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Abstract—The Internet landscape is progressively transition-
ing towards a flat hierarchical model to prune multiple Internet
Service Provider (ISP) tiers. At the core of this transition is
settlement free peering, which plays a critical role in mediating
traffic exchange among ISPs. It is pertinent to take a closer look
at peering and accurately emulate their operative model into
a computation model that enables a concrete characterization
without losing generality. In this paper, we utilize publicly
available data-sets to identify the importance of several factors
that play role in the peering process. We conduct a detailed
analysis on the relationship of ISPs and their motivation behind
selecting a peer ISP and use these findings to develop a Machine
Learning (ML) based model that identifies feasible peering
relationships. Preliminary results show a high correlation to
the ground truth.

Index Terms—Network Economics; ISP Peering; Inter-ISP
routing; Network Measurement; Machine Learning

I. INTRODUCTION

ISPs around the world rely on each other through transit

and peering relationships for global connectivity. Transit ISPs

often possess an enormous network which other ISPs can use

to gain paid access to the Internet. The peering model, on the

other hand, operates in a more collaborative manner, often

leading to a settlement-free “exchange of service” type of

contract. Different kinds of interconnections have their pros

and cons, and ISPs may choose one over the other depending

on their requirements and expectations.

“Peering is like dating” [39]: Two ISPs meet and assess

if they should be peering, and if they do decide to peer but

it does not work, they de-peer. While this brief description

fails to capture the entire peering model, multiple surveys

reveal that it is in fact not that far from the truth [50], [51],

[38]. Many different channels, such as forums, email, and

PeeringDB, can be used to contact other potential peer ISPs;

however, selecting a viable candidate and then setting up

an acceptable peering agreement involves surprising amount

of human involvement, even today. The entire process can

take months, which means that peering agreements are not

dynamic enough, and can stay sub-optimal due to the large

number of steps and bulky amount of paperwork needed

to set them up. The need for a faster and more efficient

peer selection model becomes more obvious as we look into
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the benefits of peering and how it is changing the Internet

architecture over time [16], [25], [32], [40], [6], [20], [49].

The focus of this paper is not to discuss the importance

of peering but to present a new research direction for its

automation. Multiple large scale data-sets (CAIDA [11],

PeeringDB [42], RIPE [36], RouteViews [44], etc.) with

measurements from over a decade offer a great opportunity

to take a data-centric approach in making peering decisions.

Though there is a recent realization of the need to better fa-

cilitate peering relationships [15], [35], most peering-related

studies stayed in the analysis stage. Game-theoretic ap-

proaches focus mostly on economic analysis by considering

both routing and congestion cost [46] to study the capacity

and pricing decisions made by service providers [47]. Earlier

works focused on formulating an optimal peering problem

to determine the maximum peering points along with their

strategic placement or a negotiation-based platform for ISPs

to jointly determine routing path for traffic exchange [28],

[34]. As steps towards understanding Internet-wide negotia-

tion mechanisms, the goal of these studies was minimizing

the interconnection cost without any loss of service quality.

The Internet traffic is highly volatile. An ISP admin can

make estimations about internal traffic flows but external

behavior is unpredictable. This implies that peering relations

are often established based on speculations and trust among

ISPs. To avoid future disputes, ISPs typically undergo a tem-

porary “trial peering” period of several weeks to determine

the exchanged traffic amount and patterns before provisioning

the long-term peering session [10]. Adding to the already

long process of peering setup, this does not leave much

room for peering-based dynamic traffic engineering, which

is taking place in the order of hours or minutes.

Operators are reporting an increase in periodic traffic

surges as a result of, for example, software and game releases

[9], [27]. In case of such surges or link failures, the ability

to dynamically form short-term peering relations can help

ISPs in traffic engineering. Available data can reveal temporal

and spatial peering trends and help network administrators in

choosing the right peer, at the right locations, and the right

time, with the correct specifications. The extent to which

this can be achieved needs more exploration. Towards such

dynamic and automated peering, we present an analysis and

the use of PeeringDB in suggesting peers such that these

recommendations align with the industry expectations.978-1-6654-0601-7/22/$31.00 © 2022 IEEE



A. Contributions

Selecting the right candidates for peering requires a multi-

level investigation in terms of compatibility and feasibility.

Even in this age of automation, this decision is often made

using personal connections, which can raise questions on its

reliability and optimality. Formulating the peering decision

problem is complicated and the best solution may not be

as simple and straightforward. To find good peers, we first

need a contextual and formal definition of good, which

may vary regionally or within ISPs. We try to unfold the

different aspects attached to this problem, and explore how

the vast amount of available data from decades of Internet

measurement research can help us reach a universal solution.

To that end, we present an ML-based model that uses multiple

data-sets to construct a comprehensive feature set and gener-

ate peering recommendations. Its performance reassures our

confidence in the use of ML in network optimization tasks.

Our key contributions can be summarized as follows:

• Explore the potential of a data-driven approach towards

making an informed peer selection.

• In-depth analysis of PeeringDB data to observe peering

trends and identify common expectations that ISPs have

while peering. This is an important step to make sure

that the model we design is inherently in line with the

industry practices and the overall ISP business model.

• Development and evaluation of an ML-based classifier

that recommends if two Autonomous Systems (ASes)

should establish a peering relation. Our modeling ap-

proach achieves 85% accuracy when validated using

CAIDA AS-Relationships data-set.

The rest of the paper is organized as follows: Section

II discusses several relevant research and data-sets on ISP

peering and its management, Section III highlights some of

the key observations from an analysis of the PeeringDB data,

Section IV presents a ML model that identifies potential

peering candidates for an AS, and finally, Section V show-

cases the potential of such a model while listing some of the

limitations.

II. RELATED WORK

There has been a sizable amount of work on facilitating

and reducing the setup costs of inter-ISP peering relations.

Route Bazaar [15] and Dynam-IX [35] provide a multi-

layered platform to Internet eXchange Point (IXP) members

for a more efficient inter-ISP communication and connection

establishment. “Picking a Partner” provides a blockchain-

based AS scoring that can help in reliable peer selection [3].

GENIX is a framework that uses a public networking test-

bed (GENI) to emulate IXPs [37]. This can be particularly

helpful in recreating internal traffic scenarios and testing the

performance of different automation tools.

A large number of papers exist on inter-AS routing and

peering measurement. In particular, the measurement stud-

ies focusing on IXPs are the most relevant to our work.

R. Klöti et al. presents the first comparative analysis of

three IXP databases (PeeringDB, Euro-IX, and PCH) [29]

and highlights their key characteristics. In-depth analysis

of PeeringDB and what it reveals in terms of the peering

ecosystem has also been explored [32]. Many researches

focus on the internal activities of IXPs, their evolution,

and their impact on the overall Internet architecture. Some

of these conduct elaborate studies, clear misunderstandings,

and reveal surprising facts that were previously unknown

[14], [1], [2], [16], [24]. Similarly, “Try Before You Buy”

provides a network test-bed that is designed to experiment

with inter-AS relations using Software-Defined Networking

(SDN) [45]. Cardigan [48] is a distributed router that uses

‘routing as a service’ abstraction for reducing operational

complexity. Endeavour and a Software-Defined IXP (SDX)

present and evaluate an SDN-based IXP architecture that

can give administrators more control in traffic engineering

[26], [4]. These prior efforts focused on the management of

peering relationships once a peering decision has been made

by an ISP, while our work primarily focuses on automating

the peering process by providing tools to help ISPs before

their peering decisions. Meta-Peering, our prior work, takes

a step in the same direction and presents a tool that can help

network administrators in selecting feasible peering locations

[18] by formulating it as an optimization problem. In this

paper, we use an ML-based data-driven approach to model

which factors influence the peering decisions.

While the majority of the researches study the AS network

and present an in-depth analysis of their evolution over time

[30], [20], [23], [19], some studies focus on the types of dis-

putes, issues, and complexities that exist in the peering mar-

ket among different stakeholders [43], [21], [31], [5], [52].

Packet Clearing House (PCH) and CAIDA have conducted

large scale surveys with network administrators in an effort

to understand the peering trends and the AS relationships.

Some of the well-maintained and high dimension data-sets,

and network tools available to the public include PeeringDB,

CAIDA (multiple data-sets), PCH [41], Euro-IX [22], Route-

Views, BGPStream, Route Atlas. In this paper, we primarily

rely on PeeringDB historical data dumps and two data-sets

from CAIDA (AS Relationships and AS Rank).

III. UNDERSTANDING PEERING TRENDS

In order to understand what matters in a peering deal

from an administrator’s point of view, we construct an AS

profile directory using PeeringDB and CAIDA AS-Rank [12],

and identify the AS pairs that are peering according to

CAIDA AS-Relationships data [13]. Although PeeringDB

does not guarantee complete accuracy, its usage in under-

standing peering trends is justified because of the fact that this

information is provided by ISPs themselves. For example, an

ISP advertising only a subset of its Point-of-Presence (PoP)

locations is probably willing to peer at those locations only.

For the purpose of this paper, we focus only on ISPs with at

least three PoPs in the United States since peering trends that

we are studying can be relative to their respective regions.
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Fig. 1: Percentage of AS pairs peering according to CAIDA

AS Relationship data

TABLE I: Frequently asked requirements by ASes

Requirements % of ASes

24*7*365 Support 37

No static route/ default route 11

Accurate peeringDB entry 14

IPv6 Peering Required 48

Multilateral/Bilateral Preference 8

Do not announce third party routes.

(Only self customer cone)
40

Minimum geographic presence (peering

at least in PoP count)
28

Interconnection speed at each point 18

Provide security; handle DDoS and abuse 48

Traffic ratio (in-bound: out-bound) 8

Routes registered in IRR, RIPE, ARIN 20

Some ISPs post their peering expectations and require-

ments on peeringDB. In some cases these are posted in the

optional “notes” section, and sometimes as a web-page link

or an email address which can be contacted for information.

Out of 1,295 ASes in the US, we found that only 262 have

publicly posted their requirements clearly. While there is no

set standard for such reporting, we observe that most ISPs

share the same set of requirements. We noticed that a large

number of ISPs are concerned about IPv6 peering, round-the-

clock support, and substantial security. Table I shows some

more detail about these requirements. The percentage values

reported are corresponding to 262 ASes that have publicly

posted their requirements.

A. ISP Types and Peering

We analysed peering trends among different kinds of ISPs

and found that the highest “peering rate” is among Content-

Content (C-C) and Access-Content (A-C) pairs at 87% and

85%, respectively. Here we refer to “peering rate” as the

percentage of pairs in the CAIDA-inferred AS Relationships

data that are peering. In other words, 87% of C-C pairs in

CAIDA AS Relationships data are peering, as illustrated in

Fig. 1a. Dey et. al. present an interesting analysis of A-C

peering and how this vertical integration is changing the

Internet architecture and economics [19]. Figure 2 shows

that traffic ratio (Inbound/Outbound/Balanced) and ISP type

(Content/Transit/Access) are strongly correlated. Content

ASes tend to be more outbound as they are providing content

to consumers while access ASes tend to be mostly inbound.

As expected, transit ASes are mostly balanced. Therefore,

observing the peering rates for different traffic ratios revealed

very similar trends when compared to AS type distribution in

Figure 1b. ISP pairs in CAIDA AS Relationships data with

Inbound-Outbound (I-O) and Inbound-Inbound (I-I) traffic

ratios categories showed the highest peering rates at 90%

and 87% respectively.

ISPs can also advertise their peering policy (Open/Selec-

tive/Restrictive) for each of their AS on peeringDB to present

their willingness to accept new requests. A very small number

of ASes, 10%, were closed to peering. We examined the

‘notes’ section for such ASes and found that most of them

were either in the process of integrating with another AS or

had another AS (as part of the same institution) designated for

peering. In some cases, ASes were only interested in private

peering. According to these notes and advertised policies,

we did not find any access, content or transit AS that was

absolutely against peering. We further observed that more

than 64% of the content ASes are Open to peering and only

about 6% are closed to it (Figure 2).

The Internet traffic volume has grown exponentially in the

last few years and the effect can also be seen in peeringDB.

Figure 3 reflects the increase in network wide traffic volume

with the increase in AS port capacities which is now moving

into PetaBytes. The recent developments in high resolution

media (4k, 8k) and the increase in consumption of video

content with the introduction of several new streaming ser-

vices have resulted in a significant increase in content ISPs’

port capacities. Comparing this to 2016 when most ASes had

less than a TeraByte of capacity, the number of ASes with

coverage in the US has more than doubled from around 500

to 1,300 in the last 5 years. The number of peers has also

increased from 5,000 to more than 11,000.

B. AS Path Comparison using BGP Dumps

In order to inspect the impact of peering on inter-AS paths,

we analyzed BGP path advertisements in BGP dumps from

11 Route-Views collectors [44] in the U.S. For this purpose,

we selected 51 AS pairs. For each ISP pair we searched

for advertised BGP paths between both ISPs, using their
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Fig. 3: AS Port Capacities have increased significantly in response to an

exponential growth in network traffic volume.

AS numbers ASA and ASC . Among these, 22 had direct

BGP paths between them since they had a customer-provider

relationship, according to CAIDA. For the remaining 29

pairs, we selected the shortest of all advertised AS paths

between ASes and were able to identify at least one transit

ISP (with AS number as AST ) in each case. These ASes

were not peering and were therefore using a transit route for

communication. While this route was costing them an extra

AS hop (ASC → AST → ASA), we wanted to evaluate this

extra cost in terms of geographical distance. In other words,

was routing traffic through AST resulting in a longer than

necessary route?

We gathered corresponding PoP location information from

PeeringDB for the three ASes (ASC , AST , ASA) and used

PoP IDs to identify common PoPs among them, which are

the possible points of traffic exchange. Restricting the flow

of traffic through AST , we calculated the geo-distance for

routes between each connected PoP. Using this value as edge

weight, we then calculated shortest path between each of

ASA and ASC’s PoPs, storing the total route weight/cost in a

distance matrix. Similarly, to simulate a peering relationship,

we populated another distance matrix representing only direct

routes from ASA and ASC . Note that these are not straight

line distances from source to destination, but length of

the shortest route from source to destination, which may

include multiple router hops. Figure 4a shows that, apart from

only four cases, we observed a reduction in average route

geographical distance between PoP locations. Interestingly

enough, in many cases, ASA and ASC shared the same

PoP location with AST and therefore showed no change

in distance because of peering. In such cases, ISPs can

potentially save on transit costs by using the same route using

settlement-free peering.

IV. PEER SELECTION MODEL

Extending our analysis of the collected data, we design

an Extra Trees Classifier [8] that makes use of a feature

set derived from the above observations to predict whether

two ASes should be peering. Figure 5 illustrates a detailed

overview of the peering predictor framework. We clean and
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process PeeringDB (PDB) data from 2016 and 2021. The

reason we chose the year 2016 was because that is when

PeeringDB changed how it reports its data, and the same

format is being used currently. Therefore, we used the earliest

possible data in the current format, that is 2016, and the latest



data available at the time of testing, that is 2021. The Labeller

then uses the 2016 CAIDA AS Relations to output labelled

data with information on which of the pairs are peering. Next,

the Feature Generator creates different features as discussed

later in this section. These features are then fed into the PCA

module, which calculates the importance of each feature in

predicting whether or not two ASes are peering and feeds

these importance values to the Feature Selector. Selected

features are fed into the Extra Trees Classifier. The labelled

2016 data is used to train the classifier, and the unlabelled

2021 data is used to test the model and generate predicted

labels which are fed to the Validator. Here, the predicted

labels are matched with CAIDA 2021 AS Relations data,

and the final accuracy of the predictive model is calculated

in terms of True Positive (TP), False Positive (FP), True

Negative (TN), False Negative (FN). We use the labelled

data to train and experiment with three different classifiers.

First, we test a Linear Regression based classifier which

gave 83% accuracy. Next, we tested two perturb-and-combine

[7] techniques (Extra Trees and Random Forests) based on

randomized decision trees [17] Of the two, Random Forests

gave an accuracy of 84% and Extra-Trees gave an accuracy

of 87% so we chose that as our primary classifier.

The trained model predicts whether an AS pair should

peer. We use the 2021 PeeringDB processed data from step

2 for labeling each pair as peering/not-peering, which is then

validated against 2021 CAIDA AS relationship data.

We observed that some of the features held very similar

importance and also represented the same aspect of an AS.

For example, the number of advertised AS numbers (ASNs),

IP prefixes, and IP addresses all represent the cone size of an

AS. We also realize that, in such cases, the features have a

very strong direct relation to each other, i.e., if one increases,

the other increases too. To reduce the computational cost of

the model and to enhance its performance by reducing noise,

we removed some of the irrelevant features and combined

some of the remaining ones as described later in Sec. IV-A.

Figure 6 shows the final list of features that we use and their

respective importance.

Figure 7 shows the correlation of these features to the

probability of peering calculated using Pearsons method. A

negative value indicates an inverse relation, and vice versa.

As the difference in the cone size of two ASes increases,

their willingness to peer is expected to drop. Similarly, the

probability of peering increases as peering policy between

two ASes becomes more Open. While recommending peer-

ing, we optimize the probability threshold by minimizing the

misclassification rate in the training stage. For the results

posted in this paper, 0.63 was used as the optimal threshold.

In other words, the model will recommend peering only if the

predicted probability for a pair is more than the set threshold.

A. Feature Set

We utilized the set of measurements collected by CAIDA

as well as peering policy parameters posted by ISPs at

PeeringDB.

For each AS pair, we derived 24 features. Among these

features, we observed that multiple measurements relate to

the same aspect of the AS. For example, the difference in

the number of PoPs, the number for common PoPs, and

the number of non-common PoPs, all relate to PoP Affinity

as explained later in this section. Similarly, the number of

providers, customers and peers for an AS refer to how well-

connected the AS is with other ASes. We therefore take an

average of these three values to represent connectivity, and

for an AS pair, derive Connectivity Difference, later discussed

in this section. Lastly, the number of advertised IP prefixes,

addresses, and ASNs all relate to the AS cone size. For each

AS pair, we combine these values into Cone Size Difference.

In this section we have discussed in detail some features

that we derived like PoP Affinity and Cone Overlap and also

some features where we converted raw values according to

a custom scale like Traffic Level Difference and Traffic Ratio

Difference. A full list of features and their descriptions can

be found in Table II.

Cone Size Difference: Ideal ISP peers should have similar

sizes in terms of the number of customers they serve. Typical

way to quantify the size of an AS (belonging to an ISP) is to

measure its customer cone size. In the literature, in order to

represent the cone size for an AS, various studies considered

the number of advertised IP prefixes, addresses, and ASNs.

We use the average of these numbers (collected from CAIDA

AS Rank) to derive a single metric that relates to AS cone

size. To give same weight to all three numbers, we normalize

them before taking the average. For an AS pair, we then

use the difference of their cone sizes as a feature. Figure 7

shows that the cone size difference between the two ASes is

inversely related to the probability of peering. Intuitively this

makes sense, a large AS is less likely to peer with a smaller

AS in most cases because of asymmetric traffic loads.

Cone Overlap: Using the CAIDA AS Relationships in-

ference, we constructed customer cones for each AS, i.e.,

the customer cone of an AS includes all the ASes that are

customer to that AS or within the cone of the customer ASes.

Usually peering among two ASes does not allow traffic transit

between their indirect customers. An ASes indirect customers

refer to the customers of its customers. This means that if

AS A and AS C are peering, indirect customer ASes of

A will not be able to reach indirect customer ASes of C

using the peering link as a transit route. If a provider AS A

starts peering with one of its customers AS C, its customer

cone size will reduce (see Figure 8). Therefore, for each AS

pair, we calculate the number of ASes that are present in the

customer cones of both ASes. We refer to this as the Cone

Overlap and expect it to play a significant role in peering

decisions of ASes.

Traffic Ratio Difference: Many ASes have advertised

their average traffic ratios and levels on PeeringDB (Bal-

anced/Inbound/Outbound). Content ASes (like Facebook,

Amazon, and Netflix) tend to be Heavily Outbound since

they have to provide data to users. On the other hand, Access
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ASes tend to be Heavily Inbound as their users are content

consumers. For each AS, we convert its advertised traffic

ratio to an integer value according to the scale below.

"Heavy Inbound": -2,

"Mostly Inbound": -1,

"Balanced": 0,

"Mostly Outbound": 1,

"Heavy Outbound": 2

Then, for each AS pair, we use the sum of their converted

traffic ratio values as a metric. For example, the traffic ratio

sum for two Heavy Inbound (-2) ASes will be −2+ (−2) =
−4. Similarly, the traffic ratio sum for a Heavy Inbound and

Heavy Outbound AS will be −2 + 2 = 0.

Traffic Level Difference: In addition to their traffic ratios,

many ASes have also advertised their traffic levels reported in

terms of throughput ranges, e.g., 0–20 Mbps. The advertised

traffic levels tend express the size of an AS. For each AS,

we convert these ranges into integer values using the scale

below.

"0-20 Mbps": 0,

"20-100 Mbps": 1,

...

"500-1,000 Gbps": 11,

"1 Tbps+": 12,

...

"50-100 Tbps": 17,

"100+ Tbps": 18

Then, for each AS pair, we use the difference in their

converted traffic levels as a feature in our classifier model

for determining whether they will be compatible for peering.

As an example, an AS with reported traffic level of 500-100

Gbps will have a converted score of 11, and an AS with a

reported traffic level of 50-100 Tbps will have a converted

score of 17. The difference between their traffic levels will,

then, be 17− 11 = 6.

Peering Policy: Many ASes have advertised their peering

policy on PeeringDB (Open, Selective, Restrictive). ASes

willing to peer advertise an Open peering policy while some

also advertise Selective, implying that they have specific

requirements for a peering agreement. We use a simple

scoring method to represent the likelihood of two ASes

peering by using the intuition that ASes with an Open peering

policy are more likely to peer compared to ASes with a

Restrictive policy:

"Open": 2,

"Selective": 1,

"Restrictive/No": 0

For each pair, the total score is the sum of the individual

policy scores shown above. This way we are able to assign

the highest score (4) to Open-Open pairs and the lowest score

to Restrictive-Restrictive (0) pairs.

Connectivity Difference: CAIDA analyzes BGP dump

data to predict the relationship among ASes and estimates, for

each AS, the number of providers, customers, and peers. We



Name Type Description

Clique Member Boolean Whether both ASes are clique members.
Unicast Boolean Whether both Ases require multicast.

Same IRR AS Set Boolean Whether the two Ases are in the same Internet Routing Registry (IRR) AS Set.
Multicast Boolean Whether both ASes require multicast.

IPv6 Integer Difference in recommended number of IPv6 routes/prefixes to be configured on peering sessions.
Same Country Boolean Whether the two ASes are based in the same country
Policy Ratio Boolean Whether both ASes have a peering ratio requirement.

Policy Locations Boolean Whether both ASes require peering at multiple locations.
Traffic Ratio Difference String How different the traffic ratio for the two ASes is.

Same Org Boolean Whether the two ASes belong to the same Organization.
Traffic Level Difference String How different are the advertised traffic for the two ASes.

Peering Policy String How different is the peering openness for both ASes.
Policy Contracts Boolean Whether both ASes require peering contract

Pop Count Difference Integer Difference in the number of PoPs for both ASes.
Common Pop Count Integer Number of common PoPs for both ASes.

Provider Count Difference Integer Difference in the number of provider ASes for both ASes.
Customer Count Difference Integer Difference in the number of provider ASes for both ASes.
Non-Common Pops Count Integer Number of non-common PoPs for both ASes.

Rank Difference Integer Difference in CAIDA AS ranks for both Ases.
ASN Count Difference Integer Difference in the number of ASNs addresses for both ASes.
Peers Count Difference Integer Difference in the number of peer ASes for both ASes.

Num Addresses Difference Integer Difference in the number of advertised addresses for both ASes.
Num Prefixes Difference Integer Difference in the number of prefixes addresses for both ASes.

Cone Overlap Integer The number of ASes that are in both AS’s customer cone.

TABLE II: Feature Descriptions

use these counts to define the connectivity of an AS to other

ASes. We take the average of these three counts to derive

a connectivity metric. Then, for each AS pair, we calculate

the difference in connectivity and use it as a feature for our

ML-based model. The intuition here is that connectivity of

an AS represents what ‘tier’ it sits within the inter-AS mesh

and expresses how it is positioned with respect to the other

ASes. Hence, for peering ASes, the difference between their

connectivity levels should be small, i.e., it shows an inverse

relation with the probability of peering.

AS Rank Difference: CAIDA uses its relationship infer-

ence algorithm to assign a rank to each AS, which represents

its cone size relative to others. An AS’s rank is one greater

than number of ASes with larger customer cone sizes [12].

ASes with similar customer cone sizes are likely to have

similar ranks. Similar to cone size difference, we expect

AS rank difference to play a notable role in expressing the

peering potential of an AS pair, and hence use it as a feature.

PCA shows that the difference in AS rank between two ASes

is highly important in choosing a peer.

PoP Affinity: An AS will be interested in peering if the

relationship would expand its coverage area; otherwise, there

may not be enough incentive to peer with an AS that is

covering the same locations or has a smaller coverage area.

For a given AS pair, we define this interest as PoP Affinity:

αA =
PC − Po

PA ∪ PC

=
PC − Po

(PA − Po) + (PC − Po) + Po

(1)

αC =
PA − Po

(PA − Po) + (PC − Po) + Po

(2)

where PA and PC are the number of PoPs for ASes A and

C respectively, and Po is the number of their common PoPs.

Since the number of PoPs can be used as a measurement of

the size and expanse of an AS, this metric helps us gauge

the benefit of peering in terms of increased coverage. We use

geometric mean to calculate the combined PoP Affinity:

αAC =
√
αA ∗ αC . (3)

The geometric mean assures that both ASes A and C will

increase their coverage if they peer. A situation where only

A or C increases its coverage from peering would not be

desirable since only one AS would benefit from peering in

that case. As expected, PoP affinity αAC has a positive impact

on the probability of peering.

B. Validation

We validate peering recommendation model results on 630

access ISPs, 472 content ISPs, and 987 transit ISPs using

2021 CAIDA AS Relations data. Figure 9 shows that 89.3%

of the peering suggestions (TP + FP) made were found to be

in fact peering (TP). Among the actually peering pairs (TP +

FN), our model predicted 95.1% of them to be peering (TP).

On the other hand, 81.4% of the NOT peering suggestions

(TN + FN) made were found to be in fact not peering (TN).

Among the not peering pairs (TN + FP), our model correctly

predicted 65.3% of them (TN). Table III provides a detailed

explanation of what each of the four graphs are referring to.

This shows that our model aligns very well with the real

world peering trends. It performs particularly well when sug-

gesting peering, but as seen it needs improvement when sug-

gesting that two ASes shouldn’t peer. These predictions were

made based on a number of different factors as discussed

earlier. While each ISP may have a different motivation for

peering, they still share some key interests and that justifies

the use of the same feature set across all ASes.
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Fig. 9: CAIDA validation for peering recommendation.

The classifier assigns weights to different features and con-

structs a criteria that defines a potential peering opportunity.

In accordance with this criteria, the model makes 1,633 new

pair suggestions that are not peering and also suggested that

400 of the peering pairs should not be peering. This brings

our overall accuracy to 87.7%. It would be interesting to see

if the pairs we suggested to peer end up actually peering in

a few years.

Result Descriptions

Prediction Ground Truth
True Positive (TP) PEERING PEERING
False Positive (FP) PEERING NOT PEERING
True Negative (TN) NOT PEERING NOT PEERING
False Negative (FN) NOT PEERING PEERING

TABLE III: Explanation about what each results category

means with reference to CAIDA AS Relations.

Figure 9 shows a detailed distribution of our results in

comparison to CAIDA. In these predictions, we did not find

our classifier to be biased towards a specific AS type. The

higher values for T-T and C-T categories in every graphs

do not necessarily mean that the model is more successful

in classifying transit ISP’s peering relationship, it merely

reflects the presence of more transit ISPs in our analysis.

V. SUMMARY AND DISCUSSION

We studied AS-level measurements from CAIDA datasets

and peering policy posts of ISPs at PeeringDB to devise

a model that predicts the probability of peering between

two ASes. Understanding the dynamics of peering decisions

will be key to automating the peering relation establishment.

Recent studies show an increased interest in this direction

as inter-AS peering decisions can play significant role in

critical inter-domain problems such as traffic engineering and

path security. We believe that the Internet architecture can

greatly benefit from a data-centric approach towards peer

selection by utilizing several years of measurement data from

different layers. We defined a feature set for modeling the ISP

peer selection. These features have notable importance in the

peering decision-making process in the following order: Cone

Size Difference, Cone Overlap, Peering Policy, AS Rank

Difference, Connectivity Difference, PoP Affinity, Traffic

Level Difference, and Traffic Ratio Difference. The classifier

we developed is the first of its kind and its simplicity and

performance demonstrate its great potential.

A. Limitations

What we presented is an initial step in making use of net-

work measurement data towards automating the ISP peering

process. This initial work has the following limitations:

• Training and testing labels (CAIDA AS Relations) are

based on an inference algorithm, the accuracy of which

is not completely validated. In fact, only 34.6% of the in-

ferred relationships are verified by network admins [33].

Still, this is the single largest verified data available.

• The ML model focuses more on the holistic relationship

among ISPs, rather than specific AS paths and link

health. This particular model cannot work in a dynamic

environment, which is one of the key motivations of

automated peer selection. Since not all features can be

converted to columns, as in our case, a more complex

deep learning model will be needed to take full advan-

tage of the available data, that can also keep track of

changes in the network links.

• Our primary source of data is PeeringDB which is highly

unstructured and incomplete in several aspects. We had

to manually go through the advertised requirements and

expectations of each AS. In many cases, they only

provided an email address that can be used for request-

ing peering information. Such limitations of PeeringDB

hinder large scale analyses of the peering ecosystem.

B. Future Prospects

We believe that there is a large potential for future work

in this direction of research:

• A chronological study of the AS graph can reveal several

other features, such as latency and path stretch, that can

help further optimize peer selection and also bring this

model one step closer to experimental deployment.

• The classifier can be integrated with other tools dis-

cussed in Sec. II, particularly the ones that are more

accepted in the industry. This will be useful in evaluating

its performance and impact in the wild.

• Peering among different AS types may stem from vary-

ing motives. For example, C-A peering helps improve

latency for content delivery to end users, while T-

T peering allows inter-regional connectivity. Extending

this model to make AS type aware recommendations

would make it more versatile and accurate.
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