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Abstract—The Internet landscape is progressively transition-
ing towards a flat hierarchical model to prune multiple Internet
Service Provider (ISP) tiers. At the core of this transition is
settlement free peering, which plays a critical role in mediating
traffic exchange among ISPs. It is pertinent to take a closer look
at peering and accurately emulate their operative model into
a computation model that enables a concrete characterization
without losing generality. In this paper, we utilize publicly
available data-sets to identify the importance of several factors
that play role in the peering process. We conduct a detailed
analysis on the relationship of ISPs and their motivation behind
selecting a peer ISP and use these findings to develop a Machine
Learning (ML) based model that identifies feasible peering
relationships. Preliminary results show a high correlation to
the ground truth.

Index Terms—Network Economics; ISP Peering; Inter-ISP
routing; Network Measurement; Machine Learning

I. INTRODUCTION

ISPs around the world rely on each other through transit
and peering relationships for global connectivity. Transit ISPs
often possess an enormous network which other ISPs can use
to gain paid access to the Internet. The peering model, on the
other hand, operates in a more collaborative manner, often
leading to a settlement-free “exchange of service” type of
contract. Different kinds of interconnections have their pros
and cons, and ISPs may choose one over the other depending
on their requirements and expectations.

“Peering is like dating” [39]: Two ISPs meet and assess
if they should be peering, and if they do decide to peer but
it does not work, they de-peer. While this brief description
fails to capture the entire peering model, multiple surveys
reveal that it is in fact not that far from the truth [50], [51],
[38]. Many different channels, such as forums, email, and
PeeringDB, can be used to contact other potential peer ISPs;
however, selecting a viable candidate and then setting up
an acceptable peering agreement involves surprising amount
of human involvement, even today. The entire process can
take months, which means that peering agreements are not
dynamic enough, and can stay sub-optimal due to the large
number of steps and bulky amount of paperwork needed
to set them up. The need for a faster and more efficient
peer selection model becomes more obvious as we look into
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the benefits of peering and how it is changing the Internet
architecture over time [16], [25], [32], [40], [6], [20], [49].
The focus of this paper is not to discuss the importance
of peering but to present a new research direction for its
automation. Multiple large scale data-sets (CAIDA [11],
PeeringDB [42], RIPE [36], RouteViews [44], etc.) with
measurements from over a decade offer a great opportunity
to take a data-centric approach in making peering decisions.

Though there is a recent realization of the need to better fa-
cilitate peering relationships [15], [35], most peering-related
studies stayed in the analysis stage. Game-theoretic ap-
proaches focus mostly on economic analysis by considering
both routing and congestion cost [46] to study the capacity
and pricing decisions made by service providers [47]. Earlier
works focused on formulating an optimal peering problem
to determine the maximum peering points along with their
strategic placement or a negotiation-based platform for ISPs
to jointly determine routing path for traffic exchange [28],
[34]. As steps towards understanding Internet-wide negotia-
tion mechanisms, the goal of these studies was minimizing
the interconnection cost without any loss of service quality.

The Internet traffic is highly volatile. An ISP admin can
make estimations about internal traffic flows but external
behavior is unpredictable. This implies that peering relations
are often established based on speculations and trust among
ISPs. To avoid future disputes, ISPs typically undergo a tem-
porary “trial peering” period of several weeks to determine
the exchanged traffic amount and patterns before provisioning
the long-term peering session [10]. Adding to the already
long process of peering setup, this does not leave much
room for peering-based dynamic traffic engineering, which
is taking place in the order of hours or minutes.

Operators are reporting an increase in periodic traffic
surges as a result of, for example, software and game releases
[9], [27]. In case of such surges or link failures, the ability
to dynamically form short-term peering relations can help
ISPs in traffic engineering. Available data can reveal temporal
and spatial peering trends and help network administrators in
choosing the right peer, at the right locations, and the right
time, with the correct specifications. The extent to which
this can be achieved needs more exploration. Towards such
dynamic and automated peering, we present an analysis and
the use of PeeringDB in suggesting peers such that these
recommendations align with the industry expectations.



A. Contributions

Selecting the right candidates for peering requires a multi-
level investigation in terms of compatibility and feasibility.
Even in this age of automation, this decision is often made
using personal connections, which can raise questions on its
reliability and optimality. Formulating the peering decision
problem is complicated and the best solution may not be
as simple and straightforward. To find good peers, we first
need a contextual and formal definition of good, which
may vary regionally or within ISPs. We try to unfold the
different aspects attached to this problem, and explore how
the vast amount of available data from decades of Internet
measurement research can help us reach a universal solution.
To that end, we present an ML-based model that uses multiple
data-sets to construct a comprehensive feature set and gener-
ate peering recommendations. Its performance reassures our
confidence in the use of ML in network optimization tasks.

Our key contributions can be summarized as follows:

« Explore the potential of a data-driven approach towards
making an informed peer selection.

« In-depth analysis of PeeringDB data to observe peering
trends and identify common expectations that ISPs have
while peering. This is an important step to make sure
that the model we design is inherently in line with the
industry practices and the overall ISP business model.

o Development and evaluation of an ML-based classifier
that recommends if two Autonomous Systems (ASes)
should establish a peering relation. Our modeling ap-
proach achieves 85% accuracy when validated using
CAIDA AS-Relationships data-set.

The rest of the paper is organized as follows: Section
IT discusses several relevant research and data-sets on ISP
peering and its management, Section III highlights some of
the key observations from an analysis of the PeeringDB data,
Section IV presents a ML model that identifies potential
peering candidates for an AS, and finally, Section V show-
cases the potential of such a model while listing some of the
limitations.

II. RELATED WORK

There has been a sizable amount of work on facilitating
and reducing the setup costs of inter-ISP peering relations.
Route Bazaar [15] and Dynam-IX [35] provide a multi-
layered platform to Internet eXchange Point (IXP) members
for a more efficient inter-ISP communication and connection
establishment. “Picking a Partner” provides a blockchain-
based AS scoring that can help in reliable peer selection [3].
GENIX is a framework that uses a public networking test-
bed (GENI) to emulate IXPs [37]. This can be particularly
helpful in recreating internal traffic scenarios and testing the
performance of different automation tools.

A large number of papers exist on inter-AS routing and
peering measurement. In particular, the measurement stud-
ies focusing on IXPs are the most relevant to our work.
R. Kloti et al. presents the first comparative analysis of

three IXP databases (PeeringDB, Euro-IX, and PCH) [29]
and highlights their key characteristics. In-depth analysis
of PeeringDB and what it reveals in terms of the peering
ecosystem has also been explored [32]. Many researches
focus on the internal activities of IXPs, their evolution,
and their impact on the overall Internet architecture. Some
of these conduct elaborate studies, clear misunderstandings,
and reveal surprising facts that were previously unknown
[14], [1], [2], [16], [24]. Similarly, “Try Before You Buy”
provides a network test-bed that is designed to experiment
with inter-AS relations using Software-Defined Networking
(SDN) [45]. Cardigan [48] is a distributed router that uses
‘routing as a service’ abstraction for reducing operational
complexity. Endeavour and a Software-Defined IXP (SDX)
present and evaluate an SDN-based IXP architecture that
can give administrators more control in traffic engineering
[26], [4]. These prior efforts focused on the management of
peering relationships once a peering decision has been made
by an ISP, while our work primarily focuses on automating
the peering process by providing tools to help ISPs before
their peering decisions. Meta-Peering, our prior work, takes
a step in the same direction and presents a tool that can help
network administrators in selecting feasible peering locations
[18] by formulating it as an optimization problem. In this
paper, we use an ML-based data-driven approach to model
which factors influence the peering decisions.

While the majority of the researches study the AS network
and present an in-depth analysis of their evolution over time
[30], [20], [23], [19], some studies focus on the types of dis-
putes, issues, and complexities that exist in the peering mar-
ket among different stakeholders [43], [21], [31], [5], [52].
Packet Clearing House (PCH) and CAIDA have conducted
large scale surveys with network administrators in an effort
to understand the peering trends and the AS relationships.
Some of the well-maintained and high dimension data-sets,
and network tools available to the public include PeeringDB,
CAIDA (multiple data-sets), PCH [41], Euro-IX [22], Route-
Views, BGPStream, Route Atlas. In this paper, we primarily
rely on PeeringDB historical data dumps and two data-sets
from CAIDA (AS Relationships and AS Rank).

III. UNDERSTANDING PEERING TRENDS

In order to understand what matters in a peering deal
from an administrator’s point of view, we construct an AS
profile directory using PeeringDB and CAIDA AS-Rank [12],
and identify the AS pairs that are peering according to
CAIDA AS-Relationships data [13]. Although PeeringDB
does not guarantee complete accuracy, its usage in under-
standing peering trends is justified because of the fact that this
information is provided by ISPs themselves. For example, an
ISP advertising only a subset of its Point-of-Presence (PoP)
locations is probably willing to peer at those locations only.
For the purpose of this paper, we focus only on ISPs with at
least three PoPs in the United States since peering trends that
we are studying can be relative to their respective regions.
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Fig. 1: Percentage of AS pairs peering according to CAIDA
AS Relationship data

TABLE I: Frequently asked requirements by ASes

Requirements % of ASes

24*7%365 Support 37
No static route/ default route 11
Accurate peeringDB entry 14
IPv6 Peering Required 48
Multilateral/Bilateral Preference 8
Do not announce third party routes. 40
(Only self customer cone)
Minimum geographic presence (peering

. 28
at least in PoP count)
Interconnection speed at each point 18
Provide security; handle DDoS and abuse 48
Traffic ratio (in-bound: out-bound) 8
Routes registered in IRR, RIPE, ARIN 20

Some ISPs post their peering expectations and require-
ments on peeringDB. In some cases these are posted in the
optional “notes” section, and sometimes as a web-page link
or an email address which can be contacted for information.
Out of 1,295 ASes in the US, we found that only 262 have
publicly posted their requirements clearly. While there is no
set standard for such reporting, we observe that most ISPs
share the same set of requirements. We noticed that a large
number of ISPs are concerned about IPv6 peering, round-the-
clock support, and substantial security. Table I shows some
more detail about these requirements. The percentage values
reported are corresponding to 262 ASes that have publicly
posted their requirements.

A. ISP Types and Peering

We analysed peering trends among different kinds of ISPs
and found that the highest “peering rate” is among Content-
Content (C-C) and Access-Content (A-C) pairs at 87% and
85%, respectively. Here we refer to “peering rate” as the
percentage of pairs in the CAIDA-inferred AS Relationships
data that are peering. In other words, 87% of C-C pairs in
CAIDA AS Relationships data are peering, as illustrated in
Fig. la. Dey et. al. present an interesting analysis of A-C
peering and how this vertical integration is changing the
Internet architecture and economics [19]. Figure 2 shows
that traffic ratio (Inbound/Outbound/Balanced) and ISP type
(Content/Transit/Access) are strongly correlated. Content
ASes tend to be more outbound as they are providing content
to consumers while access ASes tend to be mostly inbound.
As expected, transit ASes are mostly balanced. Therefore,
observing the peering rates for different traffic ratios revealed
very similar trends when compared to AS type distribution in
Figure 1b. ISP pairs in CAIDA AS Relationships data with
Inbound-Outbound (I-O) and Inbound-Inbound (I-I) traffic
ratios categories showed the highest peering rates at 90%
and 87% respectively.

ISPs can also advertise their peering policy (Open/Selec-
tive/Restrictive) for each of their AS on peeringDB to present
their willingness to accept new requests. A very small number
of ASes, 10%, were closed to peering. We examined the
‘notes’ section for such ASes and found that most of them
were either in the process of integrating with another AS or
had another AS (as part of the same institution) designated for
peering. In some cases, ASes were only interested in private
peering. According to these notes and advertised policies,
we did not find any access, content or transit AS that was
absolutely against peering. We further observed that more
than 64% of the content ASes are Open to peering and only
about 6% are closed to it (Figure 2).

The Internet traffic volume has grown exponentially in the
last few years and the effect can also be seen in peeringDB.
Figure 3 reflects the increase in network wide traffic volume
with the increase in AS port capacities which is now moving
into PetaBytes. The recent developments in high resolution
media (4k, 8k) and the increase in consumption of video
content with the introduction of several new streaming ser-
vices have resulted in a significant increase in content ISPs’
port capacities. Comparing this to 2016 when most ASes had
less than a TeraByte of capacity, the number of ASes with
coverage in the US has more than doubled from around 500
to 1,300 in the last 5 years. The number of peers has also
increased from 5,000 to more than 11,000.

B. AS Path Comparison using BGP Dumps

In order to inspect the impact of peering on inter-AS paths,
we analyzed BGP path advertisements in BGP dumps from
11 Route-Views collectors [44] in the U.S. For this purpose,
we selected 51 AS pairs. For each ISP pair we searched
for advertised BGP paths between both ISPs, using their
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Fig. 2: AS traffic ratio and peering policy
distribution w.r.t. AS types.

AS numbers AS, and ASc. Among these, 22 had direct
BGP paths between them since they had a customer-provider
relationship, according to CAIDA. For the remaining 29
pairs, we selected the shortest of all advertised AS paths
between ASes and were able to identify at least one transit
ISP (with AS number as AS7) in each case. These ASes
were not peering and were therefore using a transit route for
communication. While this route was costing them an extra
AS hop (AS¢c — AST — AS4), we wanted to evaluate this
extra cost in terms of geographical distance. In other words,
was routing traffic through ASt resulting in a longer than
necessary route?

We gathered corresponding PoP location information from
PeeringDB for the three ASes (ASc, ASt, AS4) and used
PoP IDs to identify common PoPs among them, which are
the possible points of traffic exchange. Restricting the flow
of traffic through AS7, we calculated the geo-distance for
routes between each connected PoP. Using this value as edge
weight, we then calculated shortest path between each of
AS 4 and AS¢’s PoPs, storing the total route weight/cost in a
distance matrix. Similarly, to simulate a peering relationship,
we populated another distance matrix representing only direct
routes from AS4 and ASc. Note that these are not straight
line distances from source to destination, but length of
the shortest route from source to destination, which may
include multiple router hops. Figure 4a shows that, apart from
only four cases, we observed a reduction in average route
geographical distance between PoP locations. Interestingly
enough, in many cases, AS, and ASc shared the same
PoP location with ASp and therefore showed no change
in distance because of peering. In such cases, ISPs can
potentially save on transit costs by using the same route using
settlement-free peering.

IV. PEER SELECTION MODEL

Extending our analysis of the collected data, we design
an Extra Trees Classifier [8] that makes use of a feature
set derived from the above observations to predict whether
two ASes should be peering. Figure 5 illustrates a detailed
overview of the peering predictor framework. We clean and
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Fig. 3: AS Port Capacities have increased significantly in response to an
exponential growth in network traffic volume.
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Fig. 5: Peering predictor framework

process PeeringDB (PDB) data from 2016 and 2021. The
reason we chose the year 2016 was because that is when
PeeringDB changed how it reports its data, and the same
format is being used currently. Therefore, we used the earliest
possible data in the current format, that is 2016, and the latest



data available at the time of testing, that is 2021. The Labeller
then uses the 2016 CAIDA AS Relations to output labelled
data with information on which of the pairs are peering. Next,
the Feature Generator creates different features as discussed
later in this section. These features are then fed into the PCA
module, which calculates the importance of each feature in
predicting whether or not two ASes are peering and feeds
these importance values to the Feature Selector. Selected
features are fed into the Extra Trees Classifier. The labelled
2016 data is used to train the classifier, and the unlabelled
2021 data is used to test the model and generate predicted
labels which are fed to the Validator. Here, the predicted
labels are matched with CAIDA 2021 AS Relations data,
and the final accuracy of the predictive model is calculated
in terms of True Positive (TP), False Positive (FP), True
Negative (TN), False Negative (FN). We use the labelled
data to train and experiment with three different classifiers.
First, we test a Linear Regression based classifier which
gave 83% accuracy. Next, we tested two perturb-and-combine
[7] techniques (Extra Trees and Random Forests) based on
randomized decision trees [17] Of the two, Random Forests
gave an accuracy of 84% and Extra-Trees gave an accuracy
of 87% so we chose that as our primary classifier.

The trained model predicts whether an AS pair should
peer. We use the 2021 PeeringDB processed data from step
2 for labeling each pair as peering/not-peering, which is then
validated against 2021 CAIDA AS relationship data.

We observed that some of the features held very similar
importance and also represented the same aspect of an AS.
For example, the number of advertised AS numbers (ASNs),
IP prefixes, and IP addresses all represent the cone size of an
AS. We also realize that, in such cases, the features have a
very strong direct relation to each other, i.e., if one increases,
the other increases too. To reduce the computational cost of
the model and to enhance its performance by reducing noise,
we removed some of the irrelevant features and combined
some of the remaining ones as described later in Sec. IV-A.
Figure 6 shows the final list of features that we use and their
respective importance.

Figure 7 shows the correlation of these features to the
probability of peering calculated using Pearsons method. A
negative value indicates an inverse relation, and vice versa.
As the difference in the cone size of two ASes increases,
their willingness to peer is expected to drop. Similarly, the
probability of peering increases as peering policy between
two ASes becomes more Open. While recommending peer-
ing, we optimize the probability threshold by minimizing the
misclassification rate in the training stage. For the results
posted in this paper, 0.63 was used as the optimal threshold.
In other words, the model will recommend peering only if the
predicted probability for a pair is more than the set threshold.

A. Feature Set

We utilized the set of measurements collected by CAIDA
as well as peering policy parameters posted by ISPs at
PeeringDB.

For each AS pair, we derived 24 features. Among these
features, we observed that multiple measurements relate to
the same aspect of the AS. For example, the difference in
the number of PoPs, the number for common PoPs, and
the number of non-common PoPs, all relate to PoP Affinity
as explained later in this section. Similarly, the number of
providers, customers and peers for an AS refer to how well-
connected the AS is with other ASes. We therefore take an
average of these three values to represent connectivity, and
for an AS pair, derive Connectivity Difference, later discussed
in this section. Lastly, the number of advertised IP prefixes,
addresses, and ASNs all relate to the AS cone size. For each
AS pair, we combine these values into Cone Size Difference.
In this section we have discussed in detail some features
that we derived like PoP Affinity and Cone Overlap and also
some features where we converted raw values according to
a custom scale like Traffic Level Difference and Traffic Ratio
Difference. A full list of features and their descriptions can
be found in Table II.

Cone Size Difference: Ideal ISP peers should have similar
sizes in terms of the number of customers they serve. Typical
way to quantify the size of an AS (belonging to an ISP) is to
measure its customer cone size. In the literature, in order to
represent the cone size for an AS, various studies considered
the number of advertised IP prefixes, addresses, and ASNs.
We use the average of these numbers (collected from CAIDA
AS Rank) to derive a single metric that relates to AS cone
size. To give same weight to all three numbers, we normalize
them before taking the average. For an AS pair, we then
use the difference of their cone sizes as a feature. Figure 7
shows that the cone size difference between the two ASes is
inversely related to the probability of peering. Intuitively this
makes sense, a large AS is less likely to peer with a smaller
AS in most cases because of asymmetric traffic loads.

Cone Overlap: Using the CAIDA AS Relationships in-
ference, we constructed customer cones for each AS, i.e.,
the customer cone of an AS includes all the ASes that are
customer to that AS or within the cone of the customer ASes.
Usually peering among two ASes does not allow traffic transit
between their indirect customers. An ASes indirect customers
refer to the customers of its customers. This means that if
AS A and AS C are peering, indirect customer ASes of
A will not be able to reach indirect customer ASes of C'
using the peering link as a transit route. If a provider AS A
starts peering with one of its customers AS C, its customer
cone size will reduce (see Figure 8). Therefore, for each AS
pair, we calculate the number of ASes that are present in the
customer cones of both ASes. We refer to this as the Cone
Overlap and expect it to play a significant role in peering
decisions of ASes.

Traffic Ratio Difference: Many ASes have advertised
their average traffic ratios and levels on PeeringDB (Bal-
anced/Inbound/Outbound). Content ASes (like Facebook,
Amazon, and Netflix) tend to be Heavily Outbound since
they have to provide data to users. On the other hand, Access
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ASes tend to be Heavily Inbound as their users are content
consumers. For each AS, we convert its advertised traffic
ratio to an integer value according to the scale below.

"Heavy Inbound":
"Mostly Inbound":
"Balanced": 0O,
"Mostly Outbound": 1,
"Heavy Outbound": 2

-2,
-1,

Then, for each AS pair, we use the sum of their converted
traffic ratio values as a metric. For example, the traffic ratio
sum for two Heavy Inbound (-2) ASes will be —2+ (—2) =
—4. Similarly, the traffic ratio sum for a Heavy Inbound and
Heavy Outbound AS will be -2+ 2 = 0.

Traffic Level Difference: In addition to their traffic ratios,
many ASes have also advertised their traffic levels reported in
terms of throughput ranges, e.g., 0-20 Mbps. The advertised
traffic levels tend express the size of an AS. For each AS,
we convert these ranges into integer values using the scale
below.

"0-20 Mbps": O,
"20-100 Mbps": 1,

value implies direct relation, negative implies inverse.

"500-1,000 Gbps": 11,
"l Tbps+": 12,

"50-100 Tbps": 17,
"100+ Tbps": 18

Then, for each AS pair, we use the difference in their
converted traffic levels as a feature in our classifier model
for determining whether they will be compatible for peering.
As an example, an AS with reported traffic level of 500-100
Gbps will have a converted score of 11, and an AS with a
reported traffic level of 50-100 Tbps will have a converted
score of 17. The difference between their traffic levels will,
then, be 17 — 11 = 6.

Peering Policy: Many ASes have advertised their peering
policy on PeeringDB (Open, Selective, Restrictive). ASes
willing to peer advertise an Open peering policy while some
also advertise Selective, implying that they have specific
requirements for a peering agreement. We use a simple
scoring method to represent the likelihood of two ASes
peering by using the intuition that ASes with an Open peering
policy are more likely to peer compared to ASes with a
Restrictive policy:

"Open": 2,
"Selective": 1,
"Restrictive/No": 0

For each pair, the total score is the sum of the individual
policy scores shown above. This way we are able to assign
the highest score (4) to Open-Open pairs and the lowest score
to Restrictive-Restrictive (0) pairs.

Connectivity Difference: CAIDA analyzes BGP dump
data to predict the relationship among ASes and estimates, for
each AS, the number of providers, customers, and peers. We



[ Name [ Type [ Description
Clique Member Boolean | Whether both ASes are clique members.
Unicast Boolean | Whether both Ases require multicast.
Same IRR AS Set Boolean | Whether the two Ases are in the same Internet Routing Registry (IRR) AS Set.
Multicast Boolean | Whether both ASes require multicast.
1Pv6 Integer Difference in recommended number of IPv6 routes/prefixes to be configured on peering sessions.
Same Country Boolean | Whether the two ASes are based in the same country
Policy Ratio Boolean | Whether both ASes have a peering ratio requirement.
Policy Locations Boolean | Whether both ASes require peering at multiple locations.
Traffic Ratio Difference String How different the traffic ratio for the two ASes is.
Same Org Boolean | Whether the two ASes belong to the same Organization.
Traffic Level Difference String How different are the advertised traffic for the two ASes.
Peering Policy String How different is the peering openness for both ASes.
Policy Contracts Boolean | Whether both ASes require peering contract
Pop Count Difference Integer | Difference in the number of PoPs for both ASes.
Common Pop Count Integer | Number of common PoPs for both ASes.
Provider Count Difference Integer | Difference in the number of provider ASes for both ASes.
Customer Count Difference Integer | Difference in the number of provider ASes for both ASes.
Non-Common Pops Count Integer | Number of non-common PoPs for both ASes.
Rank Difference Integer | Difference in CAIDA AS ranks for both Ases.
ASN Count Difference Integer | Difference in the number of ASNs addresses for both ASes.
Peers Count Difference Integer | Difference in the number of peer ASes for both ASes.
Num Addresses Difference Integer | Difference in the number of advertised addresses for both ASes.
Num Prefixes Difference Integer | Difference in the number of prefixes addresses for both ASes.
Cone Overlap Integer | The number of ASes that are in both AS’s customer cone.

TABLE II: Feature Descriptions

use these counts to define the connectivity of an AS to other
ASes. We take the average of these three counts to derive
a connectivity metric. Then, for each AS pair, we calculate
the difference in connectivity and use it as a feature for our
ML-based model. The intuition here is that connectivity of
an AS represents what ‘tier’ it sits within the inter-AS mesh
and expresses how it is positioned with respect to the other
ASes. Hence, for peering ASes, the difference between their
connectivity levels should be small, i.e., it shows an inverse
relation with the probability of peering.

AS Rank Difference: CAIDA uses its relationship infer-
ence algorithm to assign a rank to each AS, which represents
its cone size relative to others. An AS’s rank is one greater
than number of ASes with larger customer cone sizes [12].
ASes with similar customer cone sizes are likely to have
similar ranks. Similar to cone size difference, we expect
AS rank difference to play a notable role in expressing the
peering potential of an AS pair, and hence use it as a feature.
PCA shows that the difference in AS rank between two ASes
is highly important in choosing a peer.

PoP Affinity: An AS will be interested in peering if the
relationship would expand its coverage area; otherwise, there
may not be enough incentive to peer with an AS that is
covering the same locations or has a smaller coverage area.
For a given AS pair, we define this interest as PoP Affinity:

Po— P, Po— P, 0

P,UPc (Pa—P,)+(Pc—P,)+ P,
Py — P,
(Py—P,)+(Pc—P,)+ P,
where P4 and Pc are the number of PoPs for ASes A and
C respectively, and P, is the number of their common PoPs.
Since the number of PoPs can be used as a measurement of

a4

2

[ Tol

the size and expanse of an AS, this metric helps us gauge
the benefit of peering in terms of increased coverage. We use
geometric mean to calculate the combined PoP Affinity:

asc = aa *xac. 3)

The geometric mean assures that both ASes A and C' will
increase their coverage if they peer. A situation where only
A or C increases its coverage from peering would not be
desirable since only one AS would benefit from peering in
that case. As expected, PoP affinity o 4 has a positive impact
on the probability of peering.

B. Validation

We validate peering recommendation model results on 630
access ISPs, 472 content ISPs, and 987 transit ISPs using
2021 CAIDA AS Relations data. Figure 9 shows that 89.3%
of the peering suggestions (TP + FP) made were found to be
in fact peering (TP). Among the actually peering pairs (TP +
FN), our model predicted 95.1% of them to be peering (TP).
On the other hand, 81.4% of the NOT peering suggestions
(TN + FN) made were found to be in fact not peering (TN).
Among the not peering pairs (TN + FP), our model correctly
predicted 65.3% of them (TN). Table III provides a detailed
explanation of what each of the four graphs are referring to.

This shows that our model aligns very well with the real
world peering trends. It performs particularly well when sug-
gesting peering, but as seen it needs improvement when sug-
gesting that two ASes shouldn’t peer. These predictions were
made based on a number of different factors as discussed
earlier. While each ISP may have a different motivation for
peering, they still share some key interests and that justifies
the use of the same feature set across all ASes.
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Fig. 9: CAIDA validation for peering recommendation.

The classifier assigns weights to different features and con-
structs a criteria that defines a potential peering opportunity.
In accordance with this criteria, the model makes 1,633 new
pair suggestions that are not peering and also suggested that
400 of the peering pairs should not be peering. This brings
our overall accuracy to 87.7%. It would be interesting to see
if the pairs we suggested to peer end up actually peering in
a few years.

Result Descriptions
Prediction Ground Truth
True Positive (TP) PEERING PEERING
False Positive (FP) PEERING NOT PEERING

True Negative (TN)
False Negative (FN)

NOT PEERING
NOT PEERING

NOT PEERING
PEERING

TABLE III: Explanation about what each results category
means with reference to CAIDA AS Relations.

Figure 9 shows a detailed distribution of our results in
comparison to CAIDA. In these predictions, we did not find
our classifier to be biased towards a specific AS type. The
higher values for T-T and C-T categories in every graphs
do not necessarily mean that the model is more successful
in classifying transit ISP’s peering relationship, it merely
reflects the presence of more transit ISPs in our analysis.

V. SUMMARY AND DISCUSSION

We studied AS-level measurements from CAIDA datasets
and peering policy posts of ISPs at PeeringDB to devise
a model that predicts the probability of peering between
two ASes. Understanding the dynamics of peering decisions
will be key to automating the peering relation establishment.
Recent studies show an increased interest in this direction
as inter-AS peering decisions can play significant role in
critical inter-domain problems such as traffic engineering and
path security. We believe that the Internet architecture can
greatly benefit from a data-centric approach towards peer
selection by utilizing several years of measurement data from

different layers. We defined a feature set for modeling the ISP
peer selection. These features have notable importance in the
peering decision-making process in the following order: Cone
Size Difference, Cone Overlap, Peering Policy, AS Rank
Difference, Connectivity Difference, PoP Affinity, Traffic
Level Difference, and Traffic Ratio Difference. The classifier
we developed is the first of its kind and its simplicity and
performance demonstrate its great potential.

A. Limitations

What we presented is an initial step in making use of net-
work measurement data towards automating the ISP peering
process. This initial work has the following limitations:

o Training and testing labels (CAIDA AS Relations) are
based on an inference algorithm, the accuracy of which
is not completely validated. In fact, only 34.6% of the in-
ferred relationships are verified by network admins [33].
Still, this is the single largest verified data available.

« The ML model focuses more on the holistic relationship
among ISPs, rather than specific AS paths and link
health. This particular model cannot work in a dynamic
environment, which is one of the key motivations of
automated peer selection. Since not all features can be
converted to columns, as in our case, a more complex
deep learning model will be needed to take full advan-
tage of the available data, that can also keep track of
changes in the network links.

o Our primary source of data is PeeringDB which is highly
unstructured and incomplete in several aspects. We had
to manually go through the advertised requirements and
expectations of each AS. In many cases, they only
provided an email address that can be used for request-
ing peering information. Such limitations of PeeringDB
hinder large scale analyses of the peering ecosystem.

B. Future Prospects

We believe that there is a large potential for future work
in this direction of research:

« A chronological study of the AS graph can reveal several
other features, such as latency and path stretch, that can
help further optimize peer selection and also bring this
model one step closer to experimental deployment.

o The classifier can be integrated with other tools dis-
cussed in Sec. II, particularly the ones that are more
accepted in the industry. This will be useful in evaluating
its performance and impact in the wild.

o Peering among different AS types may stem from vary-
ing motives. For example, C-A peering helps improve
latency for content delivery to end users, while T-
T peering allows inter-regional connectivity. Extending
this model to make AS type aware recommendations
would make it more versatile and accurate.
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