, which one is better?

Figure 5 shows the performance gain by incorporating global

similarity information for general (baseline) augmentations and the

proposed augmentation. Each bar represents the median gain across

all 7 datasets for a particular augmentation scheme. We can see that

global information generally improves all augmentation schemes

(the bars are positive). Interestingly, the gain for proposed domain

augmentation (MoCL-DK1 and MoCL-DK3) are much higher as

compared to other augmentations schemes. Note that we used the

same set of global-level hyper-parameters for all augmentations

for fair comparison. Table 4 shows the performance for different

global losses under both evaluation protocols. We can see that

contrastive loss (CL) for the global similarity achieves better results

than directly using it as supervision by least-square loss (LS).

We summarize the complete results for all comparison methods

in Table 3. We can see that i) contrastive learning works generally

better than traditional graph pretraining methods, especially in lin-

ear protocol; ii) The proposed augmentation outperforms general

augmentations. By combining MoCL augmentation and attribute

masking, the results are even better for some datasets; iii) The

global similarity information further improves the learned repre-

sentations. Moreover, without combining with attribute masking,

MoCL augmentation only already achieves the best performance

under most scenarios after adding global information. The learned

representations plus a linear classifier can achieve higher accuracy

than a well-trained deep learning model. In summary, the proposed

method is demonstrated to be effective for various molecular tasks.

4.5 Sensitivity Analysis (Q3)
Finally we check the sensitivity of global-level hyper-parameters,

ie., the neighbor size and 𝜆 that controls the weight between local

and global loss. Figure 6 shows the performance surface under

different hyper-parameter combinations of the proposed method

for bbbp dataset. We can see that a relatively smaller neighbor size

(not too small) and larger weights (not too large) for the global loss

leads to a best result. Other datasets also show the similar pattern.

Protocol Linear Semi-supervised

Dataset LS CL LS CL

bace 0.831 0.845 0.662 0.701
bbbp 0.891 0.903 0.766 0.809
clintox 0.724 0.750 0.608 0.619
mutag 0.954 0.963 0.895 0.907
clintox 0.623 0.628 0.551 0.563
tox21 0.774 0.768 0.655 0.686
toxcast 0.659 0.653 0.547 0.546

Table 4: Comparison between different global losses under
MoCL-DK1 augmentation. LS: directly using global similar-
ity and optimize by least-square loss; CL: contrastive loss us-
ing nearest neighbor derived from global similarity.

Figure 6: Average test AUC of different neighbor size and 𝜆

for MoCL-DK1-G under linear protocol (dataset: bbbp).

4.6 Discussion
We provide additional observations and discussion in this subsec-

tion. First, we observe that representations which perform well

under linear evaluation do not guarantee to be better in the semi-

supervised setting. Sincewe finetune all the layers in semi-supervised

learning, an overly delicate representation as initialization may not

produce the best results in a fully nonlinear setting. Second, the

effectiveness of contrastive learning also depends on the property

of the dataset as well as the nature of the task. For example, single

property prediction (mutag, bbbp) benefits more from pretraining

as compared to toxicity prediction (tox21, toxcast) since it depends

not only on the compound structure, but also the cellular environ-

ment. Therefore, incorporating drug-target network information

and system biology data may be more helpful to these datasets,

which is our future direction.

5 CONCLUSION
In this work, we propose to utilize multi-level domain knowl-

edge to assist the contrastive representation learning on molecular

graphs. The local-level domain knowledge enables new augmenta-

tion scheme and global-level domain knowledge incorporates global

structure of the data into the learning process. We demonstrate that

both knowledge improve the quality of the learned representations.
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APPENDIX
Implementation Details
Table 5 shows the detailed parameter settings for all datasets. Semi-

ratio depends on the data size such that around 100 molecule labels

are sampled from each dataset. The neighbor size also depends on

the data size such that the number of clusters is between 5 and 30

for all datasets. The parameter 𝜆 which controls the weight between

local and global loss, and augmentation time for MoCL-DK are all

set to the same set of values for all datasets.

Dataset Size Semi-ratio Neigbor Size 𝜆 DK

bace 1513 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

bbbp 2050 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

clintox 1483 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

mutag 188 0.5 {10, 20, 30, 40} {0.5, 1, 5, 10} {1,2,3,5}

sider 1427 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}

tox21 7831 0.01 (600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}

toxcast 8597 0.01 {600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}

Table 5: Detailed experimental settings for each dataset.

Unlike prior work [44] in which only node, node features and con-

nectivity information are used as input, our GNN incorporates edge

features, therefore, the implementation of general augmentation

is slightly different from [44]. We list the operations for both node

(features) and edge (features) in Table 6.

Augmentation Node Node features Edge Edge features

Drop Node removed removed removed removed

Perturb Edge - - permuted permuted

Subgraph subsample subsample keep keep

Mask Attributes mask mask mask mask

Table 6: Implementation details for general augmentation.
Edge refers all edges that reach out from the corresponding
node. - denotes no change.

Figure 7 shows the distribution of number of augmentations that can

be generated by applyingMoCL-DK1 (left: from rules of substituting

functional groups; right: from rules of adding/dropping general

carbons). Other datasets reveal the same pattern therefore we do

not include them due to space limit. We see that MoCL-DK1 can

generate considerable number of augmentations for the molecules.

If we apply MoCL-DK multiple times (MoCL-DK3, MoCL-DK5), the

number of possible products can further increase drastically.
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Figure 7: Distribution of augmentations that can be gener-
ated by proposed augmentation rules (dataset: bace).

Proof of Lemma 1
Assume the projection head 𝑔 is an identity mapping, i.e., z =

𝑔(h) = h, and the similarity function 𝑠 (·, ·) is inner product, i.e.,
𝑠 (z𝑖 , z𝑗 ) = z𝑇

𝑖
z𝑗 . Consider 1-nearest neighbor of each graph in the

batch for global structure information, and 𝜆 = 1, the objective L𝑖

is equivalent to the following:

L𝑖 ∝
∑
𝑗≠𝑖

∥z1𝑖 − z2𝑖 ∥
2 − ∥z1𝑖 − z2𝑗 ∥

2︸                         ︷︷                         ︸
local contrast view 1

+ ∥z2𝑖 − z1𝑖 ∥
2 − ∥z2𝑖 − z1𝑗 ∥

2︸                         ︷︷                         ︸
local contrast view 2

+
∑

𝑗≠𝑘,𝑘∈N𝑖

∥z𝑖 − z𝑘 ∥2 − ∥z𝑖 − z𝑗 ∥2︸                        ︷︷                        ︸
global contrast

+𝐶𝑜𝑛𝑠𝑡 .

Proof.

L𝑖 = log

∑𝑛
𝑗≠𝑖 𝑒

𝑠 (z1𝑖 ,z2𝑗 )

𝑒𝑠 (z
1

𝑖
,z2
𝑖
)/𝜏

+ log

∑𝑛
𝑗≠𝑖 𝑒

𝑠 (z2𝑖 ,z1𝑗 )/𝜏

𝑒𝑠 (z
2

𝑖
,z1
𝑖
)/𝜏

+ log

∑𝑛
𝑗≠𝑘,𝑘∈N𝑖

𝑒𝑠 (z𝑖 ,z𝑗 )/𝜏

𝑒𝑠 (z𝑖 ,z𝑘 )

= log

𝑛∑
𝑗≠𝑖

𝑒
𝑠 (z1𝑖 ,z2𝑗 )/𝜏−𝑠 (z1𝑖 ,z2𝑖 )/𝜏 + log

𝑛∑
𝑗≠𝑖

𝑒
𝑠 (z2𝑖 ,z1𝑗 )/𝜏−𝑠 (z2𝑖 ,z1𝑖 )/𝜏

+ log

𝑛∑
𝑗≠𝑘,𝑘∈N𝑖

𝑒𝑠 (z𝑖 ,z𝑗 )/𝜏−𝑠 (z𝑖 ,z𝑘 )/𝜏

By applying first-order Taylor expansion we have:

L𝑖 ≈
𝑛∑
𝑗≠𝑖

𝑒
𝑠 (z1𝑖 ,z2𝑗 )/𝜏−𝑠 (z1𝑖 ,z2𝑖 )/𝜏 +

𝑛∑
𝑗≠𝑖

𝑒
𝑠 (z2𝑖 ,z1𝑗 )/𝜏−𝑠 (z2𝑖 ,z1𝑖 )/𝜏

+
𝑛∑

𝑗≠𝑘,𝑘∈N𝑖

𝑒𝑠 (z𝑖 ,z𝑗 )/𝜏−𝑠 (z𝑖 ,z𝑘 )/𝜏 − 3

≈ 1

𝜏

[ 𝑛∑
𝑗≠𝑖

𝑠 (z1𝑖 , z
2

𝑗 ) − 𝑠 (z1𝑖 , z
2

𝑖 ) +
𝑛∑
𝑗≠𝑖

𝑠 (z2𝑖 , z
1

𝑗 ) − 𝑠 (z2𝑖 , z
1

𝑖 )

+
𝑛∑

𝑗≠𝑘,𝑘∈N𝑖

𝑠 (z𝑖 , z𝑗 ) − 𝑠 (z𝑖 , z𝑘 )
]
− 3

=
1

𝜏

[ 𝑛∑
𝑗≠𝑖

z1𝑇
𝑖
z2𝑗 − z1𝑇

𝑖
z2𝑖 +

𝑛∑
𝑗≠𝑖

z2𝑇
𝑖
z1𝑗 − z2𝑇

𝑖
z1𝑖

+
𝑛∑

𝑗≠𝑘,𝑘∈N𝑖

z𝑇𝑖 z𝑗 − z𝑇𝑖 z𝑘
]
− 3

=
1

2𝜏

[ 𝑛∑
𝑗≠𝑖

∥z1𝑖 − z2𝑖 ∥
2 − ∥z1𝑖 − z2𝑗 ∥

2 + ∥z2𝑖 − z1𝑖 ∥
2 − ∥z2𝑖 − z1𝑗 ∥

2

+
𝑛∑

𝑗≠𝑘,𝑘∈N𝑖

∥z𝑖 − z𝑘 ∥2 − ∥z𝑖 − z𝑗 ∥2
]
− 3

∝
∑
𝑗≠𝑖

∥z1𝑖 − z2𝑖 ∥
2 − ∥z1𝑖 − z2𝑗 ∥

2 + ∥z2𝑖 − z1𝑖 ∥
2 − ∥z2𝑖 − z1𝑗 ∥

2

+
∑

𝑗≠𝑘,𝑘∈N𝑖

∥z𝑖 − z𝑘 ∥2 − ∥z𝑖 − z𝑗 ∥2 − 6𝜏
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