
1. Introduction
Transient Luminous Events (TLEs) are caused by the coupling of electromagnetic energy released by trop-
ospheric lightning into the middle atmosphere (Pasko et al., 1998). As a major category of TLEs, red sprites 
are readily recorded in both ground-based and space-born observations with high-sensitivity optical devices 
(Boccippio et al., 1995; Franz et al., 1990; Lu et al., 2017; Lyons, 1996). Sprites generally occur in the alti-
tude range of 40–90 km above energetic thunderstorms (Sentman et al., 1995; Winckler, 1995), and those 
observed over continental thunderstorms are predominantly (>99%) produced by positive cloud-to-ground 

Abstract High-speed video observations of two sprites with halo features were analyzed with 
concurrent measurements of broadband magnetic sferics. Both events were produced by positive cloud-
to-ground (CG) strokes. Moreover, the halo features appeared less than 0.5 ms after the return stroke, and 
the first sprite elements followed within 1  and 3 ms, respectively, for the two cases. The persistent charge 
transfer in the causative stroke from long continuing current can maintain the continuous glowing of 
existing sprite elements, and also may aid the vertical development and enhanced luminescence of later 
sprite elements. The observations with electric field (E-field) simulations by the transmission line model 
provide evidence that the induction component of the lightning-induced E-field contributes significantly 
to halo formation. Our results suggest additional measurements and analysis are needed to identify 
the specific role of induction E-field in addition to the well-known quasi-electrostatic (QE) field in the 
lightning-induced impact on the mesosphere.

Plain Language Summary We analyze two cases of sprite observations demonstrating 
the halo feature that were both produced by positive cloud-to-ground (CG) strokes over a mesoscale 
convective system in the central United States. The first event was the brightest sprites observed on that 
night, while the second event was a dancing sprite event containing three sprite elements all following 
a single +CG. The broadband (<1 Hz–400 kHz) lightning sferic signals recorded at various ranges are 
analyzed in comparison with the high-speed and low-light-level video to reveal the detailed development 
and evolution of sprite events. The first case contains an elves, halo, and sprite elements; the second case 
includes a halo as well as three sprite elements. In both case, the halo features appeared less than 0.5 ms 
after the return stroke. From this observation with relatively high time resolution and the simulation 
of lightning-induced electrical field (E-field) change at the height of halo formation, we attribute the 
occurrence of halo to the induction E-field from the initial portion (within 1 ms) of charge transfer in the 
causative stroke mainly. The continuous illumination of the existing sprite element and the time delay and 
vertical structure of following sprites are associated with the subsequent continuing current of causative 
strokes.
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Key Points:
•  Two sprite events featured with halo 

were captured on the high-speed 
video camera with coordinated 
broadband sferic data

•  In both cases, the halo initiated 
within 0.5 ms after the causative 
return stroke

•  The induction component of 
lightning-induced transient E-field 
appears to make a considerable 
contribution to the halo formation

Correspondence to:
G. Lu,
gaopenglu@gmail.com

Citation:
Ren, H., Lu, G., Cummer, S. A., Peng, 
K.-M., Lyons, W. A., Liu, F., et al. 
(2021). Comparison between high-
speed video observation of sprites 
and broadband sferic measurements. 
Geophysical Research Letters, 
48, e2021GL093094. https://doi.
org/10.1029/2021GL093094

Received 22 FEB 2021
Accepted 14 APR 2021

10.1029/2021GL093094
RESEARCH LETTER

1 of 10

https://orcid.org/0000-0003-4523-0144
https://orcid.org/0000-0002-0002-0613
https://orcid.org/0000-0001-6009-2259
https://orcid.org/0000-0002-2932-8515
https://orcid.org/0000-0002-6063-3833
https://orcid.org/0000-0003-1591-3315
https://doi.org/10.1029/2021GL093094
https://doi.org/10.1029/2021GL093094
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GL093094&domain=pdf&date_stamp=2021-05-11


Geophysical Research Letters

(CG) strokes (Cummer & Lyons, 2005; Huang et al., 1999; Li et al., 2012). At present, the charge moment 
change (CMC) caused by parent lightning is understood to be critical metric to evaluate the potential of 
sprite production (Pasko, Inan, Bell, & Taranenko, 1997). According to existing studies, the CMC required 
for producing a sprite is found to be as low as +120  C  km (Hu et  al.,  2002). Huang et  al.  (1999) ana-
lyzed many sprite-producing CG strokes generated by one thunderstorm and found a minimum CMC of 
+300 C km for sprite production. Models including the quasi-electrostatic (QE) field theory (Hiraki & Fuku-
nishi, 2006; Pasko, Inan, Bell, & Taranenko, 1997; Qin et al., 2011), full-wave electromagnetic field model 
(De Larquier & Pasko, 2010; Li et al., 2012), as well as the transmission line (TL) method (Lu, 2006; Ren 
et al., 2019) have been proposed to simulate the electric field (E-field) perturbation caused by CG strokes 
at high altitudes. By separating the E-field into three components as static, induction, and radiation com-
ponents, Ren et al. (2019) suggested that the inductive E-field excited by the causative stroke might play a 
significant role in the sprite initiation.

For TLE observations, high-speed video has been an effective tool. It can not only provide the time-resolved 
evolution in the fine structure of sprites (Stanley et al., 1999), but also provide the high time resolution to 
compare the dynamic sprite evolution with the time-resolved charge transfer through the synchronized 
sferic measurements (Cummer & Stanley, 1999; Li et al., 2008). High-speed imaging has also been applied 
to examine the dynamic development and optical characteristics of sprites with halo feature (Cummer 
et al., 2006). However, sprite events with halo features have yet to be analyzed on sub-millisecond time 
scales in comparison with concurrent measurement of causative charge transfer.

In this paper, we analyze the high-speed video observations of two sprites that both demonstrate halo 
features over a mesoscale convective system (MCS) in central United States. Low-frequency (LF, 25 kHz–
400 kHz) magnetic signals sampled at 1 MHz are applied for the first time to provide a higher time resolu-
tion to determine the onset of causative return strokes. Our study demonstrates a higher time resolution in 
the high-speed video observation and magnetic signal measurement than previous studies, which is of great 
significance for studying the formation mechanism of halo and sprite features. In addition, we calculated 
the E-field components at the moment of halo initiation with the TL model, and our results confirmed that 
the inductive E-field excited by the causative stroke might play a significant role in the halo formation.

2. Observations and Measurement
On the night of June 12, 2013, a total of 51 sprites were recorded over an MCS in the central United States by 
an intensified high-speed camera, a low-light-level video camera (SpriteCam), and several radio-frequency 
magnetic sensors. Two sprites with halo features were selected to examine in detail because of the relatively 
high quality of combined data acquisition. The parent strokes of both events were located by the National 
Lightning Location Network (NLDN) with peak current of +197 and +117 kA, respectively. Figure 1 shows 
the location of these two events. The first one (Event A) was generated by the first return stroke of a positive 
CG flash at 0627:43 UTC (+45.0777°N, −102.0647°E), which was the brightest sprite observed on that day. 
The second sprite was a dancing event (Event B) containing three sprite elements generated by a positive 
CG stroke at 0742:59 UTC (+44.9542°N, −99.7575°E).

The reflectivity echo from the NEXRAD weather radar located in Rapid City, South Dakota is shown in 
Figure 1. Both events were observed over the stratiform region, and the second was relatively close to the 
convective zone. The observation sites are shown in Figure  1. The sprites were observed simultaneous-
ly on the SpriteCam at Bennett, Colorado (+39.693°N, −104.488°E), a high-speed camera at Yucca Ridge 
Field Station (YR; +40.702°N, −105.030°E) near Fort Collins, Colorado, LF sferic measurement on the cam-
pus of Oklahoma University (+35.975°N, −79.100°E), and VLF/ULF sferic measurements in Duke Forest 
(+35.182°N, −97.440°E) with low background noise level. All the measurements are synchronized by GPS 
with timing accuracy better than 1 µs.

SpriteCam captures TLEs in triggered mode (through the UFO Capture software). A video stream that spans 
over 2 s of a trigger event is saved at a standard NSTC rate of 30 frames per second (fps) (see Lu et al., 2013 
for details). The intensified high-speed imaging system installed at Yucca Ridge Field Station is composed of 
a Vision Research Phantom 7.1 monochrome high-speed camera and an ITT Gen III image intensifier with 
the spectral response in the range of 450–900 nm. The image size of the high-speed camera is 800 × 600 

REN ET AL.

10.1029/2021GL093094

2 of 10



Geophysical Research Letters

pixels and the frame rate is set to 8,000 and 10,000  fps, respectively, for the two sprites examined here. 
Various magnetic sensors are coordinated to record lightning signals over a wide frequency range (<1 Hz–
300 kHz) from ultralow frequency (ULF, <1 Hz –400 Hz, sampling at 2,500 Hz), very-low frequency (VLF, 
50 Hz–30 kHz, sampled at 100 kHz) to low frequency (LF, 30–300 kHz, sampled at 1 MHz). The LF sferic 
signal of sprite-producing positive CG (SP + CG) strokes usually appears as a burst of impulsive signals over 
microseconds and can be used for accurately determining the onset of return stroke.

3. Analysis and Results
In this section, we examine the detailed halo and sprite evolution in Events A and B. In both events, the oc-
currence of halo preceded the sprite; as also indicated by the observations of Stenbaek-Nielsen et al. (2013) 
and Cummer et al. (2006), some sprites appear to initiate from the bottom of halo region. The luminosity 
curves of two events are acquired based on the high-speed imaging results and the city background light is 
removed (the area confined by the red rectangle in Figures 2 and 3 defines the region of luminosity calcu-
lation). We also deduce the time-resolved current moment and CMC waveform along a vertical lightning 
channel from the VLF and ULF data with the deconvolution method of Cummer and Inan  (2000). The 
height of sprites is estimated according to the following process: we correct the azimuth and elevation 
angle of each pixel in low-light-level images through the star field; then, the height of sprites is estimated 
by placing the sprites right above the causative stroke located by the NLDN and using the elevation angle. 
The halos in both events are centered at about 80 km (e.g., Wescott et al., 2001), which is assumed to be the 
occurrence height of two events. Then, the luminosity curve of both events and the LF, VLF, ULF signals, 
and CMC for two SP + CGs are subtracted with the propagation delay relative to the source point (namely 
all the measurements are time-aligned at the source and the curvature of the Earth is considered). Since 
the analyses are focused on the temporal relationship between sprites and causative lightning strokes, the 
amplitude of all the waveforms is normalized with the peak.
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Figure 1. Observation configuration and radar reflectivity field (dBZ). The four observation instrumentations include 
a SpriteCam at Bennett, Colorado (blue circle), an intensified high-speed camera at Yucca Ridge Field Station (YR; 
blue circle) near Fort Collins, Colorado, radio frequency magnetic sensors near Duke University (blue triangle), 
and Oklahoma University (OU; blue triangle). The geolocation of parent lightning of Event A is marked by the blue 
diamond, while Event B is marked by the blue square. All the parent lightning of sprites that are detected by NLDN on 
the same day are labeled by the red crosses. NLDN, National Lightning Location Network.
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3.1. Event A at 0627:43 UTC

The high-speed images of Event A are shown in Figures 2a–2h. As the luminous area is not bright enough 
and it is difficult to be recognized by naked eyes, we enhance the contrast of images. From Figures  2a 
and 2b, we can see a light-emitting area with a gradually increasing spatial scale from the top (about 95 km) 
to bottom (about 85 km) within 0.25 ms. The altitude and timescale of elves are typically confined in the 
altitude range of 85–95 km (Barrington-Leigh & Inan, 1999; Marshall, 2012) and less than 0.5 ms (Newsome 
& Inan, 2010). Yue and Lyons (2015) also examined an elves event with the modulation of gravity wave at 
0359:13 UTC on the same night. The elves in our case was generated about 0.16 ms after the onset of return 
stroke (inferred from the LF magnetic signal and indicated in Figure 2i with a red vertical dashed line). 
Since elves is attributed to the electromagnetic perturbations at the bottom of ionosphere after an intense 
CG stroke (Nagano et al., 2003; Rowland, 1998; Taranenko et al., 1993), it should start almost at the same 
time with the return stroke, which cannot be further distinguished with the temporal resolution (about 
0.125 ms) of our high-speed video. Moreover, it takes about 5.9 µs for the average radiative lifetime of N2 
(B) between the excitation of elves by the electromagnetic pulse and the light emission of elves (Morrill 
et al., 1998). Such factors could cause the time difference between the appearance of elves and return stroke 
in this case.

The halo began to appear at 0.41 ms after the return stroke when the CMC accumulated to about +300 C km, 
by starting to glow from the bottom center of the elves that descent vertically and expanded laterally (Fig-
ure 2b). Lu (2006) calculated the static, induction and radiation components in the elves region based on the 
TL model, and suggested that the induction term plays a significant role in a small region (with radius r of 
about 11 km) at an altitude of 90 km above the stroke. Their simulation results are generally consistent with 
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Figure 2. (a)–(h) The contrast-enhanced high-speed images of Event A at 0627:43 UTC; (i) The high-speed luminosity 
variation, the RF signal waveforms and CMC waveform of Event A at 0627:43 UTC, the vertical dashed line indicates 
the onset of the return stroke.
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the observations of this event. The halo reached its maximum brightness before the sprite began to appear at 
the center of its bottom (Figure 2d). The evolution from its generation to a full development almost occurred 
before the ULF signal reaches the first peak. In other words, the halo occurred before the maximum charge 
transfer of the causative CG. Recently, Ren et al. (2019) calculated the individual components in the halo 
region based on the TL model. It is inferred that before the static component dominants, the induction term 
with amplitude more than half of the total E-field directly above the lightning might play a critical role in 
the halo formation. This case corroborates the result of Ren et al. (2019) with the observational fact that the 
halo could be attributed to the induction term driven by the impulsive charge transfer.

The sprite appeared when the CMC accumulated to about +900 C km (Figure 2d) at about 0.91 ms after the 
return stroke, and reached the greatest brightness (Figure 2g) approximately 0.5 ms later. As time elapses, 
the contribution of the static term at the altitude of 80 km gradually increases until it becomes completely 
dominated (Ren et al., 2019). The CMC of Event A reached about +1200 C km when the sprite reached its 
brightest state. The initial part (<1 ms) of continuing current is the main contributor of halo production; 
meanwhile, the sprite following the halo is caused by the subsequent long-lasting continuing current, as 
also shown by Li et al. (2008). We can also see the maximum brightness is almost in line with the signature 
of sprite current, which is consistent with Cummer et al. (1998). The small time difference could be attrib-
uted to that as the halo and sprite are intertwined in the same event, the obtained luminosity curve was an 
overlapped effect; therefore, it does not merely reflect the evolution of sprite. As we can see from the figure, 
during the occurrence of sprite current, a slight bump (red arrow in Figure 2) in the luminosity curve is 
barely discernible, which could be caused by the peak brightness of sprite.
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Figure 3. (a)–(j) Contrast-enhanced high-speed images of Event B at 0742:59 UTC; (k) high-speed luminosity 
variation, the RF signal and CMC waveforms of Event B at 0742:59 UTC, the vertical dashed line indicates the onset of 
the return stroke.
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3.2. Event B at 0742:59 UTC

For Event B as a dancing sprite event at 0742:59 UTC, as shown in Figure 3a, the halo appeared when the 
CMC accumulated to about +250 C km at approximately 0.28 ms after the onset of the return stroke (in-
ferred from the LF magnetic signal as indicated in Figure 3k with a red vertical dashed line), and it reached 
the peak luminosity (Figure 3b) roughly 1.2 ms later by centering at an altitude of about 80 km. The high 
local electron density and the fast electrical relaxation lead to the appearance of halo instead of sprite 
streamers.

The first sprite element initiated from the center bottom of the halo (Figure 3c) about 2.38 ms after the 
return stroke upon a cumulative CMC of +625 C km. Then, it reached its peak brightness 1.5 ms later. The 
second sprite element initiated (Figure 3e) in the lower-left area of the first one before the first one faded 
away. Thus, we cannot clearly distinguish the inception of the second element from its luminosity variation. 
However, according to the images from the high-speed video, the second sprite element initiated at about 
4.78 ms after the return stroke.

The third sprite element initiated (Figure 3h) in the lower-left area of the second one at about 26.5 ms after 
the return stroke, when the CMC has accumulated to +3125 C km. The time delay of sprite occurrence 
relative to the causative return stroke varies broadly from <1 ms to more than 200 ms; most of them were 
within 20 ms after the return stroke (Hu et al., 2002; Li et al., 2008). Therefore, this was a very long delayed 
sprite element. Event B maintained certain brightness before the third sprite element initiated (Figures 3g 
and 3h) during the continuing current. The third sprite element had the longest delay and also the highest 
brightness (Figure 3j). The continuing current might have kept building up the high-altitude E-field and 
maintained the intense E-field region for the following sprite. The impulse current (Bell et al., 1998; Cum-
mer & Lyons, 2005; Gomes & Cooray, 1998) or continuous current lasting several tens of milliseconds can 
transfer a large amount of charge from cloud to ground (Cummer & Füllekrug, 2001). The rapid charge 
transfer from thundercloud generates a transient E-field at the mesospheric altitude (Pasko, Inan, Bell, 
& Taranenko,  1997), which may exceed the threshold of conventional dielectric breakdown and trigger 
the streamer development to form sprites (Liu & Pasko, 2004; Pasko et al., 1998; Qin et al., 2011). For the 
occurrence of sprites, the long-term maintenance of a transient E-field at high altitude may be even more 
important than the peak strength of E-field (Pasko et al., 1999). In this case, the continuous charge transfer 
maintained a high E-field in the region where the sprite was generated. Meanwhile, we can see that the cor-
responding VLF perturbation appeared during the occurrence of the third sprite element. Both successive 
intense CG strokes and a single stroke with a series of current surges superposed on an intense continuing 
current could produce dancing sprites (Lu et al., 2013). Therefore, a relatively small magnetic disturbance 
could also excite a bright sprite element. In addition, Qin et  al.  (2011) suggested that the triggering of 
long-delayed sprites might be a unique property of halos produced by positive CG strokes due to the forma-
tion of a long-lasting high E-field region. The continuing current further enlarges this high E-field region 
and reduces the sprite altitude to a region with a smaller electron density, which could cause a long-time 
delay and vertical structure for some sprites. In comparison with Event A, Event B endured 10 times longer 
although the total CMC was approximately twice that of the former. Although both the intensity and time 
scale of the continuing current are important to the initiation of sprite, the time scale appears to contribute 
more to the persistence of sprite brightness, and the total CMC is more important for the brightness. More 
sprites events should be analyzed to reveal the details regarding this statement.

4. Discussions and Conclusions
The lightning-induced E-field at halo and sprite altitudes can be calculated with the TL model to examine 
the contribution of individual components (e.g., Lu, 2006; Ren et al., 2019). The input current waveform is 
calculated from the time-resolved current moment as obtained in Section 3. As the halo is thought to appear 
directly above the vertical lightning channel (e.g., Wescott et al., 2001), and the radiation component is zero 
above the lightning channel, in the cylindrical coordinate system, the time-resolved vertical E-field (Ez) at 
location (φ, z, r = 0) can be calculated as:
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where H is the height of lightning channel; z' is the height of front edge of return stroke base current 
propagating in the lightning channel at time t; v is the constant return stroke speed; c is the speed of light 
in the air; dz' = 1 m is the length of the current element. All the E-field components are nearly vertical be-
cause the vertical E-field is dominant over the horizontal E-field within a small region above the lightning 
channel. The TL model clearly separates the static component generated from the charge displacement 
and the induction term generated by the movement of charge, but it does not reflect the influence due to 
the characteristics of high-altitude atmosphere. Compared to the Finite-Difference Time-Domain (FDTD) 
method incorporates the effects of ionization and absorption of the ionosphere (e.g., Zhang et al., 2014), it 
behaves almost the same as that of the FDTD method in the total E-field at 80 km altitude within 1 ms after 
the return stroke (Ren et al., 2019). Since we focus on the initiation of halo, the E-field within the previous 
phase is examined, as shown in Figure 4.

In addition to the time-resolved E-field components in the halo region centered at 80 km, the luminosity 
curves of both sprites examined are also shown in Figure 4. Before the halo appeared, the induction term 
remained higher than the static component, indicating that the induction term dominates the impact on the 
high-altitude mesosphere shortly after the return stroke. The purple dashed line represents the onset time 
of halo as captured by the high-speed camera, while due to the limited time resolution, it should be slightly 
behind the real onset, and the real halo onset should be in the shaded purple window. Therefore, the total 
E-field in the halo initiation area (shaded purple) for Event A (Figure 4a) and Event B (Figure 4b) is about 
36 V/m and 28 V/m, respectively; in both cases, the induction component contributes roughly 50% to the 
total E-field upon the halo initiation. In addition, for Event A that contained an obvious elves feature, the 
onset of the elves indicated by the vertical black dashed line should be closer to the onset of E-field as the 
elves is mainly excited by the electromagnetic pulse (EMP) of return stroke, which means that in this case 
the contribution of induction component to the halo initiation is likely more significant.

The driving E-field of halo calculated in these two cases is somewhat lower than the vertical E-field thresh-
old of dielectric breakdown (∼48 V/m) calculated by Thomas et al. (2005) on the basis of the MSIS-E−90 at-
mosphere model. It is not surprising as there are many factors that could disturb the local condition 
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Figure 4. (a) Lightning induced E-field at halo initiation altitude of Event A at 0627:43 UTC; (b) lightning induced 
E-field at halo initiation altitude of Event B at 0742:59 UTC. The hollow circle on the luminosity curve represents the 
value in the red box area of each high-speed camera image, the black arrows point to the onset of RS (return stroke).
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(especially the neutral atmospheric density) at the altitude of halo initiation, such as gravity waves (Pasko, 
Inan, & Bell, 1997), chemical reactions, meteors in the mesosphere (Qin et al., 2014) and so on. As a mat-
ter of fact, Yue and Lyons (2015) reported the observation of elves at 0359:13 UTC on the same night, and 
the banded structure as observed by a collocated color near-infrared camera reflected the modulation of 
mesospheric state by the convectively generated gravity waves. Moreover, in addition to the two sprites ex-
amined, there were more than 50 sprites produced by the same thunderstorm, and it remains possible that 
the preceding lightning discharges could also disturb the local electrical parameters and make significant 
contributions to the initiation of subsequent sprites. Hu et al. (2007) applied the two-dimensional cylindri-
cal full-wave FDTD model to simulate the lightning-generated electromagnetic waves at the mesospheric 
altitude by sprite-producing CG strokes, and the calculated electromagnetic field at the moment of sprite 
initiation was only 0.12–0.69 times the traditional breakdown threshold for nearly half cases they examined.

In summary, the coordinated observations of two sprites and their parent lightning on the night of June 12, 
2013 over a mesoscale convective system were analyzed in this paper. The concurrent broadband (<1 Hz–
400  kHz) lightning sferics are analyzed on the basis of high-speed imaging results to reveal the details 
regarding the temporal evolution of halo and sprite in comparison with the time-resolved charge transfer in 
the causative lightning stroke. In addition, the lightning-induced E-field perturbation at the altitude of halo 
initiation is calculated with the TL model to examine which component contributes the most to the halo 
initiation. The main conclusions are as follows:

 1.  When the return stroke starts, the halo appears almost immediately. In the first case, the elves, halo and 
sprite initiated at approximately 0.16, 0.41, and 0.91 ms after the return stroke. In the second case as a 
dancing sprite event, the halo and three sprite elements initiated at about 0.28, 2.38, 4.78, and 26.5 ms, re-
spectively, after the return stroke. The initiation of red sprite is the combined effect of the driving E-field 
and the atmospheric background conditions at the initiation height, as well as their luminous duration. 
In the two cases, the different onset of halo and sprite elements suggests that the lightning E-field ex-
ceeded the threshold probably under varying mesospheric conditions. The sustaining luminosity of the 
halo and sprite suggests the state of the lightning E-field exceeding the threshold

 2.  The observed halos are mainly produced by the initial part (<1 ms) of the continuing current during the 
causative +CG stroke when the lightning current has reached the maximum while the resultant charge 
transfers barely started to cumulate; our analysis provides the observational evidence that in addition to 
the static component, the induction component also contributes to the formation of the halos, and its 
contribution actually dominates during the very initial stage. This means that for the initiation of halos, 
the E-field generated by the current pulse of charge transfer may be more important than that generated 
by the charge relocation

 3.  The subsequent continuing current of causative strokes seems to maintain the high E-field of sprite re-
gion and leads to a persistent illumination of the existing sprite. Moreover, it may contribute to the high 
luminosity and vertical structure of the sprite element followed when a smaller current surge appears

Data Availability Statement
The data examined in this paper are available at https://zenodo.org/record/3600940#.XhW4R3aATJ0.
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