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ABSTRACT

Recent years have seen a rapid growth of utilizing graph neural net-
works (GNNs) in the biomedical domain for tackling drug-related
problems. However, like any other deep architectures, GNNs are
data hungry. While requiring labels in real world is often expensive,
pretraining GNNs in an unsupervised manner has been actively
explored. Among them, graph contrastive learning, by maximizing
the mutual information between paired graph augmentations, has
been shown to be effective on various downstream tasks. However,
the current graph contrastive learning framework has two limita-
tions. First, the augmentations are designed for general graphs and
thus may not be suitable or powerful enough for certain domains.
Second, the contrastive scheme only learns representations that
are invariant to local perturbations and thus does not consider the
global structure of the dataset, which may also be useful for down-
stream tasks. In this paper, we study graph contrastive learning
designed specifically for the biomedical domain, where molecular
graphs are present. We propose a novel framework called MoCL,
which utilizes domain knowledge at both local- and global-level to
assist representation learning. The local-level domain knowledge
guides the augmentation process such that variation is introduced
without changing graph semantics. The global-level knowledge
encodes the similarity information between graphs in the entire
dataset and helps to learn representations with richer semantics.
The entire model is learned through a double contrast objective.
We evaluate MoCL on various molecular datasets under both linear
and semi-supervised settings and results show that MoCL achieves
state-of-the-art performance.
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1 INTRODUCTION

Graph neural networks (GNNs) has been demonstrated to achieve
state-of-the-art performance on graph-related tasks such as node
classification [13, 38, 40], link prediction [48] and graph classifica-
tion [9, 38, 42]. It has also been frequently used in the biomedical
domain recently to tackle drug-related problems [18, 30, 32]. How-
ever, like most deep learning architectures, it requires large amount
of labeled data to train whereas task-specific labels in real world
are often of limited size (e.g., in biomedical domain, requiring la-
bels such as drug responses from biological experiments is always
expensive and time consuming). Therefore, pretraining schemes on
GNNs have been actively explored recently.

One line of works focuses on designing pretext tasks to learn
node or graph representations without labels. The predefined tasks
include graph reconstruction [12, 14, 45] and context prediction [11,
22]. The other line follows a contrastive learning framework from
computer vision domain [5, 41], in which two augmentations are
generated for each data and then fed into an encoder and a projec-
tion head. By maximizing the mutual information between the two
augmented views, the model is able to learn representations that
are invariant to transformations. In particular, [44] proposed four
types of augmentations for general graphs and demonstrated that
contrastive learning on graphs is able to produce representations
that are beneficial for downstream tasks.

However, contrastive learning on graphs has its unique chal-
lenges. First, the structural information and semantics of the graphs
varies significantly across domains (e.g., social network v.s. molec-
ular graphs), thus it is difficult to design universal augmentation
scheme that fits all scenarios. It has been shown that general aug-
mentations can be harmful under a specific domain context [44].
Second, most current graph contrastive learning frameworks learn
invariant representations while neglect the global structure of the
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entire data [1], e.g., some graphs should be closer in the embedding
space due to their structural similarity. Nevertheless, modeling sim-
ilarity between graphs itself is still a difficult problem [2]. Third, the
contrast schemes are not unique because graph tasks can happen at
different levels, e.g., node-graph contrast [10], node-node contrast
[47], graph-graph contrast [44] are all possible contrast schemes.

Besides these unique challenges for graphs, contrastive learn-
ing itself also has unsolved problems. For example, accurately es-
timating mutual information in high dimension is difficult [23].
The connection between mutual information maximization and
the success of contrastive learning is still not clear. In fact, [37]
found the connection is actually weak, while instead metric learn-
ing shares some intrinsic connections with contrastive learning.
These findings also motivate us to pay more attention to the role
of augmentation schemes and global semantics of the data in order
to improve contrastive learning on graphs.

Therefore, in this paper, we aim to tackle the aforementioned
challenges in the context of biomedical domain, where molecu-
lar graphs are present. Our goal is to improve representations
by infusing domain knowledge into the augmentation and con-
strast schemes. We propose to leverage both local-level and global-
level domain knowledge to assist contrastive learning on molecular
graphs. In particular, unlike general augmentations in which nodes
and edges in a graph are randomly perturbed, we propose a new
augmentation scheme called substructure substitution where a valid
substructure in a molecule is replaced by a bioisostere that intro-
duces variation without altering the molecular properties too much.
The substitution rules are derived from domain resource and we
regard it as local-level domain knowledge. The global-level domain
knowledge encodes the global similarities between graphs. We pro-
pose to utilize such information to learn richer representations via
a double contrast objective.

Leveraging domain knowledge to assist contrastive learning has
rarely been explored in literature and our work is the first to make
this attempt. In summary, our contributions are as follows:

e We propose a new augmentation scheme for molecular graphs
based on local-level domain knowledge such that the seman-
tics of graphs do not change in the augmentation process.

e We propose to encode global structure of the data into graph
representations by adding a global contrast loss utilizing the
similarity information between molecular graphs.

e We provide theoretical justifications that the learning objec-
tive is connected with triplet loss in metric learning which
shed light on the effectiveness of the entire framework.

e We evaluate MoCL on various molecular datasets under
both linear and semi-supervised settings and demonstrate
its superiority over the state-of-the-art methods.

2 RELATED WORK

Self-supervised learning on graphs. A common strategy for
learning node (graph) representation in an unsupervised manner
is to design pretext tasks on unlabled data. For node-level tasks,
You et al. [45] proposed three types of self-supervised tasks: node
clustering, graph partition and graph completion to learn node
representations. Peng et al. [22] proposed to predict the contextual
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position of a node relative to the other to encode the global topol-
ogy into node representations. GPT-GNN [12] designed generative
task in which node attributes and edges are alternatively gener-
ated such that the likelihood of a graph is maximized. After that,
the pretrained GNN can be used for any downstream tasks. For
graph level tasks, Hu et al. [11] first designed two tasks, predicting
neighborhood context and node attributes to learn meaningful node
representations, then using graph-level multi-task pretraining to
refine the graph representation. GROVER [28] incorporated GNN
into a Transformer-style architecture and learned node embedding
by predicting contextual property and motif labels. Other works
[31, 35, 43] utilized similar strategies for either node or graph level
pretraining in the context of a more specific task or domain.
Contrastive learning on graphs. Contrastive learning on graphs
can be categorized into two groups. One group aims to encode struc-
ture information by contrasting local and global representations.
For example, DGI [39] proposed to maximize the mutual informa-
tion between node embedding and graph summary vector to learn
node representations that capture the graph semantics. InfoGraph
[34] extended DGI to learn graph-level representations and further
proposed a variant for semi-supervised scenarios. Another group
aims to learn representations that are invariant to transformations,
following the idea of contrastive learning on visual representations
[5, 7, 41], where two augmentations (views) of an image are gener-
ated and fed into an encoder and a projection head, after which their
mutual information is maximized. Similarly, You et al. [44] explored
four types of augmentations for general graphs and demonstrated
that the learned representations can help downstream tasks. In-
stead of general corruption, [10] used graph diffusion to generate
the second view and performed contrast between node and graph
from two views. GCA [47] proposed adaptive augmentation such
that only unimportant nodes and edges are perturbed. However,
GCA is focused on network data and not suitable for molecular
graphs. Instead of focusing on augmentation views, MICRO-Graph
[46] proposed to contrast based on sub-graphs (motifs). GCC [24]
proposed to use random walk to generate subgraphs and contrast
between them.

Evaluation protocols. There exist various evaluation schemes for
graph level self-supervised learning. Most prior works [11, 34, 44,
46] adopt the linear evaluation protocol where a linear classifier
is trained on top of the representations. [34, 44, 46] also adopt
the semi-supervised protocol where only a small fraction of labels
are available for downstream tasks. Other works [11, 28, 44] also
explore the transfer learning setting in which the pretrained model
is applied to other datasets.

3 METHOD

3.1 Problem Definition

A (molecular) graph can be represented as G = (V, &), where
V = {v1,02,..,0)y|} and & =V X V denotes node and edge set
respectively. Let X € RIV*d1 pe the feature matrix for all nodes in a
graph, A € RIVIXIV| the adjacency matrix and E € RI€1%% the edge
features, our goal is to learn a graph encoder h = f(X,A,E) € R
which maps an input graph to a vector representation without the
presence of any labels. The learned encoder and representations
can be used for downstream tasks directly or via finetune.
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Figure 1: Overall framework of MoCL. First, two augmented
views are generated from local-level domain knowledge.
Then, together with the original view (blue), they are fed
into the GNN encoder and projection head. The local-level
contrast maximizes the mutual information (MI) between
two augmented views. The global-level contrast maximizes
the MI between two similar graphs, where the similarity in-
formation is derived from global-level domain knowledge.

3.2 Contrastive Learning Framework

In a conventional contrastive learning framework (Fig. 1 left), for
each graph G;, two augmentation operators #; and 3 are sampled
from the family of all operators 7, and applied to G; to obtain two
correlated views Gil = t1(Gj) and Gl.2 = t2(G;j). We use numbers in
the superscript to represent different views throughout the paper.
The correlated views are fed into a graph encoder f, producing
graph representations h! and h?, which are then mapped into an
embedding space by a projection head g, yielding zl! and z?. The goal
is to maximize the mutual information between the two correlated
views in the embedding space via Eq (1).

local _ 1 n local
L T Zi:1 ‘Li ’ @

and the loss for each sample L%O‘zal can be written as:

LlOCal Ll + LZ

es(z%,z?)/r es(z?,z})/r

log —— . (2)

n 1,2 - 2 1
Z es(zi,zj)/r Z es(zi,zj)/r
j=1 )i j=1j#i

view 1 contrasts view 2

=—log

view 2 contrasts view 1

where n is the batch size, s(-, -) is a function which measures the
similarity of the two embeddings, 7 is a scale parameter. The two
correlated views zg and zf are regarded as positive pair while the
rest pairs in the batch are regarded as negative pairs. The objective
aims to increase the probability of occurrences of positive pairs
as opposed to negative ones. Note that the negative pairs can be
formed in two directions. If z} is the anchor, all z? in view 2 are

contrasted; if zl? is the anchor, all z}. in view 1 are contrasted. Thus
the loss for each sample consists of two parts as showed in Eq (2).
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Figure 2: Augmentation comparison. Upper: conventional
augmentations that may alter the graph semantics. Lower:
proposed augmentation in which valid substructures are re-
placed by bioisosteres that share similar properties.

3.3 Local-level Domain Knowledge

Most existing approaches adopt random corruption during augmen-
tation. For example, [47] proposed four types of augmentations for
general graphs (Fig. 2 upper). However, such random corruption
may alter the semantics of molecular graphs. For node dropping
and edge perturbation, the resulting molecule is rarely biologi-
cally proper, e.g., dropping a carbon atom in the phenyl ring of
aspirin breaks the aromatic system and results in an alkene chain
(Fig. 2a); perturbing the connection of aspirin might introduce a
five-membered lactone (Fig. 2b), which may drastically change the
molecular properties. For subgraph extraction, the resulting struc-
ture is arbitrary and not representative for molecular functionality,
e.g., methyl acetate is a sub group of aspirin (Fig. 2c), but also fre-
quently shown in other compounds such as digitoxin and vitamin
C with diverse chemical structures and biological effects. Enforcing
high mutual information between such augmentation pairs may
produce suboptimal representations for downstream tasks. This
phenomenon has also been observed in [47] that edge perturbation
deteriorates the performance of certain molecular tasks. Among
the general augmentations, only attribute masking (Fig. 2d) does
not violate the biological assumptions since it does not change the
molecule, it only masks part of the atom and edge attributes.
Therefore, we aim to infuse domain knowledge to assist the
augmentation process. We propose a new augmentation operator
called substructure substitution, in which a valid substructure in a
molecule is replaced by a bioisostere [17] which produces a new
molecule with similar physical or chemical properties as the original
one (Fig. 2e). We compile 218 such rules from domain resource !.
Each rule consists of a source substructure and a target substructure
represented by SMARTS string 2. A sample rule is as follows:

[#6:2][#6:11(=0)[0;-,H1] >> [*:21[c:111nn[nHIn1

indicating the transition from left substructure (carboxylic acid) to
the right one (nitrogen heterocycle). The substitution rules have

https://www.schrodinger.com/drug-discovery
2https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html



KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Group  #source # target Formula
CA 1 68 RCOO
Ester 1 7 RCOOR’
Ketone 1 15 ROR’
Phenyl 22 36 Aromatic Rings
Tbutyl 1 10 C4
dsAmide 4 18 RONR’R”
msAmide 2 32 RONR’
nsAmide 4 32 RON
Total 36 218 -

Table 1: Source and target statistics for substitution rules.
R/R’/R” represent arbitrary carbon-containing groups.

36 unique source substructures which can be categorized into 8
groups. We summarize the statistics of the rules in Table 1. Note
that target substructures are all unique and different. The original
218 substitution rules mostly happen at molecular positions where
heteroatoms (heavy atoms that are not C or H) and aromatic rings
are presented, therefore the variation for general carbon groups is
limited. Under the common assumption that changing a few general
carbon atoms will not alter the molecular property too much, we
add 12 additional rules to subtract and add general carbon groups
from and to a molecule. Some sample rules are:

[#:1J[CH2][CH2I[*:2] >> [*:11[*:2] (drop)
[*:1]-[*:2] >> [*:1]CC[*:2] (add)

Thus, MoCL consists of 230 rules in total to generate molecule
variants that share similar properties. All the rules and code are
available at https://github.com/illidanlab/MoCL-DK.

Moreover, since the source substructures in the rules are very
common, a molecule may contain multiple source substructures or
multiple copies of the same substructure in the rule, the proposed
augmentation can be applied multiple times to generate variants
with much more diversity. A notable difference between proposed
augmentation and general augmentation is that the proposed rules
are not guaranteed to be applicable to a molecule after it changes,
therefore when applying proposed augmentation multiple times,
we need to update the rule availability accordingly at each round.
We summary the proposed augmentation procedure in Alg. 1.

3.4 Global-level Domain Knowledge

Maximizing mutual information between correlated views learns
transformation-invariant representations. However, it may neglect
the global semantics of the data. For example, some graphs should
be closer in the embedding space since they share similar graph
structures or semantics from domain knowledge. For molecular
graphs, such information can be derived from multiple sources. For
general graph structure, extended connectivity fingerprints (ECFPs)
[27] encode the presence of substructures for molecules and are
widely used to measure the structural similarity between molecular
graphs. Drug-target networks [25] record the drug-protein interac-
tion information which is one of the most informative biological
activity measures. In this section, we first define graph similar-
ity from general molecular graphs, then we propose two ways to
incorporate the global semantics into our learning framework.

Sun, et al.

Algorithm 1: Pseudocode of domain augmentation.

Input: Molecule graph G, repeat time R, rules 7~
Output: Augmented graph G’
1 forr=1toRdo

2 while 7 do

3 sample t ~ T~ # one augmentation rule

4 {G!,G?,.,GF} = t(G) #all possible products

5 random choose G = G*

6 update available 7~ # rules may no longer be valid
7 break;

8 G' =G

9 return G’

3.4.1 Similarity calculation. Given the ECFP of two molecules,
e1,e2 € {0, 1} where m is the vector length and 1 indicates the
presence of certain substructures, the similarity of e; and ez can be
calculated as the Tanimoto coefficient [3]:

Nip
Ni+N; - N’
where Nj, Ny denotes the number of 1s in ey, e; respectively, and
N2 denotes the number of 1s in the intersection of ej, e3. The
resulted coefficient s(e, e2) € [0,1] and a larger value indicates
higher structural similarity. Similarly, for drug-target network, ey, ez
€ {0, 1} becomes the interaction profile of a drug to all proteins
where m is the total number of proteins. The drug similarity can be
calculated the same as Eq. (3).

®)

s(er, er) =

3.4.2 Global-level Objective. We propose two strategies for using
the global similarity information. One strategy is to use it as direct
supervision. Given embeddings of two original graphs z; and z;,

ZLTZj
(AT
We optimize the similarity using least square loss as follows:

global _ global _ . 12
L - Zj;ti Lo = Zj#i 109G 2j) = sill

where s; ; is the similarity from Eq. (3).

The second strategy is to utilize a contrastive objective in which
similar graph pairs have higher mutual information as compared
to the background. The objective is written as:

we measure the similarity between them as 0(z;,z;) =

n s(zi,z;) /T
Lot jen: ©

oo S
where N; refers the neighbors of graph i. The neighbors can be
derived from global similarity by setting a threshold or a neighbor-
hood size. The global loss for all graphs thus becomes:
A lobal
Lglobal - Z L8 ) (4)

n i=1 "1

Liglobal - _lo

Finally, the full objective of the proposed MoCL can be written as:
L — Llocal + A_Eglobal’ (5)

where A is a tuning parameter that controls the emphasis between
local loss and global loss. We summarize the pseudo code of the
entire framework in Alg. 2.
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Algorithm 2: Pseudocode of proposed framework.

Input: Molecule graphs G, rules 7, hyper parameter A,
number of epochs M
Output: Graph encoder f
1 form=1toMdo

2 for iter = 1 to max_iter do

3 Gl = Alg.1(G,7),G? = Alg.1(G, T)
4 h' = f(G'),h* = f(G*),h = f(G)

5 z! = g(h'),2* = g(h?),z = g(h)

6 Calculate local loss by Eq. (1)

7 Calculate global loss by Eq. (4)

8 Optimize f and g using Eq. (5)

9 return f

3.5 Connection to Metric Learning

It has been well studied that optimizing objective Eq. (1) is equiv-
alent to maximizing a lower bound of the mutual information be-
tween the correlated views, also a lower bound of the mutual in-
formation between input and the hidden representations [6, 20].
Formally, denote Z! and Z? as the random variables for the embed-
dings of augmentations, X the variable for original input features:

Llocal < I(ZI;ZZ) < I(X;ZI,ZZ).

Beyond mutual information maximization, in this section, we
provide additional justification for the proposed method from the
perspective of metric learning, which unifies the local and global
objectives. We show the following important result:

LEMMA 1. Assume the projection head g is an identity mapping,
i.e., z = g(h) =h, and the similarity function s(-, -) is inner product,
ie,s(zi,zj) = zl.TZj. Consider 1-nearest neighbor of each graph in
the batch for global structure information, and A = 1, the objective
L; is equivalent to the following:

1 22 1 212 2 12 2 12
Liee Nz} =P = llzf = Z51° + 112} - 2]1I” = |2} - 2]
J#i

local contrast view 1 local contrast view 2

+ D0 7=zl = llzi - 211 +Const.
jkkeN;

global contrast

The lemma above connects the objective design to the metric
learning. The equation consists of three triplet losses [4] which
corresponds to the two local losses and the global loss respectively.
As such, the MoCL objective aims to pull close the positive pairs
while pushing away the negative pairs from both local and global
perspective. Detailed proofs can be found in Appendix.

4 EXPERIMENT

In this section, we conduct extensive experiments to demonstrate
the proposed method by answering the following questions:

Q1. Does local-level domain knowledge (MoCL-DK) learns better
representations than general augmentations? How does combina-
tion of different augmentations behave?

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Dataset # Tasks Size Avg.Node Avg. Degree

bace 1 1513 34.1 36.9
bbbp 1 2050 23.9 25.8
clintox 2 1483 26.1 27.8
mutag 1 188 17.8 19.6
sider 27 1427 33.6 354
tox21 12 7831 18.6 19.3
toxcast 617 8597 18.7 19.2

Table 2: Basic statistics for all datasets

Q2. Does global-level domain knowledge (MoCL-DK-G) further
improve the learned representations? Do the two proposed global
losses perform the same?

Q3. How do the hyper-parameters (A, neighbor size) involved in
MoCL affect the model performance?

4.1 Evaluation Protocols

The evaluation process follows two steps. We first pretrain a model
based on any comparison method, and then evaluate the learned
model on downstream tasks. We adopt two evaluation protocols:

e Linear protocol: fix the representation from pretrained model
and finetune a linear classifier on top of it.

e Semi-supervised protocol: sample a small set of labels of
the downstream task and use the weights of learned graph
encoder as initialization meanwhile finetune all the layers.

which are most commonly used in literature [11, 34, 44, 47].

4.2 Experimental Setup

Datasets and Features. We use 7 benchmark molecular datasets
in the literature [11, 34, 44] to perform the experiments, which
covers a wide range of molecular tasks such as binding affinity,
response in bioassays, toxicity and adverse reactions:

e bace [33]: a dataset containing the binding results between
molecules and human proteins .

e bbbp [16]: a dataset measuring the blood-brain barrier pene-
tration property of molecules.

e mutag [29]: a dataset recording the mutagenic effect of a
molecule on a specific gram negative bacterium.

e clintox & tox21 & toxcast [8, 19, 26]: datasets that contains
the molecule toxicity from FDA clinical trials (clintox) and
in vitro high-throughput screening (tox21 and toxcast).

e sider [15]: a dataset containing the adverse drug reactions
(ADR) of FDA approved drugs.

The basic statistics of the datasets (size, tasks, molecule statistics)
are summarized in Table 2. In this paper, we mainly focus on clas-
sification tasks as prior works [11, 34, 44], therefore we use AUC
[36] as the major evaluation metric.

For molecular graphs, we use both atom features and bond fea-

tures as inputs. We use i) atomic number and ii) chirality tag as
features for atoms and i) bond type and ii) bond directions as fea-
tures for chemical bonds [11].
Model Architectures. We use GIN [42] as our graph encoder f
which has been shown to be the most expressive graph neural
network layer in prior works [11]. It also allows us to incorporate
edge features of molecules into the learning process. The update
rule for each GIN layer can be written as:
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Figure 3: Augmentation combination under linear evaluation protocol. Each cell represents the performance difference be-
tween i) a vanilla GNN trained from scratch (upper-bound) and ii) learned representations (fixed) from the pretrained model
plus a linear classifier, under a given augmentation combination. Each number is averaged from 5 runs. Blue represents nega-
tive value and red positive. Higher value is better. MoCL-DK is the proposed augmentation with local-level domain knowledge.

I+1 _ 1 )
x; = MLPgy (xi + ZjeN,— RelLU (xj + ej,,')) N

where xf is the node representation at I-th layer, A; denotes the
neighbor nodes of i-th node and e;; represents the edge feature
between node i and j. MLPy is a two-layer perceptron parameter-
ized by 6. Note that MLP here is for a single GIN layer in order to
make the GIN layer the most expressive. After obtaining the node
representations for all atoms in a molecule, we average them to get
the graph representation h.

We use another two-layer perceptron for the projection head g in
our framework following literature [5, 44]. It has been shown that
a projection head with nonlinear transformation is necessary for a
better representation of the layer before it due to information loss
in the contrastive learning loss [5]. After adding a projection head,
the representations at previous layer, ie., h, can benefit more for
downstream tasks. We use cosine similarity for the critic function
s(21.2)) = 21|zl | [44].

Baselines. For both linear and semi-supervised evaluation proto-
cols, we adopt three types of baselines for comparison:

e Vanilla GNN (Scratch): train a standard nonlinear GNN model
on labeled data of the downstream task.

o General GNN self-supervised learning or pretraining base-
lines: i) InfoGraph [34], which maximizes the mutual infor-
mation between nodes and graph; ii) Edge Pred & Context

Pred [11]: which uses the node embeddings to predict graph
edge and neighbor context in order to learn meaningful node
representations; iii) Masking [11]: which masks the atom at-
tributes and tries to predict them.

o Graph contrastive learning baselines: we adopt the four types
of general augmentations for graph in [44]: i) node dropping;
ii) edge perturbation; iii) subgraph extraction; iv) attribute
masking for comparison. We also add linear procotol resutls
reported in MICRO-Graph [46] which is a motif-based con-
trastive method for comparison (no public code available).

Implementation Details. We use 3 layers of GIN for all methods
since 3-hops neighborhood covers most aromatic rings and is usu-
ally sufficient for molecular structure learning [27]. The dimensions
for GIN layer and embedding layer are 512 and 128 respectively.
We use Adam as optimizer with initial learning rate of 0.001 for
all methods. We use dropout ratio 0.5 for GIN layers and default
settings for baselines. The batch size is 32 across all scenarios. For
pretraining models, the running epoch is fixed to 100. For down-
stream tasks, we use early stop via validation set. We implement
all models using Pytorch [21] and run them on Tesla K80 GPUs.
The variation of results for a dataset comes from two sources,
the pretrained model and the downstream task. By comparing them,
we find the variation of pretrained model (by applying different
seeds) is much smaller than the variation of downstream task (by
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Protocol Linear Protocol Semi-supervised Protocol
Method | Dataset bace  bbbp clintox mutag sider tox21 toxcast | bace  bbbp clintox mutag sider tox21 toxcast
scratch 0.785  0.861 0.647 0918  0.606  0.820 0.710 0.525 0.695 0.494 0803 0.552  0.670 0.530
InfoGraph 0.594 0.611 0.458 0.771 0.502 0.615 0.562 0.614 0.735 0.487 0.887  0.523 0.589 0.535
contextpred 0.522  0.724  0.506 0.819  0.498  0.554 0.542 0.566  0.731 0.502 0.846  0.525  0.659 0.514
edgepred 0.662 0.592 0.504 0.622 0.502 0.500 0.501 0.604 0.694 0.486 0.915 0.545 0.615 0.529
masking 0.678  0.764 0.581 0.826  0.566  0.722 0.617 0.621 0.776 0585 0.879 0.551  0.640 0.538
drop_node 0.746  0.843 0.635 0.775 0.577  0.728 0.633 0.603 0.767 0.492 0836  0.542  0.656 0.525
perturb_edge 0.657 0.833 0.630 0.799 0.605 0.715 0.619 0.527 0.748 0.516  0.938  0.547 0.629 0.516
subgraph 0.629  0.815 0.603 0914  0.583  0.727 0.625 0.565 0.769 0.539 0918 0.548  0.656 0.514
mask_attributes 0.796 0.826 0.671 0.916 0.621 0.726 0.623 0.622 0.710 0.478 0.897 0.549 0.666 0.543
MICRO-Graph 0.708  0.830 0.735 - 0.573  0.718 0.595 - - - - - - -
MoCL-DK 0.801 0.870 0.727  0.950 0.615 0.740 0.636 | 0.650 0.765 0.588 0.903 0.546 0.645 0.539
MoCL+AttrMask 0.831 0.892  0.695 0947 0.623 0.768 0.653 | 0.630  0.748 0.549 0909 0.536  0.661 0.536
MoCL-DK-G(LS) 0.831 0.892 0.724 0.958  0.623 0.777* 0.659* | 0.662 0.766 0.623  0.907 0.558  0.666 0.547*
MoCL-DK-G(CL) 0.845* 0.905 0.750" 0.969* 0.628* 0.768 0.653 | 0.706* 0.809" 0.623* 0.916 0.565 0.686 0.546
MoCL+AttrMask-G(CL) | 0.833 0.911*  0.747 0.962 0.625 0.654 0.695 0.806 0.618  0.913 0.567* 0.687* 0.544

Table 3: Averaged test AUC of comparison methods under linear and semi-supervised protocol (5 runs). Bold number denotes
the best performance for local-level (augmentation) comparison. Bold* number denotes the best performance after incorpo-
rating global similarity information (MoCL-G). LS and CL represents least-square and contrastive global loss, respectively.

different training-testing splits). Therefore, for each dataset, we
use its molecular graphs to pretrain a model (1 seed) and then
apply it to downstream task on the same dataset using different
splits (5 seeds). We do not evaluate transfer learning setting in
this paper where a pretrained model is applied to another dataset.
During downstream task, we split the dataset into training (0.8),
validation (0.1) and testing (0.1) set, we use validation set for early
stop and evaluate the AUC on testing set. For semi-supervised pro-
tocol where only a small fraction of labels is used to train, since
the data sizes are different, the ratio is picked from {0.01, 0.05, 0.5}
such that around 100 molecules being selected for each dataset.
For local-level domain knowledge, we use augmentation ratio 0.2
for general augmentations as prior work [44] and different aug-
mentation times {1, 2, 3,5} for the proposed method. For example,
MoCL-DK3 denotes applying domain augmentation 3 times. For
global-level domain knowledge part, we try A = {0.5,1.0,5.0,10.0}
and 4 different nearest neighbor sizes for each dataset based on
its size. We use ECFP with dimension 1024 to calculate the global
similarity. The complete implementation details can be found in
Appendix.

4.3 Local-level domain knowledge (Q1)

We first examine whether the proposed augmentation helps learn a
better representation. Since the contrastive framework involves two
correlated views, different augmentation schemes can be applied
to each view. Figure 3 shows the results of different augmentation
combinations under linear protocol for all datasets (the results of
toxcast is similar as tox21 therefore we remove it due to space limit).
MoCL-DK represent applying domain augmentation by only once.
We can see that i) the representations from MoCL-DK (diagonals)
plus a linear classifier yield prediction accuracies which are on-par
with a deep learning model train from scratch (bace, bbbp, sider),
or even better than it (clintox, mutag). ii) the proposed augmenta-
tion MoCL-DK combined with other augmentations almost always
produce better results compared to other combinations (rows and
columns that contain MoCL-DK are usually higher). iii) Attribute
masking and MoCL-DK are generally effective across all scenarios,
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Figure 4: Average test AUC of MoCL-Local across different
augmentation strengths (repeat times) for all datasets.

combining them often yields even better performance. This verifies
our previous assumption that MoCL-DK and attribute masking does
not violate the biological assumption and thus works better than
other augmentations. Moreover, harder contrast, e.g., combination
of different augmentation schemes benefits more as compared to
one augmentation schemes (MoCL-DK + AttrMask often produce
the best results). This phenomenon is reasonable and also observed
in prior works [44].

For semi-supervised protocol, the results are weaker, we did not
include the augmentation combination figure due to space limit.
But the complete results for all comparison methods for both linear
and semi-supervised protocol can be found in Table 3, where the
next-to-bottom panel represents results for proposed augmentation
and the bottom panel presents global results which we will mention
in the next subsection.

The proposed augmentation MoCL-DK can be applied multiple
times to generate more complicated views. We tried over a range of
different augmentation strengths and report the corresponding re-
sults for all datasets in Figure 4. We can see that for most datasets, as
we apply more times the proposed augmentation, the performance
first increases and then decreases. MoCL-DK3 usually achieves bet-
ter results than others. For certain datasets (clintox, toxcast) the
trend is not very clear between the two evaluation protocols.
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Figure 5: Average test AUC gain from global domain knowl-

edge for different augmentations across all datasets.

4.4 Global-level domain knowledge (Q2)

We next study the role of global-level domain knowledge by exam-
ining the following sub-questions: i) Does global similarity helps
general (baseline) augmentations? Does it helps the proposed aug-
mentation? Are the effectiveness the same? ii) How do different
global losses behave, i.e., direct supervision as least square loss v.s.
contrastive loss, across all datasets, which one is better?

Figure 5 shows the performance gain by incorporating global
similarity information for general (baseline) augmentations and the
proposed augmentation. Each bar represents the median gain across
all 7 datasets for a particular augmentation scheme. We can see that
global information generally improves all augmentation schemes
(the bars are positive). Interestingly, the gain for proposed domain
augmentation (MoCL-DK1 and MoCL-DK3) are much higher as
compared to other augmentations schemes. Note that we used the
same set of global-level hyper-parameters for all augmentations
for fair comparison. Table 4 shows the performance for different
global losses under both evaluation protocols. We can see that
contrastive loss (CL) for the global similarity achieves better results
than directly using it as supervision by least-square loss (LS).

We summarize the complete results for all comparison methods
in Table 3. We can see that i) contrastive learning works generally
better than traditional graph pretraining methods, especially in lin-
ear protocol; ii) The proposed augmentation outperforms general
augmentations. By combining MoCL augmentation and attribute
masking, the results are even better for some datasets; iii) The
global similarity information further improves the learned repre-
sentations. Moreover, without combining with attribute masking,
MoCL augmentation only already achieves the best performance
under most scenarios after adding global information. The learned
representations plus a linear classifier can achieve higher accuracy
than a well-trained deep learning model. In summary, the proposed
method is demonstrated to be effective for various molecular tasks.

4.5 Sensitivity Analysis (Q3)

Finally we check the sensitivity of global-level hyper-parameters,
ie., the neighbor size and A that controls the weight between local
and global loss. Figure 6 shows the performance surface under
different hyper-parameter combinations of the proposed method
for bbbp dataset. We can see that a relatively smaller neighbor size
(not too small) and larger weights (not too large) for the global loss
leads to a best result. Other datasets also show the similar pattern.

Sun, et al.

Protocol Linear Semi-supervised
Dataset LS CL LS CL
bace 0.831 0.845 0.662 0.701
bbbp 0.891 0.903 0.766 0.809
clintox 0.724 0.750 0.608 0.619
mutag  0.954 0.963 0.895 0.907
clintox 0.623 0.628 0.551 0.563
tox21 0.774 0.768 0.655 0.686
toxcast  0.659 0.653  0.547 0.546
Table 4: Comparison between different global losses under
MoCL-DK1 augmentation. LS: directly using global similar-
ity and optimize by least-square loss; CL: contrastive loss us-
ing nearest neighbor derived from global similarity.

100
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Figure 6: Average test AUC of different neighbor size and 1
for MoCL-DK1-G under linear protocol (dataset: bbbp).

4.6 Discussion

We provide additional observations and discussion in this subsec-
tion. First, we observe that representations which perform well
under linear evaluation do not guarantee to be better in the semi-
supervised setting. Since we finetune all the layers in semi-supervised
learning, an overly delicate representation as initialization may not
produce the best results in a fully nonlinear setting. Second, the
effectiveness of contrastive learning also depends on the property
of the dataset as well as the nature of the task. For example, single
property prediction (mutag, bbbp) benefits more from pretraining
as compared to toxicity prediction (tox21, toxcast) since it depends
not only on the compound structure, but also the cellular environ-
ment. Therefore, incorporating drug-target network information
and system biology data may be more helpful to these datasets,
which is our future direction.

5 CONCLUSION

In this work, we propose to utilize multi-level domain knowl-
edge to assist the contrastive representation learning on molecular
graphs. The local-level domain knowledge enables new augmenta-
tion scheme and global-level domain knowledge incorporates global
structure of the data into the learning process. We demonstrate that
both knowledge improve the quality of the learned representations.
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APPENDIX

Implementation Details

Table 5 shows the detailed parameter settings for all datasets. Semi-
ratio depends on the data size such that around 100 molecule labels
are sampled from each dataset. The neighbor size also depends on
the data size such that the number of clusters is between 5 and 30
for all datasets. The parameter A which controls the weight between
local and global loss, and augmentation time for MoCL-DK are all
set to the same set of values for all datasets.

Dataset Size Semi-ratio
bace 1513 0.05
bbbp 2050 0.05
clintox 1483 0.05
mutag 188 0.5
sider 1427 0.05

Neigbor Size A DK
{50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}
{50, 100, 150, 300} {0.5,1, 5,10} {1,2,3,5}
{50, 100, 150, 300} {0.5,1, 5,10} {1,2,3,5}

{10, 20,30, 40} {0.5, 1,5, 10} {1,2,3,5}
{50, 100, 150, 300} {0.5, 1,5, 10} {1,2,3,5}

tox21 7831  0.01 (600, 800, 1000}  {0.5,1, 5,10} {1,2,3,5}
toxcast 8597  0.01 {600, 800, 1000}  {0.5, 1, 5,10} {1,2,3,5}

Table 5: Detailed experimental settings for each dataset.

Unlike prior work [44] in which only node, node features and con-
nectivity information are used as input, our GNN incorporates edge
features, therefore, the implementation of general augmentation
is slightly different from [44]. We list the operations for both node
(features) and edge (features) in Table 6.

Augmentation Node Node features Edge Edge features
Drop Node removed removed removed removed
Perturb Edge - - permuted  permuted
Subgraph subsample  subsample keep keep
Mask Attributes mask mask mask mask

Table 6: Implementation details for general augmentation.
Edge refers all edges that reach out from the corresponding
node. - denotes no change.

Figure 7 shows the distribution of number of augmentations that can
be generated by applying MoCL-DK1 (left: from rules of substituting
functional groups; right: from rules of adding/dropping general
carbons). Other datasets reveal the same pattern therefore we do
not include them due to space limit. We see that MoCL-DK1 can
generate considerable number of augmentations for the molecules.
If we apply MoCL-DK multiple times (MoCL-DK3, MoCL-DK5), the
number of possible products can further increase drastically.

250
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150

100 100
50 50

0 0
0 100 200 300 400 0 200 400 600

(a) Function group rule (b) General carbon rule

Figure 7: Distribution of augmentations that can be gener-
ated by proposed augmentation rules (dataset: bace).
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Proof of Lemma 1

Assume the projection head g is an identity mapping, ie., z =
g(h) = h, and the similarity function s(-, -) is inner product, i.e.,
s(zi,zj) = zl.TZj. Consider 1-nearest neighbor of each graph in the
batch for global structure information, and A = 1, the objective £;
is equivalent to the following:
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By applying first-order Taylor expansion we have:
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