Fuzzing Mobile Robot Environments
for Fast and Automated Crash Detection

Trey Woodlief!, Sebastian Elbaum?, and Kevin Sullivan®

Abstract— Testing mobile robots is difficult and expensive,
which leads to many faults going undetected. In this work we
explore whether fuzzing, an automated test input generation
technique popular for software, can assist in quickly finding
failure inducing inputs in mobile robots. We developed a simple
fuzzing adaptation, BASE-FUZZ, and one specialized for fuzzing
mobile robots, PHYS-FUzZ. PHYS-FUZZ is unique in that it
accounts for physical attributes such as the robot dimensions,
estimated trajectories, and time-to-impact measures to guide
the test input generation process. The results of PHYS-Fuzz
evaluation suggest that it has the potential to speedup the
discovery of input scenarios that reveal failures, finding 56.5%
more than random input selection and 7.0% more than BASE-
Fuzz during 7 days of testing.

I. INTRODUCTION

Testing mobile robots is difficult and expensive for at
least three reasons. First, the input space is large and
complex, including the robot and the environment state,
making it challenging to cover it extensively through testing
[23]. Second, although the test execution can be automated
through simulators [24], and the input space codified [4], the
generation of test scenarios remains mostly a manual process
[1], [16]. Third, developing oracles to judge correctness
requires handling large ranges of possible behaviors, noise
in measuring system response, and non-determinism in robot
performance [1]. As a result, system test suites for robots,
from the PX4 [16] to the TurtleBot [18], [19] to the Care-
O-bot [3], [10], tend to consist of a small number of hand-
selected inputs with a human acting as an oracle or with
carefully crafted oracles, or just scenarios on which to add a
goal and an oracle to form a test, potentially missing many
corner cases [1], [9].

In this work we explore whether fuzzing, a software tech-
nique to quickly expose system failures through guided input
generation, can address such challenges. Fuzzing was defined
decades ago by Miller et al., who utilized randomly generated
input strings to exercise unix utilities and uncover failures
[17]. Fuzzing is appealing because of its low overhead for
adoption due to using high-level oracles that require no
additional effort on the part of the developers, and automatic
input generation that learns from its previous findings.

Modern techniques and supporting tool sets [6], [7], [25]
have improved fuzzing cost-effectiveness by guiding the

1 University of Virginia, USA, adw8dm@virginia.edu

2University of Virginia, USA, selbaum@virginia.edu

3University of Virginia, USA, sullivan@virginia.edu

This work was funded in part by NSF Awards #1853374 and #1909414.
Trey Woodlief was supported in part by a University of Virginia SEAS
Fellowship

random input generation with sophisticated feedback mech-
anisms. Such feedback mechanisms utilize, for example, the
lack of coverage of code constructs to favor inputs that
may traverse uncovered predicate branches or predicates that
resulted in a failure in previous tests. The success of fuzzing
in the software arena is undeniable [13], as it is now a staple
in software validation processes.

Applying fuzzing to mobile robots has the potential to
address some of the challenges enumerated earlier by more
effectively sampling the input scenarios of mobile robots
while using simple high-level oracles to automatically judge
incorrect behavior. Yet, to be valuable to the validation of
mobile robots, we believe that fuzzing should incorporate
two fundamental changes. First, it must shift from feedback
based on code constructs, to feedback that captures the
distinct physical features of the robot and the environment
to guide scenario generation. Second, it should shift from
oracles that consider binary pass/fail test outcomes, to ones
that judges outcomes based on more continuous hazardous-
ness measurements associated, for example, with nearness to
collision states.

We introduce an approach for the fuzzing of mobile robots,
PHYS-Fuzz, that takes such a leap. By encoding physical
features in a manner that respects their real-world interpre-
tation and using continuous metrics of robot performance,
PHYS-FuUzz can more quickly guide fuzzing to yield system
failures. Our contributions are:

e Defining an approach, PHYS-Fuzz, for fuzzing mobile
robots, which integrates traditional notions of software
fuzzing with the physical attributes and hazards of
mobile robots and their environments.

o Developing a family of techniques that implement
PHYS-Fuzz, accounting for physical attributes such
as dimensions of the robot, estimated trajectories, and
time-to-impact measures and using automatically gen-
erated oracles based on the hazardousness of a test.

o Assessing the potential of PHYS-FuzZ when compared
with random and traditional fuzzing techniques to ac-
celerate the detection of physical robot collisions, in a
mobile robot built on ROS and executed under Gazebo.

II. MOTIVATING EXAMPLE

The Husky unmanned ground vehicle is a robot research
and development platform produced by Clearpath Robotics
that is popular for its extensibility and off-the-shelf config-
urations with supporting open-source code [2], [22]. One
of the default hardware configurations, pictured in Figure

Potential Starting
Locations

L] ;
Goal Position

(a) Husky Robot (b) Simple go-to-goal scenario example

Fuzzing Performance

120 4

100 4

80 4

60 A

Number of crashes found

10 4

20 4

T T T
1 12 24

Time (hours)
(c) Collisions detected by techniques

Fig. 1: Motivating Example. Husky Robot in simple scenario
navigating to goal within a garage.

la uses a LIDAR for sensing, allowing out-of-the-box nav-
igation capabilities. Let’s now set this Husky on a simple
mission. The Husky has been tasked with navigating to a
location that is within a 2 meter square garage walled off on 3
sides. The robot can start at any position within a pre-defined
4 meter by 10 meter region facing 0°, and must navigate to
the goal without crashing into the garage.

To emphasize the testing challenges even in the most
basic setting, in this motivating example, testing has been
simplified to the selection of concrete values for just the
starting pose of the robot, as demarcated in the green area in
Figure 1b. An approach to select such values may simply
select random poses within the starting area. This naive
approach, however, may generate many similar tests that
render limited value in exploring the potential behaviors of
the Husky.

A slightly more sophisticated approach may partition the
space in some way, perhaps using the method of Rapidly-
exploring Random Trees (RRT) [12] or by having the devel-
oper specify reasonable areas of say 20cm by 20cm. Such
partitions may still render many potential tests, 1000 if we
follow the 20cm by 20cm partitioning. Given that these tests
take on average 60 seconds to run in a Gazebo simulation,
running the whole suite would take almost 17 hours. That
cost is compounded by the fact that the robot may exhibit
non-deterministic behavior, and thus each test should be run
multiple times to assess its failure probability. For our study,
those runs caused the complete test suite to take over 80
hours. It is easy to imagine how for even slightly more
complex scenarios such an approach becomes infeasible.

The problem we are exploring, then, is how we can more
quickly identify what test scenarios are worth generating and
executing early in order to accelerate the detection of failing
robot behaviors that result in crashes.

Figure 1c shows the number of crashes found by three
techniques when testing for up to 24 hours. The RANDOM
technique explores the scenario space by sampling using a
uniform distribution. The BASE-FUZZ technique is a direct
adaption of standard fuzzing for robots where the selection of
the next test to execute is biased towards tests that are most
similar to tests that have exhibited crashes in the past. The
underlying notion of test similarity is based, for example, on
the initial pose of the robot relative to the obstacle. Finally,
the PHYS-FUZZ technique considers the physical meaning of
the testing scenarios and is guided by a hazardousness score
from the robot’s performance in the test. That is, PHYS-
Fuzz biases selection towards tests with similar features
such as the expected trajectory, the sensed environment, and
also considers a continuous distinction of test outputs based
on time-to-impact (instead of the binary non-crash/crash).

In the first several hours, while the fuzzing techniques
are still randomly exploring the space, all three techniques
perform comparatively. And for this particular scenario,
RANDOM performs rather well uncovering many failures.
However, the difference between techniques becomes evident
as more data helps to refine the models to bias the test to
generate and execute. At the 24 hour mark, PHYS-FUZZ has
uncovered 26.0% more collisions than RANDOM, and 6.5%
more crashes than BASE-FUzz. Even for a simple scenario
space with limited choices, by taking advantage of fuzzing
and the physical aspects of robots, PHYS-FUZZ is able to
uncover more crashes faster than both baseline techniques.

III. APPROACH

The goal of PHYS-Fuzz is to more quickly uncover
scenarios in which a mobile robot exhibits failing behaviors
leading to crashes. This process is divided into three phases:
run, learn, and select. Fuzzing gathers information from
running tests, learns from the results, and finally selects new
tests designed to yield failures and further aid in the learning
process.

A. Algorithmic Description

Algorithm 1 is the core for fuzzing a mobile robot in
the physical world. It takes as input a test scenario space
and a robot specification. A scenario space consists of a
tuple (S, 0, G). S describes the set of starting configurations
for the robot, O is a set describing the possible types,
quantities, and poses of all obstacles, and G describes the
set of objectives for the robot, e.g. the set of possible goal
poses. A concrete scenario is described by the tuple (s, 0, g),
where s selects a starting pose in the world frame; o is a set
of obstacles including their shapes and poses in the world
frame; and ¢ is a goal action. The algorithm also takes as
input information about the robot under test including its
shape and kinematic model.

Algorithm 1 Fuzzing for Mobile Robots

procedure FUZZROBOTS(scenarioSpace, robot, initial ScenarioCount, timeout)
scenarios]] = GENERATE(scenarioSpace, robot, [|, initial ScenarioCount)

while =TIMEOUTELAPSED(timeout) do
learnedRelations = LEARN(scenarios]])

scenario = SELECT(scenarios|], learned Relations)

scenario.data = RUN(scenario)

scenario.hazardous = COMPUTEHAZARDOUSSCORE(scenario.data, robot)
scenarios|] = GENERATE(scenarioSpace, robot, scenarios[], initial ScenarioCount)

end while
end procedure

Algorithm 2 Scenario Generation

procedure GENERATE(scenarioSpace, robot, scenarios, initial ScenarioCount)

if NEEDMORETOCONSIDER(scenarios|]) then

moreScenarios[].world = GENSCENARIOS (scenarioSpace, initial ScenarioCount)
moreScenarios||.staticFeatures = COMPUTESTATIC (scenarioSpace, moreScenarios|])
moreScenarios|].physical Features = COMPUTEPHYSICALSTATIC(scenarioSpace, moreScenarios|], robot)

scenarios.append(moreScenarios)
end if
return scenarios|]
end procedure

The algorithm begins by using GENERATE to initialize a
set of initialScenarioCount test scenarios to consider for
execution. These scenarios are sampled uniformly at random
from the scenario space and enable the initial computing
of static and physical features. For each of these scenarios,
two sets of features are computed without executing the
scenario. We call these static features. COMPUTESTATIC
calculates a set of static features that encode the scenario
tuple described earlier. Next, COMPUTEPHYSICALSTATIC
calculates a set of features over physical aspects of the
scenario. We describe their differences in more detail in the
next section. The main loop then executes tests for a specified
period of time as defined by timeout. The algorithm uses
LEARN to process the data from previous executions to learn
how to build associations between the static features and the
hazardousness score to guide test selection. SELECT uses the
learned relations to choose a test scenario to run based on
its predicted likelihood of revealing a hazard. The scenario
can then be executed either in simulation or in the real world
as represented by RUN. The test execution is then analyzed
and COMPUTEHAZARDOUSSCORE evaluates the robot’s per-
formance. This score is used in the next iteration to guide
fuzzing toward more hazardous scenarios. Methods for im-
plementing COMPUTEHAZARDOUSSCORE are described in
section IV-B. GENERATE then uses a heuristic to determine
if the algorithm has enough unexecuted scenarios remaining
to consider, and, if not, repeats the scenario generation and
feature computation steps.

B. Algorithm Instantiations

The simplicity of our framework belies its flexibility to
implement many potential fuzzing techniques. We explore

several instantiations of Algorithm 1 of increasing complex-
ity.

RANDOM explores the scenario space by uniformly
sampling from (S,0,G). All of the calls to the COM-
PUTESTATIC, COMPUTEPHYSICALSTATIC, LEARN, and
COMPUTEHAZARDOUSSCORE can be omitted as the SE-
LECT function does not consider any scenario information
when choosing the next scenario to test.

BASE-Fuzz adapts standard fuzzing techniques to
robotics. As we shall see, automating that in itself can
provide important gains over RANDOM. This approach ex-
plores the scenario space using only static features. COM-
PUTESTATIC generates static features derived automatically
from the scenario tuple. This technique does not associate
any physical meaning to those features. As such, it could be
applied to any software running on any system. COMPUTE-
HAZARDOUSSCORE under this technique evaluates whether
the robot passed or failed the test and returns a binary value
accordingly. The implementation of LEARN is discussed in
section IV-B. COMPUTEPHYSICALSTATIC is omitted.

PHYS-FUZZ explores the scenario space using all avail-
able static and physical features, and shifts to a continuous
hazardousness score. This score integrates non-physical data
computed by COMPUTESTATIC and physical information
about the environment computed by COMPUTEPHYSICAL-
STATIC. Physical features capture the environment explicitly.
This is a novel addition beyond standard fuzzing because
the encoding requires recognition and special treatment of
different physical quantities. For example, consider that
0° and 350° are 10° apart, not 340° as a direct mapping
would imply. Angles do not map well to a single value, and
instead the corresponding physical feature (cos(f), sin(9))

allows for the comparison of any two angles while respecting
their physical meaning. The physical features also include
information about how the robot interacts with the scenario,
for example, the shortest path for the robot to reach the goal.

COMPUTEHAZARDOUSSCORE under PHYS-FUZZ cap-
tures information about how the robot responded to the
physical environment such as how close the robot came to
colliding with an obstacle. Instead of rating a test as only pass
or fail, a continuous metric describes how close the robot
was to failing during a successful execution. This technique
explicitly encodes the physical nature of the tests and LEARN
can consider varying degrees of success. The implementation
of LEARN is discussed in section IV-B.

IV. IMPLEMENTATION

The BASE-FUzz and PHYS-FUzz techniques described
above use machine learning regression models implemented
using Scikit-learn [20] to guide fuzzing. These models reside
in the LEARN method. In both techniques, each scenario has
a feature vector, x, and a learning objective, y (described in
more detail in the next sections). The model is then trained
to predict the learning objective 3’ of an unexecuted scenario
using its feature vector x’. The feature vector is formed from
the static and physical features produced by the technique.
This underscores the importance of these features being static
and precomputable as they are used as the input to predict
the target score before executing the scenario.

For example, consider an input space that has one
obstacle, placed either at 5 or 10 meters away from the
robot and at either 0, 45, or 315 degrees. Now let’s suppose
a concrete testing scenario places the goal at 5 meters
and an orientation of 45° and results in a crash. BASE-
Fuzz would encode this as = (1,0,0,1,0),y = 0.
PHYS-Fuzz would encode the same scenario as

= (1,0,0,1,0,5m/10m, cos(45°), sin(45°)) =
(100 1,0,0.5, f/z \f/z) = 0. Now, a second
concrete testing scenario places the goal at 10 meters at
an angle of 315° and results in the robot having a near
miss with an obstacle but reaching the goal anyway. BASE-
Fuzz would encode this as = (0,1,0,0,1),y = L.
PHYS-Fuzz would encode the same scenario as
z = (0,1,0,0,1,10m/10m, cos(315°), sin(315°)) =
(0,1,0,0,1,1,v/2/2,—+/2/2),y = 0.1. This value of
y = 0.1 is slightly above 0, representing an execution that
came close to crashing but passed. Note that as the angle
changed from 45° to 315°, PHYS-Fuzz was able to identify
the physical symmetry through the use of cos and sin.

A. Feature Vectors

Our fuzzing techniques compute a single feature vector for
each scenario. Static features are encoded using a one-hot
encoding since the values represented by such features lack
physical context. Physical features about the environment
represent concrete values and the difference between two
values gives information about their relative pose in the real
world. Thus, physical features are scaled to be in the range
0-1 based on the maximum possible value for the feature

as defined by the scenario space and then encoded directly,
preserving their relative distance. Our fuzzer also uses the
robot’s kinematic model to compute the shortest path for the
robot. This is included in the feature set by adding a single
feature of the sum of the absolute value of the total angles
that the robot must turn to complete the path. As illustrated
earlier, the feature vector for BASE-FUZZ is exactly the one-
hot encoding of the static features. For PHYS-FUzz, the
feature vector is the concatenation of the one-hot encoded
static features and the physical features.

B. Learning

The goal of both fuzzing techniques is to generate sce-
narios that lead to failures as fast as possible, guided by
the learning objective given by COMPUTEHAZARDOUSS-
CORE. However, each technique implements COMPUTEHAZ-
ARDOUSSCORE in a different manner. With BASE-Fuzz, the
only guiding information is a binary indicator for pass or fail.

For PHYS-Fuzz, the hazardousness score is calculated on
a continuous scale representing the level of hazard the robot
encountered. The robot sensor data is used to calculate the
time to impact at all times during the execution. Crashes have
a time to impact of 0 while low times indicate a near miss and
high times indicate the robot was not in danger of colliding.
To prevent infinite values from biasing a scenario, any values
greater than 10 seconds were set to 10. To condense this
measure to a single number per scenario, our technique
finds the one second window in which the average time
to impact is lowest and uses that average as the candidate
value, v in seconds. Time to impact proportionally encodes
what we think of as the hazardousness of an execution. To
discriminate between a crash and near-miss we also apply
the function h(v) = T(1 — e~ 2/T) where T is a scaling
factor, to spread out the range near zero. 1" was set to 10 so
that the range of the non-linear function matched the original
values.

The models for each technique are then trained on their
respective hazardousness scores. The unexecuted scenario
that is predicted to be the most hazardous is then selected.
By using this continuous metric, PHYS-FUzz has more
information and can begin guiding fuzzing sooner. BASE-
Fuzz must find a crash before it has any actionable data.
By contrast, even before a crash is found PHYS-FUZZz can
differentiate scenarios and guide toward hazardous scenarios.

In terms of learning models, we find that many machine
learning regression models can be applied to this problem. In
practice, a K-nearest-neighbors regression model was found
to most reliably provide the best guidance for both BASE-
Fuzz and PHYS-Fuzz. The optimal number of neighbors to
consider varies based on the total number of scenarios that
are considered. Empirically we found a value of ~ 0.01 =
initial ScenarioCount to be suitable.

C. Running Tests

The tests were run in simulation using Gazebo 9.0.0 [5],
[11] running inside of a Docker container using ROS [21].

We developed an automated framework in Python for
generating and executing tests in Gazebo. With a small
overhead to handle a specific scenario space, the system
produces a Gazebo environment and automatically executes
the test for the robot with additional ROS nodes added to
send the goal to the robot, monitor for when a collision has
occurred, and log data used for calculating the hazardousness
score.

Running tests in simulation allows for multiple tests to
be executed at once given sufficient hardware availability.
Instead of selecting the single scenario that is scored most
hazardous, the model can select a batch of the most haz-
ardous scenarios to be run in parallel since the feedback loop
does not need to run after every scenario. This optimization
was applied during the study, as discussed in section V-A.

Robots operate in an uncertain environment and often
exhibit non-deterministic behavior. As such, many tests are
flaky [14] and may only fail some portion of the time [1],
[8]. To address this, the selected scenario should be run
multiple times. After all executions are complete, the results
and data of each of the executions are used to compute
separate learning objectives per execution. The machine
learning model used must be robust to handle having the
same feature vector appear multiple times with different
learning objectives.

V. STUDY

Our study aims to answer the following research questions:

RQ1. What is PHYS-FUzz’s cost-effectiveness when com-
pared to RANDOM and BASE-Fuzz? We will measure cost-
effectiveness in terms of failures found over units of time.

RQ2. Can PHYS-Fuzz find failures in meaningfully dif-
ferent contexts? How does it compare with RANDOM and
BASE-Fuzz?

A. Study Design

The study was performed using the Husky robot [22]
and the provided ROS Melodic navigation source code [2].
The Husky is a 990mm by 670mm robot designed with 4
independent wheels allowing it to rotate in place. The Husky
was configured with a SICK LMS100 LIDAR scanner with
360° view and 10m range for sensing. In all scenarios the
robot was provided with a world map for navigation. The
Husky uses the ROS move_base [15] navigation framework
which takes a goal location as input and attempts to navigate
to that location. If navigation becomes infeasible, the system
will return an abort code, otherwise it will return success.

The scenario space is described by the tuple (S,0,G).
S consisted of a single starting pose at the origin oriented
toward 0°. The obstacle space O consists of exactly two
U shaped obstacles. One obstacle surrounds the starting
location facing 0° and another is placed 10 meters away at
one of 8§ locations at 45° increments. Additionally, the second
goal can vary its orientation in 45° increments starting at 0°.
Each obstacle can independently vary the width and depth
of the opening between 2, 3, and 4 meters. G consisted of
one goal, to navigate from the starting location to the center

of the second obstacle without colliding. Figure 2 shows an
example scenario from the space. There are 8 locations and
8 orientations for the second obstacle and 3 possible sizes
for each of the width and height of both obstacles. This leads
to 8*%8*3*3*3*3=5184 possible concrete scenarios generated
from this space, all of which are feasible for the Husky.

Fig. 2: Sample study generated scenario

The techniques then operated as in Algorithm 1 to generate
scenarios, learn, and select which to run!, except calls to
RUN returned the data cached from disk for the scenario.
This allows for a comparison of the techniques independent
of the non-determinism introduced by the flakiness of the
tests. The techniques are then evaluated in their ability to find
scenarios leading to crashes over time. With 5184 scenarios
each with 5 executions, there were 25920 total executions.
Of these, 21497 (82.9%) were successful, 3061 (11.8%)
resulted in the robot aborting the mission, 1340 (5.17%)
resulted in collisions, and 22 did not finish due to either
simulator error or reaching the 10 minute timeout. Aborts
fall into two categories: the robot has gotten itself into a
hazardous situation and aborted for robot safety or the robot
encounters an internal error and must stop. In the former
case, the time to impact still provides valuable information as
the robot has itself identified a hazardous situation. However
for the latter case, the time to impact may not provide useful
information since the internal error may not be related to the
environment. To handle this, any executions that resulted in
an abort and never had a finite time to impact were ignored
during learning. To take advantage of the system’s ability to
run multiple containers in parallel, the optimization noted in
section IV-C was applied. Each call to SELECT produced a
list of 50 scenarios to execute.

B. RQI Results: Cost-effectiveness

Figure 3 shows the performance of the three techniques
during the first 7 CPU-days of execution. Because the initial
learning periods randomly select scenarios to execute, the

ITests were run on a pop-os 18.04 desktop with an Intel Xeon Silver
4216, 128GB of RAM, and an NVIDIA TITAN RTX GPU with 24GB of
VRAM. Each scenario’s 5 executions were run in an Ubuntu 18.04 Docker
container. Up to 12 containers were run in parallel.

Fuzzing Performance

- Ranpom

Ry Base-Fuzz
G600 4
—— Puvs-Fuzz

500 4

100

300 4

Number of crashes found

200 4

100 A

T T T T T
3 Days 1 Days 5 Days 6 Days 7 Days

Time (hours)

T T T
0 Days 1 Day 2 Days

Fig. 3: Crashes found during 7 days of testing

random seed used can influence the performance of the
technique. All techniques were executed using 5 random
seeds and the lines in Figure 3 show the average performance
across the seeds with shading indicating the range of values.
After 7 days, RANDOM was able to find on average
409 tests that resulted in crashes. BASE-FUzZZ was able to
find 598 crashes which is a 46.2% increase over RANDOM.
Meanwhile PHYS-FuUzz was able to find 640 collisions, a
56.5% increase over RANDOM and a 7.0% increase over
BASE-Fuzz. The maximum difference between PHYS-Fuzz
and RANDOM was 69.0% at 50 hours, and the maximum
difference between PHYS-FUZZ and BASE-Fuzz was 11.1%
at 106 hours. Further, after the 95 hour mark, PHYS-Fuzz
outperforms BASE-FUzz fuzzing across all random seeds.
From a different perspective, consider a team of engineers
waiting for faults to be found in the system in order to
be fixed. PHYS-Fuzz would deliver in 4.25 days the same
number of crashes that would take RANDOM 7 days.

C. RQ?2 Results: Discovering Different Failures

To evaluate the ability of the techniques to find failures in
meaningfully different contexts, the crashes were separated
based on what portion of the robot was involved with the
crash. The perimeter of the Husky was divided into 720
sectors of equal angle measured from the center of the
vehicle. Each crash was then categorized based on the point
of impact.

The 1340 total crashes observed through all generated
tests covered 435 distinct impact partitions. The partitions
are visualized in Figure 4a. Figure 4b shows the number
of partitions found over time. On average, RANDOM finds
214 crash partitions, compared to the 247 from BASE-Fuzz
and 251 from PHYS-FuUzz. While both fuzzing techniques
outperform RANDOM by at least 15% with a slight edge
to PHYS-Fuzz, BASE-Fuzz and PHYS-FUZz perform sim-
ilarly in terms of partitions found even though data from RQ1
established PHYS-FUzz has found more crashes overall. This
is not surprising as neither technique was tailored to uncover

Heatmap of Robot Crash Locations

T

50

0.2 4
40

Total crashes: 1340
30

Robot Height (m)
o
o

|
I
[N}

20

-03 -0.2 -0.1 0.0 0.1 0.2 0.3
Robot Width (m)

(a) Visualization of crash partitions

Fuzzing Performance

3009 wenes RanpoM
Base-Fuzz
—— Puvs-Fuzz

200 4

150 4

100 4

Number of partitions found

T T T T T T T T
0 Days 1 Day 2Days 3 Days 1 Days 5 Days 6 Days 7 Days

Time (hours)

(b) Different crash classes found during execution

distinct crashes but rather more crashes. Software fuzzers
can be tuned for finding many failures (depth) or many
distinct failures (breadth), which remains to be explored in
the context of mobile robot fuzzing.

VI. CONCLUSION

The results of our exploration and evaluation of PHYS-
Fuzz suggest that it has the potential to meaningfully speed
up the discovery of fault-revealing inputs for mobile robots.
The findings also set several directions for future work.
First, we would like to explore more complex scenarios with
richer physical features and also more sophisticated systems
that have associated hazard models. Second, we would like
to investigate how to leverage more sophisticated fuzzing
mechanisms that consider both the limited availability of
testing resources and the need to maximize the number of
faults exposed, and that can be tuned for breadth versus
depth.

[1]

2

[3

=

[5

=

[6

=

[7

—

[8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

A. Afzal, C. L. Goues, M. Hilton, and C. S. Timperley. A study on
challenges of testing robotic systems. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
pages 96-107, 2020.

Clearpath Robotics et al. Husky GitHub Repository, 2020 (accessed
October 27, 2020). https://github.com/husky/husky/
tree/melodic-devel.

Fraunhofer IPA et al. Care-O-bot GitHub Repository, 2020 (ac-
cessed October 30, 2020). https://github.com/ipa320/
care—o-bot.

Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia. Scenic: a lan-
guage for scenario specification and scene generation. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 63-78, 2019.

Gazebo. Robot simulation made easy. http://gazebosim.org,
2014. 2020 (accessed October 28, 2020).

Patrice Godefroid, Michael Y Levin, and David Molnar. Sage:
whitebox fuzzing for security testing. Queue, 10(1):20-27, 2012.
Gustavo Grieco, Martin Ceresa, and Pablo Buiras. Quickfuzz: An
automatic random fuzzer for common file formats. ACM SIGPLAN
Notices, 51(12):13-20, 2016.

C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman. Robustness testing of autonomy
software. In 2018 IEEE/ACM 40th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pages 276-285, 2018.

Eliahu Khalastchi and Meir Kalech. On fault detection and diagnosis
in robotic systems. ACM Computing Surveys (CSUR), 51(1):1-24,
2018.

Ralf Kittmann, Tim Frohlich, Johannes Schifer, Ulrich Reiser, Florian
WeiBhardt, and Andreas Haug. Let me introduce myself: I am care-
o-bot 4, a gentleman robot. In Sarah Diefenbach, Niels Henze, and
Martin Pielot, editors, Mensch und Computer 2015 — Proceedings,
pages 223-232, Berlin, 2015. De Gruyter Oldenbourg.

Nathan Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In [EEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2149-2154, Sendai, Japan, Sep 2004.

Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. /EEE Transactions on Reliability,
67(3):1199-1218, 2018.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov.
An empirical analysis of flaky tests. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 643-653, 2014.

Eitan Marder-Eppstein. ROS move_base, 2020 (accessed October 31,
2020). http://wiki.ros.org/move_base.

Lorenz Meier, Dominik Honegger, and Marc Pollefeys et al. PX4-
Autopilot GitHub Repository, 2020 (accessed October 29, 2020).
https://github.com/PX4/PX4-Autopilot.

Barton P Miller, Louis Fredriksen, and Bryan So. An empirical
study of the reliability of unix utilities. Communications of the ACM,
33(12):32-44, 1990.

Inc. et al Open Source Robotics Foundation. Turtlebot GitHub
Repository, 2020 (accessed October 30, 2020). https://github.
com/turtlebot/turtlebot/tree/melodic.

Inc. et al Open Source Robotics Foundation. Turtlebot
Simulator GitHub Repository, 2020 (accessed October 30,
2020). https://github.com/turtlebot/turtlebot_
simulator/tree/melodic.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830, 2011.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[22]

[23]

[24]

[25]

Clearpath Robotics. Husky Unmanned Ground Vehicle, 2020 (ac-
cessed October 30, 2020). https://clearpathrobotics.
com/husky-unmanned-ground-vehicle-robot/.

Zaid Tahir and Rob Alexander. Coverage based testing for v&v and
safety assurance of self-driving autonomous vehicle: A systematic
literature review. In The Second IEEE International Conference On
Artificial Intelligence Testing. York, 2020.

Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz,
Jam Marcos Hernandez, and Claire Le Goues. Crashing simulated
planes is cheap: Can simulation detect robotics bugs early? In 2018
IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 331-342. IEEE, 2018.

Michat Zalewski. American Fuzzy Lop, 2013 (accessed October 27,
2020). https://lcamtuf.coredump.cx/afl/.

