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Abstract

With the development of Micro-/Nanoelectromechanical systems (MEMS/NEMS), the friction problems
at micro/nanoscale induced the failure of many devices in MEMS. The basic model of atomic-scale friction
and associated advancement of experimental research were reviewed in this paper. Two common atomic-
friction behaviors, i.e. stick-slip and super-lubricity friction were also discussed here. Challenges and
promising points for future research in atomic-scale friction were enumerated.
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Introduction

Micro-/nanoelectromechanical systems
(MEMS/NEMS) are an important part of the
integrated circuit industry and MEMS/NEMS
devices like accelerators and resonators have been
extendedly applied from the aerospace, automobile
industry to the biomedical industry [1]. Due to
the miniaturization of these devices, numerous
tribological phenomena also happen at micro/
nanoscale. For instance, as shown in Figure 1, the
continuous friction and wear would induce surface
damage in MEMS devices. The surface roughness
was enhanced by the friction between the silicon
sidewall of MEMS device and the on-chip actuator
under oscillation, indicated by the circle in Figure
1a[2]. And the friction and wear reduce the lifetime
of the microactuators and make the device fail in
less than 10* cycles [3]. Stiction also could induce
the fracture of the freestanding cantilever in a

comb drive (Figure 1b) [4]. Besides, the friction and
wear problems are easy to be induced due to the
mechanical contact in micro-gears with high-rate
rotation [5] and between the rotor and the statorin
electrostatic motors [6]. High stiction at the rotor-
stator interface limits the operation repeatability in
the electrostatic micromotors [7]. The contact-type
MEMS switches also require low surface resistance
and low friction [8,9]. The strong adhesion or the
contact damage directly deteriorate the reliability
of the microcontact in MEMS switches [10]. Stiction
and wear issues between the yoke and electrode
directly influence the operation reliability of
micromirror devices [11]. Thus, investigating the
friction mechanism is critical to control the damage
of devices and improve the feasibility and reliability
of MEMS/NEMS like polysilicon microactuators in
the magic disk [12], silicon accelerometer in the
sensory system [13], polysilicon micro-motors
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[7], micromirror in the display device [14], and
polysilicon micro-gears in the microturbine [15].

Friction between asperities without the
participation of any lubricant is called dry friction
[16]. In many practical contacts in MEMS devices,
no extra lubricant is added and most of the friction
problems belong to the dry friction. So, atomic
friction research mainly focuses on the dry contact
of two asperities. Here, the theoretical model about
single-asperity atomic friction was introduced, and
then related experimental research about two
typical friction behaviors including the stick-slip
and superlubricity were reviewed. Finally, some
potential points about future research on atomic-
scale friction are listed. Investigating atomic friction
is expected to provide significant insights to control
the friction damage of micro-devices and their
feasibility.

The theoretical model of atomic-scale friction

Friction behaviors could be simply classified into
two types, stick-slip and super-lubricity in atomic
friction [17]. The stick-slip friction behavior could be
interpreted well by the classical Prandtl-Tomlinson
model proposed in 1920s [18]. The simplest model
is for the one-dimensional case and the friction
occurs between one tip dragged by a spring and the
materials’ surface, as shown in Figure 2. The total
energy stored in the system could be simplified
into [19].

U,o,<r,z)=Ue,f(x>+§k(x-vt)2 (1)

Where the right first part is an interaction partial

between the tip and surface and the second part is
the elastic energy stored in the spring. And the tip
located the position x of the minimum U, and the
lateral force could be expressed by [19].

27U, . 27x

-vt)=- sin ——2 (2)
a a

F, =k(x,,

and a is the lattice distance between two atoms
and k is the effective spring constant [20-22]. Later,
the one-dimensional PT model was extended and
developed further. The thermal effect and the
scanning velocity [23] or the tip shape [24] also
could influence the friction force vibration and the
PT model was required to be modified.

Forexample, the atomic friction was simplified as
one suspended atom of the tip head sliding on the
substrate in the traditional Pt model and thus the
needle tip was applied in experiments to investigate
the atomic friction [18]. However, in general, the
contact surface in real crystal materials has a two-
dimension periodicity and the interaction potential
between the tip-substrate should be considered
into a two-dimension model [25,26].

When loading conditions and friction
configuration change, the friction behavior is
expected to transit from the stick-slip to smooth
sliding with ultralow friction [27-32]. The ultralow
friction also is referred to as super-lubricity which
was firstly proposed by Hirano, et al. [33] and the
friction coefficient of superlubricity is normally
in the order of ~0.001 [34]. The theory to explain
the super-lubricity was known as the “Mechanical
Instability” [21,35]. The relation of the interaction
potential between the tip-surface and the spring

Figure 1: Tribology problems in MEMS/NEMS: a) Damaged surface induced by friction and wear in MEMS
devices. The damaged region was marked by the circle. Source: Reprinted with the permission from [2] ©2008
American Chemical Society; b) Stiction-induced fracture of the freestanding cantilever in a comb drive. Source:
Reprinted with the permission from [4] ©2002 IOP Publishing.
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Figure 2: lllustration of The Prandtl-Tomlinson Model. Source: Reprinted with the permission from [22] ©2008
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Figure 3: Friction Force Microscopy. Source: Reprinted with the permission from [39] ©2006 AIP Publishing.

stiffness is expressed by a parameter [21,22].

_27°U,
ka®

When n > 1, the model is fitted with stick-slip
friction behavior. And for n > 1, the model could
be matched with super-lubricity. The parameter
n can be adjusted by changing the normal force
[36] and the cantilever stiffness [37] to achieve
the reduction of the friction force in experimental
observation. Predicted friction behaviors and the
transition between stick-slip and superlubricity
have been revealed by efforts on the experimental
observation.

(3)

Atomic-scale friction investigated by AFM-
based technology

Generally, the friction coefficient-the ratio of the
normal force and the friction force at the dynamic
frictionstageisusedtoevaluate thefrictionbetween
two asperities. Thecritical issue for friction problems

is to measure the magnitude of the friction force.
However, the friction force is very small at micro/
nanoscale contact and the force-sensitive tool is
required to detect this small force. Based on the
concept of atomic force microscopy (AFM), friction
force microscopy or lateral force microscopy
(Figure 3) has been invented to determine the
friction force between a rigid tip and the contact
surface [38,39]. The principle to measure the force
is to measure the vertical deflection and torsion of
the cantilever using sensitive photosensors. With
the aid of friction force microscopy, the friction
behavior at atomic scale could be revealed and
abundant friction researches have been carried out
in previous decades [40]. Numerous MEMS devices
are fabricated from silicon (Si)-based materials [41].
Zhang, et al. [42] found that the nanoscale friction
behaviors are dominated by the nano-sliding with
a low friction coefficient between two-body silicon
contact when the surface deformation is within the
adhering regime. Using friction force microscopy,
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Figure 4: Stick-Slip Friction on Metal Surface and in 2D materials: a,b) The stick-slip friction on the copper (111)
surface. Source: Reprinted with the permission from [68] ©1999 American Physical Society; c,d) The stick-
slip friction behaviors in Graphene and MoS,. Source: Reprinted with the permission from [53] ©2006 The
American Association for the Advancement of Science.

Schirmeisen, et al. investigated the temperature-
related point contact frictional behaviors on
silicon wafer and found that the friction exhibits
a logarithmic sliding velocity-dependence below
150 K but keeps nearly-constant above 150 K [43].
Later, Marchetto, et al. [44] found that the nano-
pattern on silicon surface can effectively lower
the friction coefficient and avoid wear in the two-
dimensional flat contact of silicon by AFM-based
friction tests. Silicon carbide (SiC) is an important
substitute material for silicon to be applied in
MEMS devices. Zum Gahr, et al. [45] found that
the friction coefficient in nanoscale SiC friction is
independent of the humidity [46]. Compared to Si,
SiC with high hardness exhibits low friction and less
wear under low normal loads [47]. But the plastic
deformation and wear are supposed to be induced
on SiC surface when the normal load increases to
the load regime applied in MEMS devices (> 100
nN) [48].

Using friction force microscopy, the atomic-scale
stick-slip behavior in the vacuum has been observed
in many materials. As shown in Figure 4a and Figure
4b, the lateral force along the (110) direction on Cu
(111) surface showed a typical zigzag change with
theslidingdistance [49]. The probingtip was covered
by the native oxide layer to reduce the adhesion
effect and chemical reaction between the tip and
substrate in the friction experiments [49]. Some Cu

atoms were expected to transfer to the silicon tip
and the friction transited to the contact between
copper and copper. However, there lacks of a deep
understanding of the diffusion phenomenon on the
interface. The morphology of copper (111) surface
was captured during the scanning of the silicon,
which was based on the imaging of AFM. The
wavelength (2.5 angstroms) of the stick-slip friction
was consistent with the lattice period of the copper
along (110) direction on (111) plane (Figure 4a and
Figure 4b). Diamond, as a superior wide-bandgap
semiconductor material with excellent mechanical
properties, has been widely applied in MEMS
sensors [50]. The stick-slip was also reported in the
friction on diamond surface and the researchers
found that the hydrogen-termination treat could
effectively reduce the friction magnitude [51]. This
stick-slip friction behavior also has been discovered
in many two-dimensional (2D) materials [52]. For
example, graphene and molybdenum disulfide
(MoS,) exhibited lattice stick-slip friction and
friction singles increased with the thinning of 2D
material sheets (Figure 4c and Figure 4d) [53]. The
number marked in the figure showed the change
of the layer number of the sheet. The intrinsic
mechanism of the friction-thickness dependence
is contributed to the surface deformation of 2D
materials. When the thickness decreased, the
interaction between the tip and the top raised
which induced the buckling of the top surface.

Wang X, Mao SX (2021) Advances in Atomic-Scale Frictions with Stick-Slip and Super-Lubricity. Int J Metall Met Phys 6:069
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Figure 5: Super-lubricity Friction: a) The orientation-dependence friction behavior between two mica sheets.
Source: Reprinted with the permission from [54] ©1991 American Physical Society; b) The super-lubricity in
MosS,. Source: Reprinted with the permission from [55] ©1993 American Physical Society.

And the sliding of the tip became harder and
the energy dissipation increased. The presence
of ultralow friction is related to the orientation
between two asperities. Hirano, et al. [54] found
the orientation-dependence friction behavior
between two atomistically-flat mica sheets. The
change period of the friction force matched with
the lattice symmetry and the ultralow friction force
exited when the lattice misorientation was about
30 degrees, as shown in Figure 5a [54]. The super-
lubricity also was found in many 2D materials,
as shown in Figure 5b [55]. The interaction
between the scanning tip and surface is expected
to be very weak when the contact occurred at a
certain orientation or scanning direction [33]. The
superlubricity with friction coefficient ~0.003 has
beenreportedin contact between graphene-coated
silica nanoparticles and graphene and hexagonal
boron nitride substrates [56,57]. Besides, surface-
termination/passivation to change the surface
properties of materials is a significant approach
to lower the friction and achieve superlubricity.
Diamond-like carbon (DLC) film with high hardness,
as an excellent coating, was applied to improve
the frictional properties of devices [58]. Later,

researchers found that the hydrogen termination
treatment leading to form the hydrogenated-DLC
films could passivate the dangling bonds of carbon
atoms and give rise to superlubricity [59,60]. DLC
films synthesized from the hydrogenated plasmas
vapor deposition could also effectively reduce the
friction and lead to superlubricity [61]. The ultralow
friction coefficients can be obtained through the
passivation of dangling covalent bonds of diamond
films favored by oxygen or humid air [62]. If there
exists a strong thermal effect during the friction
process, the thermal excitations significantly benefit
the contact between asperities to overcome the
energy barrier of sliding, contributing to a reduction
of the friction forces of contacts [63]. The thermal
jump rate of the tip could move on the surface with
a very low energy barrier. But for strong interaction
potential between the tip and surface, the thermal
effect becomes weak and the tip motion exhibited
the stick-slip behavior again [64]. To achieve super-
lubricityisimperative tolowertheenergydissipation
and extend the service life of devices. Superlubricity
with ultralow friction has been realized in potential
devices of nanoelectromechanical systems (NEMS)
by experimental research such as ultralow-friction
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c) Schematic of the MEMS device for force measurement. Source: Reprinted with the permission from [75]
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nanoscale linear bearings formed by multiwall
carbon nanotubes [65], tunable nanoresonators
constructed by telescoping nanotubes [66], and
nanoscale rotational actuator incorporating a metal
plate with carbon nanotubes [67].

In-situ TEM observation on atomic-scale
friction

However, the structure characteristic of the
friction surface could only be captured by AFM
imaging and the real structure evolution of two
asperities cannot be revealed by friction force
microscopy. Transmission electron microscopy
(TEM) provides a window to capture the structure
change of friction asperities and record the real-
time friction process. How to achieve investing the
friction under TEM observation is still a challenge
for atomic-friction research, which depends on
the development of in-situ TEM techniques.
For example, a movable probe was successfully
designed in the TEM holder and the motion of
the probe was controlled by a low-velocity motor

(Figure 6a) [68]. The minimum step of the probe’s
motion along the sliding direction is 0.16 nm and
the time resolution of the video is 1/60 s [68].
The real-time evolution of the cross-section of Au
junction could be recorded by this technique [68].
However, the motion of the probe is confined in
one direction and the relative motion between two
asperities is hard to carry out. Based on the similar
principle of scanning tunneling microscopy, a more
flexible control [69] was designed to activate the
probe movable (Figure 6b) [70] in three dimensions
and the friction between two asperities could be
realized [69,71].

Although the friction phenomenon has been
recorded by in-situ TEM imaging, the force
evolution is still required to be measured by an
extra force detection system. AFM is a powerful
tool to measure the small force and implanting AFM
cantilever into TEM [72] provides an ideal method
to evaluate the force at atomic-scale (Figure 6c¢)
[73]. A similar system with two force sensors was

Wang X, Mao SX (2021) Advances in Atomic-Scale Frictions with Stick-Slip and Super-Lubricity. Int J Metall Met Phys 6:069
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Figure 7: Observing the motion of DLC wear particles and recording the friction force evolution under in-situ
TEM. Source: Reprinted with the permission from [74] ©2018 IOP Publishing.

invented to measure the friction and normal force
at the same time during the TEM observation [74].
The speed of the probe isabout 10 nm min™*[74]. For
example, the simultaneous change of the friction
force between two silicon surfaces covered with
diamond-like carbon (DLC) (Figure 7) was captured
by the developed MEMS devices under in-situ TEM
[74]. There exited three main mechanical behaviors
including the rolling, the slipping, and the sticking
of particles between the contacting surfaces were
successfully captured and the movement of the
wear particle mediated the friction process [73].
The detection precision about the force reaches
the level of nN and the movement velocity of the
probe can be adjusted within 1-500 nm s* [73].
These in-situ researches under TEM observation
focus on the plastic deformation of asperity like
the formation and fracture of the neck between
asperities [74,75] or wear [76]. However, the
atomic- scale observation about the well-defined
interface structure, directly affecting the frictional
behaviors has not been acquired. Some pioneer

experiments have revealed the surface defects like
the step has significant effects on friction [22] but
the real-time evolution on the interface and the
dynamic interaction between the sliding probe and
the surface step has not been visualized.

Summary and Outlook

The P-T model provides a simple theory to
understand the atomic friction and the developed
model can be applied to explain two typical
atomic-friction behaviors, i.e. the stick-slip and
superlubricity. They have been reported by
much experimental research through AFM-based
technology. The transition between these two
behaviors can be explained by the parameter n
which can be adjusted by changing the friction
configuration and loading conditions. Furthermore,
advanced in-situ TEM provides new opportunities
to investigate the contact evolution during
friction and the relations between the interface
and friction force evolutions can be built up by
combining the force-measurement system under
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TEM observation. However, some challenges and
key points, which are of potential interest for future
research in atomic-scale friction, are required with
much attention to be overcome.

e The real-time atomic-scale observation on the
interface between asperities is still a challenge
for friction research, and smart methods
especially for in-situ high-resolution TEM
technologies, are expected to be proposed.

e Lowering the drift effect [77] and improving
the accuracy of force measurement [78] are
significant to extend the in-situ technologies
for future atomic-scale friction research.

e |tis well-known that the materials’ properties
may experience huge transition when the
size of the asperities reduces to nanoscale or
even smaller [79,80]. Multiple technologies
will be required to characterize the complex
interface phenomenon such as sliding-
induced diffusion or segregation [81] in alloy
systems in atomic-scale friction.

e Extending the revealed friction mechanism
at atomic-scale to macroscopic application
demands the future advancement of the
theoretical model and experimental designs
considering the practical environment in
friction systems.
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