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ABSTRACT

Two-directional two-dimensional principal component analy-
sis ((2D)2PCA) has shown promising results for it’s ability to
both represent and recognize facial images. The current paper
extends these results into a multilinear framework (referred
to as two-directional Tensor PCA or 2DTPCA for short) us-
ing a recently defined tensor operator for 3rd-order tensors.
The approach proceeds by first computing a low-dimensional
projection tensor for the row-space of the image data (gener-
ally referred to as mode-1) and then subsequently computing
a low-dimensional projection tensor for the column space of
the image data (generally referred to as mode-3). Experimen-
tal results are presented on the ORL, extended Yale-B, COIL-
100, and MNIST data sets that show the proposed approach
outperforms traditional “tensor-based” PCA approaches with
a much smaller subspace dimension in terms of recognition
rates.

Index Terms— Two directional tensor PCA, tensor PCA,
tensor singular value decomposition

1. INTRODUCTION

Principal component analysis (PCA) [1] is one of the most
popular feature extraction methods and widely used in many
areas of image classification and pattern recognition for di-
mensionality reduction. Traditionally such methods have
been approached using a linear algebraic framework. In par-
ticular, given a collection of n images {I1, I2, . . . , In}, each
of size h×v, each image is “vectorized” into a column vector
xi = vec(Ii) ∈ Rm×1 where m = hv >> n. While ma-
trix PCA has shown much success over the years, there are
two fundamental issues that arise when the data of interest
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is collections of images: a) vectorizing the images destroys
the natural representation of the image thereby eliminating
the spatial correlation within each image and b) because the
number of pixels in an image m is generally significantly
larger than the number of samples n, subspace methods can
encounter the curse of dimensionality or small sample size
problems.

To overcome these issues, new methods have been pro-
posed that rely on higher-order data structures that leave each
image in it’s natural matrix form, and stack the collection
of matrices into a tensor structure (commonly referred to as
a n-way or n mode array, where n is not to be confused
with the number of images but rather represents the differ-
ent statistical modes of the data). Most notably is the so
called High Order Singular Value Decomposition (HOSVD)
that is based on Tucker decompositions [2–4] and Multilin-
ear PCA (MPCA) [5] that performs dimensionality reduction
in all statistical modes of the tensor simultaneously to pro-
duce a projection tensor that relies on basic multilinear alge-
bra (commonly referred to as n-mode products) as outlined in
the seminal papers [2, 3]. Additionally, two “tensor-like” de-
compositions have been proposed where the authors present
a method to operate on the image collection as 2-mode ten-
sors and reduce the dimensionality of the data through image
covariance [6, 7]. Most notably was a reduced order feature
space in the row-pixels, referred to as 2DPCA [6] that was
later extended to both the row- and column-pixels referred to
as (2D)2PCA [7]. Finally, the author’s show in [8–10] that an
alternate approach to multilinear PCA (referred to as Tensor
PCA) can be performed based on a recently defined multipli-
cation operator for third order tensors [11–14], referred to as
the t-product and resulting t-SVD (as outlined in Section 2).
This operator is advantageous in that it allows for a tensor sin-
gular value decomposition to be defined that is analogous to
its matrix counterpart, i.e., it decomposes a third-order tensor
into three third-order tensors with similar orthogonality and
diagonal structures.

The current paper builds on our prior work in [8–10] while
capitalizing on the developments of both 2DPCA as well as



(2D)2PCA as outlined in [6,7]. In particular, we illustrate that
through the t-product and resulting t-SVD, (2D)2PCA can
be re-formulated into a multilinear framework that decom-
poses both the row- and column-pixels into reduced dimen-
sional tensor models of order three (i.e., reduced dimensional
3-mode tensors) referred to as 2D Tensor PCA (2DTPCA).
We present experimental results from some classic image data
sets (namely ORL, extended Yale-B, COIL-100, and MNIST)
and show that this new formulation performs better than the
aforementioned methods in terms of image classification.

2. MATHEMATICAL PRELIMINARIES

In this section, we provide a brief overview of the tensor
definitions and mathematical operations required to keep this
work self contained, extended details may be found in [8–14].

2.1. Mathematical Preliminaries

Multidimensional data can be defined as multidimensional ar-
rays of numbers, commonly referred to as tensors [2, 3]. The
dimensions of a tensor are called ways or modes. The number
of modes determines the order of a tensor. Fundamental to the
results presented in this paper is a recently defined multipli-
cation operation on third-order tensors which itself produces
a third-order tensor [11–13].

First, we introduce the basic notations and definitions out-
lined in [11–13]. It will be convenient to break a tensor A ∈
Rℓ×m×n up into various slices and tubal elements, and to
have an indexing on those. The ith lateral slice will be denoted
Ai whereas the jth frontal slice will be denoted A(j). In terms
of MATLAB indexing notation, this means Ai ≡ A(:, i, :)
while A(j) ≡ A(:, :, j).

We use the notation aik to denote the i, kth tube in A; that
is aik = A(i, k, :). The jth entry in that tube is a(j)ik . Indeed,
these tubes have special meaning for us in the present work,
as they will play a role similar to scalars in R.

Definition 1. An element c ∈ R1×1×n is called a tubal-
scalar of length n.

In order to discuss multiplication between two tensors we
must first introduce the concept of converting A ∈ Rℓ×m×n

into a block circulant matrix. If A ∈ Rℓ×m×n with ℓ × m
frontal slices then circ(A) is a block circulant matrix of size
ℓn×mn.

We anchor the MatVec operator to the frontal slices of
the tensor. MatVec(A) takes an ℓ×m×n tensor and returns
a block ℓn×m matrix

MatVec(A) =
[︁
(A(1))T , (A(2))T , . . . , (A(n))T

]︁T
The operation that takes MatVec(A) back to tensor form

is the fold operator: fold(MatVec(A)) = A.

Definition 2. Let A ∈ Rℓ×p×n and B ∈ Rp×m×n be two
third order tensors. Then the t-product A ∗ B ∈ Rℓ×m×n is
defined as A ∗ B = fold (circ(A) · MatVec(B) ) .

Definition 3. The identity tensor I ∈ Rm×m×n is the tensor
whose frontal slice is the m × m identity matrix, and whose
other frontal slices are all zeros.

Definition 4. If A is ℓ × m × n, then the tensor transpose
AT is the m × ℓ × n tensor obtained by transposing each of
the frontal slices and then reversing the order of transposed
frontal slices through n.

Definition 5. A tensor A ∈ Rℓ×m×n is called orthogonal if
A ∗ AT = AT ∗ A = I

Definition 6. If A is m × ℓ × n, then the tensor rotation
rot(A) is the n× ℓ×m tensor obtained by transposing each
of the lateral slices.

2.2. Computation of the t-SVD

The final tool necessary for tensor PCA is a tensor singular
value decomposition (referred to as the t-SVD. In [11–13] the
authors show that, for A ∈ Rn×n×n, there exists orthogonal
tensors U and V , a front-face diagonal (f-diagonal) tensor S
such that

A = U ∗ S ∗ VT =

min(ℓ,m)∑︂
i=1

Ui ∗ si ∗ VT
i (1)

where U ∈ Rℓ×ℓ×n, such that U ∗ UT = In×n is the tensor
of left-singular matrices, V ∈ Rm×m×n, such that V ∗ VT =
Im×m is the tensor of right-singular matrices, S ∈ Rℓ×m×n

is an f-diagonal tensor where si = S(i, i, :) are the singular
tuples. In the context of the current work, the lateral slices
of U (the left-singular matrices) are analogous to the left-
singular vectors of the matrix SVD and serve as the tensor
principal components. A graphical depiction of the t-SVD is
shown in Fig. 1 where the tensor on the left-hand-side is the
image data tensor A and each lateral slice A(i) is an l × n
image in our data set. We note that, l is the row-space of our
image set and referred to as mode-1, n is the column-space
of our image set and referred to as mode-3, whereas m is the
“temporal-space1” of our image set and referred to as mode-2.

Fig. 1: Graphical depiction of the t-SVD.

1Temporal in this context need not refer to time but rather samples in our
training/testing set.



3. PROPOSED 2DTPCA APPROACH

In this section we provide an overview of our prior work on
multilinear Tensor PCA as outlined in [8–10] and illustrate
some of the shortcomings of such an approach. We then turn
our attention to extensions of our prior work combined with
the work of [6,7] to capitalize on correlations in both the row-
and column-dimensions of the image set. Such extensions
result in a multilinear variant of two-directional PCA referred
to as 2DTPCA.

3.1. Overview of Tensor PCA

To keep the current work self-contained, we present a brief
overview of our work on Tensor PCA outlined in [8–10] that
capitalizes on the definitions outlined in Section 2. As shown
in Fig. 1, we construct the image data tensor A ∈ Rl×m×n

where each image is of size l × n rotated laterally (i.e., a 2-
mode tensor of dimension l×1×n) and m is the total number
of images in the set. Multilinear Tensor PCA can then be per-
formed by computing the t-SVD of the image data tensor as
A = U ∗ S ∗ VT where U ∈ Rl×l×n is the tensor containing
the left-singular matrices (that are analogous to the principal
components) ordered from left to right according to their im-
portance. Dimensionality reduction (in mode-1) is performed
by projecting the data tensor A onto the first k left singular
matrices via

Y = UT
k ∗ A ∈ Rk×m×n, (2)

is the reduced dimensional feature tensor used for online clas-
sification.

It’s important to note here that while the above formula-
tion reduces the dimensionality of the image data tensor along
mode-1 (the row-pixels), the dimensionality along mode-3
(the column pixels) remains unchanged. The implications of
this are that Tensor PCA capitalizes on mode-1 correlations
but is unable to capitalize on the correlations along mode-3 as
one would hope. This drawback is a direct consequence of the
computation of the t-SVD as outlined in [11–13] which will
be restated here for completeness. It is well known in ma-
trix theory that a circulant matrix can be diagonalized via left
and right multiplication by a discrete Fourier transform (DFT)
matrix. Similarly, a block circulant matrix can be block diag-
onalized via left and right multiplication by a block diagonal
DFT matrix. For example, consider the tensor A ∈ Rn×n×n,
then

(Fn ⊗ In)circ(A)(F ∗
n ⊗ In) = diag(D1, D2, . . . , Dn)

(3)
where each of the Di are n×n, In is an n×n identity matrix
of dimension, Fn is the n×n DFT matrix, F ∗

n is its conjugate
transpose, and ⊗ is the Kronecker product. To construct the
t-SVD defined in (1), the matrix SVD is performed on each of
the Di, i.e., Di = UiSiV

T
i . Taking the first block column of

each block circulant matrix and applying the fold operator

results in the decomposition U ∗ S ∗ VT . Note that for sim-
plicity, as well as computational efficiency, this entire process
can by performed using the fast Fourier transform in place of
the DFT matrix as illustrated in [11–13].

3.2. Proposed 2DTPCA method

One of the fundamental drawbacks associated with comput-
ing the t-SVD in this fashion is the choice of flattening the
data tensor through the circ(·) operator. By construction,
circ(·) operates of the frontal slices of A (mode-1), how-
ever this “choice” is somewhat arbitrary (e.g. we could just
as easily reformulate the problem to operate on mode-2 or
mode-3). As such, while we capture correlations in the image
data along the row-pixels, we neglect the correlations in the
image data along the column-pixels.

To overcome these drawbacks, we propose a two step pro-
cedure to capitalize on both the mode-1 and mode-3 correla-
tions in the dataset (referred to as 2DTPCA). In particular,
we illustrate the successive application of the t-SVD along
the two different modes aims to capitalize on the correlations
in both the row- and column-dimensions. Unfortunately, this
approach also produces two different sets of subspaces (one
for mode-1 and one for mode-3) that require fusion prior to
data projection. Toward this end, the we define the tensor
rotation operator (definition 6 in Section 2) that produces a
rotated version of a tensor, i.e., given some A ∈ Rk×m×n,
rol(A) = Ā ∈ Rn×m×k.

We proceed by computing Tensor PCA as illustrated in
Section 3.1 (and detailed in [8–10]) resulting in the feature
tensor Y ∈ Rk×m×n that captures the correlation in the image
data along the mode-1 dimension (row-pixels). To capture the
correlations along the mode-3 dimension (column-pixels), we
apply the tensor rotation operator

rol(Y) = Ȳ ∈ Rn×m×k.

We then compute

t-SVD(Ȳ) = Ū ∗ S̄ ∗ V̄T

where Ū contains the left singular matrices associated with
the correlations in the mode-3 dimension of the data set. Sim-
ilar to our prior work on Tensor PCA, we keep the first p
lateral slices of Ū = Ūp to perform mode-3 dimensionality
reduction. It should be noted that in general, the size of the re-
duced dimensional space for mode-1 (k) will not be the same
as the size of the reduced dimensional space for mode-3 (p).
We then compute the overall feature tensor via

W = ŪT
p ∗ Ȳ ∈ Rp×m×k, (4)

that capitalizes on correlations in both mode-1 and mode-
3. Online classification is then performed in the reduced di-
mensional feature space W via single sample projection and
nearest-neighbor search.



4. EXPERIMENTAL RESULTS

In this section, we compare our proposed 2DTPCA method
with other multilinear subspace learning methods in the
literature, namely, our prior work on Tensor PCA [10],
HOSVD [2, 3], and MPCA [5]. In addition, although not
“strictly” multilinear (tensor) methods, we compare against
both 2DPCA [6] and (2D)2PCA [7] in terms of classification
accuracy and overall dimensionality reduction.

For our experimental validation, we choose four com-
mon data sets used in the literature, namely: (a) the ORL
and extended Yale-B data sets that contain images of human
faces under varying facial expressions and illumination di-
rections [15–17]; (b) The COIL-100 data sets that contain
images of 100 different objects being rotated about a single
degree of freedom [18]. For computational efficiency, each
image was resized from size 128×128 to 32×32; and (c) the
classic MNIST data set of handwritten digits [19] where we
randomly select 200 samples of each digit to produce a total
data set of size 2000 images. For completeness, we briefly
describe each of the four different data sets along with the
number of training vs. testing images available in each. For
each of the four data sets, 20 different classification runs were
evaluated where a random 80/20 (training/testing) split was
performed to ensure complete coverage of the training/testing
space. Information regarding image size, training set and
testing sets is outlined in Table 1.

Table 1: Specifications on the data sets used for experimental
validation.

Data Set Img. Size Train Test
ORL 32× 32 280 120

Ext. Yale-B 32× 32 756 306
COIL-100 32× 32 1020 420

MNIST 20× 20 1400 600

Table 2 illustrates the size of the reduced dimensional fea-
ture space for each of the six methods across all four data sets.
We note that for Tensor PCA, the third dimension is always
the dimension of mode-3 as this approach does not have the

ability to reduce the dimensionality in mode-3. We also note
that both 2DPCA and (2D)2PCA only have two dimensions
shown for their respective feature spaces. This results from
the not being strictly tensor methods, however, post projec-
tion will result in similar values for the second dimension (i.e.,
the total number of samples in the data set). For comparison,
when possible, we choose the same subspace dimensions (for
both k and p) across all six approaches for each of the four
data sets.

Table 3 shows the classification accuracy for all six meth-
ods applied to the data sets outlined in Table 1. Because
the classification results are computed for 20 different cycles
(each with a random 80/20 split), the we show the mean clas-
sification accuracy ± the standard deviation in classification
accuracy across all 20 runs. As can be seen from the table,
the proposed 2DTPCA approach outperforms all other meth-
ods for each of the four data sets. Moreover, it can be seen
that these results hold true even in the case where the reduced
dimensional subspace is larger than that of 2DTPCA.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a new approach to multilinear two dimen-
sional and two directional principal component analysis. The
approach builds upon our prior Tensor PCA by capitalizing on
the statistical correlations in both the row- and column-pixels
within an image data set, all while recasting the problem in a
multilinear framework. Experimental results are presented on
the ORL, Extended Yale-B, COIL-100, and MNIST data sets
comparing our proposed approach with the current state of
the art in both tensor and two-dimensional PCA approaches.
In all experiments performed, for a similar reduction in di-
mensionality, the proposed 2DTPCA approach outperforms
the state of the art in terms of classification accuracy. Future
work will focus on methods to determine both subspace di-
mensions k and p as well as evaluations of the computational
cost associated with computing such subspace reduction.

Table 2: Reduced dimensional feature space for each of the six different methods and all four data sets.

2DTPCA Tensor PCA HOSVD MPCA 2DPCA (2D)2PCA
ORL 6× 280× 15 6× 280× 32 6× 280× 15 6× 280× 15 6× 32 6× 15

Ext. Yale-B 10× 756× 20 10× 756× 32 10× 756× 20 10× 756× 20 10× 32 10× 20
COIL-100 6× 1020× 10 6× 1020× 32 6× 1020× 10 6× 1020× 10 6× 32 6× 10

MNIST 6× 1400× 9 6× 1400× 20 6× 1400× 9 6× 1400× 9 6× 20 6× 9

Table 3: Classification accuracy for each of the six different methods and all four data sets.

2DTPCA Tensor PCA HOSVD MPCA 2DPCA (2D)2PCA
ORL 92.45± 2.63 90.25± 2.47 89.77± 2.06 89.29± 1.72 88.79± 2.12 89.31± 2.11

Ext. Yale-B 65.34± 2.35 62.21± 2.37 61.41± 1.63 61.75± 2.05 59.26± 2.88 59.25± 2.40
COIL-100 99.48± 0.35 99.32± 0.34 99.32± 0.39 99.27± 0.49 99.40± 0.49 99.44± 0.40

MNIST 93.68± 1.19 93.35± 0.89 93.32± 1.00 93.53± 0.93 92.49± 0.94 92.80± 0.92
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