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Abstract— Testing mobile robots is difficult and expensive,
which leads to many faults going undetected. In this work we
explore whether fuzzing, an automated test input generation
technique popular for software, can assist in quickly finding
failure inducing inputs in mobile robots. We developed a simple
fuzzing adaptation, BASE-FUZZ, and one specialized for fuzzing
mobile robots, PHYS-FUZZ. PHYS-FUZZ is unique in that it
accounts for physical attributes such as the robot dimensions,
estimated trajectories, and time-to-impact measures to guide
the test input generation process. The results of PHYS-FUZZ

evaluation suggest that it has the potential to speedup the
discovery of input scenarios that reveal failures, finding 56.5%
more than random input selection and 7.0% more than BASE-
FUZZ during 7 days of testing.

I. INTRODUCTION

Testing mobile robots is difficult and expensive for at

least three reasons. First, the input space is large and

complex, including the robot and the environment state,

making it challenging to cover it extensively through testing

[23]. Second, although the test execution can be automated

through simulators [24], and the input space codified [4], the

generation of test scenarios remains mostly a manual process

[1], [16]. Third, developing oracles to judge correctness

requires handling large ranges of possible behaviors, noise

in measuring system response, and non-determinism in robot

performance [1]. As a result, system test suites for robots,

from the PX4 [16] to the TurtleBot [18], [19] to the Care-

O-bot [3], [10], tend to consist of a small number of hand-

selected inputs with a human acting as an oracle or with

carefully crafted oracles, or just scenarios on which to add a

goal and an oracle to form a test, potentially missing many

corner cases [1], [9].

In this work we explore whether fuzzing, a software tech-

nique to quickly expose system failures through guided input

generation, can address such challenges. Fuzzing was defined

decades ago by Miller et al., who utilized randomly generated

input strings to exercise unix utilities and uncover failures

[17]. Fuzzing is appealing because of its low overhead for

adoption due to using high-level oracles that require no

additional effort on the part of the developers, and automatic

input generation that learns from its previous findings.

Modern techniques and supporting tool sets [6], [7], [25]

have improved fuzzing cost-effectiveness by guiding the
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random input generation with sophisticated feedback mech-

anisms. Such feedback mechanisms utilize, for example, the

lack of coverage of code constructs to favor inputs that

may traverse uncovered predicate branches or predicates that

resulted in a failure in previous tests. The success of fuzzing

in the software arena is undeniable [13], as it is now a staple

in software validation processes.

Applying fuzzing to mobile robots has the potential to

address some of the challenges enumerated earlier by more

effectively sampling the input scenarios of mobile robots

while using simple high-level oracles to automatically judge

incorrect behavior. Yet, to be valuable to the validation of

mobile robots, we believe that fuzzing should incorporate

two fundamental changes. First, it must shift from feedback

based on code constructs, to feedback that captures the

distinct physical features of the robot and the environment

to guide scenario generation. Second, it should shift from

oracles that consider binary pass/fail test outcomes, to ones

that judges outcomes based on more continuous hazardous-

ness measurements associated, for example, with nearness to

collision states.

We introduce an approach for the fuzzing of mobile robots,

PHYS-FUZZ, that takes such a leap. By encoding physical

features in a manner that respects their real-world interpre-

tation and using continuous metrics of robot performance,

PHYS-FUZZ can more quickly guide fuzzing to yield system

failures. Our contributions are:

• Defining an approach, PHYS-FUZZ, for fuzzing mobile

robots, which integrates traditional notions of software

fuzzing with the physical attributes and hazards of

mobile robots and their environments.

• Developing a family of techniques that implement

PHYS-FUZZ, accounting for physical attributes such

as dimensions of the robot, estimated trajectories, and

time-to-impact measures and using automatically gen-

erated oracles based on the hazardousness of a test.

• Assessing the potential of PHYS-FUZZ when compared

with random and traditional fuzzing techniques to ac-

celerate the detection of physical robot collisions, in a

mobile robot built on ROS and executed under Gazebo.

II. MOTIVATING EXAMPLE

The Husky unmanned ground vehicle is a robot research

and development platform produced by Clearpath Robotics

that is popular for its extensibility and off-the-shelf config-

urations with supporting open-source code [2], [22]. One

of the default hardware configurations, pictured in Figure





Algorithm 1 Fuzzing for Mobile Robots

procedure FUZZROBOTS(scenarioSpace, robot, initialScenarioCount, timeout)
scenarios[] = GENERATE(scenarioSpace, robot, [], initialScenarioCount)
while ¬TIMEOUTELAPSED(timeout) do

learnedRelations = LEARN(scenarios[])
scenario = SELECT(scenarios[], learnedRelations)
scenario.data = RUN(scenario)
scenario.hazardous = COMPUTEHAZARDOUSSCORE(scenario.data, robot)
scenarios[] = GENERATE(scenarioSpace, robot, scenarios[], initialScenarioCount)

end while

end procedure

Algorithm 2 Scenario Generation

procedure GENERATE(scenarioSpace, robot, scenarios, initialScenarioCount)
if NEEDMORETOCONSIDER(scenarios[]) then

moreScenarios[].world = GENSCENARIOS(scenarioSpace, initialScenarioCount)
moreScenarios[].staticFeatures = COMPUTESTATIC(scenarioSpace,moreScenarios[])
moreScenarios[].physicalFeatures = COMPUTEPHYSICALSTATIC(scenarioSpace,moreScenarios[], robot)
scenarios.append(moreScenarios)

end if

return scenarios[]
end procedure

The algorithm begins by using GENERATE to initialize a

set of initialScenarioCount test scenarios to consider for

execution. These scenarios are sampled uniformly at random

from the scenario space and enable the initial computing

of static and physical features. For each of these scenarios,

two sets of features are computed without executing the

scenario. We call these static features. COMPUTESTATIC

calculates a set of static features that encode the scenario

tuple described earlier. Next, COMPUTEPHYSICALSTATIC

calculates a set of features over physical aspects of the

scenario. We describe their differences in more detail in the

next section. The main loop then executes tests for a specified

period of time as defined by timeout. The algorithm uses

LEARN to process the data from previous executions to learn

how to build associations between the static features and the

hazardousness score to guide test selection. SELECT uses the

learned relations to choose a test scenario to run based on

its predicted likelihood of revealing a hazard. The scenario

can then be executed either in simulation or in the real world

as represented by RUN. The test execution is then analyzed

and COMPUTEHAZARDOUSSCORE evaluates the robot’s per-

formance. This score is used in the next iteration to guide

fuzzing toward more hazardous scenarios. Methods for im-

plementing COMPUTEHAZARDOUSSCORE are described in

section IV-B. GENERATE then uses a heuristic to determine

if the algorithm has enough unexecuted scenarios remaining

to consider, and, if not, repeats the scenario generation and

feature computation steps.

B. Algorithm Instantiations

The simplicity of our framework belies its flexibility to

implement many potential fuzzing techniques. We explore

several instantiations of Algorithm 1 of increasing complex-

ity.

RANDOM explores the scenario space by uniformly

sampling from (S,O,G). All of the calls to the COM-

PUTESTATIC, COMPUTEPHYSICALSTATIC, LEARN, and

COMPUTEHAZARDOUSSCORE can be omitted as the SE-

LECT function does not consider any scenario information

when choosing the next scenario to test.

BASE-FUZZ adapts standard fuzzing techniques to

robotics. As we shall see, automating that in itself can

provide important gains over RANDOM. This approach ex-

plores the scenario space using only static features. COM-

PUTESTATIC generates static features derived automatically

from the scenario tuple. This technique does not associate

any physical meaning to those features. As such, it could be

applied to any software running on any system. COMPUTE-

HAZARDOUSSCORE under this technique evaluates whether

the robot passed or failed the test and returns a binary value

accordingly. The implementation of LEARN is discussed in

section IV-B. COMPUTEPHYSICALSTATIC is omitted.

PHYS-FUZZ explores the scenario space using all avail-

able static and physical features, and shifts to a continuous

hazardousness score. This score integrates non-physical data

computed by COMPUTESTATIC and physical information

about the environment computed by COMPUTEPHYSICAL-

STATIC. Physical features capture the environment explicitly.

This is a novel addition beyond standard fuzzing because

the encoding requires recognition and special treatment of

different physical quantities. For example, consider that

0° and 350° are 10° apart, not 340° as a direct mapping

would imply. Angles do not map well to a single value, and

instead the corresponding physical feature (cos(θ), sin(θ))



allows for the comparison of any two angles while respecting

their physical meaning. The physical features also include

information about how the robot interacts with the scenario,

for example, the shortest path for the robot to reach the goal.

COMPUTEHAZARDOUSSCORE under PHYS-FUZZ cap-

tures information about how the robot responded to the

physical environment such as how close the robot came to

colliding with an obstacle. Instead of rating a test as only pass

or fail, a continuous metric describes how close the robot

was to failing during a successful execution. This technique

explicitly encodes the physical nature of the tests and LEARN

can consider varying degrees of success. The implementation

of LEARN is discussed in section IV-B.

IV. IMPLEMENTATION

The BASE-FUZZ and PHYS-FUZZ techniques described

above use machine learning regression models implemented

using Scikit-learn [20] to guide fuzzing. These models reside

in the LEARN method. In both techniques, each scenario has

a feature vector, x, and a learning objective, y (described in

more detail in the next sections). The model is then trained

to predict the learning objective y′ of an unexecuted scenario

using its feature vector x′. The feature vector is formed from

the static and physical features produced by the technique.

This underscores the importance of these features being static

and precomputable as they are used as the input to predict

the target score before executing the scenario.

For example, consider an input space that has one

obstacle, placed either at 5 or 10 meters away from the

robot and at either 0, 45, or 315 degrees. Now let’s suppose

a concrete testing scenario places the goal at 5 meters

and an orientation of 45° and results in a crash. BASE-

FUZZ would encode this as x = (1, 0, 0, 1, 0), y = 0.

PHYS-FUZZ would encode the same scenario as

x = (1, 0, 0, 1, 0, 5m/10m, cos(45°), sin(45°)) =
(1, 0, 0, 1, 0, 0.5,

√
2/2,

√
2/2), y = 0. Now, a second

concrete testing scenario places the goal at 10 meters at

an angle of 315° and results in the robot having a near

miss with an obstacle but reaching the goal anyway. BASE-

FUZZ would encode this as x = (0, 1, 0, 0, 1), y = 1.

PHYS-FUZZ would encode the same scenario as

x = (0, 1, 0, 0, 1, 10m/10m, cos(315°), sin(315°)) =
(0, 1, 0, 0, 1, 1,

√
2/2,−

√
2/2), y = 0.1. This value of

y = 0.1 is slightly above 0, representing an execution that

came close to crashing but passed. Note that as the angle

changed from 45° to 315°, PHYS-FUZZ was able to identify

the physical symmetry through the use of cos and sin.

A. Feature Vectors

Our fuzzing techniques compute a single feature vector for

each scenario. Static features are encoded using a one-hot

encoding since the values represented by such features lack

physical context. Physical features about the environment

represent concrete values and the difference between two

values gives information about their relative pose in the real

world. Thus, physical features are scaled to be in the range

0-1 based on the maximum possible value for the feature

as defined by the scenario space and then encoded directly,

preserving their relative distance. Our fuzzer also uses the

robot’s kinematic model to compute the shortest path for the

robot. This is included in the feature set by adding a single

feature of the sum of the absolute value of the total angles

that the robot must turn to complete the path. As illustrated

earlier, the feature vector for BASE-FUZZ is exactly the one-

hot encoding of the static features. For PHYS-FUZZ, the

feature vector is the concatenation of the one-hot encoded

static features and the physical features.

B. Learning

The goal of both fuzzing techniques is to generate sce-

narios that lead to failures as fast as possible, guided by

the learning objective given by COMPUTEHAZARDOUSS-

CORE. However, each technique implements COMPUTEHAZ-

ARDOUSSCORE in a different manner. With BASE-FUZZ, the

only guiding information is a binary indicator for pass or fail.

For PHYS-FUZZ, the hazardousness score is calculated on

a continuous scale representing the level of hazard the robot

encountered. The robot sensor data is used to calculate the

time to impact at all times during the execution. Crashes have

a time to impact of 0 while low times indicate a near miss and

high times indicate the robot was not in danger of colliding.

To prevent infinite values from biasing a scenario, any values

greater than 10 seconds were set to 10. To condense this

measure to a single number per scenario, our technique

finds the one second window in which the average time

to impact is lowest and uses that average as the candidate

value, v in seconds. Time to impact proportionally encodes

what we think of as the hazardousness of an execution. To

discriminate between a crash and near-miss we also apply

the function h(v) = T (1 − e−2v/T ) where T is a scaling

factor, to spread out the range near zero. T was set to 10 so

that the range of the non-linear function matched the original

values.

The models for each technique are then trained on their

respective hazardousness scores. The unexecuted scenario

that is predicted to be the most hazardous is then selected.

By using this continuous metric, PHYS-FUZZ has more

information and can begin guiding fuzzing sooner. BASE-

FUZZ must find a crash before it has any actionable data.

By contrast, even before a crash is found PHYS-FUZZ can

differentiate scenarios and guide toward hazardous scenarios.

In terms of learning models, we find that many machine

learning regression models can be applied to this problem. In

practice, a K-nearest-neighbors regression model was found

to most reliably provide the best guidance for both BASE-

FUZZ and PHYS-FUZZ. The optimal number of neighbors to

consider varies based on the total number of scenarios that

are considered. Empirically we found a value of ≈ 0.01 ∗
initialScenarioCount to be suitable.

C. Running Tests

The tests were run in simulation using Gazebo 9.0.0 [5],

[11] running inside of a Docker container using ROS [21].



We developed an automated framework in Python for

generating and executing tests in Gazebo. With a small

overhead to handle a specific scenario space, the system

produces a Gazebo environment and automatically executes

the test for the robot with additional ROS nodes added to

send the goal to the robot, monitor for when a collision has

occurred, and log data used for calculating the hazardousness

score.

Running tests in simulation allows for multiple tests to

be executed at once given sufficient hardware availability.

Instead of selecting the single scenario that is scored most

hazardous, the model can select a batch of the most haz-

ardous scenarios to be run in parallel since the feedback loop

does not need to run after every scenario. This optimization

was applied during the study, as discussed in section V-A.

Robots operate in an uncertain environment and often

exhibit non-deterministic behavior. As such, many tests are

flaky [14] and may only fail some portion of the time [1],

[8]. To address this, the selected scenario should be run

multiple times. After all executions are complete, the results

and data of each of the executions are used to compute

separate learning objectives per execution. The machine

learning model used must be robust to handle having the

same feature vector appear multiple times with different

learning objectives.

V. STUDY

Our study aims to answer the following research questions:

RQ1. What is PHYS-FUZZ’s cost-effectiveness when com-

pared to RANDOM and BASE-FUZZ? We will measure cost-

effectiveness in terms of failures found over units of time.

RQ2. Can PHYS-FUZZ find failures in meaningfully dif-

ferent contexts? How does it compare with RANDOM and

BASE-FUZZ?

A. Study Design

The study was performed using the Husky robot [22]

and the provided ROS Melodic navigation source code [2].

The Husky is a 990mm by 670mm robot designed with 4

independent wheels allowing it to rotate in place. The Husky

was configured with a SICK LMS100 LIDAR scanner with

360° view and 10m range for sensing. In all scenarios the

robot was provided with a world map for navigation. The

Husky uses the ROS move base [15] navigation framework

which takes a goal location as input and attempts to navigate

to that location. If navigation becomes infeasible, the system

will return an abort code, otherwise it will return success.

The scenario space is described by the tuple (S,O,G).
S consisted of a single starting pose at the origin oriented

toward 0°. The obstacle space O consists of exactly two

U shaped obstacles. One obstacle surrounds the starting

location facing 0° and another is placed 10 meters away at

one of 8 locations at 45° increments. Additionally, the second

goal can vary its orientation in 45° increments starting at 0°.

Each obstacle can independently vary the width and depth

of the opening between 2, 3, and 4 meters. G consisted of

one goal, to navigate from the starting location to the center

of the second obstacle without colliding. Figure 2 shows an

example scenario from the space. There are 8 locations and

8 orientations for the second obstacle and 3 possible sizes

for each of the width and height of both obstacles. This leads

to 8*8*3*3*3*3=5184 possible concrete scenarios generated

from this space, all of which are feasible for the Husky.

Fig. 2: Sample study generated scenario

The techniques then operated as in Algorithm 1 to generate

scenarios, learn, and select which to run1, except calls to

RUN returned the data cached from disk for the scenario.

This allows for a comparison of the techniques independent

of the non-determinism introduced by the flakiness of the

tests. The techniques are then evaluated in their ability to find

scenarios leading to crashes over time. With 5184 scenarios

each with 5 executions, there were 25920 total executions.

Of these, 21497 (82.9%) were successful, 3061 (11.8%)

resulted in the robot aborting the mission, 1340 (5.17%)

resulted in collisions, and 22 did not finish due to either

simulator error or reaching the 10 minute timeout. Aborts

fall into two categories: the robot has gotten itself into a

hazardous situation and aborted for robot safety or the robot

encounters an internal error and must stop. In the former

case, the time to impact still provides valuable information as

the robot has itself identified a hazardous situation. However

for the latter case, the time to impact may not provide useful

information since the internal error may not be related to the

environment. To handle this, any executions that resulted in

an abort and never had a finite time to impact were ignored

during learning. To take advantage of the system’s ability to

run multiple containers in parallel, the optimization noted in

section IV-C was applied. Each call to SELECT produced a

list of 50 scenarios to execute.

B. RQ1 Results: Cost-effectiveness

Figure 3 shows the performance of the three techniques

during the first 7 CPU-days of execution. Because the initial

learning periods randomly select scenarios to execute, the

1Tests were run on a pop-os 18.04 desktop with an Intel Xeon Silver
4216, 128GB of RAM, and an NVIDIA TITAN RTX GPU with 24GB of
VRAM. Each scenario’s 5 executions were run in an Ubuntu 18.04 Docker
container. Up to 12 containers were run in parallel.
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Weißhardt, and Andreas Haug. Let me introduce myself: I am care-
o-bot 4, a gentleman robot. In Sarah Diefenbach, Niels Henze, and
Martin Pielot, editors, Mensch und Computer 2015 – Proceedings,
pages 223–232, Berlin, 2015. De Gruyter Oldenbourg.

[11] Nathan Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages
2149–2154, Sendai, Japan, Sep 2004.

[12] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

[13] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199–1218, 2018.

[14] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov.
An empirical analysis of flaky tests. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 643–653, 2014.

[15] Eitan Marder-Eppstein. ROS move base, 2020 (accessed October 31,
2020). http://wiki.ros.org/move_base.

[16] Lorenz Meier, Dominik Honegger, and Marc Pollefeys et al. PX4-

Autopilot GitHub Repository, 2020 (accessed October 29, 2020).
https://github.com/PX4/PX4-Autopilot.

[17] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical
study of the reliability of unix utilities. Communications of the ACM,
33(12):32–44, 1990.

[18] Inc. et al Open Source Robotics Foundation. Turtlebot GitHub

Repository, 2020 (accessed October 30, 2020). https://github.
com/turtlebot/turtlebot/tree/melodic.

[19] Inc. et al Open Source Robotics Foundation. Turtlebot

Simulator GitHub Repository, 2020 (accessed October 30,
2020). https://github.com/turtlebot/turtlebot_

simulator/tree/melodic.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.

[21] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[22] Clearpath Robotics. Husky Unmanned Ground Vehicle, 2020 (ac-
cessed October 30, 2020). https://clearpathrobotics.

com/husky-unmanned-ground-vehicle-robot/.
[23] Zaid Tahir and Rob Alexander. Coverage based testing for v&v and

safety assurance of self-driving autonomous vehicle: A systematic
literature review. In The Second IEEE International Conference On

Artificial Intelligence Testing. York, 2020.
[24] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz,

Jam Marcos Hernandez, and Claire Le Goues. Crashing simulated
planes is cheap: Can simulation detect robotics bugs early? In 2018

IEEE 11th International Conference on Software Testing, Verification

and Validation (ICST), pages 331–342. IEEE, 2018.
[25] Michał Zalewski. American Fuzzy Lop, 2013 (accessed October 27,

2020). https://lcamtuf.coredump.cx/afl/.


