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The authors are to be congratulated for this timely and important review of graphical mod-
els, which remains a fundamental building block for network estimation in diverse applications,
including in genomics and neuroimaging, which the present article highlights. Throughout, the
authors focus on Bayesian methodology, which makes probabilistic quantification of uncertainty
automatic, but also typically results in more challenging computation. Within the Bayesian
paradigm, the authors’ treatment is comprehensive and current for the most part. In what
follows, I comment on a few specific aspects of the article and point out a few more related and
recent developments.

1 Structured versus unstructured sparsity in undirected Gaus-
sian graphical models and on the question of posterior con-
centration

Just as in the case of Bayesian variable selection in linear models using point mass mixture
priors with a delta function spike at zero, a distinction can be made among possible approaches
for graphical models depending on whether one desires exact zeros in the inferred precision
matrix. Exact zeros are pleasing and easier to interpret, but their practical implementation
often calls for additional assumptions such as decomposability. For undirected graphical mod-
els, this assumption is tantamount to: a chordless cycle of length four or more is not allowed
(Lauritzenl (1996, p. 9). I do not know and cannot think of any biological motivation behind
such a restriction. Indeed, as the authors point out, this restriction stems from the fact that
calculating the normalizing constant for general graphs is NP-complete whereas for certain de-
composable graphs (such as trees) this can be accomplished in polynomial time. If one is willing
to dispense with exact zeros, an alternative to modeling without this structural assumption of
decomposability is with continuous shrinkage priors, of which the authors refer to the Bayesian
graphical lasso (BGL) model and the associated sampling algorithm of Wang (2012)), which is
a graphical application of the popular Bayesian lasso prior of |Park and Casella (2008). While
it is true that the posterior mode of the Bayesian graphical lasso corresponds to the frequentist
graphical lasso estimate (Friedman et al., [2008)), the picture is far less rosier if one takes a
more nuanced look at the entire posterior. A useful warning, although in the context of linear
regression models rather than in graphical models, is by Castillo et al.| (2015]), who have this to
say: “the LASSO is essentially non-Bayesian, in the sense that the corresponding full posterior
distribution is a useless object.” Thus, it should come as no surprise that these poor posterior



concentration properties might be inherited by BGL, as [Banerjee and Ghosal (2015) indeed
suggest. Li et al. (2019) recently proposed the graphical horseshoe (GHS) prior, an application
of the popular global-local horseshoe prior (Carvalho et all [2010)) to the problem of unstruc-
tured precision matrix estimation in Gaussian graphical models (GGMs). These priors have
been extensively researched over the last decade; see Bhadra et al. (2019b} 2020) for through
reviews. The empirical observation of [Li et al. (2019) is that GHS demonstrates considerably
superior performance over both state of the art frequentist (e.g., glasso) and Bayesian (e.g.,
BGL) alternatives. However, they did not study posterior concentration properties of the GHS.
Uncertainty quantification and frequentist properties of the horseshoe prior in linear models
have been established recently in a series of extensive studies (van der Pas et al.l 2017} van der
Pas et al., 2016)), which makes one wonder whether these properties hold in graphical models as
well. This is indeed the case, and [Sagar et al.| (2021) establish posterior concentration results
under both horseshoe and the closely related horseshoe-like (Bhadra et al., 2019a)) priors in
GGMs. They also provide fast point estimation algorithms under the same prior—penalty dual.
Zhang et al.| (2021]) also consider the GHS model, and establish the consistency of the pseudo
posterior, as opposed to the full posterior handled by Sagar et al.| (2021). Both [Zhang et al.
(2021) and [Sagar et al.| (2021) work under the framework of posterior concentration as framed
in Banerjee and Ghosal (2015]) for point mass mixture priors, and remain among the first works
to address the question of posterior concentration for unstructured sparse undirected GGMs.

Similar questions on posterior concentration could be asked in directed graphical models
under unstructured sparsity, and I believe this area to be still open to further exploration
at present. Banerjee and Ghosal (2015) developed the framework of posterior concentration
under which both Zhang et al.|(2021) and Sagar et al. (2021)) operate. However, as the authors
noted, estimation of directed graphical models usually proceeds via node conditional regressions,
where the coefficients may or may not be covariate dependent. Thus, I expect there might be
some additional hurdles to overcome before an application of the Banerjee and Ghosal| (2015)
approach is possible for partial regression based estimates of directed GGMs.

2 Bayesian inference in multiple GGMs: scalability in terms of
the number of categories

The authors do an excellent job of reviewing the current state of the art in Bayesian estimation
of multiple GGMs. The approaches based on Markov random field (MRF') priors to connect the
multiple graphs are among the most natural and indeed philosophically pleasing, similar to a
spike-and-slab prior with a point mass at zero for sparse linear regression problems. However, for
the fully Bayesian approaches such as|Peterson et al. (2015)), scalability in terms of the number
of groups K appears to remain a major hurdle. Most papers the authors cited, and the multiple
myeloma application considered in this paper, concern 3 or 4 categories. The authors point out
the main reason for this problem: the computation of the normalizing constant is intractable
under an MRF prior when K is large, the lack of which unfortunately makes model comparison
via Bayes factors very difficult or even impossible. The doubly intractable procedures do offer a
possible workaround, but I am not completely convinced regarding their scalability at present.

A recent alternative is by [Yang et al.| (2021), who seem to have gotten around this problem
using the spike-and-slab lasso prior. However, their approach only gives the posterior mode via
an expectation-maximization (EM) algorithm and cannot be labeled as fully Bayesian. Thus,
it appears there remains a distinct lack of scalable (in terms of K) approaches for multiple



undirected GGMs in the Bayesian literature and some more thoughts or suggestions from the
authors regarding how to approach this bottleneck would have been very useful.

3 Moving beyond an assumption of normality

It is easy enough to be seduced by the rich literature on Gaussian graphical models to forget
that normality is in fact a crucial assumption that is often violated in practice. Indeed, my
experience is that simple marginal ¢—q plots or Kolmorov—Smirnov tests often indicate signifi-
cant departures from normal marginals for genomic data, which also invalidate an assumption
of multivariate normality. The authors refer to some Bayesian literature in undirected models
robust to an assumption of normality; prominent among them are Finegold and Drton| (2011},
2014)) who worked with t-distributed marginals and Bhadra et al| (2018]), who introduced a
flexible framework of conditional sign independence via random scale transformations of non-
normal margins. Conditional sign independence is a weaker form of Markov property compared
to conditional independence (the strongest) and conditional uncorrelatedness (intermediate),
where one can make statements concerning the signs of the random variables, but not nec-
essarily regarding their magnitudes. However, the framework of Bhadra et al. (2018]) is very
flexible in two main ways: (a) each marginal is modeled as a normal scale mixture in a data-
dependent manner, independently of each other and (b) the inferred sign independence holds
among the observed variables, as opposed to through some underlying latent GGMs (e.g. Pitt
et al., 2006). Under certain special cases, such as where the same scaling variable is used across
all margins, one recovers a conditional correlation network as in [Finegold and Drton| (2011). If
all scaling variables are identically equal to one, the model reduces to the usual GGM. The fact
that the strongest Markov property of conditional independence is only achievable under the
strictest assumption of multivariate normality is not surprising, but often overlooked.

However, similar departures from normality can certainly occur in several other problems
highlighted by the authors, such as in directed or multiple graphical models. A notable recent
work in this direction is by |(Chakraborty et al. (2021), who introduced the framework of sign
independence of Bhadra et al.| (2018)) into the chain graph models considered by [Ha et al.
(2021)), thereby allowing for non-normal marginals in modeling multiplatform genomic data
arising from non small cell lung cancer. This is an important step, since for multi-platform
genomic data that respect a chain graph hierarchy, Chakraborty et al.|(2021) fit a joint model
for copy number aberrations, mRNA expressions, protein expressions and drug responses; and
non-normality can appear in multiple layers. Barring a few exceptions such as this, it is my
opinion that inference robust to an assumption of normality is a highly untapped subfield of
graphical models research, where methodological breakthroughs might lead to real biological
impact.

4 Concluding remarks

I conclude by reiterating that I thoroughly enjoyed reading this timely and comprehensive
review article. As a fellow Bayesian, I commiserate on the feeling that we are always playing
“catch up” in terms of computational speed and scalability, never mind that the focus is not
on obtaining merely a point estimate. However, I also believe these very same computational
and methodological challenges keep us in business! Many of these leads and challenges in the
context of graphical models have been expertly outlined by the authors.
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