Transform-Based Tensor Auto Regression for
Multilinear Time Series Forecasting

Jackson Cates, Randy C. Hoover, Kyle Caudle, Riley Kopp, Cagri Ozdemir
Department of Computer Science & Engineering and Department of Mathematics
South Dakota Mines
Rapid City, South Dakota

Abstract—With the massive influx of 2-dimensional observa-
tional data, new methods for analyzing, modeling, and forecast-
ing multidimensional data need to be developed. The current
research aims to accomplish these goals through the intersection
of time-series modeling and multi-linear algebraic systems. In
particular, the current research, aptly named the £-Transform
Tensor Auto-Regressive (L-TAR for short) model expands previ-
ous auto-regressive techniques to forecast data from multilinear
observations as oppose to scalars or vectors. The approach is
based on recent developments in tensor decompositions and
multilinear tensor products. Transforming the multilinear data
through invertible discrete linear transforms enables statistical
Independence between observations. As such, can be reformu-
lated to a collection of vector auto-regression problems for
model learning. Experimental results are provided on benchmark
datasets containing image collections, video sequences, sea surface
temperature measurements, and stock closing prices.

I. INTRODUCTION

Forecasting is among the most challenging and problematic
of machine learning tasks in that it involves extrapolation—
prediction of the future from only past data [|1]. Historically,
numerous methods have been created to meet the challenges of
forecasting. Some of the more traditional forecasting methods
include exponential smoothing [2]-[4] and Box-Jenkins Auto
Regressive Integrated Moving Average (ARIMA) [5]]. Neural
networks have also been utilized to provide very competitive
forecasts [6], [7], although these methods are much less
interpretable.

Among the aforementioned forecasting methods, Box-
Jenkins Auto Regressive Integrated Moving Average
(ARIMA) [5] modeling is one of the more popular methods.
In an auto-regressive model, we forecast future values of
a time-series by creating a linear combinations of previous
time series observations. The “order” of the time series is the
number of previous values (commonly referred to as lags)
that are used to forecast the present value. For example, given
the univariate AR model of order p,

Yo =B+ oryi—1 Faoyi_o+ . Fopy—p te, (D

The current research was supported in part by the Department of the Navy,
Naval Engineering Education Consortium under Grant No. (N00174-19-1-
0014) and the National Science Foundation under Grant No. (2007367). Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
Naval Engineering Education Consortium or the National Science Foundation.

the goal is to estimate the model parameters 6 =
{a1,9,...,0a,,6}, i =1,...,p the prior observations y; €
R, j =1,...,n where in general n >> p.

" [JAsteriou. For example, given the multivariate VAR model
of order p

Yi=c+ Ay + ...+ Ay + €, 2

similar to the univariate case, the goal is to estimate the model

parameters @ = {A;, As, ..., A,, c}, where A; € RF**, from
the collection of observations y; € R*, j =1,2,...,n. Again,
it is generally assumed that n > p.

With the massive influx of 2-dimensional (2D) sensors
available today, extensions of such methods have been pursued
where the observations are no longer vectors but can be viewed
as a lateral slice of a tensor instead (e.g. V; € R¥>1xJ)
Tensor in this context is a multi-dimensional array, often
referred to as n-mode or n-way array as defined in Section
Specific examples of where tensor-based forecasting may
arise is spatiotemporal data such as dynamic networks, video
sequencing, correlated image sets, and distributed sensing to
name but a few. In [§] the authors developed a method to
forecast higher-order tensors based on the Tucker decom-
position and n-mode products (referred to as multi-linear
dynamical systems (MLDS)) [9]], [10]. The MLDS approach
(based on dynamical systems theory and system identification
methods) was extended in [11] by transitioning from the
Tucker decomposition to a recently defined tensor product
based on discrete transforms and mod-n convolution, referred
to as the L-transform [12]]-[16] (the details of which are
outlined in Section[IT). While both methods outlined in [8]] and
[11] (MLDS and £-MLDS respectively) obtained promising
performance, they are both based on multi-linear dynamical
systems modeling as opposed to an auto-regressive model as
defined above. In other words, they attempt to find a single
state-transition tensor to obtain their forecast.

The current paper extends these results in two fundamental
ways: First, we transit from a traditional dynamical systems
model and approach the problem from an auto-regressive
perspective. Building on [I5]-[18]], and the L-transform
outlined in [[11] we show that extensions to the VAR model
can be achieved by estimating the model parameters © =

Note: It’s customary in the literature to represent tensors with upper-case
calligraphic letters

{A1, As, ..
TAR)

., A,, C} of the tensor auto-regressive model (L-

Vi=C+A10Yi 1+ +A e, +&

where e denotes the L-product outlined in definition 3
A; € R¥>X¥J jg the state-transition tensor for lag 4, and
C € R>MJ jis a tensor of centers. Second, we add the
capability for modeling non-stationary tensor data by adding
an integration (differencing) step that results in an extension
to the classical auto-regressive integrated (ARI) model in a
tensor framework. We refer to this model as an £-TARI model.
Finally, to account for the potential of seasonality in the
data, we extend the classical seasonal auto-regressive model
to the tensor framework. We refer to this model as an L-
STAR. Experimental results are presented on some benchmark
datasets as outlined in [J8], [[11] and compared against both the
traditional MLDS models, a long-short term memory artificial
neural network (LSTM-ANN), and different variations of
the proposed approach (both different models and different
discrete transforms).

The remainder of the paper is organized as follows: In
Section [[Il we provide some mathematical background for
the tensor linear algebra. In Section we provide some
preliminary information regarding the L£-TAR method and
outline the different variants of £-TAR (L-TARI, L-STAR,
and £-STARI) . In Section [[V| we provide some experimental
results of our proposed method first with synthetic data and
then with 3 standard benchmark data sets. Section [V] contains
our conclusions and some interpretive remarks.

II. MATHEMATICAL PRELIMINARIES

In the current section we discuss the mathematical founda-
tions of the tensor decompositions used in the current work.
While much of the theory in this section is outlined in [12]]—
[16], [[19], we summarize this theory here to keep the current
work self-contained.

A. Mathematical Preliminaries

The term fensor, as used in the context of this paper, refers
to a multi-dimensional array of numbers, sometimes called an
n-way or n-mode array. If, for example, A € R**™X" then
we say A is a third-order tensor where order is the number of
ways or modes of the tensor. Thus, matrices and vectors are
second-order and first-order tensors, respectively.

First, we review the basic definitions from [[13]] and [[12] and
introduce some basic notation. It will be convenient to break a
tensor A in R*™*™ up into various slices and tubal elements,
and to have an indexing on those. The i lateral slice will
be denoted A(;) whereas the 4™ frontal slice will be denoted
AU In terms of Python slicing, this means Ay = Al i)
while AW = A[j, :,:]. We use the notation a;;, to denote the
i, k™ frontal tube in A; i.e., a;, = A[:,i,k|, and a’* as the
i, k™ vertical tube in A; ie., att = Ali,:, k]. Indeed, these
tubes have special meaning for us in the present work, as they
will play a role similar to scalars in R. Thus, we make the
following definition:

Definition 1: An element ¢ € R'*1*" is called a tubal-
scalar of length n.

Fundamental to the results presented in this paper is a
recently defined multiplication operation on third-order ten-
sors which itself produces a third-order tensor [12], [13]
(referred to as the t-product). While the original formulation
outlined in [12f], [[13] was built around the discrete Fourier
transform (DFT) and an algebra of circulants, the resulting
complex arithmetic associated with the t-product becomes
computationally prohibitive for large datasets. Therefore, the
research community began searching for alternative solutions
and arrived at two variations on the original formulation
that utilize either the discrete cosine transform (DCT), or
the discrete wavelet transform (DWT) [19]. Combining the
notation outlined in [[19] with the prior work outlined in [12]-
[16], we define the following operators:

We anchor the MatVec command to the frontal slices of
the tensor such that MatVec(.A) takes an £ X m X n tensor
and returns a block ¢n x m matrix

A
A
MatVec(A) =
A(.n)
We anchor the MatView command to the frontal slices of

the tensor such that MatView(B) takes an £ X m X n tensor
and returns a block diagonal /n x mn matrix

BO o ... 0
0 B® ... 0
MatView(B) =
0 0 B

where the 0’s in the previous matrix represent an £ X n
Zero matrix.

The operation that takes both MatVec(A) and/or
MatView(B) back to tensor form is the fold command:

fold(Matvec(A)) = A and/or fold(Matview(B)) = B.

Finally, we anchor the Collect command to the collection
of either mode-1 or mode-2 tensors (i.e., vectors and matrices
respectively) such that Collect(A;), i = 1,2,...,m and
A; € RFX® returns a tensor A € R¥*FX™ with the A; as its
frontal slices with increasing ¢ from front to back.

The above operators enable a generalized tensor product to
be defined via any invertible discrete transform £ : C* — C™.
As such, we have the following definition:

Definition 2: The L-transform of the tensor A, given by

./21 — E(A) c (C€><m><n7

is computed by applying the discrete transform of your choice
along the tubes a;j of AE]

2Note: the current work focuses on the DWT and DCT. However, the DFT
framework also applies here.

Using this formulation, given two third order tensors A €
CExmxn and B € C™*PX" we have:

Definition 3: The L-product between A and B can be
defined via traditional convolution as

C=AeB=L"1(foldMatView(A)-Matvec(B))),

where we denote e as the L-product, - is computed via
classical matrix multiplication, and the resulting tensor C =

AeBc (CZXan'

III. PROPOSED APPROACH TO MULTILINEAR TIME-SERIES
FORECASTING

In the current section we discuss the details of building
the proposed extensions to the classical AR, ARI, and SARI
models using the L-transform and £-product. Namely, we il-
lustrate how using the L-transform we can divide and conquer
by recasting the multilinear time-series problem into a subset
of linear VAR problems.

A. Mathematical Model Overview

Our overarching goal is to construct the p" order tensor
auto-regressive model (referred to as a £L-TAR(p) given by

Vi=C+A10Vi 1+ +A, 0+ &, 3)

by estimating the model parameters © =
{A1,As,...,Ap,C} from a collection of multilinear
observations V; € R&1X™ i =12 ... n with n >> p. In
Eqn. (@), e denotes the L-product outlined in definition [3]
A; € R*¥m g the model coefficient tensor for lag i,
C € R™Xm s a tensor of centers, and & represents the
model errors. We assume the model errors have zero mean,
with constant variance, and are uncorrelated (i.e., E{£} = 0,
E{L(£,ET)} = U, and E{&;,&;} = 0 for i # j). Because
our aim is to learn model parameters from real data, the
moving average (MA) portion of the ARMA process contains
unobservable error terms. As a result, the formulation
of the L-TAR(p) models (and their non-stationary and
seasonal counterparts) focus on estimating the auto-regression
coefficients only. A graphical illustration of the L-TAR(p)
model is shown in Fig. 2?.

B. Training Methodology

We proceed by computing j)j = L(Y;) for each j =
1,2, ..., n. We note that, although it is assumed the multilinear
observations)); are correlated in the sampling domain, the
vertical tubes y®* are uncorrelated in the transform domain.
As such, £(Y;) transforms a single multilinear observation Y,
into a collection of m vector observations yj» € CHIx1 for
7=12,....,nand ¢ = 1,2,...,m. In other words, we now
have a collection of n multivariate observations y§ sampled
from m different VAR processes in the transform domain. As
such, we can apply the techniques of standard VAR process
learning (least squares regression, maximum likelihood, or
expectation maximization) to learn m different VAR model
parameters 0; = {A}, Ab,... Al c¢'}, i = 1,2,...,m as
outlined in Eqn. (1). Applying the Collect(:) command

to each of the parameter matrices/vectors in 6; for each @
results in the parameter tensors { A1, As, ..., A,,C}. Finally,
the inverse of the L-transform is applied resulting in the £-
TAR(p) model parameters

L7HAL Ay, Ay CY — O = {Ay, A, ..., Ay, C).

The entire process for constructing the £-TAR(p) model is
illustrated graphically in Fig. [T}

a0
=
ks
o
Q
=
S
g2
>

' VARm

VAR,
AR,

1}’1"')’ J

mm

yl y) n

J

:J&’p?é} —+ 0= {-Al:"')

LY Ay, .. Ay, C}

L-TAR Decoding

Fig. 1: Graphical illustration of the overall process for com-
puting the £-TAR(p) model. The top row illustrates how the
original observations }; are encoded using the L-transform
to construct the individual p observations yj- for learning the
m VAR models in the transform domain. The middle row
illustrates how the m VAR model parameters 6; are learned
and collected back to tensor form using the Collect(:)
command. The bottom row illustrates how the inverse L-
transform is applied to compute the £-TAR(p) model param-
eters © = {4y, As,..., Ay, C}.

C. Dealing with seasonality and non-stationarity

The formulation of the £-TAR(p) assumes two conditions:
1) that the observations); are stationary and 2) there is no
seasonal trend within the observations. While these assump-
tions are valid in many real-world applications, there are many
instances where these assumptions are violated. Luckily, the
statistics community has overcome these hurdles but extending
the traditional VAR(p) models to account for seasonality,

non-stationarity, or both. This subsection illustrates how such
extensions can be capitalized on in a multilinear framework.

1) Dealing with non-stationary data (L-TARI): It’s com-
mon practice to use integration within an autoregressive model
in order to enforce stationarity within a time series. Similar to
a traditional VAR(p) process, the proposed L-TAR(p) process
requires the tensor time-series to be stationary [20]. A time
series is stationary if the observations)); have constant mean
and variance, i.e., E{¥} = M and E{(Y — M)?} = T,
where M € R*1X™ is the mean tensor. Enforcing stationarity
within the tensor time-series can be performed similar to
how it’s enforced in the VAR process, by applying a number
of lagged differences to our observations,);. The resulting
multilinear model is referred to as a L-TARI(p, d) model,
where d € Z% is the order of differencing. The order of
differencing d is the amount of times that equation [4]is applied
to the observations ;. We apply the lagged difference d times
as

Vi=Y;i=Yi 4

Then the model is constructed using the differenced obser-
vations y;, and the forecast is performed for w € Z* steps.

~/
This obtains a multilinear response)V, for k = n + 1,n +
2,...,n + w. The differencing must be removed to recover
the response using

w

V=Y Vi gt n 5)

q=1

Equation |5| must be applied to the forecast ji; for d times.

2) Dealing with seasonal data (L-STAR): 1t’s also common
practice to consider seasonality within the observations)
to enforce stationarity within a time series. In addition to
requiring constant mean and variance, the time-series should
not have any seasonality or periods within the data [20]. In
a similar fashion of how non-stationary data enforces station-
arity, We can account of seasonality by applying a seasonal
difference to our observations). The resulting multilinear
model is referred to as L-STAR(p, s), where we consider
1 < s < n as the period of the seasonality. We apply the
seasonal difference to our observations), as

V=Y =V (©)

As before, the model is constructed using the differenced
observations), and the forecast is performed for w steps to

~/
obtain the multilinear response),. The difference must be
removed to recover the response) using

w
~ ~l
yk = Z yk—q*s + yn—s-‘rj mod s (7)

q=1

3) Dealing with both non-stationary and seasonal data
(L-STARI): When presented with non-stationary observations
after applying a seasonal difference, a combination of the
methods mentioned in £-TARI and £-STAR can be done to
remove trends within seasonal observations. This results in a
multilinear model that is referred as £-STARI(p, d, s), where
we consider both the order of difference d and the period
of seasonality s. This is done in the similar fashion of the
two models, where we apply a number of differences in the
observations); to form yj’., construct the model based on the

differenced observations), then once the forecasted response
~/
Y, is made, remove the differencing. The order of which

difference to apply is free for choice, where we can apply
the seasonal difference first from equation [6] then the lagged
difference from equation] or vice-versa.

1V. EXPERIMENTAL RESULTS
A. Quantitative Analysis

As a quantitative evaluation, we compare the proposed
approach against the £-MLDS model proposed in [[11] as well
as a convolutional Long Short-Term Memory Neural Network
model due their recent explosion in time-series modeling.
We use a subset of the same datasets proposed in the L-
MLDS model in [11]] in an effort to compare and contrast both
methods. A tabulated list of all models used in our evaluation
are outlined in Table [} with the information pertaining to each
dataset outlined in Table [[I] (additional details on the datasets
can be found in [11])).

TABLE I: Models Used in Experiments

Model Notes

L-TAR L-transform computed using the DWT and DCT
L-TARI L-TAR for non-stationary data
L-STAR L-TAR for seasonal data

LSTM A Long Short-Term Memory Neural Network
L-MLDS Using DWT, DCT, and DFT

TABLE II: Datasets Used in Experiments

Dataset Notes

SST A 5 x 6 grid of sea-surface temperatures. The first
1800 hours are used as observations and the

last 200 hours are used for testing. [11]]

Video A 10 x 10 video of the ocean. The first
1000 hours are used as observations and the

last 171 hours are used for testing. [11]]

NASDAQ-100 | Opening, closing, high, and low for 50 randomly-chosen
NASDAQ-100 companies (50 x 4). The first
2000 hours are used as observations and the

last 186 hours are used for testing. [11]]

In our single-step forecasting, we evaluate the original £-
MLDS and L£-TAR. The other methods are not considered
because both £-TARI and £-STARI models are more suited
for multi-step forecasting. We also show multi-step forecasting
to illustrate the model’s ability to make long-term predictions.

—— dct-MLDS
—— dct-TAR

0.018

0.020 4

0.016

0.015 4 0.014

0.012

Error
Error

0.010 4

0.010
0.005 0.008

0.006
0.000 4

»»J

| —— dwt-MLDS
—— dwtTAR

| ﬂﬂ

0.010 4

0.008 4 |

0.006 4

\M
\ JllM

Error

0.004 4

w\ A

0.002

0 60

8[] 160
Frames

IDD].20 140

— det-MLDS
detTAR
—— dct-TARI
— del-5TAR
— L5TM

—— dwt-MLDS
—— dwt-TAR

— dwt-TARI

—— dwr-STAR
— LSTM

0.025

0.020 4

0.015 4

Error

0.010 4

0.005 4

0.000

—— det-MLDS

0.035 4 —— det-TAR

— del-TARI

0030 — L5T™

0.025
5 0.020
a
0.015
0.010

0.005

T T T
30 75 100 125 175 20 40 &0

Hours

150 200 0

Frames

60 80

Days

a0 100 120

Fig. 2: Quantitative Evaluation of the proposed models. Top: Single Step with SST, Video, and NASDAQ100. Bottom: Multi-
step (same order). The error is calculated by the percent error of the observation’s Frobenius norm.

In our multi-step forecasting, we evaluate all methods in table
[£-MLDS is modified in the multi-step forecasting to where
the LDS models generated consider no error terms, unlike the
authors original model (i.e., the error terms are considered
to be unobservable in the MLDS literature). The results of the
experiment can be seen in figure [2}

1) SST: The SST dataset is a 5 x 6 grid of sea-surface
temperatures, where the observations were recorded every
hour [T1]]. Each observation can be represented as a multilinear
observation); € R>*1*¢ where we have n = 2000. The first
1800 hours are used to construct the models and the last 200
hours are used for testing. By construction, we noticed that
the data contains seasonality.

For single step, when estimating the model parameters © =
{A1, Ay, ..., Ap,,C} for the L-TAR(p), we found that p =
5 and gave the best result for the model. We compared our
propose method to £-MLDS and as seen on the top left of
Fig. 2] L-TAR(p) obviously performs better.

For multi-step, when estimating the model parameters © =
{A1, Az, ..., A,,C} for the models, we found that p = 19
gave the best result for L-TAR(p), p = 19 and d = 1 gave
the best result for L-TARI(p,d), and p = 3 and s = 24 gave
the best result for £L-STAR(p, s). For the LSTM, two recurrent
layers are used, both with a 100 nodes and relu activation
functions. The LSTM was trained using stochastic gradient
descent. As seen on the bottom left of Fig. 2] £L-TAR(p) is the
best performer throughout.

2) Video: The video dataset is a 10 x 10 gray-scale video of
the ocean, where the observations were recorded every frame
[I1]. Each observation can be represented as a multilinear

observation ; € R10%1*10 where we have n = 1171. The
first 1000 frames are used to construct the models and the last
171 frames are used for testing. By construction, we noticed
that the data contains seasonality and is non-stationary.

For single step, when estimating the model parameters ©
for the £-TAR(p), we found that p = 10 gave the best result
for the model. We can see on the top middle of Fig. 2] both
L-TAR(p) and £L-MLDS virtually performs the same.

For multi-step, when estimating the model parameters ©
for the models, we found that p = 13 gave the best result
for L-TAR(p), p = 9 and d = 1 gave the best result for L-
TARI(p,d), and p = 9 and s = 10 gave the best result for
L-STAR(p, s). For the LSTM, two recurrent layers are used,
both with a 125 nodes and sigmoid activation functions. The
LSTM was trained using stochastic gradient descent. As seen
on the bottom middle of Fig. 2| £L-TARI(p, d) performs the
best until around the 40th frame, then the LSTM performs the
best on forth.

3) NASDAQ-100: The NASDAQ-100 dataset contains the
opening, closing, high and low stock price of the day for 50
random NASDAQ-100 companies, resulting in a 50 x 4 grid
[1T]. Each observation can be represented as a multilinear
observation ; € R°0*!1X4 where we have n = 2186. The
first 2000 days are used to construct the models and the last
186 days are used for testing. By construction, we noticed that
the data does not contains seasonality, but it is non-stationary.
As such, a L-STAR(p, s) was not trained since there was no
seasonality.

For single step, when estimating the model parameters ©
for the £L-TAR(p), we found that p = 10 gave the best result

for the model. We can see on the top right of Fig. 2] that
while £-MLDS performs slightly better throughout, the error
between both models is extremely small and very comparable.
For multi-step forecasting, when estimating the model pa-
rameters © for the models, we found that p = 5 gave the
best result for £L-TAR(p), p = 16 and d = 1 gave the best
result for £-TARI(p,d). For the LSTM, two recurrent layers
are used, both with a 200 nodes and relu activation functions.
The LSTM was trained using stochastic gradient descent. As
seen on the bottom right of Fig. 2] £L-MLDS performs the
best until around the 50" day when the £-LTARI(p, d) begins
to outperform all other models. Similar to the single-step
forecasting however, both models perform so similar up to
day 100 neither appears to outperform the other long term.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Overall, with the experimental results £-TAR(p), L-TARI(p,
d), and L-STAR(p, s) are worthy models to forecast a multi-
linear time series. While not necessarily performing the best in
every data set, there are situations where the proposed methods
outperform the current state of the art. When considering
speed, this is an area we are unable to truly evaluate at the
time, because the original £-MLDS is coded into MATLAB,
and our proposed methods are coded in Python. Thus, a
true evaluation between the two methods is difficult to make.
However, when compared, the proposed methods was achiev-
ing close to a 100-fold speedup. With the current state, our
proposed methods are much faster and much more tune-able
to a given problem set (i.e., we can control the seasonality,
non-stationarity, and number of lags in the auto-regression).

Future work includes implementing the MLDS in Python
to get a true computational comparison. Future work also
includes applying extensions to £-TAR in a similar fashion to
its auto-regressive predecessors, such as applying moving av-
erages (L-TARMA, L-STARMA, L-TARIMA, L-STARIMA)
and considering non-linearity with exogenous observations (£-
NTARX). Also, in the section p. d, and s was picked via
trial and error, future work will also include creating similar
tensor versions of auto-correlation factor (ACF) and partial
auto-correlation factor (PACF) plots to have a more precise
method of estimating these parameters.

REFERENCES

[1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International journal of forecasting, vol. 22, no. 3, pp. 443473,
2006.

[2] G. Box., “Understanding exponential smoothin-a simple way to forecast
sales and inventory,” Quality Engineering, vol. 4, no. 3, pp. 561-566,
1991.

[3] R. Brown, Statistical Forecasting for Inventory Control.
McGraw-Hill, 1959.

[4] ——, Smoothing, Forecasting, and Prediction.
Englewood Cliffs, 1963.

[5] Box, PJ., GM, and R., Time Series Analysis: Forecasting & Control,
2008.

[6] S. Haykin, Neural Networks and Learning Machines (3rd ed.).
York: Pearson, 2009.

[7]1 T. Hill, L. Marquez, M. O’Connor, and W. Remus, “Artificial neural
network models for forecasting and decision making,” International
Journal of Forecasting, vol. 10, pp. 5-15, 1994.

New York:

NJ: Pretice Hall,

New

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

M. Rogers, L. Li, and S. J. Russell, “Multilinear dynamical systems for
tensor time series,” in in Neural Information Processing Systems (NIPS),
2013, pp. 2634-2642.

L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279-311, Sept. 1966.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular
value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.
1253-1278, March 2000.

W. Lu, X.-Y. Liu, Q. Wu, Y. Sun, and A. Elwalid, “Transform-Based
Multilinear Dynamical System for Tensor Time Series Analysis,” in
Neural Information Processing (NIPS) Workshop on Spatiotemporal
Data, 2018.

M. E. Kilmer, C. D. Martin, and L. Perrone, “A third-order generalization
of the matrix SVD as a product of third-order tensors,” Tufts University,
Department of Computer Science, Tech. Rep. TR-2008-4, October 2008.
M. E. Kilmer and C. D. Moravitz Martin, “Factorization strategies for
third-order tensors,” Linear Algebra and Its Applications, no. Special
Issue in Honer of G.W.Stewart’s 75" birthday, 2009.

K. Braman, “Third-order tensors as linear operators on a space of
matrices,” Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241
— 1253, 2010.

R. C. Hoover, K. S. Braman, and N. Hao, “Pose estimation from a single
image using tensor decomposition and an algebra of circulants,” in Int.
Conf. on Intel. Robots and Sys., 2011.

R. C. Hoover, K. Caudle, and K. Braman, “Multilinear discrimi-
nant analysis through tensor-tensor eigendecomposition,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 578-584.

M. E. Kilmer, K. S. Braman, N. Hao, and R. C. Hoover, “Third
order tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications (SIMAX), vol. 34, no. 1, pp. 148-172, Feb.
2013.

N. Hao, M. E. Kilmer, K. S. Braman, and R. C. Hoover, “New tensor
decompositions with applications in facial recognition,” SIAM Journal
on Imaging Science (SIIMS), vol. 6, no. 1, pp. 437-463, Feb. 2013.
X.-Y. Liu and X. Wang, “Fourth-order tensors with multidimensional
discrete transforms,” 2017.

G. Hyndman R. J., & Athanasopoulous, Forecasting: principles and
practice. OTexts, 2018.

	Introduction
	Mathematical Preliminaries
	Mathematical Preliminaries

	Proposed Approach to Multilinear Time-Series Forecasting
	Mathematical Model Overview
	Training Methodology
	Dealing with seasonality and non-stationarity
	Dealing with non-stationary data (L-TARI)
	Dealing with seasonal data (L-STAR)
	Dealing with both non-stationary and seasonal data (L-STARI)

	Experimental Results
	Quantitative Analysis
	SST
	Video
	NASDAQ-100

	Conclusions and Future Directions
	References

