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Abstract We present a computational framework for dimen-
sion reduction and surrogate modeling to accelerate uncer-
tainty quantification in computationally intensive models with
high-dimensional inputs and function-valued outputs. Our
driving application is multiphase flow in saturated-unsaturated
porous media in the context of radioactive waste storage.
For fast input dimension reduction, we utilize an approx-
imate global sensitivity measure, for function-valued out-
puts, motivated by ideas from the active subspace methods.
The proposed approach does not require expensive gradient
computations. We generate an efficient surrogate model by
combining a truncated Karhunen-Loéve (KL) expansion of
the output with polynomial chaos expansions, for the out-
put KL modes, constructed in the reduced parameter space.
We demonstrate the effectiveness of the proposed surrogate
modeling approach with a comprehensive set of numerical
experiments, where we consider a number of function-valued
(temporally or spatially distributed) QoIs.
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1 Introduction

Low permeability argillites are considered as suitable host
rocks for underground radioactive waste storage to retain
radionuclides locally. However, hydrogen gas produced by
corrosion of steel engineered barriers can represent a threat
to the installation safety. A significant impact of this produc-
tion is the overpressurization of hydrogen around alveolus
leading to opening fractures in the surrounding host rock and
inducing groundwater flow and transport of radionuclides
outside of the geological repositories. This problem renews
the mathematical interest in the equations describing multi-
phase multicomponent flows through porous media, within
the present context. An important aspect of improving the
prediction fidelity of such models is to account for the vari-
ous sources of uncertainty in the governing equations.

Performing uncertainty analysis on the models under study
using a direct Monte Carlo sampling approach is infeasi-
ble. This is due to the high cost of model simulations and
the need for a large number of such simulations. There-
fore, there is a need for quick-to-evaluate surrogate mod-
els that accurately capture the underlying physics and sta-
tistical properties of the quantities of interest (QoIs). Surro-
gate modeling, however, is a formidable task for the appli-
cations considered in the present work. Models describing
flow through porous media exhibit distinct challenges with
regards to uncertainty quantification and surrogate model-
ing including expensive simulations, high-dimensional un-
certain parameters, and function-valued outputs. Address-
ing these challenges effectively requires understanding and
exploiting the problem structure. To this end, we propose a
framework that deploys a sensitivity analysis approach to re-
duce the dimensionality of the input parameter and utilizes
the spectral properties of the output QoI to generate an effi-
cient surrogate model.
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QoI: f = f(s, ξ)

reduce output dimension:
fNqoi

(s, ξ) = f0(s) +
∑Nqoi

i=1 fi(ξ)Φi(s)

reduce input dimension:
(reduced parameter ξr)

PCE of KL modes:
fPC
i (ξr) =

∑NPC

k=0 fikΨk(ξr)

surrogate:
fPC
Nqoi

(s, ξr) = f0(s) +
∑Nqoi

i=1 fPC
i (ξr)Φi(s)

Fig. 1 A schematic of the proposed bispectral surrogate modeling approach.

Related work. The modeling of underground radioac-
tive waste storage involves simulating the coupled transport
of multiphase multicomponent flow in porous medium. Equa-
tions governing this type of flow in porous media are non-
linear and involve simulation of complex phenomena such
as the appearance and the disappearance of the gas phase
leading to the degeneracy of the equations satisfied by the
saturation. There have been significant research efforts deal-
ing with mathematical and numerical models for simulat-
ing the transport migration of radionuclides. The articles [8,
9] present test-cases and set up benchmark examples to ad-
dress some of the specific problems encountered when nu-
merically simulating gas migration in underground nuclear
waste repositories. In [4,9,31] different choices of primary
variables have been proposed to tackle the degeneracy of the
equations satisfied by the saturation. In [5], the authors study
a compressible and partially miscible phase flow model in
porous media, applied to gas migration in an underground
nuclear waste repository in the case where the velocity of
the mass exchange between dissolved hydrogen and hydro-
gen in the gas phase is supposed finite. Also presented is a
numerical scheme based on a two-step convection/diffusion-
relaxation strategy to simulate the non-equilibrium model.
There have also been efforts to quantify uncertainty in mod-
els of multiphase flow [10,29,30,32,34,40].

The tools from uncertainty quantification that are rele-
vant to the present work include global sensitivity analy-
sis (GSA) and surrogate modeling. GSA provides insight
into how uncertainties in model parameters influence model
outputs by identifying the input parameters a QoI is sensi-
tive to. This increases overall understanding of the under-
lying physics and guides parameter dimension reduction.
The Sobol’ indices [36], derivative-based global sensitivity
measures (DGSMs) [23,24,37], and active subspace meth-
ods [12,13] are examples of GSA tools widely used in prac-
tice. These concepts were originally conceived for scalar
QoIs. Recent works such as [1,11,42] generalize standard
GSA tools to the case of vector- and function-valued QoIs.
In particular, [17,1] concern variance-based GSA using Sobol’
indices for such QoIs. The article [11] studies DGSMs for
function-valued QoIs. A generalization of active subspace
methods for vectorial outputs is presented in [42].

For expensive-to-compute QoIs calculating GSA mea-
sures such as Sobol’ indices is computationally expensive.
A common method for mitigating the computational cost is
to construct a cheap-to-evaluate surrogate model for the QoI
and then apply GSA techniques to the surrogate. For exam-
ple, polynomial chaos expansions (PCEs) have been a pop-
ular approach for accelerating the computation of Sobol’ in-
dices; see, e.g., [3,7,15,38]. Surrogate model construction,
however, is itself a computationally challenging task, espe-
cially in the case of models with high-dimensional input pa-
rameters. For such models it is also possible to use a multi-
level approach: initial parameter screening can be performed
using cheap, but less precise, tools and further dimension re-
duction is performed through more rigorous methods such
as a variance-based analysis using accurate surrogate mod-
els constructed in a reduced-dimensional parameter space;
see e.g., [20].

For function-valued QoIs, a straightforward approach is
to compute surrogate models for every grid point in a dis-
cretized computational domain. This approach, however, can
be inefficient and ignores an important problem structure—
the low-rank structure of the output. Specifically, in many
applications, function-valued QoIs can be represented via a
spectral representation, such as a Karhunen–Loéve expan-
sion (KLE), with a small number of terms. This problem
structure can be exploited for surrogate modeling: instead
of approximating a field quantity at every point in a compu-
tational grid, one can approximate a few dominant modes of
the output QoI. Such surrogate models can also be used to
accelerate GSA methods; see e.g., [1,11,19,26].

Our approach and contributions.
In the present work, we seek to construct surrogate mod-

els for fast analysis of computationally intensive models with
high-dimensional parameters and function-valued QoIs. We
consider QoIs of the form

f = f (s, ξ), s ∈X , ξ ∈ Θ,

where Θ ⊆ RNp is the uncertain parameter domain and X
is compact subset of Rd, with d ∈ {1, 2, 3}. In practice, s
can represent a spatial or temporal point. Our focus in the
present work is models of flow in porous media, and f (s, ξ)
is an observable in a multiphase flow problem. Our approach
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identifies and exploits low-dimensional structures in both in-
put and output spaces. Specifically, we rely on approximate
GSA measures for fast input parameter screening and utilize
low-rank spectral representations of output fields.

We propose a fast-to-compute screening metric that uti-
lizes ideas from active subspaces [12] and derivative-based
GSA for functional outputs [11] to perform parameter di-
mension reduction. The proposed screening metrics do not
require gradient computation in the parameter space. This
makes the proposed methods applicable to a broad class of
problems involving complex physics systems for which ad-
joint solvers, which are essential for gradient computation
in high dimensions, are not necessarily available.

Following parameter screening, we combine two differ-
ent spectral approaches—KLEs and PCEs—to generate an
efficient surrogate model in a reduced-dimensional uncer-
tain parameter space. The overall surrogate model constructed
takes the form,

f PC
Nqoi

(s, ξr) = f0(s) +

Nqoi∑
i=1

f PC
i (ξr)Φi(s),

whereΦi’s are orthogonal basis functions in L2(X ) obtained
from a KLE of f (s, ξ) and f PC

i are approximate KL modes
as functions of a reduced-dimensional parameter vector ξr ⊆
Rnp ; these KL modes are represented by PCEs,

f PC
i (ξr) =

NPC∑
k=0

fikΨk(ξr),

where Ψk’s are a basis consisting of multivariate orthog-
onal polynomials in L2(Θ) and NPC is specified based on
the choice of truncation strategy. Thus, the overall surrogate
model can be expressed as

f (s, ξ) ≈ f0(s) +

Nqoi∑
i=1

NPC∑
k=0

fikΨk(ξr)Φi(s). (1)

We refer to the class of surrogate models of the form (1)
as bispectral surrogates due to the use of spectral repre-
sentations in L2(X ) and L2(Θ). In Figure 1, we provide
a schematic of the proposed bispectral surrogate modeling
framework. We point out that the proposed approach is non-
intrusive and requires only the ability to evaluate the gov-
erning model at a sample of uncertain inputs. See Section 5
for details.

While computing a surrogate model from a truncated
KLE by replacing the KL modes with PCEs (or other surro-
gates) is not new, see e.g., [1,19,26], we build upon this ap-
proach by including a gradient-free input dimension reduc-
tion approach as a first step. This enables the PCEs for the
KL modes to be built in a lower-dimensional space. Thus,
a major contribution of this article is a synergy of known

techniques combined with a novel input dimension reduc-
tion strategy to furnish an integrated surrogate modeling ap-
proach. We also provide a detailed computational procedure
for the proposed framework, making the present work a self-
contained guide. We elaborate our approach on an intricate
multiphase multicomponent flow model for which a com-
prehensive presentation is also given. In our numerical re-
sults, we implement the proposed approach for both spatially-
and temporally-varying QoIs. Additionally, a variety of sta-
tistical studies are conducted with the constructed bispectral
surrogate. These tests are intended to showcase the versa-
tility of the surrogate model and explore the physical phe-
nomenon under study. In particular, we perform model pre-
dictions, compute variance-based global sensitivity indices,
and study statistical model response behavior. In addition to
demonstrating the effectiveness of the proposed strategy, our
computational results provide valuable insight regarding the
response of complex porous media flow models to uncer-
tainties in material properties.

Article overview. In section 2 we present a detailed overview
of the multiphase multicomponent flow model that is central
to the present work. We also provide a description of our
choice of numerical solver for the governing equations. In
section 3, we discuss modeling the uncertainties in material
properties, as well as give a brief explanation of the model
response and relevant QoIs. We supply a concise overview
of KLEs, PCEs, and bispectral surrogates in section 4. In
section 5 we provide a detailed framework, including algo-
rithms, for the proposed dimension reduction and surrogate
modeling approach. Our computational results are presented
in section 6. Finally, we provide closing comments in sec-
tion 7.

2 Model Description

2.1 Mathematical formulation of the continuous problem

Here we state the physical model used in this work. We con-
sider a porous medium saturated with a fluid composed of
two phases, liquid (l) and gas (g), and a mixture of two com-
ponents, water (w) and hydrogen (h). The spatial domain Ω
is a bounded open subset of R` (` = 1, 2, or 3) and the prob-
lem is considered in the time interval [0,T f ], where T f > 0
is the final time. To define the physical model, we write the
mass conservation of each component in each phase

φ∂t(ρwl Sl + ρwgSg)

+ ∇ · (ρwl Vl + ρwgVg + Jwl + Jwg ) = f w, (2)

φ∂t(ρh
l Sl + ρh

gSg)

+ ∇ · (ρh
l Vl + ρh

gVg + Jh
l + Jh

g) = f h, (3)

where φ(x) is the given porosity of the medium, Sα(t, x) the
saturation of the phase α ∈ {l, g}, with the two saturations
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summing to one. Also, pα(t, x) is the pressure of the phase
α, ρβα is the density of the component β ∈ {w, h} in the phase
α, and ρα = ρh

α+ρwα is the density of the phase α. The velocity
of each fluid, Vα is given by Darcy’s law

Vα = −K
krα (Sα)
µα

(∇pα − ρα(pα)g
)
,

where K(x) is the intrinsic (given) permeability tensor of
the porous medium, krα the relative permeability of the α-
phase, µα the constant α-phase’s viscosity, pα the α-phase’s
pressure, and g, the gravity vector. For further details of the
model we refer to the presentation of the benchmark [8,9].
Following the Fick’s law, the diffusive flux of a component
β in the phase α is given by

Jβα = −φSαραDβ
α∇Xβα,

where coefficient Dβ
α is the Darcy scale molecular diffusion

coefficients of β-component in α-phase and Xβα = ρ
β
α/ρα is

the component β molar fraction in phase α. Diffusive fluxes
satisfy

∑
β Jβα = 0 for each α.

The capillary pressure law, which links the jump of pres-
sure of the two phases to the saturation, is

pc(Sl) = pg − pl.

This function is decreasing ( dpc
dSl

(Sl) < 0 for all Sl ∈ [0, 1]),
and satisfies pc(1) = 0.

In the present work, the water is supposed only present
in the liquid phase (no vapor of water due to evaporation).
Thus, (2)–(3) could be rewritten as

φ∂t(Sl ρ
w
l ) + ∇ · (ρwl Vl)

+ ∇ · (φSl ρlDh
l ∇Xh

l ) = f w, (4)

φ∂t(Sl ρ
h
l + Sg ρh

g) + ∇ · (ρh
l Vl + ρh

gVg)

− ∇ · (φSl ρlDh
l ∇Xh

l ) = f h. (5)

The system (4)–(5) is not complete; to close the system, we
use the ideal gas law and the Henry’s law

ρh
g =

Mh

RT
pg and ρh

l = MhHh pg, (6)

where the quantities Mh, Hh, R and T represent respectively
the molar mass of hydrogen, the Henry’s constant for hydro-
gen, the universal constant of perfect gases and T the tem-
perature. By these formulation, the system (4)–(5) is closed
and we choose the liquid pressure and the density of dis-
solved hydrogen as unknowns. From (6), the Henry’s law
combined to the ideal gas law, to obtain that the density of
hydrogen gas is proportional to the density of hydrogen dis-
solved

ρh
g = Cρh

l where C =
1

HhRT
= 52.51.

Note that the density of water ρwl in the liquid phase is
constant and from the Henry’s law, we can write

ρl∇Xh
l = Xwl ∇ρh

l .

Then the system (4)–(5) can be written as

φ∂t

(
Sl ρ

w
l

)
+ ∇ ·

(
ρwl Vl

)
+ ∇ ·

(
φSlXwl Dh

l ∇ρh
l

)
= f w,

φ∂t

(
m(Sl)ρh

l

)
+ ∇ ·

(
ρh

l Vl + Cρh
l Vg

)
− ∇ ·

(
φSlXwl Dh

l ∇ρh
l

)
= f h,

(7)

where m(Sl) = Sl + CSg.

A van Genuchten-Mualem model with the parameters n,
Sαr and pr as given in Table 1 (left) is used for the relative
permeabilities and capillary pressure:

pc(Sle) = pr

(
S −1/υ

le − 1
)1/n

,

krl (Sle) =
√

Sle

(
1 −

(
1 − S 1/υ

le

)υ)2
,

krg (Sle) =
√

1 − Sle

(
1 − S 1/υ

le

)2υ
,

with the effective saturation

Sle = (Sl − Slr)/(1 − Slr − Sgr),

where Slr and Sgr are the liquid and gas residual saturations,
respectively, and υ = 1 − 1/n.

2.2 Numerical solver

As is well known, the modeling of underground radioactive
waste storage involves simulation of complex phenomena
such as the appearance and the disappearance of the gas
phase leading to the degeneracy of the equations satisfied
by the saturation. This is mainly due to the migration of
gas produced by the corrosion of nuclear waste packages
within a complex heterogeneous domain. To overcome this
difficulty, an important consideration, in the modelling of
multiphase flow with mass exchange between phases, is the
choice of the primary variables that define the thermody-
namic state of the system. Different choices of primary vari-
ables have been proposed [4,9,31]. In this article, we con-
sider pressure of the liquid phase and density of dissolved
hydrogen the primary unknowns in the multiphase flow sys-
tem. A cell-centered finite volume scheme is used for the
space discretization and an implicit Euler scheme for the
temporal discretization. The nonlinear system is solved with
a fixed point method.

In this section, we present a numerical study dedicated
to understanding the computational issues caused by gas
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phase appearance produced by injecting of hydrogen in a
one-dimensional homogeneous porous domain. We consider
a domain that is fully saturated with water. This numerical
study is inspired by the MoMaS benchmark on multiphase
flow in porous media [8].

2.3 Numerical experiment

We consider a one-dimensional domain with the benchmark
setup described in [8]. The spatial domain Ω is the interval
(0, L), with L = 200 meters, and the final simulation time is
T f = 106 years. The parameters for porous medium, fluid
characteristics, and initial and boundary conditions are pre-
sented in [8] and summarized in Table 1.

Initial conditions are uniform over the whole domain
with pure liquid water at fixed liquid pressure and no hy-
drogen present,

pl(0, x) = pinit and ρh
l (0, x) = 0, x ∈ Ω.

For boundary conditions, a constant flux of hydrogen and
zero water flow rate were imposed on the left boundary

ρwl Vl − Jh
l = 0,

ρh
l Vl + ρh

gVg + Jh
l =

qh 0 ≤ t ≤ Tinj,

0 t > Tinj.

On the right boundary, Dirichlet boundary conditions the
same as the initial conditions are imposed.

To validate our solver, we run simulations with the nom-
inal parameters and report the phase pressures and gas satu-
ration at the inflow boundary. Our results are consistent with
those reported in [4,9,31]. Figure 2 shows the gas saturation
(top) and the phase pressures (bottom), with respect to time
(years) during and after injection. For 0 < t < 13 × 103

years, the gas saturation remains zero, all injected hydrogen
dissolves into the liquid phase, the whole domain is satu-
rated with water, and the liquid pressure remains constant.
At t ≈ 13×103 years, the maximum solubility is reached and
the gas phase appears at the injection boundary. Gas satura-
tion keeps growing during the period of hydrogen injection.
When injection stops at t = 5× 105 years, gas saturation de-
creases until it disappears. A negative water flux is observed
(see Figure 3) as water comes from right to left to fill in the
empty space. At the end of the simulation, the gas pressure
continues to decrease and the liquid pressure gradient goes
to zero, as the system reaches a steady state.

3 Modeling under uncertainty

We seek to understand the impact of uncertainty in hetero-
geneous material properties on model predictions. Specif-
ically, we focus on uncertainties in porosity and absolute
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Fig. 2 Gas saturation (top) and liquid and gas pressures (bottom) at the
inflow boundary.

permeability. Our goal is to understand the impact of un-
certainties in material properties on the gas phase appear-
ance/disappearance in a two phase flow produced by hydro-
gen injection through a porous medium, which is initially
fully saturated with water.

3.1 Modeling uncertainty in material properties

While in the setup of the benchmark problem constant val-
ues for porosity and permeability were used, allowing for
spatially varying porosity and permeability provides a more
realistic representation. This leads to representation of these
quantities as random fields.

We model the porosity, φ, as a random field as follows.
Let Z(x, ω) be a Gaussian process, with exponential covari-
ance function c(x, y) = e−|x−y|/`, where ` > 0 is the corre-
lation length. We chose ` = 10 m (recall the length of the
domain is 200 m). The covariance operator of Z is defined
by

[Cparu](x) =

∫
Ω

c(x, y)u(y) dy, u ∈ L2(Ω). (8)

We define the random porosity field by

φ(x, ω) = F−1
B (FG(Z(x, ω));αbeta, βbeta) . (9)
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Table 1 Left: parameter values for the porous medium and fluid characteristics used in test case 1. Right: parameter values for domain size,
boundary and initial conditions, total injection time and total simulation time.

Parameter Value Parameter Value
φ [-] 0.15 Dh

l [m2 · s−1] 3 × 10−9

K [m2] 5 × 10−20 µl [Pa · s] 1 × 10−3

pr [Pa] 2 × 106 µg [Pa · s] 9 × 10−6

n [-] 1.54 Hh [mol.Pa−1.m−3] 7.65 × 10−6

S lr [-] 0.4 Mh [Kg ·mol−1] 2 × 10−3

S gr [-] 0 ρwl [Kg ·mol−3] 103

Parameter Value
L [m] 200
qh [kg/m2/year] 5.57 × 10−6

pinit [Pa] 106

Tin j [years] 5 × 105

T f [years] 106
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Fig. 3 Liquid (top) and gas (bottom) flux at the outflow boundary.

Here F−1
B (·;αbeta, βbeta) is the inverse CDF of a Beta(αbeta, βbeta)

distribution and FG is the CDF of a standard normal distri-
bution. This ensures that for every x ∈ Ω the porosity is
distributed according to Beta(αbeta, βbeta). The random per-
meability field is obtained using a Kozeny–Carman rela-
tion [14,27]:

K(φ) ∝ φ3

(1 − φ)2 .

We set the proportionality constant in the above relation so
that K(φ̄) = K̄, where φ̄ and K̄ are the nominal porosity
and permeability values listed in Table 1 (left). The values
of αbeta and βbeta in (9) are set such that the mode of the
porosity distribution (at each x ∈ Ω) is the nominal porosity
of φ̄ = 0.15. Specifically, we chose αbeta = 20 and found
βbeta from the formula for the mode of a Beta distribution:

(αbeta − 1)/(αbeta + βbeta − 2) = φ̄. We depict the distribu-
tions for pointwise porosity and permeability values along
with the porosity permeability relation in Figure 4 (top). We
note that the present setup provides a physically meaningful
range of values for porosity and permeability, for the appli-
cation problem under study.
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Fig. 4 Top: the porosity permeability relation and the distributions of
pointwise porosity and permeability. Bottom: a few realizations of the
porosity field.

To facilitate uncertainty quantification, we consider a
truncated KLE of the Gaussian random field Z(x, ω) used
in definition of φ(x, ω) in (9). That is, we consider

Z(x, ω) ≈
Np∑
i=1

√
λiξiei(x), (10)
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where (λi, ei), i = 1, . . . ,Np are the eigenpairs of the co-
variance operator of Z(x, ω); see e.g., [2,6,25] for details
about the use of KL expansions for representing random
fields in mathematical models. For the present problem, we
let Np = 100, which enables capturing over 96 percent of the
average variance of the process. Notice that with the present
setup, the uncertainty in the porosity field is fully captured
by the vector ξ = [ξ1 ξ2 · · · ξNp ]T, where ξi’s are the KLE
coefficients in (10), which are independent standard normal
random variables. As an illustration, we show a few realiza-
tions of the random porosity field in Figure 4 (bottom).

3.2 The QoIs under study

We focus on dynamics of hydrogen in gas phase by consid-
ering on the time evolution of gas saturation and pressure
at the inflow boundary and gas flux at the outflow bound-
ary. The units for gas pressure and gas flux are [bar] and
[kg/m2/year], respectively. These time-dependent QoIs are
indeed random field quantities due to randomness in poros-
ity and permeability fields. Notice that since the uncertainty
in porosity field is encoded in the coefficients ξ in (10), the
randomness in these QoIs is also parameterized by the vec-
tor ξ of the KL coefficients. We denote the uncertain gas
saturation at the inflow boundary and gas flux at the outflow
boundary by S (t, ξ), and Q(t, ξ), respectively. In Figure 5,
we depict a few realizations of these uncertain QoIs.

We also consider the gas saturation throughout the do-
main, at various points in time. We denote this QoI by S (x, ξ; t∗),
where t∗ is a fixed time. Figure 6 shows a few realizations
of this QoI at t∗ = 300,091 years. To further illustrate the
impact of spatial heterogeneity on the flow model, we also
report a plot of the gas saturation in the space-time domain
in Figure 7.

Performing statistical studies and predictions on the QoIs
outlined above is challenging due to the high cost of solving
the governing equations and the high-dimensionality of the
input and output spaces. A major aim of this article is to
present a surrogate modelling framework that approximates
the time- or space-dependent QoIs efficiently by reducing
the input and output dimensions and using suitable approxi-
mations.

4 Spectral representations of random processes

4.1 Karhunen Loéve expansions

Here we discuss spectral representations of a function-valued
output f (s, ξ). We assume f is a mean-square continuous
random process. Such processes admit spectral representa-
tions, as given by a Karhunen Loéve expansion (KLE) [28,
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Fig. 5 A few realizations of the time evolution of top: gas saturation at
the inflow boundary, bottom: gas flux at the outflow boundary.
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Fig. 6 Gas saturation at t∗ = 300,091 years.

Fig. 7 Space time evolution of gas saturation.
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25]:

f (s, ξ) = f̄ (s) +

∞∑
i=1

√
λi fi(ξ)Φi(s). (11)

Here f̄ (s) is the mean of the process, (λi, Φi) are the eigen-
pairs of the covariance operator Cqoi of the process,

CqoiΦi = λiΦi, i = 1, 2, . . . , (12)

and fi(ξ) are the KL modes,

fi(ξ) =
1√
λi

∫
X

(
f (s, ξ) − f̄ (s)

)
Φi(s) ds, i = 1, 2, 3, . . .

An approximation fNqoi(s, ξ) to f (s, ξ) can be obtained by
truncating (11) and retaining the first Nqoi terms in the series.
In many physical and biological models the eigenvalues of
Cqoi decay rapidly. Consequently, such QoIs can be repre-
sented with sufficient accuracy by a truncated KLE with a
small Nqoi. Such processes are referred to as “low-rank”.

We rely on Nyström’s method to compute the KLE [22].
This approach, as used in the present work, requires sam-
ple averaging to approximate the covariance kernel, because
we do not in general have a closed-form expression for the
output covariance operator. Typically, a modest number of
QoI evaluations is sufficient for accurately estimating the
dominant eigenpairs of the covariance operator Cqoi. To de-
termine a suitable value for the number Nqoi of terms in a
truncated KLE, we consider

rk =

∑k
i=1 λi∑∞
i=1 λi

. (13)

The quantity rk represents the fraction of the average vari-
ance of f captured by the first k eigenvalues. The steps for
computing the truncated KLE of f are included in Algo-
rithm 1, which is adapted from [2].

Note that evaluating the truncated KLE of f requires
computing the KL modes, which in turn requires a model
evaluation. To convert the truncated KLE into an efficient
surrogate model for f , we need a cheap-to-evaluate repre-
sentation for the KL modes. This approach is similar to the
one taken by [1,26], in which PCE surrogates are constructed
for the modes of the related spectral representations. In sec-
tion 5, we modify this approach by first reducing the dimen-
sion of the input parameter and then constructing the KL
modes surrogates in the reduced uncertain parameter space.

4.2 Polynomial chaos expansions for fi(ξ).

Recall, the polynomial chaos expansion of a square inte-
grable function g(ξ) is a series approximation of the form

g(ξ) ≈
NPC∑
k=0

ckΨk(ξ), (14)

where {Ψk}NPC
k=0 are a predetermined set of orthogonal poly-

nomials, and {ck}NPC
k=0 are the corresponding expansion coef-

ficients [25]. Following a total order truncation [25], NPC is
given by

NPC + 1 =
(Nord + Np)!

Nord!Np!
,

where Nord is the maximum total polynomial degree and Np

is the dimension of ξ. There are a variety of approaches
for determining the expansion coefficients {ck}NPC

k=0 including
quadrature or regression based methods [25]. For this ap-
plication, we implement sparse linear regression [16,41]. In
this method, the expansion coefficients are found by solving

min
c∈RNPC

‖Λc − d‖22 , subject to
NPC∑
k=0

|ck | ≤ τ, (15)

where Λ ∈ RNs×NPC is defined by Λi j = Ψ j(ξi),
d = (g(ξ1), g(ξ2), . . . , g(ξNs

))T is a vector containing model
evaluations, and τ is the sparsity control parameter. Deter-
mining Nord and τ may be done with trial and error or with a
cross-validation process, as detailed in Section 6.

4.3 Bispectral surrogates

Earlier we broached the subject of utilizing PCEs to convert
a truncated KLE into a surrogate model for f . Consider the
truncated KLE of f ,

fNqoi(s, ξ) = f̄ (s) +

Nqoi∑
i=1

√
λi fi(ξ)Φi(s). (16)

By replacing the KL modes in (16) with PCEs we construct
a surrogate model for f of the form

f PC
Nqoi

(s, ξ) = f̄ (s) +

Nqoi∑
i=1

√
λi f PC

i (ξ)Φi(s), (17)

where f PC
i (ξ) is the PCE for fi(ξ), i = 1, . . . ,Nqoi. Once con-

structed, a bispectral surrogate can be used to characterize
the statistical properties of the field QoI very efficiently.

To provide further insight, we also consider the approxi-
mation error for a bispectral surrogate. Let ‖·‖, represent the
L2 norm in the product space Θ ×X . The total error can be
bounded as follows:∥∥∥∥ f − f PC

Nqoi

∥∥∥∥2 ≤ 2
∥∥∥ f − fNqoi

∥∥∥2
+ 2

∥∥∥∥ fNqoi − f PC
Nqoi

∥∥∥∥2

= 2
∞∑

i=Nqoi+1

λi

+ 2
Nqoi∑
i=1

λi

[ NPC∑
k=0

(ci,k − ĉi,k)2 ‖Ψk‖2L2(Θ)

]
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+ 2
Nqoi∑
i=1

λi

[ ∞∑
j=1+NPC

c2
i, j

∥∥∥Ψ j

∥∥∥2
L2(Θ)

]
.

See Appendix 8, for a derivation of this bound. The first term
in the upper bound corresponds to KLE truncation error, the
second term corresponds to error due to inexact PCE coef-
ficients, and the third term corresponds to PCE truncation
error.

Controlling the total error involves a balance between
computational cost, accuracy requirements, and the proper-
ties of the process. The KLE truncation error gets smaller as
Nqoi increases. However, increasing the number of terms in
the KLE increases the number of eigenpairs that need accu-
rate approximations. Also, a larger Nqoi results in more KL
modes, each of which requires a sufficiently accurate PCE.
Similarly, the PCE error can be minimized by increasing the
maximum polynomial degree, Nord. However, this increases
the total number of coefficients, which increases the number
of unknowns in (14), resulting in increased computational
cost.

The function-valued QoIs in the present work are low-
rank processes with a high-dimensional input parameter. There-
fore, a modest Nqoi will give a sufficiently small KLE trun-
cation error. However, for large Np, estimating the PCE co-
efficients for each KL mode with sufficient accuracy can be-
come computationally expensive. Our approach for address-
ing this challenge is presented in the next section.

Algorithm 1 Computing the truncated KLE of f
.
Input: Quadrature nodes sk and weights wk, k = 1, . . . ,m; Function

evaluations y j
k = f (sk, ξ j), k = 1, . . . ,m, j = 1, . . . ,Ns; rk tolerance

0 < tol < 1.
Output: Eigenpairs (λi,Φi) of the output covariance operator, and KL

modes evaluations fi(ξ j), j = 1, . . . ,Ns, i = 1, . . .Nqoi.
1: Compute mean Mk = 1

Ns

∑Ns
j=1 y

j
k, k = 1, . . .m.

2: Center process f c
k (sk, ξ

j) = y
j
k − Mk, k = 1, . . . ,m.

3: Compute covariance matrix C.
Ckl = 1

Ns−1
∑Ns

j=1 f c
k (sk, ξ j) f c

l (sl, ξ j), k, l = 1, . . .m.
4: Let W = diag(w1, w2, . . . wm) solve:

W1/2CW1/2uk = λkuk, k = 1, . . . ,m.
5: Determine Nqoi.
6: for k = 1, . . .m do
7: Compute rk =

∑k
l=1 λl∑m
l=1 λl

.
8: if rk > tol then
9: Nqoi = k; BREAK

10: end if
11: end for
12: Compute Φk = W−1/2uk, k = 1, . . . ,Nqoi.
13: Compute KL modes.

fi(ξ j) = 1√
λi

∑m
k=1 wk f c

k (sk, ξ j)Φi(sk), i = 1, . . . ,Nqoi, j =

1, . . . ,Ns.
14: Compute fNqoi(s, ξ j) =

∑Nqoi

k=1

√
λk fi(ξ j)Φk(s).

5 Method

In this section, we present our approach for reducing the di-
mensionality of the random vector ξ = [ξ1 ξ2 . . . ξNp ]T and
constructing a cheap-to-compute bispectral surrogate for function-
valued QoIs under study. We begin by describing a screen-
ing procedure for input dimension reduction in Section 5.1.
Then, we discuss our surrogate modeling approach that uti-
lizes a truncated KLE of the output (Section 4.1) along with
generalized PCEs for the output KL modes (Section 5.2).
We also show how the surrogate model can be used to ef-
ficiently compute the correlation function of the output, as
well as cross-correlation of two function-valued QoIs.

5.1 Parameter screening

Consider a function-valued QoI f (s, ξ) : X ×Θ→ R, where
Θ ⊆ RNp is the sample space of the uncertain parameters and
X ⊆ Rd is a compact set. The set X can be either a time
interval, in which case d = 1, or a spatial region, in which
case d ∈ {1, 2, 3}. Here we consider the case of d = 1, as it
applies to our application problem, but the procedure below
can be generalized to the case of d ∈ {2, 3} in a straightfor-
ward manner.

Parameter screening can be done using functional derivative-
based global sensitivity measures (DGSMs) given by [11]:

N j( f ) =

∫
X

∫
Θ

(
∂ f (s, ξ)
∂ξ j

)2

µ(dξ) ds, j = 1, . . . ,Np,

(18)

whereµ is the law of the parameter vector ξ. These DGSMs
can be used to screen for “unimportant” inputs, which can
be fixed at their respective nominal values. These functional
DGSMs, however, require gradient evaluations. For com-
plex models with high-dimensional parameters, such as the
one considered in the present work, gradient computation is
challenging. While adjoint-based gradient computation can
overcome this, adjoint solvers are not always available for
complex flow solvers and implementing them may be in-
feasible. Here we derive a screening indices based on ideas
from active subspace methods [12] and activity scores [13]
that approximate the functional DGSMs and circumvent gra-
dient computation.

Let us briefly recall the concept of the active subspace
and activity scores [13]. Fix s ∈ X and let (λk,uk), k =

1, . . . ,Np be the eigenpairs of the matrix

G =

∫
Θ

[∇ f (s, ξ)][∇ f (s, ξ)]Tµ(dξ), (19)

where we assume the eigenvalues are sorted in descending
order. In many cases there exists an M such that λM �
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λM+1, representing a gap in the eigenvalues. The active sub-
space corresponds to the subspace spanned by eigenvectors
{uk}Mk=1; this subspace captures the directions in the uncertain
parameter space along which the QoI varies most. The case
of a one-dimensional active subspace is surprisingly com-
mon [12]. The activity scores [13] utilize the active subspace
structure to provide approximate screening indices, given by

α j[ f (s, ·); M] =

M∑
k=1

λk〈e j,uk〉2, j = 1, . . . ,Np, M ≤ Np,

(20)

where 〈·, ·〉 denotes the Euclidean inner product and e j is the
jth coordinate vector in RNp . One can use the activity scores
to approximate functional DGSMs according to∫

X
α j[ f (s, ·); M] ds, j = 1, . . . ,Np.

Note that with M = Np, we recover the exact DGSMs [13].
Computing the activity scores still requires gradient compu-
tation, as seen in the definition of the matrix G in (19). For
cases where full model gradients are unavailable, we pro-
pose use of suitable and cheap-to-compute surrogate models
for the purpose of computing the activity scores. One pos-
sibility is the use of global linear models as done in [12],
for the case of scalar QoIs. Building on this idea, we use a
global linear model for f (s, ξ), use the gradient of the linear
model to approximate the matrix G, and define screening in-
dices for function-valued QoIs. Specifically, we construct a
global linear approximation f̃ for the QoI

f̃ (s, ξ) = b0(s) +

Np∑
j=1

b j(s)ξ j. (21)

Next, we use the activity scores for f̃ as a “surrogate” for
the scores of f . Note that ∇ f̃ (s, ξ) = b(s), where b(s) =

[b1(t) b2(t) · · · bNp (t)]T. The matrix G(s) in (19), using f̃ in
place of f then simplifies to G(s) = b(s)b(s)T. This rank one
matrix can be written as

G(s) = λu(s)u(s)T,

where λ = ‖b(s)‖22, and u(s) = b(s)/ ‖b(s)‖2. (Here ‖·‖2 de-
notes the Euclidean vector norm.) Hence, the corresponding
active subspace for f̃ is 1-dimensional resulting in activity
scores

α̃ j(s) = b2
j (s), j = 1, . . . ,Np.

This gives rise to the following approximate functional DGSMs:

Ñ j( f ) :=
∫

X
b2

j (s) ds.

This relationship motivates the following normalized screen-
ing indices

s j =
Ñ j( f )∑Np

l=1 Ñl( f )
, j = 1, . . . ,Np. (22)

Henceforth, we refer to s j as the screening index of f with
respect to parameters ξ j.

The purpose of the screening indices s j is to inform input
parameter dimension reduction. Let Kr be an ordered index
set with cardinality np < Np, corresponding to parameters
with a screening index above some tolerance tol ∈ (0, 1). We
denote the reduced input parameter vectors ξr, where each
component ξr

i , i = 1, . . . , np corresponds to the ith element
of Kr.

Next, we discuss the computation of the global linear
model for f . This is done by computing a linear model at
each point s ∈ X , which can be done efficiently using lin-
ear regression. Recall that X is assumed to be a (compact)
subset of R (i.e., in one space dimension). Specifically, we
assume X = [s0, sF]. We discretize X using a grid

s0 = s1 < s2 < s3 < · · · < sm = sF .

Denote b̄(s) = [b0(s) b1(s) b2(s) · · · bNp (s)]T, with b j, j =

0, . . . ,Np as in (21). We require a set of model evaluations,

yi
k = f (sk, ξi), i = 1, . . . ,Ns.

The number of samples required depends on computational
budget as well as the application problem under study. We
show in our numerical results that a modest Ns is adequate
for the proposed approach, and the application problem con-
sidered herein.

Let yk = [y1
k y

2
k · · · yNs

k ]T ∈ RNs , and define the matrix

A =



1 ξT
1

1 ξT
2

1 ξT
3

...
...

1 ξT
Ns


. (23)

The vectors b̄(sk) can be computed numerically by solving
linear least squares problems

b̄(sk) = arg min
b∈RNs+1

∥∥∥Ab − yk

∥∥∥2
2 , (24)

for k = 1, . . . ,m. Note that here we assume A has full col-
umn rank and we are in the overdetermined case, i.e. Ns >

Np + 1. Under these assumptions, the QR factorization A =

QR may be used to solve the linear regression problem in (24)
by

b̄(sk) = R−1QTyk.
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Then, for each k = 1, . . . ,m, the cost of computing bk is one
matrix-vector product with QT and one triangular solve. The
procedure for computing the global linear model is summa-
rized in Algorithm 2. In the case where the dimension of ξ is
larger than the number of available function evaluations, i.e.
Ns < Np + 1, other methods for solving the linear regression
in Equation (24), e.g. using SVD, can be used.

Note that when using a global linear model for the ap-
proximating function f̃ , the screening indices (22) coincide
with the normalized functional DGSMs of f̃ ,

s j =
N j( f̃ )∑Np

i=1 Ni( f̃ )
,

with N j is as in (18). Additionally, since we have indepen-
dent standard normal input parameters the screening indices
are equal to the function-valued Sobol’ indices [17,1] of f̃ ,
as well as the square root of the standard regression coef-
ficients [21,13] for f . In general, the relations across these
sensitivity measures will not hold for alternative choices of
f̃ or input parameter distributions.

We emphasize that, while simplifications occur when
a global linear model is used, the proposed screening ap-
proach, i.e., computing activity scores of the f̃ , is intended to
be flexible and adjustable to alternative modeling approaches
for f̃ . Furthermore, the proposed screening method is not
constrained by the assumption of independent parameters
and can be used for the case of dependent inputs. The only
requirements of the proposed screening method are that f̃
be cheap to compute and adequately approximate the full
model for the purposes of parameter screening.

Algorithm 2 Computing the screening indices s j, j =

1, . . . ,Np: the overdetermined case.
Input: Quadrature nodes sk and weights wk, k = 1, . . . ,m. Function

evaluations yi
k = f (sk, ξi), i = 1, . . . ,Ns, k = 1, . . . ,m;

Output: Sensitivity measures s j, j = 1, . . . ,Np.
1: Form the matrix A in (23) and compute its QR factorization, A =

QR.
2: for k = 1 to m do
3: Compute zk = QTyk.
4: Solve Rb̄(sk) = zk.
5: end for
6: for j = 1 to Np do
7: Compute Ñ j =

∑Np

k=1 wkb j(sk)2.
8: end for
9: for j = 1 to Np do

10: Compute s j = Ñ j/(
∑

k Ñk).
11: end for

5.2 Polynomial Chaos surrogates for KL modes

To form a surrogate model, we construct a PC surrogate
f PC
i (ξr),i = 1, . . .Nqoi in the reduced parameter space. Ex-

plicitly, we have the following training data for the KL mode
surrogates: the input parameter samples W = {ξr

j}Ns
j=1 and, for

each KL mode fi i = 1, . . .Nqoi, we have the evaluations Fi =

{ fi(ξ j)}Ns
j=1. For each KL mode fi, we use the corresponding

training data to solve the optimization problem (15) for the
coefficients c; see Algorithm 3 for more details. Observe that
each input parameter sample ξr

j is the reduced version of the
original input parameter sample, whereas the data points in
Fi correspond to the KL mode fi evaluated on the full param-
eter ξ j. Utilizing the data this way has two benefits. Firstly,
we do not require more model evaluations. Secondly, the KL
modes corresponding to the exact QoI capture the behavior
of f more accurately than the KL modes corresponding to
an f re-evaluated in the reduced parameter space. After the
PCE for each KL mode is computed, we replace each fi(ξ) in
the KL expansion (11) with the corresponding f PC

i to form
a (reduced space) bispectral surrogate for f :

f (t, ξ) ≈ f PC
Nqoi

(t, ξr) = f̂ (t) +

Nqoi∑
i=1

√
λi f PC

i (ξr)Φi(t). (25)

In section 6 we demonstrate the proposed approach for di-
mension reduction and surrogate modeling for temporally
varying QoI S (t, ξ) and Q(t, ξ), as well as spatially varying
QoI S (x, ξ).

Bispectral surrogates of the form (25) can be sampled ef-
ficiently to study the statistical properties of the QoI. As seen
below, such surrogates can also be used to efficiently com-
pute the correlation structure of function-valued outputs.

Note that the use of a PCE to construct the bispectral sur-
rogate for f relies on the assumption of independent input
parameters. In the case of dependent inputs, an alternative
surrogate modeling approach should be utilized for the out-
put KL modes. The outline of the procedure would remain
the same, with the final surrogate model being constructed
in the reduced parameter space.

5.3 Correlation structure of the output

Let f : X × Θ → R be a random process with mean f̄ (s)
and assume f admits a surrogate f PC

Nqoi
of the form in (25).

It is straightforward to show that the covariance operator of
f PC
Nqoi

satisfies

c f (s1, s2) = Cov{ f PC
Nqoi

(s1, ·), f PC
Nqoi

(s2, ·)}

=

Nqoi∑
i=1

Nqoi∑
j=1

NPC∑
k=1

ηk
i η

k
j ‖Ψk‖2L2(Θ) Φi(s1)Φ j(s2), (26)

for ηk
i = ci,k

√
λi and ‖·‖L2(Θ) denotes the L2 norm on Θ. Let

us define

Bi j :=
m∑

k=1

ηk
i η

k
j ‖Ψk‖2L2(Θ) , i, j = 1, . . . ,Nqoi,
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Algorithm 3 Computing the surrogate model f PC
Nqoi

.
Input: Reduced input parameters ξr

j ∈ Rnp , j = 1, . . .Ns; KL mode
evaluations f k

i = fi(ξ j), i = 1, . . . ,Nqoi, j = 1, . . . ,Ns; highest
polynomial degree Nord; sparsity parameter τ; polynomial basis
Ψk, k = 1 . . .NPC.

Output: Surrogate model f PC
Nqoi

(t, ξr) and polynomial KL mode expan-
sions f PC

i (ξr), i = 1, . . . ,Nqoi.
1: for i = 1 to Nqoi do
2: Let di = [ fi(ξ1), . . . , fi(ξNs

)]
and Λk j = Ψk(ξr

j).
3: Solve

min
ci∈RNPC

‖Λci − di‖22 , subject to
NPC∑
k=0

|ck | ≤ τ

4: end for
5: Form fi(ξr) =

∑NPC
k=1 ci,kΨk(ξr), i = 1, . . . ,Nqoi.

6: Form f PC
Nqoi

(s, ξr) =
∑Nqoi

k=1

√
λi(C) f PC

i (ξr)Φi(s).

and

p(s) := [Φ1(s) Φ2(s) . . . ΦNqoi (s)]T.

We can rewrite the expression in (26) as

c f (s1, s2) = 〈p(s1),Bp(s2)〉,

where 〈·, ·〉 denotes the Euclidean inner product. Using this,
we an also obtain the correlation function of f PC

Nqoi
:

ρ f (s1, s2) =
c f (s1, s2)√

c f (s1, s1)
√

c f (s2, s2)
. (27)

We can also compute the cross-covariance function of
two random processes represented via bispectral surrogates.
Consider a random process g approximated by the surrogate
model

gPC
Mqoi

= ḡ(s) +

Mqoi∑
j=1

MPC∑
k=0

√
γ jd j,kΨk(ξr)Φ̃ j(s),

where Mqoi is the number of KL modes, (γ j, Φ̃ j(s)) are the
eigenpairs corresponding to the covariance function of g,
MPC is the maximum polynomial degree, and di,k are the
PCE coefficients. A calculation similar to the one above gives
the cross–covariance function of f PC

Nqoi
and gPC

Mqoi
as

c fg(s1, s2) = 〈p(s1), B̃q(s2)〉,

where

q(s) := [Φ̃1(s) Φ̃2(s) . . . Φ̃Mqoi (s)]T,

B̃i, j :=
m∑

k=1

ηk
i η̃

k
j ‖Ψk‖2L2(Θ) , i = 1, . . . ,Nqoi, j = 1, . . .Mqoi,

with η̃k
j = d j,k

√
γ j. We can also compute the cross-correlation

function,

ρ fg(s1, s2) =
c fg(s1, s2)√

c f (s1, s1)
√

cg(s2, s2)
, (28)

where cg is the covariance function of gPC
Mqoi

.

6 Numerical Results

In this section, we demonstrate the dimension reduction and
surrogate modeling approach proposed in Section 5 for tem-
porally and spatially varying QoIs discussed in Section 3. In
Section 6.1, we detail surrogate model construction for gas
saturation at the inflow boundary. To provide further insight,
we also consider surrogate modeling for gas flux at the out-
flow boundary in Section 6.2 and for gas saturation across
the spatial domain in Section 6.3. Finally, in Section 6.4,
we use the surrogates constructed in Section 6.1 and 6.2 to
better understand the behavior and properties of the corre-
sponding QoIs.

6.1 Gas saturation at the outflow boundary

Here we focus on gas saturation at the inflow boundary, i.e.,
S (t, ξ). Recall that the input parameter ξ parameterizes the
uncertainty in the porosity field, as described in Section 3.1,
and has dimension Np = 100. For the present numerical
study, we computed a database of 550 model evaluations,
which we use for parameter screening and surrogate model
construction.

Input parameter screening. We use Algorithm 2 with
composite trapezoid rule and Ns = 500 full model evalua-
tions to compute the screening indices s j, j = 1, 2, . . . ,Np,
for S (t, ξ). The remaining 50 realizations were used for val-
idation of the linear models computed as a part of the al-
gorithm. In Figure 8, we report representative comparisons
of the linear model versus the exact model, at the validation
points at selected times. Note that the linear models cap-
ture the overall behavior of the model response. In Figure 9,
we report the screening indices that are above the impor-
tance threshold tol = 0.002. The parameters with screening
indices below tol are considered unimportant. This reduces
the input parameter dimension from Np = 100 to np = 10
and the resulting reduced parameter is ξr = [ξ1 . . . ξ10]T .

Spectral representation of the QoI. Next, we compute
the KLE of S (t, ξ) using Algorithm 1. This requires solv-
ing the eigenvalue problem (12), with Cqoi being the covari-
ance operator of S (t, ξ). We use a sample average approx-
imation of Cqoi with sample size Ns ∈ {100, 200, 350, 550}
exact QoI evaluations, as detailed in Algorithm 1. For this
calculation we utilize the weights and nodes associated with
the composite trapezoid rule. In Figure 10 (top), we show
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Fig. 8 Fifty point comparison of the true model to the linear model for
S (t, ξ) at top: t = 400,234 years, bottom: t = 500,106 years.
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Fig. 9 Screening indices s j for S (t, ξ) calculated using Algorithm 2
with 500 full QoI samples. Indices above tol = 0.002 displayed only.

the computed (dominant) eigenvalues of Cqoi. We note that
the dominant eigenvalues are approximated well even with
Ns = 100. We use the computations corresponding Ns = 550
in what follows. We note that the eigenvalues of the output
covariance operator decay rapidly. We also report rk from
equation (13), in Figure 10 (bottom). We note that rk ex-
ceeds 0.99 for k ≥ 5. This indicates that S (t, ξ) is a low-rank
process and a KL expansion with Nqoi = 5 provides a suit-
able approximation of the QoI. Consequently, we consider

the truncated KL expansion of S (t, ξ)
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Fig. 10 Top: comparison of ratio λk/λ1, k = 1 . . . , 30 for λi(Cqoi) cor-
responding to S (t, ξ) computed with various sample sizes, bottom: rk
as defined in (13), k = 1, . . . , 10, for S (t, ξ). Dotted line corresponds to
0.99.

S Nqoi(t, ξ) = S̄ (t) +

Nqoi∑
i=1

√
λi(Cqoi)S i(ξ)Φi(t), (29)

where Nqoi = 5. The next step is to compute PCEs for the
KL modes S i(ξ), i = 1, . . . ,Nqoi.

PCE surrogates of the KL modes. Next, we construct
a bispectral surrogate for S (t, ξ) which we denote S PC

Nqoi
. Re-

call that the components of ξr are sampled from a Gaussian
distribution. Hence, we utilize the np-variate Hermite poly-
nomials as the orthogonal basis for the PC expansions, with
np = 10. We use the sparse-regression approach (see Sec-
tion 4.2) for computing PCEs of the output KL modes (see
Section 5.2). To determine suitable values for the maximum
polynomial degree Nord and the sparsity parameter τ, we use
a 10-fold cross validation procedure, which we briefly ex-
plain next.

Note that for each evaluation of S Nqoi(t, ξ j), j = 1, . . . ,Ns,
there is a corresponding KL mode evaluation S i(ξ j), for i =
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Fig. 11 Top: cross-validation results for τ = {1, 1.1, . . . , 3.9, 4} and
Nord = {1, 2, 3, 4} for gas saturation, bottom: comparison of sample
standard deviations of S (t, ξ) and S PC

Nqoi
(t, ξr) computed on 200 sample

points.

1, . . . ,Nqoi. We separate the parameter samples into W =

{ξr
j}350

j=1 and Ŵ = {ξr
j}550

j=351. Similarly, for each i = 1, . . .Nqoi,
we have Fi = {S i(ξ j)}350

j=1 and F̂i = {S i(ξ j)}550
j=351.

We partition W and Fi, i = 1, . . . ,Nqoi 10 different ways,
such that each data partition has a 35 point validation set and
a 315 point training set. Let Wk and Fk

i , denote the kth such
data partition, k = 1, . . . , 10. Next, for every combination of
Nord ∈ {1, . . . 4}, τ ∈ {1, 1.1, 1.2, . . . , 3.9, 4}, k = 1, . . . , 10,
and i = 1, . . . ,Nqoi we solve the optimization problem (15);
in our computations, we use the solver SPGL1 [39]. For the
components of that data vector of d in (15), we use the train-
ing set of Fk

i . Therefore, every combination of k, Nord and τ
results in a surrogate model denoted as gk

Nord,τ
(s, ξr).

To assess the accuracy of each bispectral surrogate we
compute the average relative error

erel(gk
Nord,τ

)=


∑M

j=1

∫
X

[
S (t, ξ j) − gk

Nord,τ
(s, ξr

j)
]2 ds∑M

j=1

∫
X

S (t, ξ j)2 ds


1
2

, (30)

where X = [0,T f ], M = 35 and ξ j is the input parameter
in the full space corresponding to ξr

j in the validation set of
Wk.

We repeat the process for each of the 10 partitions, and
compute the average of erel across all partitions

eNord
τ =

1
10

10∑
k=1

erel(gk
Nord,τ

).

The cross-validation errors corresponding to S (t, ξ) are dis-
played in Figure 11. The smallest eNord

τ corresponds with
Nord = 2 and τ = 3.5.

Computing the overall bispectral surrogate. Once we
have determined appropriate values for Nord and τwe follow
Algorithm 3 to construct a surrogate model from the trun-
cated KLE expansion of the function-valued QoI. To deter-
mine PCE for each KL mode S i(ξ), i = 1, . . . ,Nqoi, we use
the solver SPGL [39] to implement sparse linear regression
over the entire 350 point data set Fi. We use the resulting
expansions to form the overall bispectral surrogate:

S PC
Nqoi

= S̄ (t) +

Nqoi∑
i=1

√
λ(Cqoi)S PC

i (ξr)Φi(t).

Note that in numerical computations, S̄ (t) is the sample mean
S̄ (t) = 1

Ns

∑Ns
j=1 S (t, ξ j).

Next, we assess the effectiveness of the bispectral sur-
rogate to reflect the statistical properties of the true model.
First, we compare the sample standard deviations of S PC

Nqoi
(t, ξr)

and S (t, ξ) computed over the testing set Ŵ. The results
are shown in Figure 11 (bottom). Note, the surrogate model
does an excellent job capturing the behavior of S (t, ξ). Then,
we compute the pdf of S PC

Nqoi
(t, ξr) with 100,000 surrogate

evaluations and compare with the normalized histograms of
the 550 exact model evaluations. In Figure 12 clockwise
from upper left we show the pdf estimates for a few rep-
resentative simulation times. Note that pdf estimates closely
match the distribution of the full model.

6.2 Gas flux at the outflow boundary

In this section, we study gas flux at the outflow boundary,
denoted by Q(t, ξ). A few realizations of Q(t, ξ) are shown
in Figure 5 (bottom). The global linear model is computed
with 500 model realizations. A representation of the lin-
ear model at time t = 500,106 years is displayed in Fig-
ure 14 (top). Next, we compute the screening indices s j. In
Figure 14 (bottom) we display s j, j = 1 . . . , 10 above tol =

0.02 only. Therefore, dimension reduction results in the re-
duced input parameter ξr = [ξ1 . . . ξ10]T. Next, we compute
the KLE and truncate at Nqoi = 7 terms. Then, we construct
the surrogate model using the data sets W and Fi, where the
Fi’s for this instance consist of the KL modes computed for
Q(t, ξ). We use the 10-fold cross-validation technique de-
scribed in Section 6.1 to choose the sparse linear regression
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Fig. 12 Comparison of normalized histograms for S (t, ξ) and pdf estimates of the surrogate S PC
Nqoi

(t, ξr) for a variety of times t ∈ [0,T f ].
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parameters Nord = 2 and τ = 4. Finally, we use these values
to generate the bispectral surrogate QPC

Nqoi
(t, ξr).

As before, to assess the effectiveness of the surrogate
to capture the statistical properties of the true model we
compare the sample standard deviation of the full model
Q(t, ξ) and the surrogate QPC

Nqoi
(t, ξr), computed on 200 vali-

dation samples. Results are displayed in Figure 15 (bottom).
Lastly, using 100,000 samples of QPC

Nqoi
(t, ξr) we compute pdf

estimates at equally spaced points in time and compare to
normalized histograms created with 550 full model evalua-
tions; see Figure 13. The results in Figure 13 and Figure 15
demonstrate that the constructed surrogate for gas flux ap-
proximates the distribution of the full model reliably.
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Fig. 14 Top: comparison of the true model to the linear model for
Q(t, ξ) at t = 500,106 years, bottom: screening indices for Q(t, ξ).

6.3 Gas saturation across the domain

In this section, we focus on a spatially varying QoI. Let
S (x, ξ; t∗) represent the QoI gas saturation across the spatial
domain for a fixed time t∗. In particular, we include surro-
gate results at t∗ ∈ {100,099, 300,091, 600,043} years. We
display several realizations for each QoI in Figure 17 (top).
The surrogate models for spatial QoIs are computed via a
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Fig. 15 Comparison of sample standard deviations of Q(t, ξ) and
QPC

Nqoi
(t, ξr) computed with 200 sample points.

similar procedure. Hence, for brevity, we include procedure
details for t∗ = 600,043 years only. The relevant parameter
values for the other QoIs are included in Table 2.

We consider the (spatial) global linear model for S (x, ξ; t∗).
In Figure 16 (top) the linear model at x = 65.5 meters is dis-
played. The global linear model was observed to perform
similarly at other values of x. Next, we compute the screen-
ing indices s j and use the importance tolerance tol = 0.002
for dimension reduction resulting in the reduced input pa-
rameter ξr = [ξ1 ξ2 . . . ξ8]T. In Figure 16 (middle) we dis-
play the screening indices corresponding to these parame-
ters.

Next, we compute the KLE of S (x, ξ; t∗) using Nyström’s
method with 550 model evaluations. In Figure 16 (bottom)
we report the normalized eigenvalues of the output covari-
ance operator Cqoi for S (x, ξ; t∗). This result is included to
demonstrate that the gas saturation process is also low-rank
in space. We truncate the KLE at Nqoi = 5 terms.

As before, the PCE for the KL modes are computed with
sparse linear regression using 350 full model realizations.
Once again, the cross-validation procedure described in Sec-
tion 6.1 is used to determine Nord = 3 and τ = 2.8. Lastly,
the computed PCEs for each KL mode is used to construct
the bispectral surrogate S PC

Nqoi
(x, ξr).

surrogate for fixed t or x Nqoi Nord error

S PC
Nqoi

(t, ξ) x = 0 meters 5 2 3.4813 · 10−2

QPC
Nqoi

(t, ξ) x = 200 meters 7 2 7.5019 · 10−3

S PC
Nqoi

(x, ξ) t∗ = 100,099 years 7 2 3.0397 · 10−2

S PC
Nqoi

(x, ξ) t∗ = 300,091 years 11 2 2.1690 · 10−2

S PC
Nqoi

(x, ξ) t∗ = 600,043 years 5 3 8.3110 · 10−2

Table 2 Surrogate parameter values and erel errors for surrogate mod-
els.
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To evaluate the effectiveness of the surrogate models for
t∗ ∈ {100,099, 300,091, 600,043}, we compare the sample
standard deviation of S (x, ξ; t∗) and S PC

Nqoi
(x, ξr) for 200 sam-

ple points. These results are displayed in Figure 17 (bottom).
Observe, for t∗ = 100,099 and t∗ = 300,091 years the sur-
rogate model replicates the sample standard deviation well.
For t∗ = 600,043 years note that while we are underestimat-
ing the sample standard deviation, we are still capture the
overall behavior of the full model.

The capability of the computed bispectral surrogate to
replicate true model behavior can also be tested by comput-
ing the average relative error defined in (30).Table 2 con-
tains the values for erel computed over the validation set Ŵ
for each surrogate presented in this section, as well as those
in Sections 6.1 and 6.2. Note that for the spatially varying
QoIs, we let X = [0, 200] and for temporally varying we let
X = [0,T f ], in (30). Note, the error across all surrogates is
less than 8%, and in four out the five surrogates is less than
4%. The largest erel corresponds to S PC

Nqoi
(c, ξ) at t = 600,043

years, in which case we are also underestimating the stan-
dard deviation.

6.4 Using the surrogate model

Here we illustrate the use of surrogates for temporally vary-
ing QoIs in performing statistical studies. In particular, we
perform model prediction, variance-based global sensitivity
analysis (GSA) by computing Sobol’ indices, and a study
of output correlation structure. It is worth noting that Sobol’
indices can be computed analytically when using bispectral
surrogates; see [1]. However, to keep the discussion general
and since the cost of evaluating the bispectral surrogate is
negligible, here we rely on sampling the bispectral surrogate
for performing GSA. Specifically, we also perform GSA on
QoIs that are derived from the bispectral surrogates such as
maximum gas saturation and maximum gas flux at the out-
flow boundary.

Model prediction. We consider using S PC
Nqoi

(t, ξr) and
QPC

Nqoi
(t, ξr) for making predictions. Recall, these bispectral

surrogates correspond to gas saturation at the inflow bound-
ary and gas flux at the outflow boundary. We study three
observables of interest: maximum gas saturation, denoted
S max, maximum gas flux, denoted Qmax, and the first time for
which gas saturation rises above 20% of S max. We compute
100,000 realizations of each surrogate, extract the pertinent
observables, and use the samples to compute pdf estimates.
In Figure 18, we compare the pdf estimates against the nor-
malized histograms computed using exact model evaluations.
These results indicate the utility of the surrogates for esti-
mating the statistical properties of model observables.

Variance based sensitivity analysis via Sobol’ indices.
total Sobol’ indices provide an informative global sensitiv-
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Fig. 16 Results for S (x, ξ; t∗) with t∗ = 600,043 years. Top: compari-
son of the true model and the linear model for gas saturation across the
domain, middle: screening indices for S (x, ξ; t∗), bottom: ratio λk/λ1,
k = 1, . . . , 30 for λk(Cqoi) corresponding to S (x, ξ; t∗).

ity analysis tool that apportions percentages of QoI variance
due to input parameter variations. While total Sobol’ indices
are traditionally applied to scalar QoIs [36,35], there ex-
ist extensions for variance based analysis to function-valued
QoIs [17,1], referred to as functional total Sobol’ indices.

In general, calculating Sobol’ indices for computation-
ally intensive models is challenging. This involves an ex-
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Fig. 17 Top row, left to right: sample realizations of S (x, ξ; t∗) for times 100,099, 300,091, and 600,043 years; bottom row, left to right: comparison
of sample standard deviation of S (x, ξ; t∗) and S PC

Nqoi
(x, ξ; t∗) computed on 200 sample points.

pensive sampling procedure that requires a large number of
model evaluations. An efficient-to-evaluate surrogate model
can be used to accelerate this process. We use the temporal
surrogates to compute total Sobol’ indices for both function-
valued and scalar QoIs. In particular, we compute the func-
tional total Sobol’ indices for S PC

Nqoi
(t, ξr) and QPC

Nqoi
(t, ξr), both

of which are functions in t, and we compute the total Sobol’
indices for the scalar QoIs S max and Qmax. In each case, we
compute the total Sobol’ indices via sampling, using a vari-
ety of samples sizes: Ns = {1,000, 10,000, 50,000}.

The results in the top row of Figure 20 show the func-
tional Sobol’ indices for S PC

Nqoi
(t, ξr) and QPC

Nqoi
(t, ξr). Note that

the magnitudes in the top row of Figure 20 are similar to
those in Figure 9 and Figure 14. This provides further sup-
port for the original input parameter importance ranking and
subsequent dimension reduction. In the bottom row of Fig-
ure 20 we report the total Sobol’ indices for S max and Qmax.
We also note that for the gas saturation QoIs (Figure 20(left:
top and bottom), the importance ranking of the input pa-
rameters is similar. In contrast, there is more variability in
ranking for gas flux QoIs (Figure 20 (right: top and bottom).

Finally, we mention that for many applications, the total
Sobol’ indices can be used for further input parameter di-
mension reduction. For the present model however, we did
not reduce the input parameter further because the surrogate
model computed was already efficient and sufficiently accu-
rate.

Correlation structure Lastly, we illustrate the use of
the bispectral surrogates for computing the correlation struc-
ture of the output, which is a useful tool for understanding

overall model dynamics. Using equation (27) we compute
the correlation function of S PC

Nqoi
(t, ξr) and QPC

Nqoi
(t, ξr). The re-

sulting heat maps are shown in Figure 19 top and middle,
respectively. The results for S PC

Nqoi
(t, ξr) suggest significant

correlations across time. This behavior is also seen in the
correlation function of QPC

Nqoi
(t, ξr), except the sudden shift in

dynamics at the time t = 500,000 years; recall, this the time
gas injection stops. We also compute the cross-correlation
between S PC

Nqoi
(t, ξr) and QPC

Nqoi
(t, ξr) using the formula in (28);

see Figure 19 (bottom). The heat map suggests there is large
cross-correlation between the two QoI for both early and late
times.

7 Conclusion

We have presented a structure exploiting non-intrusive frame-
work for efficient dimension reduction and surrogate mod-
eling for models with high-dimensional inputs and outputs.
The proposed parameter screening metric utilizes approx-
imate global sensitivity measures for function-valued out-
puts that rely on concepts from global sensitivity analysis
and active subspace methods. An efficient bispectral surro-
gate model was constructed from a truncated KLE of the
QoI by approximating the KL modes with PCEs. Note, these
KL mode PCEs were constructed in the reduced parameter
space.

We deployed our framework for fast uncertainty analy-
sis in a multiphase multicomponent flow model. The effi-
ciency and effectiveness of the surrogate model was demon-
strated with a comprehensive set of numerical experiments,



Structure exploiting methods for fast uncertainty quantification in multiphase flow through heterogeneous media 19

0.01 0.02 0.02 0.03

0

100

200

gas saturation

p
d

f

S(t, ξ)

SPC
Nqoi

(t, ξr)

1 · 104 3 · 104 5 · 104 7 · 104

0

2 · 10−5

4 · 10−5

6 · 10−5

time [years]

p
d

f

S(t, ξ)

SPC
Nqoi

(t, ξr)

5.3 · 10−6 5.4 · 10−6 5.5 · 10−6 5.6 · 10−6

0

5 · 106

1 · 107

1.5 · 107

gas flux

p
d

f

Q(t, ξ)

QPC
Nqoi

(t, ξr)

Fig. 18 Comparison of normalized histograms and pdf estimates for
top: max saturation value of S max, middle: first time S PC

Nqoi
(t, ξr) is above

20% S max, bottom: max flux value Qmax.

where we consider a number of function-valued (temporally
or spatially distributed) QoIs. In particular, our results indi-
cate that it is possible to use a modest amount of model real-
izations to reduce both the input and output dimensions and
construct an efficient surrogate model. The proposed frame-
work not only provides efficient surrogates, it also reveals
and exploits the low-dimensional structures in model input
and output spaces, which provides further insight into the
behavior of the governing model.

In general, the screening approach takes the following
form. We construct a cheap approximation f̃ , compute the

Fig. 19 Top: correlation matrix for S PC
Nqoi

(t, ξr) computed using the ana-
lytic formula in (27), middle: correlation matrix for QPC

Nqoi
(t, ξr) com-

puted using the analytic formula in (27) bottom: cross-correlation
structure of S PC

Nqoi
(t, ξr) and QPC

Nqoi
(t, ξr) computed using the analytic for-

mula in (28).

corresponding screening indices (22), and use them to re-
duce the input parameter space. Our approach relies on the
screening metrics being sufficiently accurate surrogates and
cheap to compute for the derivative-based global sensitivity
measures for the function-valued QoIs under study. This in
turn assumes the global linear model constructed within the
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Fig. 20 From top left counter clockwise: functional total Sobol’ indices for S PC
Nqoi

(t, ξr), functional total Sobol’ indices for QPC
Nqoi

(t, ξr), total Sobol’
indices for S max, total Sobol’ indices for Qmax.

parameter screening procedure leads to a sufficient approx-
imation of the activity scores. It is observed that this global
linear model can successfully capture one-dimensional ac-
tive subspaces in a wide range of applications [12]. The
success of this strategy for obtaining approximate activity
scores was also observed in the present work, in the context
of a complex nonlinear flow model. However, for models
that exhibit highly nonlinear parameter dependence a lin-
ear model might fail to provide accurate global sensitiv-
ity information. In [18,33], global quadratic models were
used effectively to accelerate active subspace discovery for
scalar-valued QoIs. Exploring quadratic models within our
framework provides an interesting direction for future work
and would allow application of the proposed strategy to a
broader class of problems.
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8 Appendix

8.1 Proof of upper bound on total error in product space

Proof Let f (s, ξ) be in L2 of the product space Θ ×X and
‖·‖ be the L2 error in the product spaceΘ×X . The truncated
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KLE of f is given by

f PC
Nqoi

(s, ξ) = f̄ (s) +

Nqoi∑
i=1

√
λi f PC

i (ξ)Φi(s).

The total error in the product space is given by∥∥∥∥ f − f PC
Nqoi

∥∥∥∥2 ≤ 2
∥∥∥ f − fNqoi

∥∥∥2
+ 2

∥∥∥∥ fNqoi − f PC
Nqoi

∥∥∥∥2

We consider the first term

2
∥∥∥ f − fNqoi

∥∥∥2

= 2

∥∥∥∥∥∥∥∥
∞∑

i=1

√
λi fi(ξ)Φi(s) −

Nqoi∑
i=1

√
λi fi(ξ)Φi(s)

∥∥∥∥∥∥∥∥
2

= 2
∫
Θ

∫
X

 ∞∑
i=Nqoi+1

√
λi fi(ξ)Φi(s)


2

dsµ(dξ)

= 2
∞∑

i, j=Nqoi+1

√
λi

√
λ j

∫
Θ

fi(ξ) f j(ξ)
∫

X
Φi(s)Φ j(s) dsµ(dξ)

= 2
∞∑

i=Nqoi+1

λi

∫
Θ

fi(ξ)2µ(dξ) = 2
∞∑

i=Nqoi+1

λi.

Changing the order of infinite sums and integral is a con-
sequence of the Dominated Convergence Theorem and re-
ordering of integrals is a justified by Fubini’s Theorem. The
orthogonality of the eigenfunctions in L2(X ) justifies the
simplification in the second to last line, and the last step is a
consequence of the KL modes properties.

Next, we consider the second error term. Let

f PC
i =

NPC∑
k=0

ĉi,kΨk(ξ),

where ĉi,k represents the numerical approximation of the ex-
act PCE coefficients ci,k and recall, fi =

∑∞
k=0 ci,kΨk(ξ) we

have

2
∥∥∥∥ fNqoi − f PC

Nqoi

∥∥∥∥2
= 2

∥∥∥∥∥∥∥∥
Nqoi∑
i=1

√
λi fi(ξ)Φi(s) −

Nqoi∑
i=1

√
λi f PC

i (ξ)Φ(s)

∥∥∥∥∥∥∥∥
2

= 2
∫
Θ

∫
X

Nqoi∑
i=1

√
λiΦi(s)

[
fi(ξ) − f PC

i (ξ)
]

2

dsµ(dξ)

= 2
Nqoi∑
i, j=1

√
λi

√
λ j

∫
Θ

( fi − f PC
i )( f j − f PC

j )
∫

X
Φi(s)Φ j(s) dsµ(dξ)

= 2
Nqoi∑
i=1

λi

∫
Θ

( fi(ξ) − f PC
i (ξ))2µ(dξ)

= 2
Nqoi∑
i=1

λi

∫
Θ

 ∞∑
k=0

ci,kΨk(ξ) −
NPC∑
k=0

ĉi,kΨk(ξ)


2

µ(dξ)

= 2
Nqoi∑
i=1

λi

∫
Θ

NPC∑
k=0

(ci,k − ĉi,k)Ψk(ξ) +

∞∑
k=1+NPC

ci,kΨk(ξ)


2

µ(dξ)

= 2
Nqoi∑
i=1

λi

NPC∑
k=1

(ci,k − ĉi,k)2 ‖Ψk‖2L2(Θ)

+ 2
Nqoi∑
i=1

λi

∞∑
j=1+NPC

c2
i, j

∥∥∥Ψ j

∥∥∥2
L2(Θ) .

The simplification in the third line a consequence of the or-
thogonality of the PCE basis functions.

Thus, we have a bound on the total error∥∥∥∥ f − f PC
Nqoi

∥∥∥∥2 ≤ 2
∥∥∥ f − fNqoi

∥∥∥2
+ 2

∥∥∥∥ fNqoi − f PC
Nqoi

∥∥∥∥2

= 2
∞∑

i=Nqoi+1

λi +

Nqoi∑
i=1

λi

NPC∑
k=1

(ci,k − ĉi,k)2 ‖Ψk‖2L2(Θ)

+ 2
Nqoi∑
i=1

λi

∞∑
j=1+NPC

c2
i, j

∥∥∥Ψ j

∥∥∥2
L2(Θ) . �
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