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Abstract

This work examines the deep disconnect between
existing theoretical analyses of gradient-based al-
gorithms and the practice of training deep neu-
ral networks. Specifically, we provide numerical
evidence that in large-scale neural network train-
ing (e.g., ImageNet + ResNet101, and WT103
+ TransformerXL models), the neural network’s
weights do not converge to stationary points
where the gradient of the loss is zero. Remarkably,
however, we observe that even though the weights
do not converge to stationary points, the progress
in minimizing the loss function halts and training
loss stabilizes. Inspired by this observation, we
propose a new perspective based on ergodic the-
ory of dynamical systems to explain it. Rather
than studying the evolution of weights, we study
the evolution of the distribution of weights. We
prove convergence of the distribution of weights
to an approximate invariant measure, thereby ex-
plaining how the training loss can stabilize with-
out weights necessarily converging to stationary
points. We further discuss how this perspective
can better align optimization theory with empiri-
cal observations in machine learning practice.

1. Introduction

It would not be controversial to claim that currently there
exists a wide gulf between theoretical investigations of con-
vergence to (approximate) stationary points for non-convex
optimization problems and the empirical performance of
popular algorithms used in deep learning practice. Due to
the intrinsic intractability of general nonconvex problems,
theoretical analysis of nonconvex optimization problems
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often focuses on the rates of convergence of gradient norm
IV f(9)|l instead of the suboptimality f(6) — ming f(6).
The vast theoretical literature on optimization for machine
learning has documented the recent progress in this area. In
particular, optimal gradient-based algorithms and rates have
been identified in various nonconvex settings, including de-
terministic, stochastic and finite-sum problems (Carmon
etal., 2017; Arjevani et al., 2019; Fang et al., 2018).

In addition to theoretical interest in nonconvex problems, a
practical motivation for studying nonconvex convergence
analyses is to improve the large-scale optimization meth-
ods that are used in machine learning practice, especially
in training deep neural networks. As neural network mod-
els allow for efficient gradient evaluations, gradient-based
algorithms remain the dominant methods to tune network
parameters. Naturally, great effort has been dedicated to
theoretical understanding of gradient-based optimizers.

But despite the rapid progress in the theory of gradient-
based algorithms, this theory has had a limited impact on
real-world neural network training. And the gap between
theory and practice is as wide as ever. For example, even
though the variance reduction technique theoretically ac-
celerates convergence, recent empirical evidence in (De-
fazio & Bottou, 2018) suggests that it may be ineffective
in speeding up neural network training. On the other ex-
treme, ADAM (Kingma & Ba, 2014) is among the most
popular algorithms in neural network training, yet its theo-
retical convergence was proven to be incorrect (Reddi et al.,
2019). Despite dubious theoretical properties, ADAM is
still among the most effective optimizers.

Our goal is to address the ineffectiveness of applying theoret-
ical convergence rates to stationarity in neural network train-
ing by identifying a fundamental gap between theoretical
convergence and empirical convergence. First, we provide
evidence that in many challenging experiments (e.g., Ima-
geNet, Wikil03) where the model does not overfit the data,
gradient-based optimization methods do not converge to sta-
tionary points as theory mandates. This mismatch questions
applicability of usual theory as applied to training neural
networks. The reason for such a surprising divide is that
most optimization analyses for deep learning either assume
smoothness directly which leads to convergence to station-
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ary points using classical analyses, or prove smoothness and
fast convergence by relying explicitly on overparametriza-
tion. However, our empirical investigations reveal that the
key premise of the theory—pointwise convergence to a fixed
point—may not happen at all in practice!

Motivated by this observation, we aim to answer the follow-
ing question in the rest of this work: how should one define
and analyze the convergence of gradient-based optimization
methods, when the training loss seems to converge, yet the
gradient norm does not converge to 07!

We propose a new lens through which one should view con-
vergence: rather than convergence of weights, we postulate
that the convergence should be viewed in terms of invariant
measures as used in the ergodic theory of dynamical sys-
tems. Building on classical results from this literature, we
then show how this new perspective is also consistent with
some curious findings in neural network training, such as
relaxed smoothness (Zhang et al., 2019) and edge of stabil-
ity (Cohen et al., 2021; Wu et al., 2018). More concretely,
our contributions are summarized as follows:

* We empirically verify through ResNet training and
Transformer-XL training in a wide range of applications
that the iterates do not converge to a stationary point as
existing theory predicts.

* We propose an invariant measure perspective from dynam-
ical systems to explain why the training loss can converge
without the iterates converging to stationary points.

* Most importantly, we show that our theorems on dimin-
ishing gain of the loss without vanishing of the gradient
apply to neural network training even without standard
global Lipschitzness or smoothness assumptions.

It is worth noting that our analysis for deep learning, though
holds under a very generic setup without assuming overfit-
ting or bounded Lipschitzness, only states vanishing change
in average training loss. It does not comment on the actual
loss values. Consequently, much remains to be done based
on our proposed view. However, our observations relate
to interesting phenomena such as decay of function values,
edge of stability, and relative smoothness. We conclude our
work with a detailed discussion of the above points. We
believe that it provides a paradigm shift in how convergence
in deep learning should be defined and studied.

1.1. Related work

Several recent empirical findings discuss the instability of
neural network predictions even after training loss has con-
verged, and they inspire us to investigate whether conver-
gence to stationary points actually happens. Henderson et al.

"More pedantically, the iterates do not converge to even an
e-stationary point as predicted by standard theory.

(2017) analyze the stability of policy reward in reinforce-
ment learning and observe large variations. Madhyastha
& Jain (2019) study the instability for interpretation mech-
anisms. In (Bhojanapalli et al., 2021), the authors note
that though image classification has relatively stable accu-
racy, the actual prediction on individual images has large
variation. A few very recent results report similar large os-
cillations in Cifarl0 training (Li et al., 2020; Kunin et al.,
2021; Lobacheva et al., 2021), though the authors focus on
SDE approximation or batch normalization. Our work in-
stead focuses on the connection to nonconvex optimization
theorems. In addition, we learned from recent studies (Co-
hen et al., 2021; Zhang et al., 2019; 2020) that assumptions
on noise and smoothness not only fail but can further adver-
sarially adapt to the step size choice, further suggesting that
optimizers may not find stationary points in deep learning.

On the theory side, two lines of work study convergence
beyond finding stationary points, and hence are closely re-
lated to this paper. One line studies the non-convergence
of dynamics of algorithms in games or multiobjective op-
timization (Hsieh et al., 2019; Cheung & Piliouras, 2019;
Papadimitriou & Piliouras, 2019; Letcher, 2020; Flokas
et al., 2020). Another models SGD dynamics via Langevin
dynamics (Cheng et al., 2020; Li et al., 2020; Gurbuzbal-
aban et al., 2021). Our work differs from the Langevin
dynamics view in that we do not aim to achieve global
mixing. As a consequence, we avoid the unrealistic assump-
tion in Langevin analysis that the noise level is inversely
proportional to the step size.

2. A motivating example: ImageNet + ResNet

We start our exposition by providing some experimental
result showing that the traditional notion of convergence for
nonconvex functions does not occur in deep neural network
training. Our experiments are based on one of the most
popular training schemes, where we train ResNet101 on
ImageNet. More details can be found later in Appendix A
and in our released code repository.

To explain the quantities of interest, we first define our no-
tation. Let S = {(z%,y")} Y, be the dataset. Let f(z,6) to
denote the neural network function with model parameters ¢
and input data z. We use £ to denote the loss function such
as cross-entropy after softmax. We would like to investigate,
during training, the evolution of the following quantities:
training loss, gradient norm, and noise. Mathematically,
they are defined as follows respectively,

Ls(0y) == % S0 0(f(2%,00), 97), (1)
IVLs @)y == & SN 200F (2, 0k), y") 2,

o(0) ==\ = S0, [V Ls(0) — S0(F,00), 412

where ||| is the standard vector £, norm.
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Figure 1. The validation accuracy and the quantities of interest (1) for the default training schedule of ImageNet + ResNet101 experiment.
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Figure 2. The quantities of interest (1) vs epoch for the constant learning rate training schedule in ImageNet experiments. The learning
rate is set to be 0.1,0.01,0.001, 0.01 respectively starting from the left column. All models are trained for 90 epochs, except that the last

experiment in the column ran for 300 epochs
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Figure 3. The estimated stats vs epoch for the transformer XL training. The learning rate is set to be cosine learning rate with n = 0.00025
in the first column. The learning rates are constant learning rates with n = 0.00005, 0.0001, 0.00025 from the second to the last column.
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We adopt the standard training schedule following (He et al.,
2016), i.e., the learning rate starts at 0.1 and is decayed
by a factor of 10 every 30 epochs. The evolution of the
aforementioned quantities is plotted in Figure 1. We make
the following immediate observations:

* Within each period where the step size is held constant,
the change in loss converges to 0.

* The gradient norm does not converge to 0 despite the fact
that the loss function converges. In fact, the gradient norm
stays roughly unchanged.

* The noise level (in the stochastic gradient) increases dur-
ing training.

The above observations suggest that there is a tremendous
gap between theory and practice. Much of the research
on nonconvex optimization theory focuses on the conver-
gence rate of gradient norms under a bounded-smoothness,
bounded-noise setup. Faster algorithms are designed under
this guidance. However, in practice, we find that the conver-
gence of the training loss does not require the convergence
of gradient norms. This mismatch may be the reason why
techniques such as variance reduction or local regulariza-
tion combined with Nesterov-momentum have had limited
practical use, despite their massive theoretical popularity.

3. A systematic investigation

In this section, we will provide a set of experiments to
systematically understand when and (hopefully) why the
neural network parameters do not converge to stationary
points as theory mandates. In particular, we will try to test
the following hypotheses in the experiments:

1. The nonconvergence is due to the fact that the step size is
not small enough or the model is not trained long enough.

2. This phenomenon is restricted to the ResNet + ImageNet
task, or models with non-differentiable ReLLUs.

3. The large gradient norm is due to estimation error.

In the end, we will see that these hypotheses fail to hold and
that the phenomenon is quite common in large-scale tasks.

3.1. Different learning rates and training schedules

One immediate question following the observation in Fig-
ure 1 is whether the observed phenomenon holds solely for
a particular stage-wise learning rate, which is not very com-
mon in theoretical analysis. To address this question, we
run the same ResNet101 model on ImageNet just as before,
except that we now use a constant learning rate across all
90 epochs of training. The evolutions of the quantities in (1)
are summarized in Figure 2. A quick glance at the plots

verifies that the gradient norm does not converge to 0 in any
of the experiments. We further notice that, surprisingly, a
smaller learning rate leads to a larger gradient norm, larger
stochastic gradient noise intensity, and larger sharpness as
observed in (Cohen et al., 2021). We will further discuss
the implications of these observations later in the paper.

As the loss curves in the last two rows of Figure 2 are still
decreasing, another question could be that we didn’t run the
experiment long enough to achieve actual convergence. To
address this question, we continue the second row experi-
ment (step size n = 0.01) for 300 epochs and present the
result in the rightmost column of Figure 2. We can see that
no clear progress was made after about 50 epochs.

The above experiments show that in ImageNet + ResNet101
experiment, the parameters do not converge to stationary
points. In the next section, we test whether this phenomenon
is restricted to the particular data set and architecture.

3.2. Transformer XL experiments

We run Transformer-XL training on WT103 dataset for the
language modeling task following the implementation of the
original authors (Dai et al., 2019b). Our training procedure
is exactly the same as the official code, except that we
reduce the number of attention layers for the baseline model
from 6 to 4. Aside from training with a cosine learning
rate schedule with initial learning rate n = 0.00025, we
also experimented with different constant learning rates.
The result is summarized in Figure 3. We found that the
observations made before also apply to transformer XL.

3.3. Refuted hypotheses from the systematic study

With the above set of experiments, we can already exclude
the hypotheses at the beginning of this section.

First, in the rightmost column of Figure 2, we find that af-
ter running 300 epochs with a smaller step size, though the
training loss dropped significantly, the gradient norm did not
decrease. This confirms that even the qualitative analysis
(let alone the quantitative convergence rates) on when gra-
dient norm gets smaller from canonical optimization theory
is not applicable to neural network training.

Second, we see that the nonzero-gradient phenomenon in
TransformerXL (Dai et al., 2019a) training is even more
prominent. In addition, as TransformerXL is differentiable,
this also excludes the chance that oscillation is caused by
non-differentiability. The third conjecture is refuted due to
our estimation precision discussed later in Appendix A.2
with additional experimental details. We also observed that
in our Cifarl0 experiment in Appendix A.l, the gradient
norm can indeed go to zero.

Given the above evidence, we believe that the convergence
of training loss without reaching stationary points is caused
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Figure 4. Synthetic experiment. The learning rate is set to be 0.01 and 0.04 for the first and second row respectively. Column I: the whole
trajectory in 2000 iterations, where the scatter points correspond to iterates and the color of a point represents which iteration it is at;
Column II: the trajectory in the last 500 iterations to show the convergence behavior; Column III: training loss and average training loss
vs iteration, where the average is taken over iterations; Column IV: gradient norm and average gradient norm vs iteration.

by more fundamental and nontrivial reasons. To understand
this phenomenon, we later will develop a notion of conver-
gence based on the theory of dynamical systems.

Before diving into our theorems, we start with an interesting
observation in Figure 5. Here, we evaluate the full batch
training loss in two ways. The left one is to compute a
moving average during the training epoch:

Loss = & vazl 00, i), 2

where 7 denotes the iteration number within an epoch of
N minibatches, x; denotes data from i;;, minibatch and 9,
denotes the network parameter at iteration ¢. The other is to
compute the full batch loss at the last iteration N,

Loss = + Zivzl 0N, x;). 3)
We notice that though both evaluations consumed the entire
dataset, averaging the minibatch losses across all training
iterations leads to a much more smooth loss curve than eval-
uating all the minibatch losses at a fixed iteration. Hence,
one explanation is that the time average of the loss rather
than the iteration-wise loss converges, while the gradient
norm is nonzero due to nonsmoothness, and that the actual
weight iterates keep oscillating. To provide more intuition,
in the next subsection, we provide a conceptual explanation
through a synthetic experiment.
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Figure 5. The full batch training loss vs epochs in default Ima-
geNet training. The left plot computes loss in the usual way as an
moving average during training (2), where as the right plot com-
putes the loss at the last iteration of a training epoch using (3).

3.4. An explanatory synthetic experiment

The curious phenomenon discussed above is not limited
to neural network training. In what follows we present a
simple synthetic example to illustrate the intuition behind
the convergence behavior to unstable cycles rather than
stationary points.

To this end, we simulate gradient descent on the objec-
tive function f(61,62) = 100sin 61 sin 62 whose smooth-
ness and Lipschitzness parameters are both Ly = 100. It
is well known that gradient descent with a learning rate
n < 2/L; = 0.02 provably converges to stationary points
for such a smooth function. As shown in the first row of
Figure 4, the iterates converge to a fixed point very fast with
n = 0.01. Moreover, the gradient norm converges to zero,
which means a stationary point is reached at convergence.

However, whenn > 2/L > which is often the case for neural
network training, gradient descent no longer converges to
stationary points as shown in the second row of Figure 4
with 7 = 0.04. During the last 500 iterations, the iterates
only take values around a few points and keep oscillating
among them. As a result, the training loss and gradient
norm also oscillate and do not converge in the usual sense.
However, the oscillation among these points follows some
periodic pattern. If we collect all the iterates during a long
enough training process, their empirical distribution will
converge to a discrete distribution over those points that
capture the periodic pattern. Then if we take an average
of the training losses or gradient norms over time, it must
converge to the average value of the periodic points, as
shown in the last two images in Figure 4. However, although
the average gradient norm converges, the convergence value
can not be zero in presence of oscillation, as gradient descent
makes no updates if the gradient is zero.

The above example shows that the key to function value con-
vergence could be that a time average rather than a spatial
average is taken in evaluating the loss. Hence, the conver-
gence only happens in time average sense.
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4. Convergence beyond stationary points

We saw above that even though the per-iteration loss does
not converge, the time average with a long enough window
size can converge. In this section, we provide a simple math-
ematical analysis to explain why that happens. In particular,
we prove that the change in training loss evaluated as a time
average converges to 0 for neural networks. Our analysis
is motivated by, and follows the proof of the celebrated
Krylov-Bogolyubov theorem. As a result, we refer to our
interpretation as the invariant measure perspective.

Particularly, we say a measure p is an invariant measure
for the map F' : X — X if for any measurable set A

H(A) = p(F1(4)) = /@ 1{F(6) € A}du(9),

where F~1(A) = {0|F(0) € A}. Notice that if F is a
stochastic update, then this should be read as

p(A) = WP () = [PLPO) € AYauto). @

In other words, the pushforward of p under F' stays un-
changed, F'#u = p.

Invariance of measure is closely related to convergence of
function values. To see this, consider the dynamical system

9t+1 = F(Ht)

In such a scenario, for any continuous function ¢, the func-
tion value does not change after update when the variable is
sampled from an invariant measure,

Eonpu[¢(0)] = Eonpu[¢(F(0))].

Recall that our key insight is that the convergence of the
training loss occurs in a time-average sense, which naturally
leads to the following notion of empirical measure:

k= L300 8, 5)

where Jy denotes the Dirac measure supported on the value
0,1i.e., dp(A) = lifand only if € A, and {61,602, -}
are the sequence of iterates generated by the dynamical
system. With this notation, we can conveniently write the
time average of a scalar function ¢ : X — R as

11 () = Eoropn, [6(6)]- (6)

We focus on the case when the dynamic system F'(6;) de-
notes the SGD update, i.e.,

F(0:) = 0; —ng(0:),

where g(6;) denotes the stochastic gradient and 1 denotes
the step size. Next, we will show that the empirical measure
converges to an approximately invariant measure as the
number of iterations grows.

4.1. Vanishing change in neural network training

We are now ready to provide a theoretical analysis to prove
the vanishing gain of training losses in neural network train-
ing, and thus explain how the training loss can stabilize even
when the norm of the loss function gradient is non-zero. Our
analysis is distinct from previous ones (e.g. (Chizat & Bach,
2018; Mei et al., 2019; Jacot et al., 2018)) in the literature in
that it does not assume global Lipschitzness or smoothness,
does not rely on bounded noise assumptions, and it does not
require perfectly fitting the data as in Neural tangent kernel
models or mean-field style arguments. Instead, it builds
upon minimal practical conditions. The downside of this
generality is that we only prove convergence of function
values and do not comment on local or global optimality or
generalization. We believe much remains to be done here
and we have just scratched the surface. We will make more
comments on this in Section 5.

To start the discussion, we define the following L-layer
deep neural network f(z, ), where x is the input and § =
(Wo,...,Wr_1) is the network weights:

T4 = o1 (W), 1=0,...L—1 @)
f(xve) =L, (8)

where o; is a coordinate-wise activation function (e.g.,
ReLU or sigmoid). In practice, the last layer usually does
not use any activation function so o, is the identity mapping.
We do not consider pooling layers, convolutional layers, or
skip connections for now and it should be easy to extend
our analysis to these settings. Iteration (7) does not include
batch normalization layers which we will analyze later in
this section. Given a training dataset S = {(«%, y*)},, the
empirical training loss is defined as

Ls(0) == % X0, U(f(27,0),y7),

where £ : R? x [d] — R is a loss function and we assume
|||, < 1. The network is trained by SGD with weight
decay, which is equivalent to running SGD on the following
regularized loss

gl 2
L3(6) = Ls(6) + L 0],
where ||6]|, denotes the ¢5 norm of vectorized 6. We will

focus on the most widely used loss function for classification
tasks, the cross-entropy after softmax, defined as follows.

lx,y) = xy — log (Z?:l e%‘) , )

which has the following properties that we will use later.
Lemma 4.1. The cross-entropy after softmax loss £ : R% x
[d] — R defined in (9) satisfies

1. If max; x; — min; z; < ¢, we have {(z,y) < c+ logd
foranyy € [d].
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2. U(x,y) is ¢y Lipschitz w.r.t. « for a global constant c,.

Next, we make the following assumption for the activation
function. It holds for ReLU and tanh activation functions.

Assumption 4.2. Each activation function o; is (sub)-
differentiable and ¢, coordinate-wise Lipschitz for some
numerical constant ¢, > 0. Also assume 0;(0) = 0.

Now we can prove the vanishing gain of the function values.

Theorem 4.3. Suppose Assumption 4.2 holds and 0 is ini-
tialized within the compact set Cy, == {(Wo,...,Wr_1) :
Will,, < w} for some w < (v/cocE)Y/(E=2) Then the
iterate Oy, for every k lies in C,, and the empirical measure
generated by SGD with a stepsize 1 < 1/ satisfies with
probabiblity 1 — § that

g, [Ls(0) — Ls(F(6))] = O(12£0L20).

The above theorem states that the change in loss vanishes in
a time average sense. The key step in the previous proof is
to show that all iterates lie in a compact region almost surely
even though the function may not be smooth or Lipschitz
continuous. One may suspect that a stronger result should
hold that the limit will exist. We show in Section 5.3 that
such a statement is highly nontrivial and sometimes false.

We notice that the initialization choice may not always hold
in practice, especially when there is batch normalization
design. We further note that similar to the above theorem,
all (piece-wise) continuous scalar functions including the
noise norm are bounded by compactness, and hence should
stabilize after long enough training. However, in the third
row of Figure 2, the noise norm does not really converge. To
explain this observation, we propose the following theorem
that studies neural networks with batch normalization.

For simplicity of analysis, we assume the last layer is one of
the layers with batch normalization. For a vector =, we use
22, || and 1/ to denote its coordinate-wise square, abso-
lute value, and square root respectively. In the I-th layer, if it
uses batch normalization, given a batch B = {(z%,y%)},
sampled from a distribution Pg, batch normalization makes
the following update from {z}_; }iep to {z}}icn:

1 i
IBI-1 =7 2ieB Tl-1>

2 _ 1 i 2
0Bl-1 = m EieB (%-1 - MB,Z—l) )
i
~t Ty 1—HB,I—-1 i A7
T ===, 1z, =a; -2+,

V "'?s,zfﬂLE ’
where a; and b; are the scale and shift parameters to be
trained. We also use SGD with weight decay in training.

Theorem 4.4 (With batch normalization). Suppose the pa-
rameter of batch normalization layer ay, is initialized within

the compact set |ar,| < 2./m/~. Then the empirical mea-
sure generated by SGD with n < 1/~ satisfies with proba-
bility 1 — 0 that,

_ O(log(1/5))_

E9~p,n,3~735 [LB(Q) - LB(F(O))] Vn

where P denotes the distribution of random minibatches.

We have shown in this section how the expected change of
the training loss in per iterate update converges to zero for
neural network training without any smoothness or Lips-
chitzness assumptions. One weakness of our analysis is that
the limit of the training loss may not exist. Another caveat
is that our gain is measured in terms of empirical measure
instead of the last iterate distribution. In the next section,
we discuss the many implications and open problems that
the invariant measure view brings us.

5. Theorems implications and open questions

We showed that in neural network training, the change in
training loss gradually converges to 0, even if the full gradi-
ent norm does not vanish. In this section, we will show how
this result explains and connects to several observed phe-
nomenons that were not captured by the canonical optimiza-
tion framework. We then conclude by discussing several
limitations of our result and important future directions.

5.1. Edge-of-stability and relaxed smoothness

The invariant measure perspective can also provide insight
into the edge-of-stability observation and relaxed smooth-
ness phenomenon. Our argument is heuristic, and somewhat
speculative. We believe a rigorous analysis is both interest-
ing and challenging and leave them as future directions.

We start from the equation (15) in the proof of the Theo-
rem 5.2 in Appendix G. If the variable 6 follows the dis-
tribution of an invariant measure, then by the fact that the
expected loss does not change after one SGD update,

Eq,o[IIVLs(9)]13) =

oo 1 [ 1600, Lstou(era)a(o)auar|.

where g(f) is the stochastic gradient and vy 4(g) (1) = 0 —
rg(0) denotes the line segment. Then we boldly extract an
equation that holds in expectation
(V)? =nLG?, (10)
where V denotes the gradient norm, £ denotes the sharpness
in the update direction and G* denotes the second moment

of stochastic gradients. The only approximation we made is
that we replaced the hessian integral along the line segment
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Y0,q(0) by sharpness. This equation has some interesting
connections to the following two observations.

First, we recall the edge-of-stability framework (Cohen
et al., 2021), which observes that the actual smoothness
constant during training neural network has an inverse re-
lation to step size. This is true from the above equation if
we hold V, G constant. Second, in (Zhang et al., 2019), the
authors identified a positive correlation between the gradient
norm and the smoothness constant. This relation can also
be extracted from the equation if 7, G are held constant.

In fact, as we observe that in practice, the relation between
the sharpness and step size is not a direct inverse but indeed
has some negative correlation. Therefore, we believe that
through a more rigorous analysis of the property of invariant
measures, one could understand why many counter-intuitive
behaviors can happen, and provide a more accurate model
of the interaction between different quantities.

5.2. Decreasing stepsize leads to smaller objective values

One well-known observation in neural network training is
that when the training loss plateaus, reducing the learning
rate can further reduce the objective. This phenomenon can
be proved in theory if the function has globally bounded
noise and smoothness constant. However, as we showed,
the smoothness and noise level change adversarially to the
step size. In this section, we provide a partial explanation on
when a smaller step size can decrease the function value. In
particular, we consider the neural network setup introduced
in Section 4.1. We make the following assumption:

Assumption 5.1. The neural network is continuously
second-order differentiable, though it need not necessarily
have bounded smoothness.

Then we can prove that reducing the step size would result
in a decrease in function value.

Theorem 5.2. Consider the stochastic gradient update F' :
X — X on a compact set defined as F(0) = 0 — ng(0) for
a fixed step size n > 0. Let p be the invariant distribution
such that Ep g, [Ls(8)] = Ero~pu[Ls(F(0))]. If p is not
supported on stationary points (i.e. Eo.,.[||V f(0)||3] > 0),
then there exists a small enough ¢ € (0, 1) such that for any
positive step size 1)) < cn, the update F'(0) = 0 — n/g(0)
will lead to a smaller function value, i.e.

EF’,ON;L[LS(F/(G))] < EGNM[LS(H)]'

The above theorem states that once the change in loss van-
ishes, by selecting a smaller step size, one could further
reduce the loss. This reflects the observation in Figure 1.
The challenge in the proof is that reducing the step size
might lead to worse smoothness that is too large for the step
size, and hence may increase the training objective. The
proof can be found in Appendix G.

However, Theorem 5.2 only depicts what happens after
one-step update rather than the long-term behavior after
the iterates generated by a smaller step size converge. We
believe that characterizing the shift from one invariant mea-
sure to another due to step size update could lead to a better
understanding of the convergence rates of optimization al-
gorithms, and is worth future studies.

5.3. Vanishing change vs existence of a limit

Theorems 4.3 and 4.4 show that the update vanishes to zero,
yet they do not imply whether the limit lim;_, o, 114(¢) exists.
In fact, an explicit counterexample shows that the limit may
not exist even for a dynamic system defined on a compact
domain with Lipschitz maps.

Theorem 5.3 ((Yoccoz)). There exist a compact set X, a dy-
namic system with deterministic continuous map F : X —
X and a scalar function ¢ € C* : X — R, such that se-
quence = 3", . &(0) has no limit, where 0y 11 = F(0y,).

Given the above negative result, we only know that a subse-
quence of the series of empirical measures will converge to
the invariant set.

Theorem 5.4 (convergence of distribution). Assume that F'
maps a compact set X to itself. Then the empirical distri-
bution has a subsequence converging weakly to an ergodic
distribution. In other words, there exists an invariant distri-
bution i, and a subsequence of positive integers {ny }rcz
such that piy, —y [

The proof of the above theorem is similar to the proof for
the Krylov-Bogolyubov theorem. We include the proof in
Appendix C for completeness. However, we note that the
above two theorems do not make use of the gradient descent
update or the neural network architecture. Whether the
dynamic system resulting from gradient descent has exactly
the same property is left as a challenging future problem.

5.4. Discussion

Our work introduces a paradigm shift in how the conver-
gence of weights and loss function should be analyzed and
defined. It suggests neural network training converges to
approximate invariant measures when iterates fail to con-
verge to a single point and the distribution of weights does
not converge to a globally unique stationary distribution.
Our results, however, lead to more questions than answers.
For example, what do we know about the last iterate instead
of empirical distribution? How do the invariant measures
of different neural network structures and gradient-based
optimizers differ from one another? What kind of dynam-
ics converge to invariant measures faster? We believe that
answering these questions will require vastly different tech-
niques compared to standard optimization theory.
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A. Additional experiments details

In this section, we add some additional experiments and experimental details that supplement the results in Section 2. We
showed that the observed phenomenon happens in large scale tasks. To supplement the result, we briefly comment on how
smaller dataset presents different behavior by taking Cifar experiment as an example. In the end, we will discuss some
experimental details on how the quantities in (1) are estimated.

4 10.0
0 7.
ki = o
g 2, 2 50
§ 3 :
= Ch 2.5
0 0.0
0 100 200 0 0 50 100 150 200 0 100 200
Epoch Epoch Epoch

Figure 6. The estimated stats vs epoch for Cifar10 training. The learning rate starts at 0.1 and decay by a factor of 10 at epoch 100 and
epoch 150.

A.1. Cifar10 Experiment

In this section, we show how noise, gradient norm and training loss evolve in Cifar10 with ResNet training. Our training
procedure is based on the implementation”. The key result is demonstrated in Figure 6. We observe that in this case, the
gradient norm indeed converges to 0. In fact, this is expected, as for cross entropy loss, the train loss could bound the
gradient norm when weights are bounded.

The implications of the above observations are many. First, this separation behavior between small overfitting model on
Cifar10 and larger model on ImageNet shows that the study of overparametrization and convergenece to stationary point
may still be true in many cases. However, we should be careful that these analysis does not apply to larger models that do
not overfit the data. Second, this shows that the SDE modeling in (Li et al., 2020; Lobacheva et al., 2021) can also be valid.
It also shows that our work studies a problem of a different nature (non-zero grad norm).

A.2. Estimating the statistics

Here we provide additional details on how the values in (1) are estimated. Notice that these quantities are defined using all
N data points in the entire dataset, which is too large in practice. Therefore, we use a random batch m < N to estimate the
quantities. For training loss, gradient norm, and noise norm, the estimation is straight-forward. For the sharpness, we follow
the implementation in (Wu et al., 2018)3 and estimate the sharpness via power iterations.

By Jensen’s inequality, the estimated norms would be larger than the true value. However, the value should converge as the
sampled batch size m converges to the total data number N. We show in Figure 7 and Figure 8 how these estimator values
converge in practice. Based on these plots, we select the batch size to be 1.6 x 10 for ImageNet training and the token size
to be 9 x 10° for the WT103 training. These sample sizes give a high enough precision level for making the observations in
previous sections. Note that the estimated smoothness for the ImageNet experiment has very large variations, and hence we
didn’t make many comments on that plot throughout this work.

https://github.com/kuangliu/pytorch-cifar
3https ://github.com/leiwul/sgd.stability
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B. Convergence of function values

One key intermediate result for the proof main theorem relies on the convergence of empirical measures when the iterates
are updated by a compact continuous function F.

Theorem B.1 (convergence of function values). Consider a continuous scalar function ¢ : X — R. Assume that the update
map F has the property that ¢ o F' : X — [—M, M| has a bounded value for any 0 € X , then with probability 1 — § over
the randomness of F,

Eoms. [606) ~ oF(0))] = 0 (2L, an

Proof. The proof can be found in Appendix B. O
Proof. By the fact that ¢ o F': X — R has bounded value [— M, M], we can denote the subgaussian norm at 6 as

o(0) = inf{o > O|P(||¢(F(6)) — E[$(F(0))]]| = t) < 2¢7"/>7}.
In fact, V0, 0(8) < M < oo. Hence, we can further denote the upperbound on the sub-Gaussian norm as

o =supo(h).
0

Then we consider two distributions. One is the empirical distribution of a sampled trajectory,

1 n

The other one is the pushforward distribution s (F ') as defined in (4). Then,

n

Egm, [606) ~ S(FO)] = -3 0(6) — = > 0(F(6)
= L(0(00) — S(F@) + 3 6(0,) — o(F(0-1)
t=1

1 I
=0|( - — 0:) — P(F(6r-1)).
(7) + 5 00 —otrion )
Then the claim follows by applying Hoeffding’s inequality on the second term. O

C. Proof of Theorem 5.4

Proof. Since X is a compact metric space, we can find a dense countable set of the family of continuous functions C'(X),
denoted as {¢1, ¢2...}. Since X is compact, we have that 115 (¢;) exists for any k, j. Therefore, by the diagonal argument,
there exists a subsequence {ny, } such that forall j = 1,2, ...,

as

J(9) = lm — > 6(0). (12)
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Since J is obviously linear and bounded, there exist a unique probability measure ¢ such that J(¢) = u(¢).

The invariance of y follows by the fact that for any continuous ¢,

lim [Ege, [6(0) — (F(8)]] = lim — 3" ¢(6)) ni S 6(F (@)

k— o0 k—oo Ny <nn 1<ny
1

:khm — Z o(0) — — Z ?(0141)

oo Mk I<ng I<ng

+klim - Z ¢(0141) — — Z d(F(0r))

AL P 1<ny
1

= k]ggo n—k(¢(91) — ¢(0nk+1))

+ i 37 (6(01) — (F(O) > 0. (13)

I<ng

In the last line, the first term goes to zero by boundedness of function value on the compact set. The second term goes to
zero by noticing that the sequence

My == (6(0141) — $(F(a1))

n
I<n

is a martingale sequence. By the fact that each the induced martingale difference sequence has uniformly bounded sub-
Gaussian norm, we can apply Hoeffding’s inequality and know that M,, converge in probability to 0, which implies
convergence in distribution.

O

D. Proof of Lemma 4.1
Proof.

1. Let x,, = (max; x; + min; x;)/2 and define z; = x; — ,,,. We know |z;| < ¢/2. Then we have
0(x,y)| = |2y + T — log (Zj—Ll ezjm)‘

2y — log (2?21 6zj> ‘

<c/2 + log (dec/z)

=c + logd.
2. As /is differentiable, it suffices to bound its gradient norm. For any fixed 1 < k < d, we have
ol(z,y) e
= ,k) —_—
al'k Y Z?:l eri
Then we can bound

e

G| =y, ()

2
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E. Proof of Theorem 4.3

Proof. Denote p = wc,. Then it is easy to show that within C,,, we have ||z;]|, < p! for every . We define 241 =

and thus x; = 0(2;). For any mini-batch B = {(z*, y*)}™,, we can bound the gradient norm of the loss.

1 ,
== ai(Val(al,y") " DY | ] | D
- iEBxl(V (x4, ( W

s=Il+1

OLp

—_—= < cpeaptTl < w,
an S CeCop =7

where we define Dl(i) = Diag(o}(z})). By the SGD rule, we have

OLp

Wit =1 — ny)W/ ~ 150

Choosing < 1/, if HWlkHO]) < w, we also have

W < (L= my)w + nyw < w.

op —

W0,

By induction on k, the iterates of SGD optimizing the above objective always lie in C,, if the stepsize satisfies n < 1/7.

Then we have Ha:ZL ||2 < p" and can bound that for any k

~ L/(L-2)
Ls(0h)] < logd + ¢ |12, < logd + ( ZC2> |
The claim then follows by applying Theorem B.1.
F. Proof of Theorem 4.4
Proof. We first show that the coordinates of &% are bounded.
. .’,Ui - —
a2 = bt - o < Vm.

\/% Yies (41 — NB,L*1)2 Te

As in Theorem 4.3, we show that during the training process, a, always satisfies |ar,| < 21/m/~y. Note that

OLg 1 . o
et R el X Iz z’ i
aaL m ;xl/ V ('rL Yy )
d i
1 e(zL)k
LD S (a e )|
i€B k=1 Zj: e(*L)s
) d 5 T
Smeaé{ le)y Zk:z(xL)(lzf
' Z]:l erLy
<2v/m.

Therefore if ‘a’z| < 2y/m/~, we have

0Lp
|af ™ = ‘(1 —n7)ay — n@a;’ < (1 =) - 2v/m/y + 2pv/m < 2v/m /.
Then by induction, the above is true for every k. By Lemma 4.1, we have for every &k

Lp(6r) < 4m/v +logd.

Then the training loss |Lg(0x)| < 4m/~+ + log d is bounded during the training process if the stepsize satisfies n < 1/+.

The theorem follows by applying Theorem B.1.

O
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G. Proof of Theorem 5.2

Proof. For simplicity, we denote

f(9) = LS(9)7
§:=Eou[VF(O)]3] >0

By compactness of X', we could denote the following quantities:

G = sup [|g(0)]l2 < oo,
fex

M2 = ngler Ezrvunif[G,C][Hva(Z) - Ez’wunif[@,d [VQf(Z/” H(Q)p] < 00,

For clarity, note that for any function f : X — R,

Ezwumf[Q (] / f t9 + 1 - t)g)

Therefore, we have that for any ¢ € (0, 1)
1
[ I et + (1= 1) ~ Bevamin (722 it
0
| A 2 2
:E 0 Hv f(te + (1 - t)C) - Ezwunif[O,C] [v f(z)]”opdt
1
< Eeunifo [V £(2) = B [V2 ()] l155)-
Therefore, by Jensen’s inequality, we have

1 MQ
/O V2 f(cth + (1 = ct)C) — Eeounitio,o] [V f (2)] lopdt < 4/ — (14)

By applying Taylor expansion twice we get the following equations,
Bo,r[f(F(0)) = f(0)] = Eq,4[f(0 —ng(6)) — f(0)]
1
=Byl [ (6(6), 1 Cioio ()]

= Ea, [0SO 1 [ (600) ~ 50,9000

~Bouln [ (V10).5 500 (00) - VIO

= o, VSO~ [ (00) - V0. VG 00) ~ V5O
~Buuln [ (V10).55 a0 00) - VIO

=B 4[-nlIVF(O)]I5 - / / ), V2 F(y0.4(tT0))g(0))dtdr].

where 7y 4(9)(r) = 6 — rg(6) denotes the line segment. In the second line, we applied the fundamental theorem of calculus.
In the second line, we add and subtracted same terms. In the fourth equality, we used the unbiasedness of noise. In the last
line, we combined the last two terms and applied Taylor expansion again.
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By invariance of the function value, we get that

Eoo [0V F(0)]2 - / / ). V2 f (0. (trm))g(8))dtdr] = 0
— B, [ VO] = Eogln / / ), V2 £ (0.0 (t71)) g (8)) dtdr]. (15)
Therefore we have that
Eo 0/ (F'(6)) — /(6)
B o[- en| VIO — 2 / / (9(0), V2 £ (0.4 (t70))g(6) dtdr]

<en (—5 + CG2\/ Af) ,

where in the last line we used (14). The claim follows by setting ¢ small enough.



