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ABSTRACT
Metabolomics is an interdisciplinary area that integrates knowledge
of instrumentation, data science, and biochemistry. Metabolomics
studies the changes in a large number of metabolites after various
treatments using analytical platforms. However, the interpretation
approaches have not been completely investigated. Principal compo-
nent analysis (PCA) is an unsupervised method that describes high
throughput metabolite data, which is different from supervised
approaches such as partial least-squares discriminant analysis (PLS-
DA) which frequently has overfitting problems. The interpretation of
PCA loadings, especially for studies with multiple study groups, is
not well developed for metabolomics. In this study, a new method
was reported that integrates PCA loading values with the commonly
used statistical t-test analysis to significantly improve the conveni-
ence and efficiency of interpretation. The method was demonstrated
using practical studies of NMR metabolomics on the extracts from
sea anemone that were treated with six atrazine concentrations. The
results indicated that the approach is suitable for multiple groups of
metabolomics for early-stage discoveries, such as low concentrations
and potentially longitudinal studies. In summary, this methodology
may be critical in studies such as environmental metabolomics with
various stimuli factors where the data interpretation was previously
incompletely developed.
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Introduction

Metabolomics is an approach that simultaneously studies the changes of a large number
of metabolites in a biological specimen using analytical platforms (Atzori et al. 2012;
Emwas et al. 2019). Both nuclear magnetic resonance (NMR) spectroscopy (Boroujerdi
et al. 2009; Wang et al. 2015) and liquid chromatography-mass spectrometry (LC-MS)
(Wilson et al. 2005; Sangster et al. 2006) have been widely used in metabolomics. NMR
shows high reproducibility and limited sample preparation requirements compared to
LC-MS, which is commonly used in health metabolomics (Markley et al. 2017). NMR is
a nondestructive technique that has rare pollution problems and limited noise for
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samples over a period of at least 6months (Wang, Goodpaster, and Kennedy 2013),
which is important for studies with multiple research groups, such as longitudinal
studies. Due to the large number of metabolites using various instruments, statistical
modelings such as principal component analysis (PCA) (Werth et al. 2010; Chawla
2011), partial least-squares discriminant analysis (PLS-DA) (Trygg, Holmes, and
Lundstedt 2007; Gu et al. 2011), and other approaches such as random forest (Xi et al.
2014) and support vector machine (SVM) (Kumar et al. 2017) have been used for
metabolomics. Factor analysis (FA) has been applied in solid-state NMR (Brus et al.
2011; Urbanova, Kobera, and Brus 2013) to investigate large size data sets but requires
given common factors (Smilde et al. 2010). The quality control approaches (Kumar
et al. 2020; Kumar et al. 2018) have also been developed to ensure the reliability of
NMR metabolomics. As an unsupervised method, PCA is one of the most popular
methods in metabolomics (Yata and Aoshima 2012) and is mainly used to describe the
distribution of a large number of metabolites after dimensional reduction. PCA has
been widely applied in metabolomics biomarker discovery studies in human diseases
such as cancer (Li, Qiu, and Zhang 2016), diabetes (Choubey et al. 2020), and
Alzheimer’s disease (Ahmad and Dar 2018) and also in plant (Gadekallu et al. 2021;
Yagmur and Gunes 2021) and environmental studies (Scheel et al. 2019). Although the
limitation of PCA lies in the potential problems from in-group noise (Halouska and
Powers 2006), it has been reported to be powerful in many studies including animal
materials (Ahmadi et al. 2020) that have a relatively small number of samples. PLS-DA
has shown to be powerful for classification and was reported to separate random groups
with many features (Ruiz-Perez et al. 2020). However, there are issues such as overfit-
ting (Westerhuis et al. 2008) or ill-performed cross-validation, which are difficult when
the number of samples (observation) is small (Rodriguez-Perez, Fernandez, and Marco
2018). The interpretation of PCA is important, especially when the number of samples
is small (<20) as in most animal studies (Mora-Ortiz et al. 2019a).
PCA loading has also been used in metabolomics (Hernandez-Bolio et al. 2021).

However, the applications of PCA loadings are limited, and statistical significance
studies such as the Welch’s t-test (Wang, Goodpaster, and Kennedy 2013; Ni et al.
2019) are more common. However, t-test methods have limited information about the
combinational effects of metabolites which also have family-wise error concerns (Wang,
Goodpaster, and Kennedy 2013). The combination of PCA loading plot and combin-
ational t-tests have been applied to NMR (Goodpaster, Romick-Rosendale, and Kennedy
2010), but application in metabolomics, especially when multiple study groups were
involved, is still not well developed.
Various hypothesis-based approaches have been developed in multiple group studies

which include analysis of variance (ANOVA) or a Kruskal-Wallis (KW) test (Elliott and
Hynan 2011; Spicer, Salek, and Steinbeck 2017). ANOVA studies (Ametaj et al. 2010)
are good at interpreting multiple groups of data, but the interpretation of the multi-
dimensional information and the gradual metabolite changing is limited. While the sig-
nificant difference of individual metabolites is important in metabolomics, early markers
can only be observed as a pathway of metabolites, meaning modeling is important in
early marker discoveries. Supervised machine learning methods are powerful in classifi-
cations, but methods such as PLS-DA have potential overfitting (Westerhuis et al.
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2008), especially when the popular lab studies have limited sample numbers (Kumazoe
et al. 2015; Mora-Ortiz et al. 2019b) for training and testing groups in machine learning
models. In this study, the unsupervised PCA was used to analyze data and introduce a
new way to represent the PCA loading plot, which may also be used in multiple group
studies to discover the potential early metabolic biomarkers on sea anemones. Sea
anemone such as Exaiptasia diaphana (Rapp 1829), which is a relative of coral, reprodu-
ces rapidly and reliably and is recommended as a model organism for monitoring the
marine environment and understanding healthy zooxanthellate cnidarian physiology
(Trenfield et al. 2017). Therefore, this study used the metabolomic response to E. diaphana
as an example (Jiang et al. 2021) to demonstrate the performance of the approach. This
method provides an easy and visible approach for general end-users to process metabolo-
mics data, especially for work with multiple study groups.

Methodology

Sample preparation

The study is demonstrated by the treatment of sea anemone species Exaiptasia diaphana
samples with several doses of atrazine. The aqueous phase of the sea anemone extracts
was analyzed using a Bruker Ascend 400MHz high-resolution NMR with an Xpress
autosampler (Jiang et al. 2021). The polar metabolites of E. diaphana were dissolved in
deuterium water (D2O) containing 0.1M phosphate buffer and 0.5mM trimethylsilyl-
propanoic acid (TSP). The NMR spectra were obtained in Amix 4.0 (Bruker BioSpin)
and the 1D NOESY experiments (noesygppr1d) were used for all samples with 32 k
increments, 64 scans, and a 4 s relaxation delay (d1). All NMR spectra were bucketed
using a previously reported automated method (Wang, Maldonado-Devincci, and Jiang
2020). The processed data were normalized to the total peak intensity. Metabolite iden-
tification was carried out using Chenomx 8.6. The study includes a control and six
treatment groups, with groups number Class 1 through Class 6 having increasing con-
centrations of atrazine. Each group contains 6 parallel samples.

Data analysis

Principal component analysis (PCA) was carried out in PLS-toolbox (Eigenvector
research) including the PCA score plot, loading plot, and the combined plot. All data
were mean-centered and Pareto scaled before PCA. The box plots were plotted in
Matlab (R2020, Mathworks) and the Student’s t-test (two tails) was calculated in Excel
(Microsoft). Metaboanalyst was used for the ANOVA study. The applied approaches are
briefly introduced.
PCA is a data visualization method that describes data with dimensional reduction.

Both scores and loadings are generally used to describe the results (Wang, Goodpaster,
and Kennedy 2013; Ruiz-Perez et al. 2020). The score plot shows the largest variance
among the samples while the loadings represent the metabolites’ contributions to the
plot. Specifically, the score plot shows if the samples from different groups are sepa-
rated, the loadings in the same direction of the score plot (Figure 1) showed a positive
contribution to the group. Large loading numbers are more important to the score plot
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separation. Due to the noise and data reliability, Pareto scaling is usually recommended
in NMR-based metabolomics. The Pareto approach used mean-centered data scaled to
the square root of the standard deviation (van den Berg et al. 2006a).
Student’s t-test uses the null hypothesis to compare the means of two groups

(Zimmerman and Zumbo 1993). An assumption of no difference is made before calcu-
lation, and the probability of no difference between groups is represented by a p-value.
A p-value smaller than 0.05 indicates the probability of the two groups being the same
is 5% (95% different) (Wang, Goodpaster, and Kennedy 2013). Both Student’s t-test and
Welch’s t-test are based on normal distributions, but the standard deviations of the two
groups are considered to be the same in the former but different in the latter
(Zimmerman and Zumbo 1993). In metabolomics, both Bonferroni corrections and false
discovery rate (FDR) were used for multiple-comparison problems by using the critical
p values smaller than 0.05 to reduce the false positive rate (Benjamini and Yekutieli
2001). The critical p values used in the Bonferroni correction were calculated by 0.05
divided by the number of variables. Critical p values were calculated for every variable
in FDR after ranking p values from low to high. The critical p-value for one variable
was calculated by 0.05 times the rank number and divided by the total variable number
(Benjamini and Hochberg 1995).
Both analysis of variance (ANOVA) (St and Wold 1989) and the Kruskal-Wallis

(KW) test (Acar and Sun 2013) were designed for studies with more than two groups.
Similar to Student’s t test, they compare the means between the groups and report if
they are statistically significantly different. ANOVA has a normal distribution assump-
tion for the data, but the Kruskal-Wallis test is a rank-based method without a distribu-
tion assumption (Odiase and Ogbonmwan 2005).

Figure 1. Example of a combined PCA score plot and loading plot. The blue squares and the orange
triangles are the score plots, and each symbol represents one sample. The yellow dots are the loading
plots and each dot represents one variable (metabolite). The black line represents the separation dir-
ection between the control and treatment groups. The loadings represent the correlation with the
score plot when PCA was calculated using autoscaling. In this case, Pareto scaling was applied, so the
correlation relationship was adjusted with the variance.
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When a regression line was fit to scatter points, R2 is generally calculated by the ratio
of the variable variation explained by the model and the total variation (Howarth 2017).
Higher R2 values are expected in better models.

Method description

The PCA score plot and loading plot were first prepared in a combined figure. Due to
the scales of the score values and loading values being different, the combined score
and loading were plotted to fit both data together using the PLS toolbox (Eigenvector
Research Inc). To convert the PCA score plot to the scale of the PCA loading plot, each
PCA score value was divided by the maximum score absolute value to obtain a percent-
age. The percentage of each score value was multiplied by the maximum length of the
loadings to provide a similar scale for the loading plot. The score plot distribution was
scaled but undistorted in the converting process. An example of a PCA study with a
combined PCA score plot and loading plot is illustrated in Figure 1. The samples
include all metabolites in the control and Class 7 which is labeled as treatment in
this example.
For two groups of PCA studies, first the separation direction was determined using

the center of each group in the PCA score plot. The center was calculated using the
average of each group’s first two principal components (PC) for which an example is
shown in Figure 1. The two ends of the black line in Figure 1 are the centers of each
group, and the black line is the separation direction for the two groups. Second, the
PCA loading points were projected onto the line determined by the separation of
the two groups. The projection of each score plot was calculated using the distance of
the point (one metabolite) to the line in an x-y axis. Examples of loading values before
and after projections are shown in Figure 2B. The projection of loading points to the
separation line of the score plot was calculated using Matlab (R2020, Mathworks) with
a laboratory-written script. Third, the projection of loading plots was used as the contri-
bution of the corresponding metabolites to the separation, and the distance between the
loading to the center of the axis (the 0) was calculated using Excel (Microsoft) based on
the distance calculation method (Figure 2B). The positive or negative loading values in
the x-axis direction were used to determine the sign of the distance, which is important
for the determination of the correlations to the score groups. For example, the loading
(x2, y2) in Figure 2B has a positive value, meaning the loading has a positive relation-
ship with the treatment group, which has a center with a positive x value. While the
loading (x1, y1) has a negative value, there is a positive relationship with the control
group (negative relationship with the treatment group). The distances are called loading
factors in the remainder of this article. Finally, a plot between the loading factors and
the p values between the two groups was prepared to interpret the results for easy visu-
alization by end-users (Figure 3).
For studies with multiple groups, the linear fit of the centers from all study groups

was applied using this methodology, and the loading plots were projected to the linear
fit with the similar methods used in the two-group study. Loading factors and p values
were plotted using the p values between the two groups.
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Results

Demonstration with two groups

The methodology was first tested in a two-group study of the controls and one high atra-
zine concentration treatment in the sea anemone samples. The PCA score plot showed a
distinct difference between the groups (control and treatment) using the first two principal
components (PCs) (Figure 1, squares and triangles). The combined PCA score and loading
plot (Figure 1) showed the separation between the two (black line). The loadings (Figure 1,
dots) show the metabolite correlations with the score values. The loadings (metabolites) in
the same direction of the treatment group are positively related, and those in the opposite
direction negatively correlated. PCA is designed to describe data without supervision
(Karhunen and Joutsensalo 1994), which indicated the metabolic difference as the whole
system. The PCA loading values showed the correlation with the score plot when autoscal-
ing was applied (Yamamoto et al. 2014). The Pareto scaling, which modifies the data to the
square root of the standard deviation, suppresses the smaller peaks. Small peaks have more
noise (Wang, Goodpaster, and Kennedy 2013), so Pareto scaling can reduce its effect on
the modeling. This method has been applied in NMR metabolomics in several studies (van
den Berg et al. 2006b; Lindon, Nicholson, and Holmes 2007). The loadings showed the
potential metabolites that highly contributed to the PCA model (Figure 1). However, the
interpretation of the PCA loading plot is difficult. Although it is possible to label the statis-
tical significance with p values between study groups using a color map as previously
reported (Goodpaster, Romick-Rosendale, and Kennedy 2010), the data analysis is still diffi-
cult due to the crowded data points and the absence of a loading value interpretation.

Figure 2. (A) PCA score plot of two study groups. The two groups showed a distinct separation after
the PCA study and were connected to the center of each group. Red diamonds are the controls and
yellow dots are the treated samples. (B) Corresponding PCA loading plot after projection. The blue
dots are the original PCA loadings generated by PCA. The orange dots are the loadings after projec-
tion on the separation direction of the two study groups. The black dash lines showed two loadings
before projection (blue dots) and after projection (orange dots). The distance to the center for (x1, y1)

is �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12 þ y12

p
where the sign of x1 is negative, and the distance for (x2, y2) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

p
where

the sign of x2 is positive. PCA loadings are the metabolites’ contributions to the PCA score plot
(Fig. 2A).
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When the loading plots were projected in a separate direction from the PCA score plot,
the distance between the loading points to the axis became the loading factors (Figure 2B).
The contribution of the metabolites that have large loading values but not in the direction
of the separation is suppressed by the projection process, while the large loading values in
the separation direction are not reduced. A plot using Student’s t-test p values between log
scale versus the loading factor shows the relationships of the loadings and p values. The
plot provides a powerful tool to characterize the contribution of each metabolite to the
model and the confidence level of a single metabolite (Figure 3). Figure 3 shows a clear
plot of the important metabolites with both modeling and p-value information. In this case,
glutamine and glutamate showed the importance in the separation and p values which indi-
cated the potential perturbation in the glutamine pathways.

Applications in multiple study groups

Studies with multiple groups are usually too complex to be analyzed. However, PCA
has been shown to be able to initially analyze the general trend of metabolite changes as
a system model. The study with seven groups including a control and six atrazine con-
centration treatments is used as an example. This study shows that there is a general
direction to the changing patterns after increasing the dose of atrazine. However, the
data interpretation is difficult due to the slight difference of the in-group variance
(Figure 4A). The center of the data shows a general trend with a relatively high linear
fit R2 value, and the changing patterns give evidence to the potential gradual changes
with increased atrazine concentration (Figure 4B). The early metabolic markers are usu-
ally weak, so partial separation is normal in metabolomics which increases the difficulty
in data interpretation. The combination of the loading factors of all groups versus the p

Figure 3. PCA loading factors versus the p values of the metabolites between two groups. The
metabolites with larger loading factors and small p values are highlighted in orange squares. The
metabolites with larger p values are in blue and were not further studied. The same metabolite may
have more than one peak, so the metabolites were labeled with numbers after a dot. The dashed
line is the cutoff of the p values (0.05).
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values of the comparison between a low concentration group and the controls provides
higher confidence to analyze the early metabolic biomarkers.
In this example, the score plot shows that Class 2 has partial separation from the

control groups (Figure 4A). Student’s t-test showed that several metabolites were signifi-
cantly different after treatment (p< 0.05, Figure 5). However, significant single metabol-
ite changes may have potential family-wise error problems (Benjamini and Yekutieli
2001). The general metabolic profiling changes and the potential pathway models are
more powerful to discover the influence of environmental stimuli upon the growth of
sea anemones. For example, the results showed that the phenylalanine peak has a low
p-value (p< 0.05, Figure 5) which may be considered important for single metabolite
studies. However, the loading factor is also small which means the metabolite did not
show a high contribution to the PCA models. In contrast, the glutamate showed low p
values as well as high loading values, which were consistently observed in all high con-
centration groups (Figure 6). Therefore, glutamate may be recognized as the potential
key biomarker in the sea anemones for the atrazine exposure. The one-way analysis of
variance (ANOVA) also showed significant p values for metabolites such as glutamate
when analyzing all groups (Table 1) which is consistent with this method.

Discussion

Applications of the method in PCA loading analysis for two groups

PCA loading plots are critical in interpreting PCA results, especially when a large num-
ber of metabolites were applied. Metabolomics aims to study the combinational changes
of metabolite responses to environmental stimuli, and the PCA loading values may con-
tribute to important metabolites in the model. The loading values of PCA provide
important information that fills the disadvantages of Student’s t-test or Welch’s t-test
which only consider a single metabolite (Wang, Goodpaster, and Kennedy 2013). These

Figure 4. (A) PCA score plot of 7 study groups. (B) Linear fit showing the direction of the changes
with the atrazine concentration. Class 5 is a potential outlier but has a limited effect on the data ana-
lysis which also indicated the performance of the method when outliers are present.
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results show that when the loading factors are applied together with the p values of a t-test,
an easy tool is provided to interpret the PCA loading plot. For example, metabolites with
higher loading factors and low p values were highlighted in Figure 3 (orange dots) and
metabolites such as glutamate and glutamine were significantly different between the two
study groups but were critical metabolites which led to the separation of the groups. The
interpretation of PCA loadings is easier with higher confidence. For example, the p values
of glucose and lactate are lower than 0.05 but are higher than 0.01, which may be easily
excluded when a p-value approach such as Bonferroni correction (Benjamini and Hochberg
1995) is applied (Figure 3). However, when relatively large loadings factors were observed,
the important roles of the two metabolites in the PCA model are observed and the conver-
sion of glucose to lactate in glycolysis is consistent with their opposite signs (glucose is
negative and lactate is positive) in the PCA model. Therefore, the method also provides an
approach to connect the loading analysis with metabolic pathway analysis. The average of
the absolute value of all loading factors is suggested to be the cutoff for the loading factors
in this study. Although the statistical significance of the metabolites has been studied with
several methods, including the Welch’s test and Mann-Whitney U test (Goodpaster,
Romick-Rosendale, and Kennedy 2010; McKnight and Najab 2010), this study specifies the
most suitable statistical methods for two groups depending on the metabolite distributions.
This study applied loading factors in analyzing the PCA loading numerically and is suitable
for study groups that include seven groups as in the demonstration data.

Applications of the method in multiple group studies

PCA is an important approach to study for multiple groups and considers the combined
effect (Gogos et al. 2000) of each variable. The loading factor is important to show the

Figure 5. Example plot of p values versus loading factors using the latter from a multiple group PCA
study. The p values are controls versus class 2 which is the lowest atrazine concentration of the treatments.
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metabolites as a group, not just one metabolite. This method is excellent to interpret
gradual changes when a linear fit to the center of the PCA score plot was applied.
When p values were plotted versus the loading factors calculated using the whole
PCA study with all groups, the early marker was easily observed from a large num-
ber of metabolites. In metabolomics, the loading values show a similar position in
the PCA loading plots from the same or related metabolic pathways. For example,
the glutamate and glutamine in Figure 5 are from the glutamate pathway. The results
also showed consistency with the one-way ANOVA study and the loading factor ver-
sus p-value plot showed clear information of the metabolite contributions to the
PCA model. Most importantly, the potential early biomarkers or pathways are
observed using this methodology. On the other hand, metabolites with significant p
values in one group treatment but are unrelated to the general trend may be
excluded. For example, phenylalanine showed a significant difference after the low
concentration treatment (Class 2). However, the small loading factors (Figure 5)
indicate the low contribution of the metabolites to change patterns of the principal
metabolites and should not be considered to be an important early marker. The

Figure 6. Example plot of p values versus loading factors using the latter from a multiple group PCA
study. The p values are controls versus class 7 which is the highest atrazine concentration of
the treatments.

Table 1. One-way analysis of variance (ANOVA) for metabolites with potential significant p values
for the studies with seven groups.
Metabolites f value p value False discovery rate

Glucose 4.84 1.08� 10�3 4.45� 10�2

myo-Inositol.1 4.37 2.15� 10�3 4.45� 10�2

Glutamate.2 4.28 2.46� 10�3 4.45� 10�2

myo-Inositol 4.26 2.55� 10�3 4.45� 10�2

Glutamate.1 4.18 2.85� 10�3 4.45� 10�2

The same metabolite may have more than one peak, so the metabolites were labeled with numbers after a dot.
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results were further confirmed when phenylalanine did not show consistency in the
higher atrazine concentration group (Figure 6).

Conclusion

Metabolomics studies are popular in human health and environmental studies; however,
combination metabolite analysis is still difficult due to the large size of the datasets.
Many studies focused on the significance level (p values) of a single metabolite instead
of the combinational effects of multiple species. Although PCA showed excellent per-
formance in metabolomics, the interpretation of PCA loadings has not been well
studied. NMR has high reproducibility in metabolomics and is suitable for studies that
need a long data acquisition process such as multiple group studies. In this work, an
excellent methodology was examined to apply the PCA loading plot information in
NMR-based metabolomics using sea anemone extracts following atrazine treatment. The
methodology not only shows an efficient approach to analyze the PCA loading plots
with potential combination information, but also indicates powerful applications in
multiple-group studies with better visualization. The different concentrations of atrazine
on sea anemones showed a powerful way to investigate the gradual changes of responses
to environmental influences. For the multiple group studies, this work is suitable for
multiple groups with gradual changes such as early-stage discoveries with multiple con-
centrations, or variable time sample collection after drug treatment. The approaches for
studies with completely different groups will be further developed in our future work.
The method may have limitations when outliers exist in studies that distort the PCA
score plot and therefore lead to less powerful loading factors. Future investigation will
characterize optimized approaches to minimize the potential outliers for PCA. In sum-
mary, the method is an efficient approach to discover potential early metabolic bio-
markers in metabolomics and improves the applications in environmental health.
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