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Abstract

The skeleton-forming cells of sea urchins and other echinoderms have been studied by
developmental biologists as models of cell specification and morphogenesis for many
decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic
cells of euechinoid sea urchins is one of the best understood in any developing animal.
Recent comparative studies have leveraged the information contained in this GRN,
bringing renewed attention to the diverse patterns of skeletogenesis within the phylum
and the evolutionary basis for this diversity. The homeodomain-containing transcription
factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of
the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell
identity throughout the phylum. As such, Alx1 is currently serving as a lens through
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whichmultiple developmental processes are being investigated. These include not only
GRN organization and evolution, but also cell reprogramming, cell type evolution, and
the gene regulatory control of morphogenesis. This review summarizes our current
state of knowledge concerning Alx1 and highlights the insights it is yielding into these
important developmental and evolutionary processes.

1. Introduction

The alx1 gene was originally identified in a sea urchin (Strongylocentrotus

purpuratus) expressed sequence tag (EST) study, which isolated a single, partial

cDNA with a sequence similar to that of the Drosophila gene aristaless and

reported that the cognate mRNA was selectively expressed in embryonic

skeletal cells (primary mesenchyme cells, or PMCs) (Zhu et al., 2001).

Subsequent knockdown of alx1 in two sea urchin species, S. purpuratus and

Lytechinus variegatus, revealed that the gene was essential for PMC differenti-

ation and skeletogenesis in both species (Ettensohn, Illies, Oliveri, & De Jong,

2003). Since these initial studies, the structure, function, and regulation of alx1

have been examined in multiple echinoderm taxa and developmental

contexts. This work has revealed that alx1 is a pivotal, conserved regulator

of skeletal cell identity throughout the phylum. Analysis of alx1 is currently

providing important insights into diverse developmental processes, including

(a) the architecture, function, and evolution of developmental gene regulatory

networks (GRNs), (b) cellular reprogramming, and (c) cell type evolution.

2. The alx1 gene and protein

2.1 Organization and evolution of the alx1 gene
in echinoderms

All echinoderms with well-annotated genomes contain unambiguous

orthologs of Alx1 and a paralogous protein, Alx4 (also known as Calx)

(Fig. 1). Both proteins are transcription factors of the homeodomain class,

a large family of proteins in echinoderms and other animals (B€urglin &

Affolter, 2016; Howard-Ashby et al., 2006). Alx1 contains a central,

paired-type homeodomain that mediates DNA binding, a novel motif

known as the D2 domain (discussed in detail below), and a C-terminal

OAR (otp/aristaless/rax) domain. The latter is not well characterized but

appears to modulate the transcriptional regulatory activity of the protein

(Brouwer, ten Berge, Wiegerinck, & Meijlink, 2003; Fan et al., 2019;

Tapie et al., 2017) (Fig. 2). Alx4 also contains a paired-type homeodomain
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Fig. 1 Molecular phylogeny of Alx1 and Alx4 proteins. (A) Maximum likelihood (ML)
method and JTT matrix-based model ( Jones, Taylor, & Thornton, 1992). Initial trees
for the heuristic search were obtained automatically by applying the Maximum
Parsimony method and the tree with the highest log likelihood (�6934.06) is shown.
Branch lengths reflect the number of substitutions per site. (B) Maximum parsimony
(MP) method. Tree #1 of two equally parsimonious trees (length¼1263) is shown.
The consistency index is (0.745735), the retention index is (0.649888), and the compos-
ite index is 0.488831 (0.484644) for all sites and parsimony-informative sites (in paren-
theses). The tree was obtained using the Subtree-Pruning-Regrafting (SPR) algorithm
(Kumar, Stecher, Li, Knyaz, & Tamura, 2018) with search level 1 in which the initial trees
were obtained by the random addition of sequences (10 replicates). Branch lengths
were calculated using the average pathway method (Kumar et al., 2018) and reflect
the number of changes over the entire sequence. For both ML and MP trees, positions
with less than 85% site coverage were eliminated, i.e., fewer than 15% alignment gaps,
missing data, and ambiguous bases were allowed at any position (partial deletion
option), and evolutionary analyses were conducted using MEGA X (Stecher,
Tamura, & Kumar, 2020). The percentage of replicate trees in which the associated
taxa clustered together in the bootstrap test (1000 replicates) are shown next to
the branches. Aj—Anneissia japonica (a crinoid); Ap—Acanthaster planci (a sea star);
Lv—Lytechinus variegatus (a euechinoid sea urchin); Sp—Strongylocentrotus purpuratus
(a euechinoid sea urchin); Et—Eucidaris tribuloides (a cidaroid sea urchin); Pp—
Parastichopus parvimensis (a sea cucumber); Pm—Patiria miniata (a sea star);
Os—Ophiothrix spiculata (a brittle star); Pf—Ptychodera flava (a hemichordate);
Sk—Saccoglossus kowalevskii (a hemichordate).
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and a C-terminal OAR domain, but the protein is not highly similar to Alx1

outside these two regions and lacks a D2 domain. The alx1 and alx4 genes

are arranged in tandem, strongly supporting the view that they arose from

duplication. This gene duplication likely occurred in the stem lineage of

all echinoderms, as the closest outgroup to echinoderms, hemichordates,

possess a single, alx4-like gene (Figs. 1 and 5). The nearest chordate relatives

of echinoderms, cephalochordates, have two alx-4 like genes, but these para-

logs were the products of an independent gene duplication event that

occurred after the divergence of the chordate and echinoderm lineages. A

parsimonious interpretation is that the most recent common ancestor

Fig. 2 (A) General domain architecture of Alx1. D2–D2 domain, HD—homeodomain,
OAR—Otp/Aristaless/Rax domain. (B) Alignment of echinoderm Alx1 proteins, gener-
ated using Clustal Omega (Sievers et al., 2011) and Jalview (Waterhouse, Procter,
Martin, Clamp, & Barton, 2009). Color scheme: Blue—hydrophobic; Cyan—aromatic;
Green—polar; Magenta—negatively charged; Orange—glycine; Pink—cysteine;
Red—positively charged; White—unconserved; Yellow—proline. Black lines between
amino acids indicate positions of splice junctions.
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(MRCA) of ambulacrarians (hemichordates+echinoderms) possessed a sin-

gle alx4-like gene which underwent duplication in the echinoderm lineage,

while independent duplications in the chordates, including whole genome

duplications, gave rise to several alx1-related genes. Notably, vertebrate

members of the Alx1 family also play important roles in skeletal develop-

ment (reviewed by Khor & Ettensohn, 2020).

Duplication of the ancestral alx1/4 gene in the echinoderm lineage

appears to have been followed relatively rapidly by neofunctionalization

of the gene; viz., by the acquisition of robust, skeletogenic properties.

Several lines of evidence support this view. First, alx1 has a highly conserved

role in skeletogenesis throughout the echinoderm phylum. In all echino-

derms and at all life history stages that have been examined, alx1 expression

is restricted to skeletogenic cells (Figs. 3 and 4). In clades in which loss-of-

function studies have been carried out (euechinoids, cidaroids, and

holothuroids), alx1 has been shown to play an essential role in skeletogenic

specification (Erkenbrack & Davidson, 2015; Ettensohn et al., 2003;

McCauley, Wright, Exner, Kitazawa, & Hinman, 2012; Pieplow et al.,

2021). This conclusion has been further supported by gain-of-function

studies in euechinoids and asteroids, which have shown that ectopic expres-

sion of Alx is sufficient to endow cells with skeletogenic properties

(Ettensohn, Kitazawa, Cheers, Leonard, & Sharma, 2007; Koga et al.,

2016). Significantly, Alx4 cannot substitute for Alx1 in supporting skeletal

development during sea urchin embryogenesis, demonstrating a divergence

in the functional properties of the two paralogous genes (Khor &

Ettensohn, 2017).

In contrast to alx1, the function of alx4 has not been examined in any

echinoderm. Alx4 is expressed in the coelomic pouches of modern sea

urchin and sea stars, suggesting that its ancestral role may have been related

to the development of non-skeletogenic mesoderm (Koga et al., 2016). In

sea urchins, alx4 is transiently co-expressed with alx1 in PMCs, and alx1

provides direct, positive inputs into the alx4 cis-regulatory system (Khor,

Guerrero-Santoro, & Ettensohn, 2019; Rafiq, Shashikant, McManus, &

Ettensohn, 2014). Unfortunately, nothing is known concerning the devel-

opmental expression or function of the single alx4-like gene of hemichor-

dates or the possible relationship between this gene and small, calcium

carbonate-based biominerals found in adult hemichordates (Cameron &

Bishop, 2012).

Alx1 provides a striking example of transcription factor evolution at the

level of protein sequence. Although cis-regulatory changes are widely
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Fig. 3 See figure legend on opposite page.



considered to make a greater contribution to the evolution of genetic net-

works than changes in transcription factor sequence, due primarily to the

likely pleiotropic effects of the latter, such effects can be bypassed through

gene duplication and neofunctionalization (Lynch &Wagner, 2008). In the

case of alx1, duplication of the ancestral gene was followed by the exo-

nization of a novel, 41-amino acid motif known as the D2 domain, located

between the homeodomain and the C-terminus (Khor & Ettensohn, 2017).

The exonization of the D2 domain likely occurred in the MRCA all

eleutherozoans (a group that comprises all echinoderms except crinoids),

as this domain is present in the Alx1 proteins of all modern eleutherozoans

but not in any crinoid Alx1 sequences that have been identified to date.

(Figs. 5 and 6). The D2 domain is essential for Alx1 to exert its skeletogenic

function in the sea urchin embryo. The endogenous Alx4 protein lacks a D2

domain but, strikingly, experimental insertion of the Alx1 D2 motif into

Alx4 is sufficient to endow the protein with robust skeletogenic properties

(Khor & Ettensohn, 2017). Moreover, the D2 domain is sufficiently highly

conserved among eleutherozoans that the D2 motifs of sea stars and sea

urchins, taxa that diverged >450 million years ago, are functionally inter-

changeable (Khor & Ettensohn, 2017).

2.2 DNA binding properties of Alx1
Alx1 contains a paired-class homeodomain of the glutamine-50 type

(Galliot, de Vargas, & Miller, 1999). In vitro binding studies have shown

that paired-class homeodomain proteins, including vertebrate members of

the Alx1 family, bind preferentially to palindromic sites that contain two

Fig. 3 Alx1 expression (left panels) and function (right panels) in a euechinoid sea
urchin (Strongylocentrotus purpuratus). (A) Whole mount in situ hybridization showing
expression of alx1 at the early blastula stage. Expression is restricted to the eight large
micromere (LM) descendants (arrow), which give rise exclusively to PMCs. (B) Gastrula
stage embryo immunostained with an anti-Alx1 antibody. Nuclear staining is observed
specifically in primary mesenchyme cells (PMCs) (arrow). (C) High magnification view of
a gastrula stage embryo co-stained with monoclonal antibody 6a9 (green), which rec-
ognizes a PMC-specific cell surface protein, and anti-Alx1 antibody (pink). Nuclei (blue)
are stained with DAPI. Alx1 is restricted to PMC nuclei (arrows). (D–G) Gastrula stage
embryos (vegetal views) examined with differential interference contrast (DIC) optics
(live embryos) or immunostained with 6a9. Control embryos (D, F) have PMCs (arrows)
but these cells are absent when Alx1 expression is blocked with amorpholino (E, G). (H, I)
Pluteus larvae (lateral views) 4days post-fertilization. Control embryos have extensive
skeletal elements (arrow, H) but Alx1 morphants (I) completely lack skeletons. Scale
bars¼25 μm.
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Fig. 4 Conservation of alx1 expression and skeletogenic function among echinoderms. The phylogenetic relationships among modern echi-
noderms are indicated at left (note that branch lengths do not reflect evolutionary time). 1Developmental stages missing in this column
indicate only that alx1 expression has not been examined in that taxon at that particular stage (i.e., equivalent to n.d.). 2The function of
alx1 has been tested only at embryonic stages, using gene knockdowns and CRISPR/Cas9-mediated gene editing. 3All crinoids that have
been described exhibit direct development. A—adult, E—embryo, FL—feeding larva, n.d.—not determined.



inverted TAAT sequences (so-called half-sites) separated by 3 base pairs

(Cai, 1998; Qu, Tucker, Zhao, De Crombrugghe, & Wisdom, 1999;

Wilson, Guenther, Desplan, & Kuriyan, 1995; Wilson, Sheng, Lecuit,

Dostatni, & Desplan, 1993). Binding to palindromic sites involves the

cooperative binding of two protein molecules and the formation of a tri-

meric protein-DNA complex. Artificial dimerization of Alx1 via a flexible

linker has provided evidence that dimerization enhances Alx1 transcrip-

tional activity in vivo (Damle & Davidson, 2011).

Fig. 5 The evolution of echinoderm alx1 gene structure. Left: The molecular phylogeny
of echinoderm Alx1 and Alx4 proteins is shown as in Fig. 1, with a hemichordate (Pf ) as
an outgroup. Intron/exon losses and gains are indicated, including the exonization of
the D2 domain (blue circle). Branch lengths are arbitrary. Right: The intron-exon orga-
nization of ambulacrarian (echinoderm + hemichordate) alx1 and alx4 genes, drawn to
scale. Species abbreviations are the same as those show in Fig. 1 Arrowheads mark posi-
tions of introns. Dotted lines indicate conserved intron positions. HD—homeodomain
(pink box); D2—D2 domain (blue box); OAR—OAR (otp/aristaless/rax) domain
(orange box).
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Analysis of Alx1 binding sites in vivo by ChIP-seq has identified hun-

dreds of palindromic binding sites in the sea urchin genome but also, unex-

pectedly, large numbers of half-sites (Khor et al., 2019). Gel-shift assays have

recently confirmed that Alx1 binds to half-sites and have revealed that

dimeric complexes also form on such sites, but by a mechanism distinct from

the well-known mechanism of cooperative dimerization that occurs at pal-

indromic sites (Guerrero-Santoro, Khor, Açıkbaş, Jaynes, & Ettensohn,

2021). Experimental dissection of a cis-regulatory element (CRE) associated

with Sp-mtmmpb, a gene that encodes a PMC-specific matrix meta-

lloprotease, showed that two Alx1 half-sites, acting independently and

redundantly, were responsible for PMC-specific reporter expression.

These same studies also showed that Alx1 and Alx4 form heterodimeric

complexes in vitro (Guerrero-Santoro et al., 2021). During development,

however, the onset of alx1 expression precedes that of alx4 by several hours,

Fig. 6 Intron losses/gains and the exonization of the D2 domain during alx1 evolution.
Following gene duplication in the MRCA of echinoderms, the ancestral alx1 gene under-
went rapid evolution through multiple intron gains and more importantly, acquired the
D2 domain through exonization of previously non-coding sequences. By contrast, alx4
appears to have retained an intron-exon structure similar to that of the ancestral alx1/4
gene. Red lines—introns gains; Red bar—intron loss; Dotted red line—postulated shift
in 30 splice site that resulted in the exonization of the D2 domain. Exons and introns are
not drawn to scale.
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and at the time of PMC differentiation the level of alx1mRNA in PMCs is

>20-fold higher than that of alx4 mRNA, suggesting that heterodimeric

complexes are of low prevalence. As noted above, Alx4 cannot substitute

for Alx1 in vivo when expressed at similar levels (Khor & Ettensohn,

2017), but it remains possible that heterodimeric complexes, if they are pre-

sent in vivo, might be active in supporting transcription.

The proximity of the D2 domain to the homeodomain suggests that it

might play some role in modulating DNA binding. Strong support for this

hypothesis has come from the recent demonstration that deletion of the D2

domain reduces the ability of Alx1 to engage in cooperative binding on pal-

indromic target sites in vitro (Guerrero-Santoro et al., 2021). This finding

supports the hypothesis that evolutionary recruitment of the D2 domain

modified the intrinsic DNA binding properties of Alx1, thereby allowing

the protein to acquire new transcriptional targets and adopt a novel devel-

opmental function. TheD2 domainmay have other effects on Alx1 function

that have yet to be discovered; for example, it might modulate interactions

with hypothetical protein partners.

3. Alx1 and gene regulatory network (GRN) architecture

3.1 Upstream regulators of alx1
3.1.1 Early zygotic activation
In euechinoid sea urchins, expression of alx1 is first detectable during cleav-

age, when the gene is selectively activated in the large micromere lineage,

which will give rise exclusively to PMCs (Fig. 3A). In S. purpuratus, the

species that has been best studied in this regard, specific expression in is

evident by whole mount in situ hybridization (WMISH) in the large micro-

meres in the first interphase after these cells are born (Ettensohn et al., 2003;

Sharma & Ettensohn, 2010). More sensitive methods (Nanostring analysis

and QPCR) show that alx1 is activated even earlier, at the 16-cell stage

(5h post-fertilization), when expression appears to be restricted to the micro-

meres, the progenitors of the large micromeres (Cavalieri, Geraci, & Spinelli,

2017). Thus, any model of alx1 activation in sea urchins must account for the

early, spatially restricted expression of the gene.

The activation of alx1, like that of all genes selectively expressed in the

endomesoderm of echinoderm embryos, is dependent on maternally

entrained mechanisms that stabilize β-catenin in the vegetal region during

early cleavage (Ettensohn et al., 2003) (Fig. 7). In euechinoid micromeres,

a pivotal gene directly downstream of β-catenin is pmar1 (also known as
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micro1) (Kitamura, Nishimura, Kubotera, Higuchi, & Yamaguchi, 2002;

Nishimura et al., 2004; Oliveri, Carrick, & Davidson, 2002; Oliveri,

Davidson, &McClay, 2003). Over-expression of Pmar1 results in a dramatic

increase in alx1 expression throughout the embryo; this ectopic activation

requires repressor motifs in Pmar1 and bypasses the requirement for

β-catenin (Cheng, Lyons, Socolar, & McClay, 2014; Ettensohn et al.,

2003; Oliveri, Tu, & Davidson, 2008; Yamazaki, Ki, Kokubo, &

Yamaguchi, 2009). The mechanism by which pmar1 activates alx1, how-

ever, has not been established. A model based on a combination of: 1)

Pmar1-mediated repression of a second repressor, HesC, and 2) positive

regulation by zygotic Ets1 has been proposed (Damle & Davidson, 2011;

Oliveri et al., 2008) but other evidence indicates that these mechanisms can-

not account for the activation of alx1 (reviewed by Shashikant, Khor, &

Ettensohn, 2018a). One key issue is that the lineage-specific expression of

alx1 is initiated too early in development to be explained by these mecha-

nisms (Sharma & Ettensohn, 2010). In addition, Yamazaki et al. (2009)

described a mutant form of Pmar1/micro1 (N-HD-A-C) that globally

Fig. 7 Activation of alx1 in the large micromere lineage of euechinoid sea urchins.
Pmar1, which acts as a repressor, is a key activator of several early regulatory genes
in the PMC GRN, including alx1. Although the effects of pmar1 on alx1 activation are
usually considered to be mediated through derepression of hesC, several lines of evi-
dence indicate this is not the case (see text for details). Thus, there may be a different
repressor (shown here as “repressor?”) downstream of pmar1, and/or a localized
activator (“localized activator?”) may function independently of pmar1. Because mis-
expression of Pmar1 activates alx1 throughout the embryo, one ormore ubiquitous acti-
vators must also exist. Note that the positive input from ets1 (shown in gray), which
requires direct phosphorylation of Ets1 by phospho-ERK (pERK), is not required for
the earliest phase of alx1 expression during cleavage, but is required for the mainte-
nance of alx1 expression later in development, at the blastula stage.
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represses hesC, yet fails to produce ectopic expression of alx1. Based on these

and other findings, it seems clear that other, unidentified factors play a role in

alx1 activation.

In euechinoids, the progenitors of the PMC lineage, the LMs, arise as a

consequence of two rounds of unequal cell division. Low concentrations of

several detergents, including SDS, equalize these divisions, delaying or

preventing the formation of micromeres and blocking PMC specification

(Langelan & Whiteley, 1985). The expression of alx1 is also suppressed in

such embryos, although pmar1 expression is not (Sharma & Ettensohn,

2010). These findings suggest that unequal cleavage might be required for

a regulatory step between pmar1 activation and alx1 expression. Recently,

however, it has been reported that SDS also blocks skeletogenic specification

in a direct developing, equally-cleaving sea urchin, suggesting that SDS

might inhibit PMC specification by mechanisms other than by equalizing

cleavage; e.g., by perturbing membrane-associated molecular determinants

(Edgar, 2019). In this context, it is also noteworthy that ophiuroids (brittle

stars) and holothuroids (sea cucumbers) ordinarily exhibit equal cleavage yet

produce alx1-expressing skeletogenic cells; alx1 activation is therefore not

linked to unequal cell division in these taxa (Dylus et al., 2016; McCauley

et al., 2012; Primus, 2005; Tominaga, Nakamura, & Komatsu, 2004;

Vaughn, Garnhart, Garey, Thomas, & Livingston, 2012).

3.1.2 Later regulatory inputs
At the blastula stage, alx1 comes under the positive regulatory control of

Ets1, a maternally and zygotically expressed transcription factor of the

ETS family (Damle & Davidson, 2011; Oliveri et al., 2008; Rafiq et al.,

2014) (Fig. 7). Zygotic expression of Ets1 is initially restricted to the large

micromere-PMC lineage, but during gastrulation the gene is also expressed

by non-skeletogenic mesoderm cells (Flynn et al., 2011; Kurokawa et al.,

1999; Rizzo, Fernandez-Serra, Squarzoni, Archimandritis, & Arnone,

2006). Ets1 is activated by direct, ERK-mediated phosphorylation

(R€ottinger, Besnardeau, & Lepage, 2004). The acquisition of the Ets1 reg-

ulatory input into alx1 coincides with a striking, transient elevation of

p-ERK in presumptive PMCs at the blastula stage and a concomitant

nuclear accumulation of Ets1 protein (Fernandez-Serra, Consales,

Livigni, & Arnone, 2004: R€ottinger et al., 2004; Sharma & Ettensohn,

2010; Yajima et al., 2010). ERK activity, functioning directly in the

presumptive PMCs and acting through Ets1, is required for the maintenance

(but not the initial activation) of alx1 expression (Rafiq et al., 2014; Rafiq,
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Cheers, & Ettensohn, 2012; R€ottinger et al., 2004; Sharma & Ettensohn,

2010). Alx1 like Ets1, contains a consensus MAPK phosphorylation site,

but this site is dispensable for the skeletogenic function of Alx1 (Khor &

Ettensohn, 2017). Themechanism bywhich ERK activity is selectively acti-

vated in the LM lineage is an important, unresolved question. This activa-

tion does not require signaling from other cell types but does depend upon

unidentified, zygotic transcriptional inputs downstream of β-catenin
(Fernandez-Serra et al., 2004; R€ottinger et al., 2004).

3.2 Downstream targets of alx1
3.2.1 Regulatory genes
Because the expression of alx1 declines after gastrulation while skeletogenesis

continues, it seems plausible that the regulatory functions of the gene are

handed off to downstream transcription factors. Consistent with this hypoth-

esis, the gene targets of Alx1 in S. purpuratus include a small handful of

regulatory (i.e., transcription factor-encoding) genes, including alx4, dri, fos,

nk7, and foxB (Oliveri et al., 2008; Rafiq et al., 2014) (Fig. 8). The develop-

mental functions of most of these genes have not been explored. Some

downstream targets of dri and foxB have been identified in sea urchins

(Oliveri et al., 2008), but dri and foxB are not expressed at detectable levels

in the skeletogenic cells of brittle stars, suggesting that they do not have highly

conserved roles in echinoderm skeletogenesis (Czarkwiani, Dylus, & Oliveri,

2013; Dylus et al., 2016). In a different sea urchin species, L. variegatus, alx1

regulates snail and twist, two transcriptional repressors that have been impli-

cated in PMC ingression, as discussed below.

3.2.2 Linking a GRN tomorphogenesis: Control of PMC behavior by alx1
PMCs have long been of special interest because of their striking morpho-

genetic behaviors, which include epithelial-mesenchymal transition

(EMT), directional cell migration, and cell-cell fusion (Ettensohn, 2020;

McIntyre, Lyons, Martik, & McClay, 2014). With a growing understanding

of the transcriptional network deployed in the LM-PMC lineage, including

the sub-circuitry controlled by Alx1, there is an opportunity to develop a

comprehensive understanding of the gene regulatory control of these cell

behaviors.

Alx1 regulates all three of the most prominent cell behaviors exhibited by

PMCs. In Alx1 morphants, LM descendants fail to undergo EMT and

instead remain within the vegetal plate epithelium (Ettensohn et al.,

2003). Saunders and McClay (2014) examined the behavior of LM progeny
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in such embryos by time-lapse imaging and found that Alx1 was not

required for several cell behaviors typically associated with EMT

(apical-basal polarization, apical narrowing, and basal lamina remodeling),

but was required for the de-adhesion of presumptive PMCs from neighbor-

ing cells. In L. variegatus, this effect may be mediated through the positive

regulation of snail and twist, two repressors that are required for PMC ingres-

sion (Wu&McClay, 2007;Wu, Yang, &McClay, 2008). The direct down-

stream targets of these repressors are unknown, although snail positively

regulates E-cadherin expression in sea urchins as it does in vertebrates

(Wu & McClay, 2007). Notably, alx1 is not the only regulatory gene that

affects PMC EMT, as several others (most of which lack known regulatory

connections to alx1) also contribute (Kurokawa et al., 1999; Saunders &

McClay, 2014). Following ingression, PMCs are guided to specific target

sites along the blastocoel wall by VEGF3, which is secreted by the ectoderm

and signals through a PMC-specific receptor, VEGFR-10-Ig (Duloquin

Fig. 8 Direct targets of alx1 in euechinoid sea urchins. (A) Major classes of genes
regulated by alx1 are shown, along with examples of target genes in each class.
Each gene shown is predicted to be a direct target of Alx1 based on A) reduced expres-
sion of the cognate mRNA in Alx1 morphants (Rafiq et al., 2014) and 2) the presence of
one or more Alx1 binding sites near the gene (Khor et al., 2019). See Table 1 for a list of
direct Alx1 targets with functions related to biomineralization. (B) Diagram illustrating
the direct, feedforward co-regulation of target genes by ets1 and alx1, a circuitry that
regulates the expression of many effector genes expressed specifically by PMCs.
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et al., 2007). Alx1 provides direct, positive regulatory inputs into vegfr-10-Ig

(Khor et al., 2019; Oliveri et al., 2008; Rafiq et al., 2014), thereby regulating

the directionality of PMC migration.

Migrating PMCs extend long filopodia that contact one another and

fuse, gradually giving rise to a cable-like structure that connects the entire

population of PMCs in a single, syncytial network (Hodor & Ettensohn,

1998; Okazaki, 1965). The biomineralized rods that comprise the endoskel-

eton are secreted within this syncytial cable. KirrelL, a PMC-specific member

of the Ig-domain superfamily of cell adhesion proteins, is required for

filopodial contacts between PMCs to result in membrane fusion (Ettensohn

& Dey, 2017). Although the expression and function of KirrelL were first

examined in sea urchins, the protein is also selectively expressed in the

skeletogenic cells of adult brittle stars (Piovani, Czarkwiani, Ferrario,

Sugni, & Oliveri, 2021) and sea stars (Khor & Ettensohn, 2021), pointing

to a conserved role in skeletogenesis throughout the phylum. Detailed analysis

of the cis-regulatory control system of the Sp-kirrelL gene has recently eluci-

dated its modular architecture and shown that both Alx1 and Ets1 provide

positive inputs into two key regulatory modules (elements C and G)

(Khor & Ettensohn, 2021). These findings establish a direct link between

Alx1 and PMC fusion and point to the role of Alx1 in integrating the major

morphogenetic behaviors of PMCs.

3.2.3 alx1 as a terminal selector gene
Alx1 is an example of a “terminal selector” protein (Arendt et al., 2016;

Hobert, 2008; Hobert & Kratsios, 2019); that is, a lineage-specific transcrip-

tion factor that initiates and maintains a terminal cell identity program

through the direct regulation of cell type-specific effector genes. In support

of this view, RNA-seq analysis of morphant S. purpuratus embryos has rev-

ealed that Alx1 provides positive inputs into almost half of the �400 genes

selectively expressed by PMCs and an even larger fraction of such genes that

are highly expressed, demonstrating the pivotal role of Alx1 in controlling

PMC identity (Rafiq et al., 2012, 2014). Many of these effector genes are

direct targets as shown by a marked enrichment of Alx1 binding sites, iden-

tified both computationally and by ChIP-seq, in enhancers located near

these genes (Khor et al., 2019; Khor & Ettensohn, 2021; Shashikant,

Khor, & Ettensohn, 2018b). In several cases, mutational analysis of reporter

gene constructs has confirmed that Alx1 binding sites regulate the PMC-

specific activity of enhancers associated with effector genes (Guerrero-

Santoro et al., 2021; Khor et al., 2019, Khor & Ettensohn, 2021).
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The majority of the effector gene targets of Alx1 are associated with

biomineralization, the primary function of fully differentiated PMCs

(Fig. 8 and Table 1). Many of the biomineralization gene targets of

Alx1 encode secreted or membrane-associated proteins that co-purify with

biomineral isolated from larvae or adults (Karakostis et al., 2016; Mann

et al., 2008, 2010). In addition, many are members of rapidly evolving fam-

ilies of biomineralization genes that have expanded in echinoderms, or in

echinoderm sub-lineages, by gene duplication; examples include the spic-

ule matrix gene family, MSP130-related genes, and P16-related genes

(Livingston et al., 2006). These proteins have diverse and essential func-

tions in biomineral formation; they encode proteins that regulate calcium

uptake, proton transport, bicarbonate synthesis, phase transitions of cal-

cium carbonate, and many other functions (Table 1). The multiple control

points at which Alx1 impinges on biomineralization highlight the critical

importance of this transcription factor for the terminal function of

skeletal cells.

3.2.4 Co-regulation of effector genes by alx1 and ets1
Gene knockdown studies have shown that positive co-regulation of down-

stream genes by Alx1 and Ets1 is remarkably common; 85% of Ets1 targets

are also regulated by Alx1, and 73% of all Alx1 targets are also regulated by

Ets1 (Rafiq et al., 2014). More than a third of all effector genes, and almost

2/3 of the most highly expressed PMC effector genes, are co-regulated by

these two transcription factors. One component of this co-regulation is a

coherent feed-forward loop (Mangan & Alon, 2003) of the structure:

Ets1>Alx1, Ets1+Alx1>effector gene, as first identified by Oliveri et al.

(2008). Consistent with this model, Ets1 positively regulates Alx1 at

post-blastula stages (Ettensohn et al., 2003; Oliveri et al., 2008; Rafiq

et al., 2014). Detailed analysis of cis-regulatory elements (CREs) that control

Sp-Kirrel transcription has revealed direct inputs from both Alx1 and Ets1,

indicating that in this case the feed-forward loop is a very simple one that

involves the binding of both proteins to the transcriptional control system

of the effector gene, without requiring intermediary transcription factors

(Khor & Ettensohn, 2021) (Fig. 8B). Several recent studies have docu-

mented a marked enrichment of predicted Ets1 and Alx1 binding sites in

PMC enhancers, suggesting that direct co-regulation by both TFs is very

common (Khor et al., 2019, Khor & Ettensohn, 2021; Shashikant

et al., 2018b).
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Table 1 Gene targets of Alx1 that encode biomineralization proteins with known functions.

Gene Nature of gene product Function of gene product
Direct target
of Alx1? Selected references

Sp_Colf_13 Collagen PMC substrate Yes Wessel, Etkin, and Benson (1991),

Rafiq et al. (2014), Khor et al. (2019)

Sp-C-lectin Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Sp-Clect_13

(sm21)

Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Sp-Clect_14

(sm20)

Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Clect_25 Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Sp-Sm29 Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Sp-Sm30E Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)



Sp-C-lectin/

PMC1 (sm49)

Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Yes Gong et al. (2012), Rafiq et al.

(2014), and Khor et al. (2019)

Sp-Fam20c Secretory pathway kinase Phosphorylation of

biomineralization proteins

Yes Rafiq et al. (2014), Khor et al. (2019),

and Worby, Mayfield, Pollak,

Dixon, and Banerjee (2021)

Sp-Hypp3152

(p16rel1)

Glycine-rich protein with signal

sequence and transmembrane

domain

Biomineral growth Yes Cheers and Ettensohn (2005), Rafiq

et al. (2014), and Khor et al. (2019)

Sp-Hypp3153

(p16rel2)

Glycine-rich protein with signal

sequence and transmembrane

domain

Biomineral growth Yes Cheers and Ettensohn (2005), Rafiq

et al. (2014), Khor et al. (2019)

Sp-P16 Glycine-rich protein with signal

sequence and transmembrane

domain

Biomineral growth Yes Cheers and Ettensohn (2005), Rafiq

et al. (2014), and Khor et al. (2019)

Sp-Otop2L Otopetrin Proton transport, pH

regulation

Yes Rafiq et al. (2014), Tu et al. (2018),

Khor et al. (2019) and (Chang et al.,

2021)

Sp-Msp130 GPI-anchored cell surface

glycoprotein

Calcium uptake Yes Carson, Farach, Earles, Decker, and

Lennarz (1985), Rafiq et al. (2014),

Killian and Wilt (2017), and Khor

et al. (2019)

Continued



Table 1 Gene targets of Alx1 that encode biomineralization proteins with known functions.—cont’d

Gene Nature of gene product Function of gene product
Direct target
of Alx1? Selected references

Sp-Msp130r1 GPI-anchored cell surface

glycoprotein

Calcium uptake Yes Carson et al. (1985), Rafiq et al.

(2014), Killian and Wilt (2017), and

Khor et al. (2019)

Sp-Msp130r2 GPI-anchored cell surface

glycoprotein

Calcium uptake Yes Carson et al. (1985), Rafiq et al.

(2014), Killian and Wilt (2017), and

Khor et al. (2019)

Sp-Msp130r3 GPI-anchored cell surface

glycoprotein

Calcium uptake Yes Carson et al. (1985), Rafiq et al.

(2014), Killian and Wilt (2017), and

Khor et al. (2019)

Sp-MmpL2 Matrix metalloprotease Biomineral growth Yes Ingersoll andWilt (1998), Rafiq et al.

(2014), Khor et al. (2019), and

Morgulis, Winter, Shternhell, and

Gildor (2021)

Sp-MmpL5 Matrix metalloprotease Biomineral growth Yes Ingersoll andWilt (1998), Rafiq et al.

(2014), Khor et al. (2019), and

Morgulis et al. (2021)

Sp-p58-a Basic protein with signal

sequence and transmembrane

domain

Biomineral growth Yes Adomako-Ankomah and Ettensohn

(2011), Rafiq et al. (2014), and Khor

et al. (2019)

Sp-Tgfbr2 Transforming growth factor beta

(TGFβ) type II receptor
Biomineral growth Yes Rafiq et al. (2014), Sun and

Ettensohn (2017), and Khor et al.

(2019)



Sp-Vegfr10 Vascular endothelial growth

factor (VEGF) receptor

Regulation of

biomineralization genes and

biomineral growth

Yes Duloquin, Lhomond, and Gache

(2007), Knapp, Wu, Mobilia, and

Joester (2012), Khor et al. (2019), and

Morgulis et al. (2019)

Sp-Ig/TM Protein with 3 Ig domains, signal

sequence, and transmembrane

domain

Branching of spicule

rudiment

Unknown Rafiq et al. (2014) and Ettensohn and

Dey (2017)

Sp-Sm30B Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Unknown Gong et al. (2012) and Rafiq et al.

(2014)

Sp-Sm30C Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Unknown Gong et al. (2012) and Rafiq et al.

(2014)

Sp-Sm50/

Sm32

Secreted, C-lectin

domain-containing spicule

matrix protein

Regulation of mineral phase

transitions

Unknown Gong et al. (2012) and Rafiq et al.

(2014)

Sp-MmpL7 Matrix metalloprotease Biomineral growth Unknown Ingersoll andWilt (1998), Rafiq et al.

(2014), and Morgulis et al. (2021)

Sp-Cara7LA

(can1)

Secreted carbonic anhydrase Bicarbonate production Unknown Mitsunaga et al. (1986) and Rafiq

et al. (2014)

Note that many other targets of Alx1 encode novel, secreted or membrane-associated proteins that co-purify with biomineral isolated from larvae or adults (Karakostis
et al., 2016; Mann, Poustka, & Mann, 2008; Mann, Wilt, & Poustka, 2010), suggesting that these proteins also support biomineralization.



3.2.5 Signal-dependent regulation of effector genes at late stages
of embryogenesis

Most genes regulated by alx1, including many biomineralization genes,

are activated at the blastula stage, prior to PMC EMT and several hours

before the onset of biomineral deposition. This activation occurs cell-

autonomously in the LM lineage through the maternally entrained, β-catenin/
Pmar1-dependent molecular program described above (Section 3.1). During

gastrulation, however, the expression of most of these same PMC effector

genes comes under the control of local, ectoderm-derived signals. One of

the most important and best characterized of these signals is VEGF3, a ligand

produced specifically by ectoderm cells that overlie sites of active skeletal

growth (Adomako-Ankomah & Ettensohn, 2013; Duloquin et al., 2007).

Ectodermal cues like VEGF3 act locally to regulate the expression of effector

genes, thereby creating complex, non-uniform, patterns of gene expression

within the PMC syncytium that likely control the stereotypical growth patterns

of skeletal rods (Guss & Ettensohn, 1997; Harkey, Whiteley, & Whiteley,

1992; Knapp et al., 2012; Morgulis et al., 2019; Morgulis et al., 2021;

Sun & Ettensohn, 2014). Themolecular mechanisms that underlie this second,

signal-dependent phase of effector gene expression, and the potential role of

Alx1 in this process, are major unresolved questions. Because the expression

of alx1 declines during post-gastrula development while skeletogenesis con-

tinues, it seems plausible that alx1 transfers its function to one or more of its

regulatory gene targets (Section 3.2.1). Heretofore it has not been possible

to test directly whether Alx1 continues to exert regulatory control at late

embryonic stages, as silencing of the gene by conventional methods, viz.,

microinjection of morpholinos into fertilized eggs, completely suppresses

PMC formation. This question could now be addressed experimentally, how-

ever, by blocking Alx1 function at late developmental stages using caged

morpholinos (Bardhan, Deiters, & Ettensohn, 2021).

3.3 Competition between GRNs: Repression of alternative fates
by Alx1

An important consequence of the deployment of the Alx1 subcircuit in the

LM-PMC lineage is the repression of alternative transcriptional programs.

The LM territory is surrounded by a torus-shaped region composed of

non-skeletogenic mesoderm cells, including prospective pigment and

blastocoelar cells. In Alx1 morphants, the domain of expression of pigment

cell markers, including the key regulatory gene gcm, expands into the large

micromere territory (Oliveri et al., 2008). In addition, gene expression
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profiling of Alx1 morphants reveals increases in the levels of expression of

several regulatory and effector genes associated with blastocoelar cell fate

(Rafiq et al., 2014), strongly suggesting that Alx1 also represses this regula-

tory state in the LM-PMC lineage. It will be of considerable interest to

determine the molecular mechanism(s) of this repression, as competition

between alternative transcriptional programs is observed in other develop-

mental contexts (Delás & Briscoe, 2020).

4. Alx1 and other developmental and evolutionary
processes

4.1 Alx1 and cellular reprogramming
Cells of the LM-PMC lineage are committed to a skeletal cell fate early in

development through the activity of localized maternal factors and the

cell-autonomous deployment of the skeletogenic GRN (Section 3.1.1).

Other mesodermal and endodermal cell types remain multipotent, however,

at least through gastrulation, and some have the capacity deploy the

skeletogenic GRN under appropriate experimental conditions. Blastocoelar

cells (BCs) ordinarily give rise to a heterogeneous population of migratory,

immunocyte-like cells (Solek et al., 2013), but if PMCs are ablated early in

gastrulation, BCs adopt the PMC fate and produce a correctly patterned skel-

eton. This striking transfating process is associated with the molecular repro-

gramming of BCs, which ectopically deploy the skeletogenic GRN while

extinguishing the expression of regulatory genes (scl and gatac) associated with

an immunocyte fate (Ettensohn et al., 2007; Sharma & Ettensohn, 2011). One

of the earliest steps in BC reprogramming is the activation of alx1, which is

both necessary and sufficient for transfating (Ettensohn et al., 2007).

Repression of the pre-existing regulatory state in transfating BCs may involve

the same mechanisms by which alx1 represses the BC program in LMs during

normal development, although this has not been tested. Like presumptive

BCs, endoderm cells also have the capacity to express a skeletogenic fate

and they activate alx1 in the process, apparently by first transitioning

through a BC-like regulatory state (McClay & Logan, 1996; Sharma &

Ettensohn, 2011).

A key difference between the activation of alx1 during normal develop-

ment and its ectopic expression during cell reprogramming is that the former

is controlled by cell-autonomous mechanisms while the latter is signal-

dependent. It was recently shown that the activation and maintenance of

alx1 expression in transfating BCs require VEGF3, a signaling ligand
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produced by the ectoderm (Ettensohn & Adomako-Ankomah, 2019).

PMCs control BC fate by sequestering VEGF3, thereby preventing activa-

tion of alx1 and the downstream skeletogenic network in BCs (Ettensohn &

Adomako-Ankomah, 2019). The molecular steps between the reception of

the VEGF signal and alx1 activation are unknown, but alx1 expression also

requires MEK activity (Ettensohn et al., 2007), suggesting that VEGF might

act through the MAPK cascade as it does in other cell types (Simons,

Gordon, & Claesson-Welsh, 2016). One candidate mediator is Ets1, an

ERK-dependent, positive regulator of alx1 in the LM-PM lineage

(Section 3.1.2) which is also expressed by BCs during normal development

(Flynn et al., 2011; Rizzo et al., 2006).

4.2 Alx1 and cell type evolution
Echinoderms that exhibit indirect development (that is, those that develop

via a feeding larva) produce calcified endoskeletal elements during one or

more of three different phases of their life cycle: embryogenesis, the feeding

period of larval development, and the adult phase (Fig. 4). In three of the five

classes of modern echinoderms, echinoids (sea urchins and sand dollars),

ophiuroids (brittle stars), holothuroids (sea cucumbers), skeletogenic cells

(PMCs) first appear early in embryogenesis and produce skeletal elements

before the onset of larval feeding. In at least two taxa, echinoids and ophi-

uroids, additional skeletal cells arise after the larva begins to feed and produce

skeletal structures that are physically separate from the elements produced by

PMCs (Smith, Cruz Smith, Cameron, & Urry, 2008; Tominaga et al.,

2004). Skeletal elements also form in the doliolaria of crinoids (Comeau,

Bishop, &Cameron, 2017), but a comparison with other taxa is complicated

by the fact that all crinoids described to date exhibit direct development (that

is, they lack a feeding larva). Lastly, skeletal cells arise within the rudiment of

the adult body that forms within the late feeding larva and secrete the test,

teeth, and spines of the juvenile. These biomineralized structures grow con-

tinuously during adult life and regenerate following injury.

The lineage relationships among the populations of cells that produce

these skeletal structures are poorly understood. In indirect developing

euechinoids, the best studied taxon, the embryonic lineage of PMCs is

known completely. At least some, and perhaps all, of the post-feeding larval

skeletal elements arise from macromere-derived mesoderm rather than

PMCs (Yajima, 2007). PMCs also do not contribute to adult skeletal cells,

but the lineage of these cells is otherwise undefined (Yajima, 2007). One
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possibility is that they arise from the coelomic mesoderm, which makes a

major contribution to the adult body and which, like post-feeding skeletal

cells, is derived from the macromeres of the cleavage stage embryo. Indeed,

recent evidence strongly supports the view that the adult skeletogenic cells of

sea stars arise from the posterior coelom (Yamazaki et al., 2021).

It is widely accepted that the skeletal cells of embryos and adults are

homologous, based on many striking similarities in the gene expression

programs of these cells, including the deployment of a core gene regulatory

network consisting of alx1, ets1, erg, and vegfr-10-Ig (Erkenbrack &

Thompson, 2019; Gao & Davidson, 2008; Gao et al., 2015; Shashikant

et al., 2018a). In addition, proteomic studies reveal that many of the same

biomineralization proteins are produced by embryonic and adult skeletal

cells (Mann et al., 2008, 2010). Much less is known concerning the gene

regulatory program of the post-feeding skeletal cells, but what little informa-

tion is available is consistent with the hypothesis that the three cell types are

homologous.

The complex patterns of skeletogenesis exhibited by modern echino-

derms reveal striking evolutionary plasticity in the developmental program

that specifies skeletal cells. Because the adult forms of all fossil and modern

echinoderms possess skeletons, while embryonic skeletogenic cells are not

found in all sub-lineages, it is widely believed that adult skeletal cells evolved

first. Support for this view comes from hemichordates, the nearest outgroup

to echinoderms, which lack an embryonic or larval skeleton but produce

small, biomineralized elements as adults (Cameron & Bishop, 2012;

Gonzalez, Jiang, & Lowe, 2018). A more contentious issue is whether the

elaborate larval skeletons of indirect developing echinoids and ophiuroids

are homologous or evolved independently. The discovery of alx1-

expressing PMCs in a third echinoderm class, holothuroids (McCauley

et al., 2012), and the many similarities in the molecular programs of echinoid

and ophiuroid skeletal cells (Czarkwiani et al., 2013; Dylus et al., 2016;

Morino et al., 2012; Morino, Koga, & Wada, 2016; Seaver & Livingston,

2015), point to homology as the simplest hypothesis, with an implied loss

of embryonic skeletal cells in the asteroid lineage (see also Erkenbrack &

Thompson, 2019). Recently, it was shown that a CRE upstream of the

kirrelL gene of a crinoid responds to the regulatory environment of sea

urchin embryonic cells and drives reporter gene expression selectively in

PMCs, a result that highlights the remarkable conservation of skeletogenic

gene regulatory circuitry across all echinoderms (Khor & Ettensohn, 2021).

Thus, a reasonable working model is that the ancestral echinoderm possessed
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skeletal cells as an adult and that a heterochronic shift occurred in the

MRCA of eleutherozoans that deployed this ancestral skeletogenic program

in the embryo.

How has alx1 contributed to the origin and evolutionary diversification

of echinoderm skeletal cells? Changes in the expression patterns of transcrip-

tion factors are often considered to make a greater contribution to the evo-

lution of developmental processes than changes in transcription factor

sequence, as the latter may have pleiotropic effects (Lynch & Wagner,

2008). Alx1, however, provides a good example of both mechanisms at

work. As discussed above (Section 2), the duplication of the ancestral

alx1/alx4 gene in the MRCA of echinoderms made possible the subsequent

exonization of the D2 domain and the neofunctionalization of the gene.

The exonization of the D2 domain likely occurred in the MRCA all

eleutherozoans, as all modern eleutherozoan Alx1 sequences contain a

highly conserved D2 domain, while this domain has not been found in cri-

noid Alx1 sequences. The incorporation of the D2 domain altered the DNA

binding properties (and perhaps other biochemical properties) of Alx1. One

can speculate that these biochemical changes may have been associated in

some way with the heterochronic deployment of the skeletogenic GRN

that occurred in eleutherozoans, as the D2 domain is essential for Alx1 to

exert its embryonic function (Khor & Ettensohn, 2017). Whether this

domain has a specific role in embryonic skeletogenesis is not known, how-

ever, as its function in the adult has not been explored.

Given the central importance of alx1 as a skeletogenic selector gene,

changes in its developmental expression must also have played a crucial

role in the heterochronic shifts in skeletogenesis that occurred in the echi-

noderm lineage. These certainly involved changes in the timing of alx1

expression as well as shifts in the location (embryonic cell lineage) of

expression. The temporal shifts in alx1 expression that took place during

echinoderm evolution may have involved (a) cis-regulatory changes in alx1

that placed the gene under the control of new regulatory inputs which were

already present at earlier developmental stages or (b) heterochronic shifts in the

developmental expression of pre-existing alx1 regulatory inputs. To evaluate

these models, it will be important to know more about the regulatory inputs

that control alx1 expression in different developmental contexts, including the

feeding larva and the adult. Unfortunately in this regard, our present knowl-

edge of the upstream regulatory control of alx1 is limited to the most evolu-

tionarily derived case; viz., euechinoid micromeres (Section 3.1.1).
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Although changes in alx1 sequence and expression have been central to

the evolution of echinoderm skeletogenesis, there were other important

events. As discussed above (Section 3.2.5), ectoderm-derived VEFG3 is

essential for the expression of a large subset of biomineralization genes

and for overt skeletogenesis. Moreover, evolutionary changes in VEGF3

expression have accompanied heterochronic shifts in skeletogenic cell spec-

ification (Erkenbrack & Petsios, 2017;Morino et al., 2012). The receptor for

VEGF3, VEGFR-10-Ig, is expressed selectively by skeletogenic cells

(Duloquin et al., 2007) and was likely a component of the ancestral, adult

skeletogenic network in the MRCA of at least eleutherozoans and perhaps

all echinoderms (Erkenbrack & Thompson, 2019; Gao & Davidson, 2008).

Given the central importance of alx1 and vegf3 in driving skeletogenesis,

did heterochronic shifts in these two regulators, which are expressed in dif-

ferent tissues, occur in a coordinated fashion? The two might have occurred

independently (see Koga, Morino, & Wada, 2014), but if the expression of

alx1 in the mesoderm and vegf3 in the ectoderm were integrated through

developmental interactions between the two tissues, then an evolutionary

shift in the expression of only one of the two genes might have been suffi-

cient to transfer skeletogenesis to a new developmental address. There is

indeed some evidence that links VEGF signaling in the ectoderm to alx1

expression in mesoderm cells: (a) VEGF signaling positively regulates

VEGFR-10-Ig expression in PMCs (Adomako-Ankomah & Ettensohn,

2013; Duloquin et al., 2007; Morgulis et al., 2019) and (b) alx1 expression

is strongly dependent upon VEGF/VEGFR signaling in transfating BCs,

(Ettensohn & Adomako-Ankomah, 2019), although not in PMCs

(Adomako-Ankomah & Ettensohn, 2013; Morgulis et al., 2019). Teasing

apart possible regulatory interactions that link vegf3 and alx1 expression in

the ectoderm and mesoderm, respectively, will likely shed light on whether

evolutionary shifts in the expression of these two key skeletogenic regulators

occurred independently or in a coordinated manner.

5. Conclusions

Alx1 was originally identified in a search for gene products that endow

embryonic skeletal cells of sea urchins with their unique identity. More

recently, comparative studies have highlighted the conserved role of alx1

as a skeletogenic selector gene throughout the phylum and at all life history
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stages. Duplication of alx1 early in echinoderm evolution and subsequent

exonization of the D2 domain were central to the evolution of an elaborate,

calcified endoskeleton. Subsequent heterochronic shifts in alx1 expression

were important in the evolution of the diverse patterns of skeletogenesis

exhibited by modern echinoderms. In modern sea urchins, the best studied

taxon, Alx1 plays a unique role in skeletal development by integrating the

morphogenetic behaviors (EMT, directional cell migration, and cell-cell

fusion) of skeletogenic cells with their terminal biomineralization function.

Analysis of alx1 in this clade is therefore providing a paradigm for establishing

direct linkages between GRNs and morphogenesis—a key to understanding

the developmental transformation of genotype into phenotype.

Although these are significant findings, many questions remain to be

addressed. It will be very important to identify upstream regulatory inputs

that control alx1 expression in contexts other than the micromeres of

euechinoids. Even in that well-studied case, many features of GRN circuitry

both upstream and downstream of alx1 remain obscure, including themech-

anism by which alx1 suppresses potential, alternative regulatory states in the

LM-PMC lineage. Biochemical functions of the critically important D2

domain aside from its role in DNA binding also remain to be explored.

From these selected examples, it seems clear that Alx1 will continue to be

a valuable lens through which to view a diverse set of developmental and

evolutionary processes. We can therefore anticipate many new and exciting

lessons from this transcription factor in the future.
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