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Abstract

The Matérn covariance function is a popular choice for prediction in spatial statistics and
uncertainty quantification literature. A key benefit of the Matérn class is that it is possible
to get precise control over the degree of mean-square differentiability of the random process.
However, the Matérn class possesses exponentially decaying tails, and thus may not be suitable
for modeling polynomially decaying dependence. This problem can be remedied using poly-
nomial covariances; however one loses control over the degree of mean-square differentiability
of corresponding processes, in that random processes with existing polynomial covariances
are either infinitely mean-square differentiable or nowhere mean-square differentiable at all.
We construct a new family of covariance functions called the Confluent Hypergeometric (CH)
class using a scale mixture representation of the Matérn class where one obtains the benefits of
both Matérn and polynomial covariances. The resultant covariance contains two parameters:
one controls the degree of mean-square differentiability near the origin and the other controls
the tail heaviness, independently of each other. Using a spectral representation, we derive
theoretical properties of this new covariance including equivalent measures and asymptotic
behavior of the maximum likelihood estimators under infill asymptotics. The improved the-
oretical properties of the CH class are verified via extensive simulations. Application using
NASA’s Orbiting Carbon Observatory-2 satellite data confirms the advantage of the CH class
over the Matérn class, especially in extrapolative settings.

Keywords: Equivalent measures; Gaussian process; Gaussian scale mixture; Polynomial covariance;
XCO2.
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1 Introduction

Kriging, also known as spatial best linear unbiased prediction, is a term coined by Matheron

(1963) in honor of the South African mining engineer D. G. Krige (Cressie, 1990). With origins

in geostatistics, applications of kriging have permeated fields as diverse as spatial statistics (e.g.,

Banerjee et al., 2014; Berger et al., 2001; Cressie, 1993; Journel and Huijbregts, 1978; Matérn, 1960;

Stein, 1999), uncertainty quantification or UQ (e.g., Berger and Smith, 2019; Sacks et al., 1989;

Santner et al., 2018) and machine learning (Williams and Rasmussen, 2006). Suppose that {Z(s) ∈

R : s ∈ D ⊂ Rd} is a stochastic process with a covariance function cov(Z(s), Z(s+h)) = C(h) that

is solely a function of the increment h. Then C(·) is said to be second-order stationary (or weakly

stationary). Further, if C(·) is a function of |h| with | · | denoting the Euclidean norm, then C(·)

is called isotropic. If the process Z(·) possesses a constant mean function and a weakly stationary

(resp. isotropic) covariance function, the process Z(·) is called weakly stationary (resp. isotropic).

Further, Z(·) is a Gaussian process (GP) if every finite-dimensional realization Z(s1), . . . , Z(sn)

jointly follows a multivariate normal distribution for si ∈ D and every n.

The Matérn covariance function (Matérn, 1960) has been widely used in spatial statistics due

to its flexible local behavior and nice theoretical properties (Stein, 1999) with increasing popularity

in the UQ and machine learning literature (Gu et al., 2018; Guttorp and Gneiting, 2006). The

Matérn covariance function is of the form:

M(h; ν, ϕ, σ2) = σ2 2
1−ν

Γ(ν)

(︄√
2ν

ϕ
h

)︄ν

Kν

(︄√
2ν

ϕ
h

)︄
, (1)

where σ2 > 0 is the variance parameter, ϕ > 0 is the range parameter, and ν > 0 is the smoothness

parameter that controls the mean-square differentiability of associated random processes. We

denote by Kν(·) the modified Bessel function of the second kind with the asymptotic expansion

Kν(h) ≍ (π/(2h))1/2 exp(−h) as h → ∞, where f(x) ≍ g(x) denotes limx→∞ f(x)/g(x) = c ∈

(0,∞). Further, we use the notation f(x) ∼ g(x) if c = 1. Thus, using this asymptotic expression
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of Kν(h) for large h from Section 6 of Barndorff-Nielsen et al. (1982), the tail behavior of the

Matérn covariance function is given by:

M(h; ν, ϕ, σ2) ≍ hν−1/2 exp

(︄
−
√
2ν

ϕ
h

)︄
, h → ∞.

Eventually, the exp(−
√
2νh/ϕ) term dominates, and the covariance decays exponentially for large

h. This exponential decay may make it unsuitable for capturing polynomially decaying dependence.

This problem with the Matérn covariance can be remedied by using covariance functions that

decay polynomially, such as the generalized Wendland (Gneiting, 2002) and generalized Cauchy

covariance functions (Gneiting, 2000), but in using these polynomial covariance functions one

loses a key benefit of the Matérn class: that of the degree of mean-square differentiability of the

process. Random processes with a Matérn covariance function are exactly ⌊ν⌋ times mean-square

differentiable, whereas the random processes with a generalized Cauchy covariance function are

either non-differentiable (very rough) or infinitely differentiable (very smooth) in the mean-square

sense, without any middle ground (Stein, 2005). The generalized Wendland covariance family

also has limited flexibility near the origin compared to the Matérn class and has compact support

(Gneiting, 2002).

Stochastic processes with polynomial-tailed dependences are ubiquitous in many scientific dis-

ciplines including geophysics, meteorology, hydrology, astronomy, agriculture and engineering; see

Beran (1992) for a survey. In UQ, Gaussian stochastic processes have been often used for computer

model emulation and calibration (Santner et al., 2018). In some applications, certain inputs may

have little impact on output from a computer model, and these inputs are called inert inputs ;

see Chapter 7 of Santner et al. (2018) for detailed discussion. Power-law covariance functions can

allow for large correlations among distant observations and hence are more suitable for modeling

these inert inputs. Most often, computer model outputs can have different smoothness properties

due to the behavior of the physical process to be modeled. Thus, power-law covariances with the
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possibility of controlling the mean-square differentiability of stochastic processes are very desirable

for modeling such output.

In spatial statistics, polynomial covariances have been studied in a limited number of works

(e.g., Gay and Heyde, 1990; Gneiting, 2000; Haslett and Raftery, 1989). In the rest of the pa-

per, we focus on investigation of polynomial covariances in spatial settings. For spatial modeling,

polynomial covariances can improve prediction accuracy over large missing regions. A covariance

function with polynomially decaying tail can be useful to model highly correlated observations.

As a motivating example, Figure 1 shows a 16-day repeat cycle of NASA’s Level 3 data product

of the column-averaged carbon dioxide dry air mole fraction (XCO2) at 0.25◦ and 0.25◦ collected

from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The XCO2 data are collected over

longitude bands and have large missing gaps between them. Predicting the true process over these

large missing gaps based on a spatial process model is challenging. If the covariance function only

allows exponentially decaying dependence, the predicted true process will be dominated by the

mean function in the spatial process model with the covariance function having negligible impact

over these large missing gaps. However, if the covariance function can model polynomially decay-

ing dependence, the predicted true process over these missing gaps will carry more information

from distant locations where observations are available, presumably resulting in better prediction.

Thus, it is of fundamental and practical interest to develop a covariance function with polyno-

mially decaying tails, without sacrificing the control over the smoothness behavior of the process

realizations.

In this paper we propose a new family of interpretable covariance functions called the Confluent

Hypergeometric (CH) class that bridges this gap between the Matérn covariance and polynomial

covariances. The proposed covariance class is obtained by mixing the Matérn covariance over

its range parameter ϕ. This is done by recognizing the Bessel function in the Matérn covariance

function as proportional to the normalizing constant of the generalized inverse Gaussian distribution

(e.g., Barndorff-Nielsen, 1977), which then allows analytically tractable calculations with respect to
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Fig. 1. XCO2 data from June 1 to June 16, 2019. The units are parts per millions (ppm).

a range of choices for mixing densities, resulting in valid covariance functions with varied features.

Apart from this technical innovation, the key benefit is that this mixing does not affect the origin

behavior and thus allows one to retain the precise control over the smoothness of process realizations

as in Matérn. However, the tail is inflated due to mixing, and, in fact, the mixing distribution can

be chosen in a way so that the tail of the resultant covariance function displays regular variation,

with precise control over the tail decay parameter α. A function f(·) is said to have a regularly

decaying right tail with index α if it satisfies f(x) ≍ x−αL(x) as x → ∞ for some α > 0 where

L(·) is a slowly varying function at infinity with the property limx→∞ L(tx)/L(x) = 1 for all

t ∈ (0,∞) (Bingham et al., 1989). Unlike a generalized Cauchy covariance function, this CH

class is obtained without sacrificing the control over the degree of mean-square differentiability

of the process, which is still controlled solely by ν, and the resulting process is still exactly ⌊ν⌋

times mean-square differentiable, independent of α. Moreover, regular variation is preserved under

several commonly used transformations, such as sums or products. Thus, it is possible to exploit

these properties of regular variation to derive CH covariances with similar features from the original

covariance function that is obtained via a mixture of the Matérn class.

The rest of the paper is organized as follows. Section 2 begins with the construction of the

proposed covariance function as a mixture of the Matérn covariance function over its range pa-

rameter. We verify that such construction indeed results in a valid covariance function. Moreover,

we demonstrate that the behaviors of this covariance function near the origin and in the tails are
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characterized by two distinct parameters, which in turn control the smoothness and the degree of

polynomially decaying dependence, respectively. Section 3 presents the main theoretical results

for the CH class. We first derive the spectral representation of this CH class and characterize its

high-frequency behavior, and then show theoretical properties concerning equivalence classes under

Gaussian measures and asymptotic properties related to parameter estimation and prediction. The

resultant theory is extensively verified via simulations in Section 4. In Section 5, we use this CH

covariance to analyze NASA’s OCO-2 data, and demonstrate better prediction results over the

Matérn covariance. Section 6 concludes with some discussions for future investigations. All the

technical proofs can be found in the Supplementary Material.

2 The CH Class as a Mixture of the Matérn Class

Our starting point in mixing over the range parameter ϕ in the Matérn covariance function is the

correspondence between the form of the Matérn covariance function and the normalizing constant

of the generalized inverse Gaussian distribution (e.g., Barndorff-Nielsen, 1977). The generalized

inverse Gaussian distribution has density on (0,∞) given by:

πGIG(x) =
(a/b)p/2

2Kp(
√
ab)

x(p−1) exp{−(ax+ b/x)/2}; a, b > 0, p ∈ R.

Thus,

Kp(
√
ab) =

1

2
(a/b)p/2

∫︂ ∞

0

x(p−1) exp{−(ax+ b/x)/2}dx.

Take a = ϕ−2, b = 2νh2 and p = ν. Then we have the following representation of the Matérn

covariance function with range parameter ϕ and smoothness parameter ν:

M(h; ν, ϕ, σ2) = σ2 2
1−ν

Γ(ν)

(︄√
2ν

ϕ
h

)︄ν

Kν

(︄√
2ν

ϕ
h

)︄
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= σ2 2
1−ν

Γ(ν)

(︄√
2νh

ϕ

)︄ν
1

2

(︃
1√
2νhϕ

)︃ν ∫︂ ∞

0

x(ν−1) exp{−(x/ϕ2 + 2νh2/x)/2}dx

=
σ2

2νϕ2νΓ(ν)

∫︂ ∞

0

x(ν−1) exp{−(x/ϕ2 + 2νh2/x)/2}dx.

Thus, the mixture over ϕ2 with respect to a mixing measure G(ϕ2) on (0,∞) can be written as

C(h) : =

∫︂ ∞

0

M(h; ν, ϕ, σ2)dG(ϕ2)

=

∫︂ ∞

0

[︃
σ2

2νϕ2νΓ(ν)

∫︂ ∞

0

x(ν−1) exp{−(x/ϕ2 + 2νh2/x)/2}dx
]︃
dG(ϕ2)

=
σ2

2νΓ(ν)

∫︂ ∞

0

x(ν−1)

[︃∫︂ ∞

0

ϕ−2ν exp{−x/(2ϕ2)}dG(ϕ2)

]︃
exp (−νh2/x)dx.

(2)

The resultant covariance via this mixture is quite general with different choices for the mixing

measure G(ϕ2). When the mixing measure G(ϕ2) admits a probability density function, say π(ϕ2),

the inner integral may be recognized as a mixture of gamma integrals (by change of variable

u = ϕ−2), which is analytically tractable for many choices of π(ϕ2); see for example the chapter

on gamma integrals in Abramowitz and Stegun (1965). More importantly, as we show below, the

mixing density π(ϕ2) can be chosen to achieve precise control over certain features of the resulting

covariance function.

Theorem 1. Let X ∼ IG(a, b) denote an inverse gamma random variable using the shape–scale

parameterization with density πIG(x) = {ba/Γ(a)}x−a−1 exp(−b/x); a, b > 0. Assume that ϕ2 ∼

IG(α, β2/2) and that M(h; ν, ϕ, σ2) is the Matérn covariance function in Equation (1). Then

C(h; ν, α, β, σ2) :=
∫︁∞
0

M(h; ν, ϕ, σ2)π(ϕ2;α, β)dϕ2 is a positive-definite covariance function on Rd

with the following form:

C(h; ν, α, β, σ2) =
σ2β2αΓ(ν + α)

Γ(ν)Γ(α)

∫︂ ∞

0

x(ν−1)(x+ β2)−(ν+α) exp (−νh2/x)dx, (3)

where σ2 > 0 is the variance parameter, α > 0 is called the tail decay parameter, β > 0 is called

the scale parameter, and ν > 0 is called the smoothness parameter.

7



Remark 1. The Matérn covariance is sometimes parameterized differently. The mixing density

can be chosen accordingly to arrive at results identical to ours. For instance, with parameterization

of the Matérn class given in Stein (1999), a gamma mixing density with shape parameter α and

rate parameter β2/2 would lead to an alternative route to the same representation of the CH class.

The limiting case of the Matérn class is the squared exponential (or Gaussian) covariance when its

smoothness parameter ν goes to ∞. In this case, mixing over the inverse gamma distribution in

Theorem 1 yields the Cauchy covariance.

Remark 2. The Matérn covariance arises as a limiting case of the proposed covariance in Theo-

rem 1 when the mixing distribution on ϕ2 is a point mass. Indeed, standard calculations show that

the mode of the inverse gamma distribution IG(ϕ2 | α, β2/2) is β2/{2(α + 1)} and its variance is

β4/({4(α − 1)2(α − 2)}. Thus, if one takes β2 = 2(α + 1)γ2 for fixed γ > 0 and allows α to be

large, the entire mass of the distribution IG(α, (α+ 1)γ2) is concentrated at the fixed quantity γ2

as α → ∞, which gives the Matérn covariance M(h; ν, γ, σ2) as the limiting case of the covariance

function C(h; ν, α,
√︁

2(α + 1)γ, σ2) as α → ∞.

Having established in Theorem 1 the resultant mixture as a valid covariance function, one may

take a closer look at its properties. To begin, although the final form of the CH class involves an

integral, and thus may not appear to be in closed form at a first glance, the situation is indeed

not too different from that of Matérn, where the associated Bessel function is available in an

algebraically closed form only for certain special cases; otherwise it is available as an integral.

In addition, this representation of CH class is sufficient for numerically evaluating the covariance

function as a function of h via either quadrature or Monte Carlo methods. Additionally, with a

certain change of variable, the above integral can be identified as belonging to a certain class of

special functions that can be computed efficiently. More precisely, we have the following elegant

representation of the CH class, justifying its name.

Corollary 1. The proposed covariance function in Equation (3) can also be represented in terms

of the confluent hypergeometric function of the second kind:
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C(h; ν, α, β, σ2) =
σ2Γ(ν + α)

Γ(ν)
U

(︄
α, 1− ν, ν

(︃
h

β

)︃2
)︄
, (4)

where σ2 > 0, α > 0, β > 0, and ν > 0. We name the proposed covariance class as the Confluent

Hypergeometric (CH) class after the confluent hypergeometric function.

Proof. By making the change of variable x = β2/t, standard calculation yields that

C(h; ν, α, β, σ2) =
σ2Γ(ν + α)

Γ(ν)Γ(α)

∫︂ ∞

0

tα−1(t+ 1)−(ν+α) exp(−νh2t/β2)dt.

Thus, the conclusion follows by recognizing the form of the confluent hypergeometric function of

the second kind U(a, b, c) from Chapter 13.2 of Abramowitz and Stegun (1965).

Equation (4) provides a convenient way to evaluate the CH covariance function, since efficient

numerical calculation of the confluent hypergeometric function is implemented in various libraries

such as the GNU scientific library (Galassi et al., 2002) and softwares including R and MATLAB,

facilitating its practical deployment; see Section S.1 of the Supplementary Material for an illus-

tration of computing times for Bessel function and confluent hypergeometric function. For certain

special parameter values, the evaluation of the confluent hypergeometric covariance function can

be as easy as the Matérn covariance function; see Chapter 13.6 of Abramowitz and Stegun (1965).

Besides the computational convenience, the CH covariance function in Equation (3) also allows us

to make precise statements concerning the origin and tail behaviors of the resultant mixture. The

next theorem makes the origin and tail behaviors explicit.

Theorem 2. The CH class has the following two properties:

(a) Origin behavior: The differentiability of the CH class is solely controlled by ν in the same

way as the Matérn class given in Equation (1).

(b) Tail behavior: C(h; ν, α, β, σ2) ∼ σ2β2αΓ(ν+α)
ναΓ(ν)

|h|−2αL(h2) as h → ∞, where L(x) is a slowly

varying function at ∞ of the form L(x) = {x/(x+ β2/(2ν))}ν+α.
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Theorem 2 indicates that random processes with the CH covariance function are ⌊ν⌋ times

mean-square differentiable. The local behavior of this CH covariance function is very flexible in

the sense that the parameter ν can allow for any degree of mean-square differentiability of a weakly

stationary process in the same way as the Matérn class. However, its tail behavior is quite different

from that of the Matérn class, since the CH covariance has a polynomial tail that decays slower

than the exponential tail in the Matérn covariance. This is natural since mixture inflates the tails

in general, and in our particular case, changes the exponential decay to a polynomial one. The rate

of tail decay is controlled by the parameter α. Thus, the CH class is more suitable for modeling

polynomially decaying dependence which any exponentially decaying covariance function fails to

capture. Moreover, the control over the degree of smoothness of process realizations is not lost.

Theorem 2 also establishes a very desirable property that the degrees of differentiability near origin

and the rate of decay of the tail for the CH covariance are controlled by two different parameters,

ν and α, independently of each other. Each of these parameters can allow any degrees of flexibility.

Remark 3. Porcu and Stein (2012) point out that it is possible to obtain a covariance function

with flexible origin behavior and polynomial tails by simply taking a sum of a Matérn and a Cauchy

covariance, which is again a valid covariance function. There are three major difficulties in this

approach compared to ours: (a) the individual covariances in such a finite sum are not identifiable

and hence practical interpretation becomes difficult, although prediction may still be feasible, (b)

this summed covariance has five parameters, hindering its practical use in both frequentist and

Bayesian settings, since numerical optimization of the likelihood function is costly and judicious

prior elicitation is likely to be difficult. In contrast, our covariance has four parameters, each

of which has a well-defined role. Finally, (c) the microergodic parameter under such a summed

covariance is not likely available in closed form, in contrast to ours, as derived later in Section 3.

Remark 4. Our approach to constructing the CH covariance by mixing over ϕ2 leads to a well-

defined covariance class that can be used for Gaussian process modeling. The resulting covariance

has four parameters and inference can be performed either via maximum likelihood or Bayesian
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approaches, although we solely focus on the former in the current work. This construction should

not be confused with Bayesian spatial modeling where a standard practice is to put a prior on the

spatial range parameter in the Matérn covariance. More importantly, the likelihood under the CH

covariance is fundamentally different from the posterior that is proportional to the product of the

likelihood under the Matérn covariance and the prior on the spatial range parameter, where the

prior could either be discrete or inverse gamma.

Remark 5. It is also worthing noting that our construction yields a covariance that is funda-

mentally different from a finite sum of Matérn covariances where the range parameter is assigned

a discrete prior, since the latter does not possess polynomially decaying dependence and is un-

desirable for modeling spatial data in practice due to costly computation and lack of practical

motivation. Moreover, individual covariances in the finite sum are not identifiable.

Example 1. This example visualizes the difference between the CH class and the Matérn class.

We fix the effective range (ER) at 200 and 500, where ER is defined as the distance at which a

correlation function has value approximately 0.05. For the CH class, we find the corresponding scale

parameter β such that the ER corresponds to 200 and 500 under different smoothness parameters

ν ∈ {0.5, 2.5} and different tail decay parameters α ∈ {0.3, 0.5, 1}. For the Matérn class, we

find the corresponding range parameter ϕ such that the ER corresponds to 200 and 500 under

smoothness parameters ν ∈ {0.5, 2.5}. These correlation functions are visualized in Figure 2. As

the CH correlation has a polynomial tail, it drops much faster than the Matérn correlation in order

to reach the same correlation 0.05 at the same ER. As α becomes smaller, the new correlation has

a heavier tail, and hence it drops more quickly to reach the correlation 0.05 at the same effective

range. After the ER, the CH correlation with a smaller α decays slower than those with larger

α. The faster decay of the tail in the Matérn class is indicated by the behavior after the ER.

Corresponding 1-dimensional process realizations can be found in Section S.2 of the Supplementary

Material.
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Fig. 2. Correlation functions for the CH class and the Matérn class. The panels (a) and (b) show
the correlation functions with the effective range (ER) at 200. The panels (c) and (d) show the
correlation functions with the effective range (ER) at 500. ER is defined as the distance at which
correlation is approximately 0.05.

3 Theoretical Properties of the CH Class

For an isotropic random field, the properties of a covariance function can be characterized by its

spectral density. The tail behavior of the spectral density can be used to derive properties of the

theoretical results shown in later sections. The following proposition characterizes the tail behavior

of the spectral density for the CH covariance function in Equation (3).

Proposition 1 (Tail behavior of the spectral density). The spectral density of the CH co-

variance function in Equation (3) admits the following tail behavior:

f(ω) ∼ σ222νννΓ(ν + α)

πd/2β2νΓ(α)
ω−(2ν+d)L(ω2), ω → ∞,

where L(x) = {x/(x+ β2/(2ν))}ν+d/2 is a slowly varying function at ∞.

Recall that the spectral density of the Matérn class is proportional to ω−(2ν+d) for large ω.

By mixing over the range parameter with an inverse gamma mixing density, the high-frequency

behavior of the CH class differs from that of the Matérn class by a slowly varying function L(ω2)

up to a constant that does not depend on any frequency.
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3.1 Equivalence Results

Let (Ω,F) be a measurable space with sample space Ω and σ-algebra F . Two probability measures

P1,P2 defined on the same measurable space (Ω,F) are said to be equivalent if P1 is absolutely

continuous with respect to P2 and P2 is absolutely continuous with respect to P1. Suppose that

the σ-algebra F is generated by a random process {Z(s) : s ∈ D}. If P1 is equivalent to P2

on the σ-algebra F , the probability measures P1 and P2 are then said to be equivalent on the

realizations of the random process {Z(s) : s ∈ D}. It follows immediately that the equivalence of

two probability measures on the σ-algebra F implies that their equivalence on any σ-algebra F ′ ⊂

F . The equivalence of probability measures has important applications to statistical inferences on

parameter estimation and prediction according to Zhang (2004). The equivalence between P1 and

P2 implies that P1 cannot be correctly distinguished from P2 with probability 1 under measure

P1 for any realizations. Let {Pθ : θ ∈ Θ} be a collection of equivalent measures indexed by θ in

the parameter space Θ. Let θ̂n be an estimator for θ based on n observations. Then θ̂n cannot

converge to θ in probability regardless of what is observed (Zhang, 2004). Otherwise, for any

fixed θ ∈ Θ, there exists a subsequence {θ̂nk
}k≥1 such that θ̂nk

converges to θ with probability

1 under measure Pθ (see, e.g., Dudley, 2002, p. 288). For any θ′ ∈ Θ with θ′ ̸= θ, it follows

from the property of equivalent measures that θ̂nk
also converges to θ with probability 1 under

measure Pθ′ . This further implies that there exists a subsubsequence {θ̂nkr
}r≥1 that converges to

θ′ with probability 1 under measure Pθ′ . Hence, the subsequence {θ̂nk
}k≥1 and its subsubsequence

{θ̂nkr
}r≥1 converge to two different values under the same measure Pθ′ . By contradiction, θ̂n

cannot converge to θ in probability. This implies that individual parameters cannot be estimated

consistently under equivalent measures. The second application of equivalent measures concerns

the asymptotic efficiency of predictors that is discussed in Section 3.3.

The tail behavior of the spectral densities in Proposition 1 can be used to check the equiv-

alence of probability measures generated by stationary Gaussian random fields. The details of

equivalence of Gaussian measures and the condition for equivalence are given in Section S.3 of the
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Supplementary Material. Any zero-mean Gaussian process with a covariance function defines a

corresponding Gaussian probability measure. In what follows, we say that the Gaussian proba-

bility measure defined under a covariance function implies that such Gaussian measure is defined

through a Gaussian process on a bounded domain with mean zero and a covariance function. Our

first result on equivalence of two Gaussian measures under the CH class is given in Theorem 3.

Theorem 3. Let Pi be the Gaussian probability measure corresponding to the covariance C(h; ν, αi,

βi, σ
2
i ) with αi > d/2 for i = 1, 2. Then P1 and P2 are equivalent on the realizations of {Z(s) : s ∈

D} for any fixed and bounded set D ⊂ Rd with infinite locations in D and d = 1, 2, 3 if and only if

σ2
1Γ(ν + α1)

β2ν
1 Γ(α1)

=
σ2
2Γ(ν + α2)

β2ν
2 Γ(α2)

. (5)

An immediate consequence of Theorem 3 is that for fixed ν; the tail decay parameter α, the

scale parameter β and the variance parameter σ2 cannot be estimated consistently under the infill

asymptotics. Instead, the quantity σ2β−2νΓ(ν + α)/Γ(α) is consistently estimable and has been

referred to as the microergodic parameter. We refer the readers to page 163 of Stein (1999) for the

definition of microergodicity.

Theorem 3 gives the result on equivalent measures within the CH class. The CH class can allow

the same smoothness behavior as the Matérn class, but it has a polynomially decaying tail that is

quite different from the Matérn class. One may ask whether there is an analogous result on the

Gaussian measures under the CH class and the Matérn class. Theorem 4 provides an answer to

this question.

Theorem 4. Let P1 be the Gaussian probability measure under the CH covariance C(h; ν, α, β, σ2
1)

with α > d/2 and P2 be the Gaussian probability measure under the Matérn covariance function

M(h; ν, ϕ, σ2
2). If

σ2
1(β

2/2)−νΓ(ν + α)/Γ(α) = σ2
2ϕ

−2ν , (6)

then P1 and P2 are equivalent on the realizations of {Z(s) : s ∈ D} for any fixed and bounded set
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D ⊂ Rd with d = 1, 2, 3.

Theorem 4 gives the conditions under which the Gaussian measures under the CH class and

the Matérn class are equivalent. If the condition in Equation (6) is satisfied, the Gaussian measure

under the CH class cannot be distinguished from the Gaussian measure under the Matérn class,

regardless of what is observed. This shows the robustness property for statistical inference under

the CH class when the underlying true covariance model is the Matérn class.

In Section 3.2, the microergodic parameter of the CH class can be shown to be consistently

estimated under infill asymptotics for a Gaussian process under the CH model with fixed and

known ν. Moreover, one can show that the maximum likelihood estimator of this microergodic

parameter converges to a normal distribution.

3.2 Asymptotic Normality

Let {Z(s) : s ∈ D} be a zero mean Gaussian process with the covariance function C(h; ν, α, β,

σ2), where D ⊂ Rd is a bounded subset of Rd with d = 1, 2, 3. Let Zn := (Z(s1), . . . , Z(sn))
⊤

be a partially observed realization of the process Z(·) at n distinct locations in D, denoted by

Dn := {s1, . . . , sn}. Then the log-likelihood function is

ℓn(σ
2,θ) = −1

2

{︃
n log(2πσ2) + log |Rn(θ)|+

1

σ2
Z⊤

nR
−1
n (θ)Zn

}︃
, (7)

where θ := {α, β} and Rn(θ) = [R(|si − sj|;θ)]i,j=1,...,n is an n × n correlation matrix with the

correlation function R(h) := C(h)/σ2.

In what follows, ν is assumed to be known and fixed. Let σ̂2
n and θ̂n be the maximum likelihood

estimators (MLE) for σ2 and θ by maximizing the log-likelihood function in Equation (7). To show

the consistency and asymptotic normality results for the microergodic parameter, we first obtain an

estimator for σ2 when θ is fixed: σ̂2
n = Z⊤

nR
−1
n (θ)Zn/n. Then, let ĉn(θ) be the maximum likelihood
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estimator of c(θ) := σ2β−2νΓ(ν + α)/Γ(α), as a function of θ, given by

ĉn(θ) = ĉn(α, β) =
σ̂2
nΓ(ν + α)

β2νΓ(α)
=

Z⊤
nR

−1
n (θ)ZnΓ(ν + α)

nβ2νΓ(α)
.

For notational convenience, we use c(α, β) instead of c(θ) to denote the microergodic parameter

in what follows. We discuss three situations. In the first situation, we consider joint estimation

of β and σ2 for fixed α. The MLE of β will be denoted by β̂n, and the MLE of the microergodic

parameter is ĉn(α, β̂n). In the second situation, we consider joint estimation of α and σ2 for fixed

β. The MLE of α will be denoted by α̂n and the MLE of the microergodic parameter is ĉn(α̂n, β).

In the third situation, we consider joint estimation of all parameters α, β, σ2. The corresponding

MLE for c(θ) is denoted by ĉn(θ̂n), where θ̂n := {α̂n, β̂n}. Note that the MLEs of either α or β

(or both) are typically computed numerically, since there is no closed-form expression. We have

the following results on the asymptotic properties of ĉn(θ) for various scenarios of α and β under

the infill asymptotics.

Theorem 5 (Asymptotics of the MLE). Let P0 be the Gaussian measure defined under the

covariance function C(h; ν, α0, β0, σ
2
0) with σ2

0 > 0, and let θ0 := {α0, β0}. Let Zn be the set of

observations generated under P0. Then the following results can be established:

(a) Suppose that α0 > d/2 and β0 ∈ [βL, βU ], where βL, βU are fixed constants such that 0 < βL <

βU . For any fixed α > d/2, if (σ̂2
n, β̂n) maximizes the log-likelihood function (7) over (0,∞)×

[βL, βU ], then as n → ∞, ĉn(α, β̂n)
a.s.−→ c(θ0) under P0 and

√
n
{︂
ĉn(α, β̂n)− c(θ0)

}︂
L−→

N (0, 2[c(θ0)]
2).

(b) Suppose that α0 ∈ [αL, αU ] and β0 > 0, where αL, αU are fixed constants such that d/2 < αL <

αU . For any fixed β > 0, if (σ̂2
n, α̂n) maximizes the log-likelihood function (7) over (0,∞)×

[αL, αU ], then as n → ∞, ĉn(α̂n, β)
a.s.−→ c(θ0) under P0 and

√
n {ĉn(α̂n, β)− c(θ0)}

L−→

N (0, 2[c(θ0)]
2).

(c) Suppose that α0 ∈ [αL, αU ] and β0 ∈ [βL, βU ] where αL, αU , βL, βU are fixed constants such

that d/2 < αL < αU and 0 < βL < βU . If (σ̂2
n, α̂n, β̂n) maximizes the log-likelihood func-
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tion (7) over (0,∞) × [αL, αU ] × [βL, βU ], then as n → ∞, ĉn(θ̂n)
a.s.−→ c(θ0) under P0 and

√
n
{︂
ĉn(θ̂n)− c(θ0)

}︂
L−→ N (0, 2[c(θ0)]

2).

The first two results of Theorem 5 imply that the microergodic parameter can be estimated

consistently by fixing α > d/2 or β > 0 in compact sets. In practice, fixing either α or β may be

too restrictive for modeling spatial processes. We would expect that the finite sample prediction

performance can be improved by jointly estimating all covariance parameters for the CH class,

which should be the preferred approach for practical purposes.

The third result of Theorem 5 establishes that the microergodic parameter can be consistently

estimated by jointly maximizing the log-likelihood (7) over α and β. However, the current result

requires that α > d/2. This means that the CH covariance cannot decay too slowly in its tail in

order to establish the consistency result. Nevertheless, this result shows a significant improvement

over existing asymptotic normality results for other types of polynomially decaying covariance

functions. For instance, it was shown by Bevilacqua and Faouzi (2019) that the microergodic

parameter in the generalized Cauchy class can be estimated consistently under infill asymptotics.

However, their results assume that the parameter that controls the tail behavior is fixed. This

is similar to the first result of Theorem 5. Unlike their results, a theoretical improvement in

Theorem 5 is that the asymptotic results for the MLE of the microergodic parameter c(θ) can be

obtained for joint estimation of all three parameters, including the parameter that controls the

decay of the tail. We provide extensive numerical evidence in support of Theorem 5 in Section S.5

of the Supplementary Material.

3.3 Asymptotic Prediction Efficiency

This section is focused on studying the prediction problem of Gaussian process at a new location

s0 ∈ D ∩ Dc
n. This problem has been studied extensively when an incorrect covariance model is

used. Our focus here is to show the asymptotic efficiency and asymptotically correct estimation

of prediction variance in the context of the CH class. Stein (1988) shows that both of these two
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properties hold when the Gaussian measure under a misspecified covariance model is equivalent to

the Gaussian measure under the true covariance model. In the case of the CH class, Theorem 3

gives the conditions for equivalence of two Gaussian measures in the light of the microergodic

parameter c(θ) = σ2β−2νΓ(ν + α)/Γ(α). As in Section 3.2, ν will be assumed to be fixed.

With observations generated under the CH model C(h; ν, α, β, σ2), we define the best linear

unbiased predictor for Z(s0) to be

Ẑn(θ) = r⊤n (θ)R
−1
n (θ)Zn, (8)

where rn(θ) := [R(|s0 − si|;θ)]i=1,...,n is an n-dimensional vector. This predictor depends only on

correlation parameters {α, β}. If the true covariance is C(h; ν, α0, β0, σ
2
0), the mean squared error of

the predictor in Equation (8) is given by Varν,θ0,σ2
0
{Ẑn(θ)−Z(s0)} = σ2

0

{︁
1− 2r⊤n (θ)R

−1
n (θ)rn(θ0)

+r⊤n (θ)R
−1
n (θ)Rn(θ0)R

−1
n (θ)rn(θ)

}︁
. If θ = θ0, i.e., α = α0 and β = β0, the above expression

simplifies to
Varν,θ0,σ2

0
{Ẑn(θ0)− Z(s0)} = σ2

0

{︁
1− r⊤n (θ0)R

−1
n (θ0)rn(θ0)

}︁
. (9)

If the true model is M(h; ν, ϕ, σ2), analogous expressions can be derived for Varν,ϕ0,σ2
0
{Ẑn(θ) −

Z(s0)}.

Let P0 be the Gaussian measure defined under the true covariance model and P1 be the Gaus-

sian measure defined under the misspecified covariance model. The following results concern the

asymptotic equivalence between the best linear predictor (BLP) under a misspecified probability

measure P1 and the BLP under the the true measure P0.

Theorem 6. Suppose that P0,P1 are two Gaussian probability measures defined by a zero mean

Gaussian process with the CH class C(h; ν, αi, βi, σ
2
i ) for i = 1, 2 on D. The following results hold

true:

(a) For any fixed θ1, under P0, as n → ∞,

Varν,θ0,σ2
0
{Ẑn(θ1)− Z(s0)}

Varν,θ0,σ2
0
{Ẑn(θ0)− Z(s0)}

→ 1.
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(b) Moreover, if σ2
0β

−2ν
0 Γ(ν + α0)/Γ(α0) = σ2

1β
−2ν
1 Γ(ν + α1)/Γ(α1), then under P0, as n → ∞,

Varν,θ1,σ2
1
{Ẑn(θ1)− Z(s0)}

Varν,θ0,σ2
0
{Ẑn(θ1)− Z(s0)}

→ 1.

(c) Let σ̂2
n = Z⊤

nR
−1
n (θ1)Zn/n. It follows that almost surely under P0, as n → ∞,

Varν,θ1,σ̂2
n
{Ẑn(θ1)− Z(s0)}

Varν,θ0,σ2
0
{Ẑn(θ1)− Z(s0)}

→ 1.

Part (a) of Theorem 6 implies that if the smoothness parameter ν is correctly specified, any

values for α and β will result in asymptotically efficient predictors. The condition σ2
0β

−2ν
0 Γ(ν +

α0)/Γ(α0) = σ2
1β

−2ν
1 Γ(ν + α1)/Γ(α1) is not necessary for asymptotic efficiency, but it provides

asymptotically correct estimate of the mean squared prediction error (MSPE). The quantity Varν,θ1,σ2
1

{Ẑn(θ1) −Z(s0)} is the MSPE for Ẑn(θ1) under the model C(h; ν, α1, β1, σ
2
1), while the quantity

Varν,θ0,σ2
0
{Ẑn(θ1) − Z(s0)} is the true MSPE for Ẑn(θ1) under the true model C(h; ν, α0, β0, σ

2
0).

In practice, it is common to estimate model parameters and then prediction is made by plugging

these estimates into Equations (8) and (9). Part (c) shows the same convergence results when θ is

fixed at θ1, but σ
2 is estimated via the maximum likelihood method.

One can conjecture that the result in Part (c) of Theorem 6 still holds if θ1 is replaced by its

maximum likelihood estimator, but its proof seems elusive. Theorem 6 demonstrates the asymptotic

prediction efficiency for the CH class. The following results are established to show the asymptotic

efficiency of the best linear predictor under the CH class when the true Gaussian measure is defined

by a zero-mean Gaussian process under the Matérn class.

Theorem 7. Let P0 be the Gaussian probability measure under the Matérn covariance M(h; ν, ϕ, σ2
0)

and P1 be the Gaussian probability measure under the CH covariance C(h; ν, α, β, σ2
1) on D. Ẑn(α, β)

be the kriging predictor under C(h; ν, α, β, σ2
1) and Ẑn(ϕ) be the kriging predictor under M(h; ν, ϕ, σ2

0).

If the condition in Equation (6) is satisfied, then it follows that under the Gaussian measure P0,

as n → ∞,
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Varν,α,β,σ2
1
{Ẑn(α, β)− Z(s0)}

Varν,ϕ,σ2
0
{Ẑn(ϕ)− Z(s0)}

→ 1,

for any fixed α > 0 and β > 0.

A key consequence of Theorem 7 is that when a true Gaussian process is generated by the

Matérn covariance model, the CH covariance model (3) can yield an asymptotically equivalent

BLP. The practical implication is when the true model is generated from the Matérn class, the

predictive performance under the CH class is indistinguishable from that under the Matérn class

as the number of observations gets larger in a fixed domain. Both Theorem 6 and Theorem 7

imply that the kriging predictor under the CH class can allow robust prediction property even if

the underlying true covariance model is misspecified.

4 Numerical Illustrations

In this section, we use simulated examples to study the properties of the CH class and compare

with alternative covariance models. In what follows, we compare the CH model with the other two

covariance models: the Matérn class and the generalized Cauchy class. The predictive performance

is evaluated based on root mean-squared prediction errors (RMSPE), coverage probability of the

95% percentile confidence intervals (CVG), and the average length of the predictive confidence

intervals (ALCI) at held-out locations.

The goal of this section is to study the finite sample predictive performance under the CH model

in interpolative settings. Specifically, we consider three different cases, where the true covariance

model is specified as the Matérn covariance (Case 1), the CH covariance (Case 2) and the generalized

Cauchy (GC) covariance (Case 3), respectively. The Matérn class is very flexible near origin and has

an exponentially decaying tail, the CH class is also very flexible near origin but has a polynomially

decaying tail, and the GC class is either non-differentiable or infinitely differentiable and has a

polynomially decaying tail. The GC covariance has the form C(h) = σ2
{︁
1 + (h/ϕ)δ

}︁−λ/δ
, where
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σ2 > 0 is the variance parameter, ϕ > 0 is the range parameter, λ ∈ (0, d] is the parameter

controlling the degree of polynomial decay, and δ ∈ (0, 2] is the smoothness parameter. When

δ ∈ (0, 2), the corresponding process is nowhere mean-square differentiable. When δ = 2, it

corresponds to the Cauchy covariance, whose process is infinitely mean-square differentiable. For

each case, predictive performance is compared at held-out locations with estimated covariance

structures.

We simulate data in the square domain D = [0, 2000] × [0, 2000] from mean zero Gaussian

processes with three different covariance models: the Matérn covariance (Case 1), the CH covariance

(Case 2), and the GC covariance (Case 3) for a variety of settings. We simulate n = 2000 data

points via maximin Latin hypercube design (Stein, 1987) for parameter estimation and evaluate

predictive performance at 10-by-10 regular grid points in D. We fix the variance parameter at 1 and

consider moderate spatial dependence with effective range (ER) at 200 and 500 for the underlying

true covariances. For each of these simulation settings, we use 30 different random number seeds to

generate the realizations. We always choose the same smoothness parameter for the Matérn class

and the CH class. For the GC covariance, we fix its smoothness parameter to be δ = min{2ν, d},

since the Gaussian measure with the Matérn class could be equivalent to that with the GC class as

pointed by Bevilacqua and Faouzi (2019). However, the smoothness parameter δ in the GC class

cannot be greater than 2, otherwise the GC class is no longer a valid covariance function.

4.1 Case 1: Examples with the Matérn Class as Truth

In Case 1, we simulate Gaussian process realizations from the Matérn model with smoothness

parameter ν fixed at 0.5 and 2.5 and effective range at 200 and 500. The parameters in each

covariance model are estimated based on profile likelihood as described in Section 3.2. Figure 3

shows the estimated covariance structures and summary of prediction results. Regardless of the

smoothness behavior and strength of dependence in the underlying true process, there is no clear

difference between the CH class and the Matérn class in terms of estimated covariance structures
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Fig. 3. Case 1: Comparison of predictive performance and estimated covariance structures when
the true covariance is the Matérn class with 2000 observations. The predictive performance is
evaluated at 10-by-10 regular grids in the square domain. These figures summarize the predictive
measures based on RMSPE, CVG and ALCI under 30 simulated realizations.

and prediction performance. In contrast, the estimated GC covariance structure only performs as

accurately as the Matérn class when ν = 0.5. When the process is twice mean-square differentiable

(ν = 2.5), as expected, the GC class cannot mimic such behavior, and hence, yields worse estimates

of the covariance structures and prediction results compared to both the Matérn class and the CH

class. The CH covariance is able to capture the true covariance structure as implied by Theorem 7.

In terms of RMSPE, there is no clear difference between the estimated CH covariance and the

estimated Matérn covariance. However, the CVG and ALCI based on the CH class are slightly

larger than those based on the estimated Matérn covariance.
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4.2 Case 2: Examples with the CH Class as Truth

In Case 2, we simulate Gaussian process realizations from the CH covariance model with smooth-

ness parameter ν fixed at 0.5 and 2.5, tail decay parameter fixed at 0.5, and effective range fixed

at 200 and 500. Figure 4 shows the estimated covariance structures and summary of prediction

results. As expected, when the underlying true process is simulated from a process with polyno-

mially decaying dependence, the Matérn class cannot be expected to capture such behavior. The

prediction results also indicate that the Matérn class performs much worse than the other two

covariance models. When the underlying true process is not differentiable (ν = 0.5), there is no

clear difference between the estimates under the GC covariance structure and the estimates under

the CH covariance structure. However, when the underlying true process is twice differentiable

(ν = 2.5), it is obvious that the estimated GC covariance structure is not as accurate as the esti-

mated CH covariance structure. This makes sense because the GC class is either non-differentiable

or infinitely differentiable. In terms of prediction performance, the CH covariance class performs

better than the GC class in terms of coverage probability.

4.3 Case 3: Examples with the GC Class as Truth

In Case 3, we simulate Gaussian process realizations from the GC class with the smoothness

parameter δ = 1 and λ = 1 under ER=200 and 500. The corresponding process is non-differentiable

and corresponds to the smoothness parameter ν = 0.5 in both the Matérn class and the CH class.

The parameter λ in the GC class is fixed at 1 so that it corresponds to the tail parameter α = 0.5

in the CH class. We did not consider Gaussian processes that are infinitely differentiable, since

such processes are unrealistic for environmental processes. Figure 5 shows the estimated covariance

structures and prediction results. As expected, the Matérn class performs much worse than the

CH class and the GC class for the same reason as in Case 2. Between the CH class and the GC

class, no difference is seen in terms of estimated covariance structures and predictive performances.

This is not surprising, since the CH class has a tail decay parameter α that is able to capture the
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Fig. 4. Case 2: Comparison of predictive performance and estimated covariance structures when
the true covariance is the CH class with 2000 observations. The predictive performance is evaluated
at 10-by-10 regular grids in the square domain. These figures summarize the predictive measures
based on RMSPE, CVG and ALCI under 30 simulated realizations.

tail behavior in the GC class.

5 Application to the OCO-2 Data

In this section, the proposed CH class is used to model spatial data collected from NASA’s Orbit-

ing Carbon Observatory-2 (OCO-2) satellite and comparisons are made in kriging performances

with alternative covariances. The OCO-2 satellite is NASA’s first dedicated remote sensing earth

satellite to study atmospheric carbon dioxide from space with the primary objective to estimate

the global geographic distribution of CO2 sources and sinks at Earth’s surface; see Cressie (2017);
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Fig. 5. Case 3: Comparison of predictive performance and estimated covariance structures when
the true covariance is the GC class with 2000 observations. The predictive performance is evaluated
at 10-by-10 regular grids in the square domain. These figures summarize the predictive measures
based on RMSPE, CVG and ALCI under 30 simulated realizations.

Wunch et al. (2011) for detailed discussions. The OCO-2 satellite carries three high-resolution grat-

ing spectrometers designed to measure the near-infrared absorption of reflected sunlight by carbon

dioxide and molecular oxygen and orbits over a 16-day repeat cycle. In this application, we consider

NASA’s Level 3 data product of the XCO2 at 0.25◦× 0.25◦ spatial resolution over one repeat cycle

from June 1 to June 16, 2019. These gridded data were processed based on Level 2 data product

by the OCO-2 project at the Jet Propulsion Laboratory, California Technology, and obtained from

the OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Information

Services Center. They can be downloaded at https://co2.jpl.nasa.gov/#mission=OCO-2.

This Level 3 data product consists of 43,698 measurements. We focus on the study region that

covers the entire United States with longitudes between 140W and 50W and latitudes between 15N

and 60N. This region includes 3,682 measurements; see panel (a) of Figure 6. These data points

are very sparse in space. As the OCO-2 satellite has swath width 10.6 kilometers, large missing

gaps can be observed between swaths. Predicting the underlying geophysical process based on data

with such patterns requires the statistical model not only to interpolate in space (prediction near

observed locations) but also to extrapolate in space (prediction away from observed locations).

Given the data Z := (Z(s1), . . . , Z(sn))
⊤, we assume a typical spatial process model:
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(b) XCO2 testing data in black.

Fig. 6. XCO2 measurements from June 1 to June 16, 2019 in the study region.

Z(s) = Y (s) + ϵ(s), s ∈ D,

where Y (·) is assumed to be a Gaussian process with mean function µ(·) and covariance function

C(·, ·). The term ϵ(·) is assumed to be a spatial white-noise process accounting for the nugget

effect with var(ϵ(s)) = τ 2 > 0. The goal of this analysis is to predict the process Y (s0) for any

s0 ∈ D based on the data Z. Exploratory analysis indicates no clear trend, so we assume a constant

trend for the mean function µ(s) = b. For this particular dataset, the assumption of an isotropic

covariance function seems to be reasonable based on directional semivariograms in Figure S.10 of

the Supplementary Material. For the covariance function C(·, ·), we assume the CH model with

parameters {σ2, α, β, ν}, where the smoothness parameter ν is fixed at 0.5 and 1.5, indicating

the resulting process is non-differentiable or once differentiable, respectively. Here we fix ν in the

Matérn and CH classes over a grid of values, since (a) estimating ν requires intensive computations

and it has often been fixed in practice (e.g., Banerjee et al., 2014; Berger et al., 2001) and (b)

the likelihood can be nearly flat (Berger et al., 2001; Gu et al., 2018; Stein, 1999, p. 173; Zhang,

2004) and hence it is notoriously difficult to estimate covariance parameters including ν with either

profile or integrated likelihood functions (Gu et al., 2018). However, estimating ν may improve

prediction accuracy in practice, which is left for future investigation.

To evaluate the performance of the CH class, we perform cross-validation and make comparisons

with the Matérn class. The testing dataset consists of (1) a complete longitude band across the

United States, which will be referred to as missing by design (MBD) and (2) randomly selected

15% of remaining XCO2 measurements, which will be referred to as missing at random (MAR).

Panel (b) of Figure 6 highlights these testing data with black grid points. This dataset is used
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for evaluating out-of-sample predictive performance in interpolative and extrapolative settings.

The remaining data points are used for parameter estimation under the Matérn covariance and

the CH covariance. The parameters are estimated based on the restricted maximum likelihood

(Harville, 1974). Table 1 shows the predictive measures and estimated nugget parameters. The

CH model with the smoothness parameter ν = 0.5 yields the smallest estimated nugget parameter

among all the models. This suggests that the CH model with ν = 0.5 best captures the spatial

dependence structure among all the models. The kriging predictions under the CH model show

lots of fine-scale or micro-scale variations, which are more desired for accurate spatial prediction.

In an interpolative setting, the Matérn covariance yields slightly smaller (but indistinguishable)

RMSPE and ALCI over randomly selected locations than the CH covariance, which indicates that

the Matérn covariance has slightly better interpolative prediction skill than the CH model in this

application. The empirical coverage probability is closer to the nominal value of 0.95 under the

Matérn covariance model. In contrast, in an extrapolative setting, the CH model yields much

smaller RMSPE and ALCI than the Matérn covariance model with indistinguishable empirical

coverage probabilities, which indicates that the CH model has a better extrapolative prediction skill

than the Matérn covariance model. These prediction results are not surprising, since the Matérn

class can only model exponentially decaying dependence while the CH class can offer considerable

benefits for extrapolative predictions while maintains the same interpolative prediction skill as the

Matérn class. The difference in interpolative prediction performance between the CH class and the

Matérn class is negligible, in part because the CH class can yield asymptotically equivalent best

linear predictors as the Matérn class under conditions established in Theorem 7. Notice that the

empirical coverage probabilities under all the models are less than the nominal coverage probability

0.95, this is partly because uncertainties due to parameter estimation are not accounted for in the

predictive distribution. A fully Bayesian analysis may remedy this issue.

For other model parameters shown in Table S.4 of the Supplementary Material, we notice that

the estimates of the regression parameters under the two different covariance models are very
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similar. As expected, the estimated variance parameter (partial sill) is larger under the CH class

than the one estimated under the Matérn class. Perhaps the most interesting parameter is the tail

decay parameter in the CH class, which is estimated to be around 0.38. This clearly indicates that

the underlying true process has a polynomially decaying dependence structure. As Gneiting (2013)

points out, the Matérn class is positive definite on sphere only if ν ≤ 0.5 with great circle distance.

To avoid this technical difficulty, we use chordal distance for modeling spatial data on sphere when

ν > 0.5, since it was pointed out on pages 71-77 of Yadrenko (1983) that chordal distance can

guarantee the positive definiteness of a covariance function on Sd×Sd when the original covariance

function is positive definite on Rd+1 × Rd+1.

Table 1. Cross-validation results on the XCO2 data based on the Matérn covariance model and
the CH covariance model. The measures in the first coordinate correspond to those based on MAR
locations for interpolative prediction, and the measures in the second coordinate correspond to
those based on MBD locations for extrapolative prediction.

Matérn class CH class

ν = 0.5 ν = 1.5 ν = 0.5 ν = 1.5

τ 2 (nugget) 0.0642 0.2215 0.0038 0.1478

RMSPE 0.672, 1.478 0.675, 1.599 0.676, 1.263 0.735, 1.227

CVG(95%) 0.952, 0.929 0.952, 0.951 0.944, 0.921 0.878, 0.937

ALCI(95%) 2.533, 5.095 2.536, 5.044 2.543, 4.722 2.098, 4.855

Next, we predict the process Y (·) at 0.25◦ × 0.25◦ grid in the study region. The parameters

are estimated based on all the data points under the CH class and the Matérn class with the

smoothness parameter fixed at 0.5. In Figure S.11 of the Supplementary Material, we observe

that the optimal kriging predictors over these grid points under the CH covariance model generally

yield smaller values than those under the Matérn covariance function model in large missing gaps

except for certain regions such as the Gulf of Mexico. More importantly, we also observe that

the CH covariance model yields 10% to 20% smaller kriging standard errors than the Matérn

covariance model in the observed spatial locations and contiguous missing regions. This indicates

that the CH covariance model has an advantage over the Matérn covariance in terms of in-sample

prediction skills and in an extrapolative setting (such as large missing gaps). Prediction in an
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Fig. 7. XCO2 data and kriging predictions based on the CH model.

interpolative setting (such as locations near the observed locations) shows that the CH class yields

indistinguishable (no more than 2%) kriging standard errors compared to the Matérn class. It

is clear to see that the CH class is able to show lots of fine-scale variations in the kriging map,

which is a desirable property for prediction accuracy. This is partly because the nugget parameter

under the CH covariance is estimated to be much smaller than that under the Matérn covariance

and partly because the polynomially decaying dependence exhibited in the CH class can better

utilize information at both nearby locations and distant locations to infer such fine-scale variations.

Finally, Figure 7 shows the optimal kriging predictors and associated kriging standard errors at

0.25◦ × 0.25◦ grid in the study region. These kriging maps help create a complete NASA Level 3

data product with associated uncertainties, which can be further used for downstream applications

such as CO2 flux inversion.

6 Concluding Remarks

This paper introduces a new class of interpretable covariance functions called the Confluent Hy-

pergeometric class that can allow precise and simultaneous control of the origin and tail behaviors

with well-defined roles for each covariance parameter. Our approach in constructing the CH class

is to mix over the range parameter of the Matérn class. As expected, the origin behavior of this CH

class is as flexible as the Matérn class. The high-frequency behavior of the CH class is also similar

to that of the Matérn class, since they differ by a slowly varying function up to a multiplicative

constant. Unlike the Matérn class, however, this CH class has a polynomially decaying tail, which
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allows for modeling power-law stochastic processes.

The advantage of the CH class is examined in theory and numerical examples. Conditions

for equivalence of two Gaussian measures based on the CH class are established. We derive the

conditions on the asymptotic efficiency of kriging predictors based on an increasing number of

observations in a bounded region when the CH covariance is misspecified. We also show that

the CH class can yield an asymptotically efficient kriging predictor under the infill asymptotics

framework when the true covariance belongs to the Matérn class. It is worth noting that the

CH class itself is valid and can allow any degrees of decaying tail, while the asymptotic results

of the MLE for the microergodic parameters are proven for α > d/2. Investigation of the similar

theoretical result on the MLE is elusive for the case α ∈ (0, d/2]. Extensive simulation results show

that when the underlying true process is generated from either the Matérn covariance or the GC

covariance, the CH covariance can allow robust prediction property. We also noticed in simulation

study that the Matérn class gives worse performance than the CH class when the underlying

true covariance has a polynomially decaying tail. In the real data analysis, we found significant

advantages of the CH class when prediction is made in an extrapolative setting while the difference

in terms of interpolative prediction is indistinguishable, which is implied by our theoretical results.

This feature is practically important for spatial modeling especially with large missing patterns.

Future work along the theoretical side is to establish theoretical results of the CH class under the

increasing domain asymptotics.

This paper mainly focuses on theoretical contributions and practical advantage of the CH class.

Common challenges in spatial statistics include modeling large spatial data and spatial nonstation-

arity, which are often tackled based on the Matérn class in recent developments (e.g., Lindgren

et al., 2011; Ma and Kang, 2020). The proposed CH class can be used as a substantially improved

starting point over the Matérn class to develop more complicated covariance models to tackle these

challenges. Several extensions can be pursued. It is interesting to extend the proposed CH class

for modeling dependence on sphere, space-time dependence, and/or multivariate dependence (e.g.,
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Apanasovich et al., 2012; Ma and Kang, 2019; Ma et al., 2019). Prior elicitation for the CH class

could be challenging. It is also interesting to develop objective priors such as reference prior to

facilitate default Bayesian analysis for analyzing spatial data or computer experiments (Berger

et al., 2001; Ma, 2020).

The CH class not only plays an important role in spatial statistics, but also is of particular

interest in UQ. In the UQ community, a covariance function that is of a product form (e.g., Sacks

et al., 1989; Santner et al., 2018) has been widely used to model dependence structures for computer

model output to allow for different physical interpretations in each input dimension. The product

form of this CH covariance can not only control the smoothness of the process realizations in

each direction but also allow polynomially decaying dependence in each direction. The simulation

example in Section S.6.2 of the Supplementary Material shows significant improvement of the

CH class over the Matérn class and the GC class. Predicting real-world processes often relies on

computer models whose output can have different smoothness properties and can be insensitive

to certain inputs. This CH class can not only allow flexible control over the smoothness of the

physical process of interest, but also allow near constant behavior along these inert inputs. Most

often, predicting the real-world process involves extrapolation away from the original input space.

The CH covariance should be useful in dealing with such challenging applications.

Supplementary Materials

The Supplementary Material contains seven parts: (1) illustration of timing for Bessel function

and confluent hypergeometric function, (2) 1-dimensional process realizations for the Matérn class

and CH class, (3) ancillary results that are used to prove the main theorems, (4) technical proofs

omitted in the main text, (5) simulation results that verify asymptotic normality, (6) additional

simulation examples referenced in Section 4, and (7) parameter estimation results and figures

referenced in Section 5. Computer code for the real data analysis is also available as a .zip archive.
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