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Abstract

There is rich structure in the order in which studied material is recalled in a free recall task
(Howard and Kahana, 2002a). Extensive effort has been directed at understanding the
processes and representations that give rise to this structure; however, it remains unclear
why certain types of recall organization might be favored in the first place. We provide a
rational analysis of the free recall task, deriving the optimal policy for recalling items
under the internal representations and processes described by the Context Maintenance
and Retrieval (CMR) model of memory search (Polyn et al., 2009a). Our model, which we
call rational-CMR, shows that the optimal policy for free recall is to start from the
beginning of the list and then sequentially recall forwards, providing a rational account of
the primacy and forward asymmetry effects typically observed in free recall. In addition,
when recall is not initiated from the beginning of list, it is optimal during recall transitions
to minimize the amount of forward asymmetry. Predictions from the rational model are
confirmed in human behavioral data: Top-performing human participants demonstrate a
stronger tendency to initiate recall from the beginning of the list and carry forward recalls,
and the amount of forward asymmetry in participants depends on whether they start recall
from the beginning or end of the list. We discuss the resemblance of the optimal behavior
in free recall to participants’ behavior when applying mnemonic techniques such as the
method of loci.

Keywords: free recall; memory search; rational analysis; computational modeling
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Optimal policies for free recall

Psychologists have used the free recall task for decades to gain insight into the
processes and representations underlying memory search (Murdock, 1960; Murdock, 1962;
Roberts, 1972; Standing, 1973). In a free recall task, participants first study a list of items,
and are later asked to freely recall as many items as they can from the list. One of the key
benefits of the free recall task is that the data support a wide range of analyses. In addition
to tracking overall performance (operationalized as the number of recalled items) studies
have also looked at serial position effects (showing primacy — enhanced recall of items from
the start of the list — and also recency — enhanced recall of items from the end of the list;
Murdock, 1962) and contiguity effects (regularities in which items tend to be recalled
together). Early studies of contiguity focused on semantic clustering, where studied items
that are drawn from the same semantic category are recalled successively (Bousfield and
Sedgewick, 1944; Bousfield, 1953; Cofer et al., 1966; Howard and Kahana, 2002b). The
temporal contiguity effect is also a ubiquitous property of the recall sequences: Items
studied in nearby serial positions tend to be recalled successively regardless of their degree
of semantic association (Kahana, 1996). These temporal contiguity effects are bidirectional
(participants show an enhanced probability of recalling items that preceded and followed
the item at study) and typically show a forward asymmetry (i.e., forward transitions are
more likely than backward transitions; Kahana, 1996; Howard and Kahana, 1999).

Several computational models have been developed to account for these regularities of
free recall, including the Temporal Context Model (TCM; Howard and Kahana, 2002a) and
its successor, the Context Maintenance and Retrieval model (CMR; Polyn et al., 2009a;
Lohnas et al., 2015). We focus on CMR here, but our results should also generalize to
TCM (Howard and Kahana, 2002a; Sederberg et al., 2008), given the high degree of
similarity between the TCM-A model (Sederberg et al., 2008) and the variant of CMR
considered here (see the Background section for details). CMR posits that a slowly

changing internal context representation is associated with each of the studied items, and is
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then used to guide memory search at recall. In CMR, recency arises because the
time-of-test context at the beginning of the recall overlaps with the contexts associated
with the most recent list items. Temporal contiguity arises because recalling one item leads
to retrieval of its contextual state at study, which subsequently cues retrieval of adjacent
items (see the Background section for detailed discussion of how CMR accounts for these
and other findings).

The architectural assumptions of CMR are important in accounting for these
regularities. Nevertheless, while CMR can be parameterized to show all of these
regularities, it can also be parameterized so that these regularities do not appear. This
leaves open the question of why people show these regularities in the first place. To our
knowledge, our work is the first to address the latter question, by showing how these
characteristics of free recall result from the cognitive system optimizing recall performance.
This is achieved by applying rational analysis, which explains human behavior as an
optimal solution to computational problems posed by the environment (Anderson and
Milson, 1989; Anderson, 1990). While CMR (parameterized to fit human data) provides an
explanation at Marr’s algorithmic level (Marr, 2010), our work provides additional insight
about the free recall task at the computational level. This distinction is in spirit similar to
the contribution of the original rational analysis of human memory: Though recency and
frequency effects had been known to memory researchers since the work of Ebbinghaus
(Ebbinghaus, 1885), Anderson (1989, 1990) was the first to demonstrate that recency and
frequency effects arise from human memory optimally adapting to the statistics of the
environment. Similarly, models of categorization can capture human behavior in
categorization tasks by making different assumptions about whether categories are
represented by prototypes or exemplars (Medin and Schaffer, 1978; Reed, 1972; Nosofsky,
1984); a rational model of categorization can justify these assumptions by explaining how
they are useful in achieving the computational goal underlying the categorization task

(Anderson, 1990; Griffiths et al., 2007).
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For our rational analysis, we define the goal of free recall to be correctly recalling as
many items as possible. Our basic architectural assumptions about internal representations
and processes during memory search are based upon the CMR model (Polyn et al., 2009a;
Lohnas et al., 2015). That is, we treat the core architecture of the CMR model as a hard
constraint on how memory works. This approach inherits from rational analysis the idea of
explaining human behavior in terms of optimal solutions to problems posed by the
environment (Anderson, 1990), but follows recent extensions of this approach to the case
where that environment is partly specified by the cognitive processes and internal
representations of the agent (cognitive-bounded rational analysis: Howes et al., 2009; see
also resource-rational analysis: Lieder and Griffiths, 2020). In contrast to the model-fitting
procedure typically used in CMR, which obtains a set of parameters to best fit human
behavioral data, our model (which we call rational-CMR) obtains a set of parameters to
maximize the total number of items recalled. The derived optimal behavior provides a
rational account of why certain patterns in recall organization arise (i.e., because they lead
to better task performance). The rational analysis also leads to testable predictions about
the relationship between recall organization and overall performance (i.e., people whose
behavior most closely approaches the optimal parameterization identified by rational-CMR
are predicted to perform better).

In the remainder of the paper, we first give some background on the CMR model of
human memory search, then we describe the steps to carry out a rational analysis on
CMR. We show that — under the assumption that people can choose their entry point into
the list — the optimal policy is to always start recall from the beginning of the list and then
sequentially recall forwards, providing a rational account of primacy and forward
asymmetry effects typically observed in free recall. To explain why people do not always
start recall from the beginning of the list, we highlight the fact that — under CMR — people
do not have the ability to simply choose their entry point into the list. Rather, the first

item needs to be recalled based on cues available at the end of the list, which tend to
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match end-of-list items more than start-of-list items; this results in participants sometimes
initiating recall with end-of-list items (recency) instead of start-of-list items (primacy). We
show that the optimal policy during recall is different when participants happen to initiate
recall from the end of the list. In this case, the optimal policy after retrieving an item is to
retrieve the state of temporal context associated with that item at study, and then to cue
with this retrieved context; as described in the next section, retrieved temporal context is a
symmetric cue that allows participants to move backwards as well as forward in time — this
backward movement is especially useful when participants start from the end of the list.
We also discuss how the optimal parameters to use at encoding differ depending on
whether — at recall — participants end up initiating recall from the start of the list
(primacy) or the end of the list (recency); given that it is not knowable at encoding
whether participants will succeed in getting back to the start of the list at recall, the
optimal strategy at encoding is for participants to interpolate between parameters that
yield optimal performance given primacy vs. recency.

After describing the model’s predictions, we compare the theoretical predictions from
the optimal policy with human behavioral data, finding that top-performing human
participants are using this policy more often than the rest of the participants. Finally, we
discuss the implications of the optimal policy beyond free recall task and its connection to
mnemonic techniques; among other things, we argue that common mnemonic techniques
like the method of loci help participants to get back to the start of the list, thereby giving

them access to the benefits (noted above) of initiating recall at the start of the list.

Background: Context Maintenance and Retrieval Model (CMR)

It has been long recognized that associations are made not only among items but also
between items and context (Estes, 1955; Bower, 1967; Anderson and Bower, 1972).
Building on the classic stimulus-sampling theory developed by Estes (1955), Bower’s (1967)

model posits a context that slowly fluctuates in a context space, and binds with any
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to-be-remembered external or internal experiences (see also random context models;
Murdock, 1997). As a consequence, experiences that are encoded close together in time
also share similar context vectors. This accounts for the recency effect in free recall, where
items at the end of the list are better recalled, since they are close in time and share
similar context with when the recall starts.

These earlier formulations of context models provide a sound theoretical footing for
more recent computational models such as TCM and CMR (Howard and Kahana, 2002a
and Polyn et al., 2009a; Lohnas et al., 2015). In addition to having a slowly drifting
context, these more recent models also allow for the retrieval of previously encountered
contextual states, which can in turn serves as cues for subsequent recalls (Howard and

Kahana, 2002a). The state of context at time ¢, denoted as ¢;, follows the process
¢ = pciq + BN (1)

where ¢!V represents the retrieved context induced by an encountered experience, 3 is a
parameter that determines the rate of contextual drifting (0 < g < 1), and p is set to a
scalar that ensures ||c;|| = 1. When an item is presented during the encoding phase, the
retrieved context ¢!V corresponds to the pre-experimental context of the item — a
representation of the item’s features based on all of the encounters with the item prior to

the start of the experiment. This can be expressed as:

N = MICS, )

pre

where M;;g encodes the contexts that were associated with different items prior to the

experiment, and f; is a binary vector that is all zeros except at the position that represents

the presented item at time t; therefore, M;fig fi is the context previously associated with

the presented item. In addition to a fixed Mﬁg that represents item-context associations

prior to the experiment, there are also M, j;g‘ and M gcg that capture the item-to-context

associations and context-to-item associations acquired during the experiment. These

matrices are initially set to zero, and are incremented during the encoding process based on
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the Hebbian outer-product learning rule AMQ? = AM;? = ficl’ | to instantiate the
associative learning that takes place between a presented item f; and the current context
¢i—1. The overall effect of having context drift towards the retrieved context of presented
items, as described in Equations (1) and (2), together with associative learning, is that
each item is embedded at a location in the context space corresponding to the
representations of recently-encountered items. With each new presented item, the context
drifts slightly towards the pre-experimental context associated with that item, so that
items presented close in time to each other are linked to similar contextual states. We
followed the order-of-operations consistent with Howard and Kahana (2002a), Sederberg,
Howard, and Kahana (2008), Lohnas et al. (2015), and Rouhani et al. (2020), which is to
associate an item with the context first, before the context vector drifts towards the item’s
pre-experimental context.

During recall, when memories of these items are needed again, the memory search
process is driven by the current state of the context representation ¢;. The support for
recalling each item depends on how much the current context matches the items’ study
context. The starting context at recall is close in time to (and thus similar to) the
end-of-list context during encoding; this gives rise to better recalls for items studied at the
end of the list (i.e., the recency effect). As recall continues, context evolves under the same
process as it did during the encoding phase, ¢; = pc;_1 + B¢V as in Equation (1), but with
the retrieved context ¢/?V introduced differently. The key difference is that items are
encountered for the first time during the experiment in the encoding stage, whereas — in
the recall phase — items are encountered for the second time when they are recalled. The
first time that an item is encountered during its presentation at ¢ = ¢, there is no
association between this item and the experimental context yet; therefore, the retrieved
context ¢!V consists of solely the pre-experimental context associated with this item,

IN _ MFC’

- ore Ji; however, when the same item is encountered a second time

expressed in ¢

IN

1o can come from both the

when it is recalled at ¢t = j, the retrieved context c
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pre-experimental context associated with the item sz;ec f; and the experimental context

associated with the item Mf;g f; which has been acquired through Hebbian learning during

the encoding phase. The extent of retrieving the pre-experimental context versus retrieving

the experimental context is regulated by the parameter v, € [0, 1],
Cree = (L= Y5 ) My [+ vpeMEy [ = (1= 7pe)ciie + Vpecio (3)

The value of . has important implications for the recall transition patterns. When
7fe = 0, the retrieved context entirely consists of pre-experimental context associated with

the item MEC f;, which is identical to the retrieved context ¢, when the item was first

encountered during encoding. When 7. = 1, the retrieved context entirely consists of

experimental context associated with the item M e@g fj, which is essentially the context ¢;_;

IN

o and ¢;_q are part of

that was associated with the item at ¢ = ¢ during encoding. Both ¢
the original study context, as illustrated in Figure 1, so reinstating them into the current
context has the effect of mentally “jumping back in time”. As a consequence of this
“jumping back in time”, items that were studied close in time to the just-recalled item have
a higher chance of being recalled next, because of the similarity between their study

context and the current context. This contributes to the temporal contiguity effect

commonly observed in free recall.

IN

“ne and reinstating c;_q

Though both contribute to temporal contiguity, reinstating c
bias forward recalls and backward recalls differently. This is illustrated in Figure 1A:
During encoding, at ¢ = 4, the drifting part of the study context pc;_; (in orange) is similar
to contexts both before and after ¢ = 7, and has the chance to be associated with items
that come before and after t = 7. Therefore, reinstating c¢; ; gives rise to both forward

recalls and backward recalls. However, since an item’s pre-experimental context is

IN

incorporated into temporal context after the item is presented, the retrieved context c.,\.

(in blue) does not share any similarity with contexts before ¢t = i, and only has an

I

opportunity to be associated with items that come after. Therefore, reinstating ¢, gives

rise to only forward recalls, which accounts for the forward asymmetry commonly seen in
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free recall experiments. Figure 1B illustrates the effect of vy, on the recall transition

IN

“ne 18 reinstated, which leads to asymmetry in forward and

patterns. When v, = 0 only ¢
backward recalls; this asymmetry can be seen in the conditional response probability curve,
which is computed by dividing the number of times a transition of that lag is actually

made by the number of times it could have been made (Kahana, 1996). When 4. = 1 only

IN

ci—1 is reinstated, which leads to symmetric forward and backward recalls. Reinstating c,.

and ¢;_; both contribute to temporal contiguity; for the purpose of distinguishing the two
in the rest of the paper, we refer to the asymmetric part of the temporal contiguity as
“asymmetric contiguity”, which is also the forward asymmetry effect, and the symmetric
part as “symmetric contiguity”. In practice, experimental participants adopt an
intermediate value of 7., demonstrating a combination of both effects.

At this point, we have described the key properties of CMR (Howard and Kahana,
2002a; Polyn et al., 2009a, Lohnas et al., 2015), which closely resembles the TCM-A model
(Sederberg et al., 2008) in terms of the features relevant for this rational analysis. To be
able to fully simulate the behavioral patterns, the model also needs to be equipped with a

retrieval rule and a stopping rule. Here, we use the softmax function as the retrieval rule

eksi
bi = Wa
amount of noise during the retrieval (Howard and Kahana, 2002a, Sederberg et al., 2008).

with s; as the support to retrieve item ¢ and parameter k governing the

The stopping probability is a function of summed support for the already recalled items s,
and the not-yet-recalled items s,,, expressed as pstop = e~ Cdsnr/sr (Kragel et al., 2015).
Importantly, the key model properties reviewed above are capable of explaining recency
and temporal contiguity, but they do not account for the primacy effect, where early items
in the list are better recalled than items in the middle of the list. This has been captured
by assuming that there is increased attention during recall to beginning-of-list items, with
the support to each item i scaled by ¢; = ¢,e~%¢(=1) 41 (Polyn et al., 2009a, Lohnas et al.,

2015). This introduces an additional two parameters ¢s and ¢, into the model.
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Figure 1. Illustration of how the value of v, regulates the extent of forward recalls versus

backward recalls. (A) Context can be updated in two ways at encoding: using the

IN
enc

pre-experimental context c..'. introduced by the just-encoded item f;, and using the

context drifting from the previous time step ¢;_;. From the figure, it is clear that only the

items that come after ¢! have a chance to be associated with it. Therefore when ¢Z¥ is

reinstated at recall, it only gives rise to forward recalls. In contrast, the drifting part of the
context is associated with both items before time ¢ and items after time ¢, therefore giving

rise to both forward and backward recalls. (B) The value of vy, regulates the amount of

IN

retrieved context from c.,).

versus ¢;_; when item f; is encountered again during recall.

IN

"o is reinstated, which leads to forward asymmetry (i.e., asymmetric

When 7. = 0, only ¢
contiguity) as seen from the conditional response probability. When ;. = 1, only ¢;_; is
reinstated, which leads to symmetric forward and backward recalls (i.e., symmetric

contiguity). Parameters used in the simulation were obtained from the CMR fit in Figure 2.
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A rational analysis of the free recall task

In this section, we derive an optimal solution to the free recall task via rational

analysis. We adopt the steps laid out in Anderson (1990):
1. Precisely specify the goals of the cognitive system.
2. Develop a formal model of the environment to which the system is adapted.
3. Make minimal assumptions about computational limitations.
4. Derive the optimal behavior function, given items 1 through 3

5. Examine the empirical evidence to see whether the predictions of the behavior

function are confirmed

Anderson (1990) argues that human memory is adapted to the statistical patterns in the
physical environment; in our analysis, we commit to the architectural assumptions in
CMR, which has been shown to capture human behavior in memory search. We specify the
corresponding components for each step with respect to the free recall task and the CMR
model, and organize the rest of the manuscript based on these steps.

First, we specify the goals of the cognitive system. In the task of free recall, the goal
is to recall as many items as possible from the studied list, within the time constraints
imposed by the recall task (e.g., participants might be told that they have to complete
recall within 2 minutes), while at the same time minimizing recall errors such as those from
extra-list intrusions. There is more than one way to combine these goals. However, for the
purpose of the current analysis, we set the goal as maximizing the number of items
correctly recalled from the list. This definition of the goal is consistent with the
instructions participants commonly receive in free recall experiments, where they are told
to recall as many items as possible from the list without penalizing them for recall errors,

or rewarding them for their speed.
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Next, we build a formal model of the environment based on CMR, making minimal
additional assumptions about computational limitations under this environment. In
contrast to previous studies of rational analysis, the environment here incorporates not
only the local task environment of free recall, but also incorporates the architectural
assumptions from CMR. Our approach thus closely resembles cognitive-bounded rational
analysis (Howes et al., 2009) and resource-rational analysis (Lieder and Griffiths, 2020),
which identifies optimal cognitive processes given a utility function that is a result of both
constraints imposed by their cognitive architecture and the local task environment. CMR
describes how the cognitive system navigates a context space to encode and later recollect
a list of items. The space of possible behaviors during memory search is fully specified in
the architectural assumptions of CMR and its parameters. For example, one of the main
assumptions is how the cognitive system updates the current context in a drifting process
based on a just-encoded or recalled item, which has been shown to capture human
behavioral patterns in empirical data (Howard and Kahana, 2002a; Polyn et al., 2009a;
Lohnas et al., 2015). Specifying an environment without these assumptions, such as one
that allows traversing freely to any position in the context space regardless of previous
context, can easily achieve the goals in memory search but does not provide a realistic
model of how human memory functions.

For the current rational analysis, we divide the set of CMR parameters into two
distinct categories. Some parameters, including £ in the retrieval rule and €, in the
stopping rule, correspond to the core architectural constraints of the memory system. We
assume that these constraints that describe the noise level in the memory retrieval process
(k) and the extent that one can still continue retrieval given memory strengths of different
items (e4) are not themselves subject to optimization. The rest of the parameters in CMR
specify the space of possible encoding and recall behavior during memory search. The goal
of the current work is to examine how these parameters can be optimized by the cognitive

system, while keeping the core architectural constraints of the memory system fixed.



OPTIMAL FREE RECALL 14

Parameters that fall into the second category include (,,. and (.., which describe the
amount of drifting during encoding and recall, ., which describes the proportion of
pre-experimental and experimental associations used to update context, and ¢y (a newly
introduced parameter to replace ¢; and ¢g4; see text below), which describes the amount of
primacy. Our rational analysis consists of fixing the first set of parameters to some
reasonable values to capture the architectural constraints during the retrieval process, and
then optimizing the parameter values in the second set that describe the space of encoding
and recall policies to achieve maximum free recall performance. Essentially, our analysis

will provide a rational account of the following three issues:

1. What amounts of drifting during encoding (S,¢.) and during recall (3,..) lead to

optimal performance?

2. What is the ideal balance between retrieving pre-experimental context versus

experimental context through ;.7
3. How does regulating the amount of primacy affect overall free recall performance?

By searching the space of these encoding and recall policies through these parameters, the
cognitive system has the opportunity to find the optimal solution in the current task. Since
these components are optimized jointly, not separately, there will be an opportunity to
identify the subspace of encoding and recall policies where different components interact to
maximize overall recall.

As noted above, the standard way of addressing primacy in CMR is to provide a
boost to early-list items at recall via the parameters ¢, and ¢4; while this parameterization
provides a way of descriptively fitting the primacy effect, it does not correspond to a
mechanistic claim about how recall works, and thus we do not consider it one of the
“constraints on the recall process” provided by CMR. To provide a mechanism for primacy,
Kragel, Morton, and Polyn (2015) argue (following Laming, 1999) that primacy arises

because participants partially reinstate the start-of-list context when they initiate recall.
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We instantiate this in our model by replacing ¢, and ¢4 with a different parameter cyqp¢
that specifies which study context (by serial position) to reactivate at the beginning of
recall. When ¢4+ = 0, the starting context at recall is set to the beginning-of-list context
that was active before the presentation of the first item; When cgq+ = 10 (given that the
list length is 10), the starting context at recall is set to the end-of-list context that was
active after the last item was presented. This parameterization assumes that participants
have the ability to reinstate the context associated with any serial position at the outset of
recall; this is of course a major simplification — just because participants want to recall
starting at a particular point does not mean they will succeed. We will address this issue
(i.e., what if participants do not succeed at reinstating the context associated with their
desired starting point) later in the paper.

Before we can proceed to obtain the optimal encoding and recall policy in the free
recall task, we need to fix the parameters that characterize the cognitive constraints during
the retrieval process. To obtain a set of reasonable values for these parameters, we fit CMR
to an immediate free recall dataset (Kahana et al., 2002). We use Bayesian optimization to
search the space of CMR parameters, in order to minimize the normalized
root-mean-square error between the CMR simulations and the data. Results from the
obtained CMR model can be found in Figure 2. It captures the probability of recall by
serial position as shown in the serial position curve, the probability of the first recall by
serial position, and the conditional response probability, computed by dividing the number
of times a transition of that lag is actually made by the number of times it could have been
made. More details on the CMR fitting procedure and the dataset used can be found in

the Appendix.

Deriving the optimal behavior function

Next, having fixed the parameters that specify hard constraints on the retrieval

process, €; and k, based on the model fits shown in Figure 2, we ran a second round of
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Figure 2. Behavioral patterns in the dataset in Kahana (2002) and the CMR fit to these
patterns. From left to right are the serial position curve, probability of the first recall, and
conditional response probability. CMR parameters obtained using Bayesian optimization:

Bene = 0.79, Brec = 0.49, 7o = 0.40, ¢ = 4.66, ¢y = 2.73, k = 5.38 and ¢, = 2.72.

Bayesian optimization on the remaining parameters, which determine encoding and
retrieval policies. The goal of this second round of Bayesian optimization was to implement
our rational analysis: That is, we set out to identify the configurations of these parameters
(i.e., the encoding and retrieval policies) that maximize recall performance, under the
constraints imposed by the CMR architecture and the other (fixed) parameters. We refer
to the resulting model as rational-CMR. The experiment in the simulations was set up
based on the stimuli and trial structures in Kahana et al. (2002). More details on
obtaining the rational-CMR parameters can be found in the Appendix. This study was not
preregistered. All datasets analyzed in this work are from publicly available datasets,
which can be accessed from: http://memory.psych.upenn.edu/Data_Archive. All code and
analysis can be accessed from: https://github.com/qiongzhang/rational CMR.

Results from rational-CMR can be found in Figure 3. Figure 3A shows that the
optimal policy is one that always starts recalling from the beginning of the list according to
the probability of first recall, and then sequentially recalls in the forward direction

according to the conditional response probability (cstart = 0, Bene = 1, Brec = 1, e = 0;
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Figure 3. A rational account of primacy and forward asymmetry. (A) Proportion of items
correctly recalled, optimized over encoding and recall policy. The optimal policy always
starts by recalling from the beginning of the list with ¢y, = 0, and then sequentially
recalls forwards. The optimal parameters are: §;,. = 0.99, g;,. = 0.99, 77, = 0.001. The
fixed parameters are: k = 5.38, ¢, = 2.72. (B) This optimal encoding and recall policy can
be understood as a strategy that chains items through the context. With (.. = 1,

Brec = 1, and 4. = 0, when an item is presented (at encoding) or retrieved (at test),
context always drifts all the way to that item’s pre-experimental context. For example, at
encoding, when a duck is studied, context drifts fully to the pre-experimental context for
duck, which is then associated with the next item (apple). At test, when duck is retrieved,

context fully drifts (once again) to the pre-experimental context for duck, which triggers

recall of apple. This way, the same chain is traversed during encoding and recall.
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there are no alternative policies with equal level of recall performance, as the optimal
policy identified here consistently arises over multiple runs of Bayesian optimization with
differently initialized parameters). This result provides a rational account of why it is
beneficial to have primacy (cgqre = 0) and forward asymmetry (7ys. ~ 0) during free recall.
The optimal policy corresponds to a strategy that chains items through context
(Figure 3B). With f,,. = 1 (the optimal value identified by rational-CMR), when an item
is studied (call it item n), the model drifts context all the way to the pre-experimental
context of that item; once the next item (item n + 1) is presented, the just-retrieved
context from item n is associated with item n + 1. This process iterates until the encoding
reaches the end of the list. During the recall phase, the optimal starting context identified
by rational-CMR is the context at the beginning of the encoding list (¢ = 0). Since the
start-of-list context was associated with the first item on the study list, reinstating the
start-of-list context makes it possible to recall the first item reliably. From this point on,
the optimal recall policy is to only retrieve the pre-experimental context but not the
experimental context of a just-recalled item (i.e., setting vs. = 0), and then have the
current context drift all the way to the just-retrieved context (i.e., setting f... = 1). This
way, retrieval follows the same chain that was traversed during encoding: Retrieving item
n’s pre-experimental context triggers recall of item n + 1 via the associative link that was
forged at study, leading to retrieval of item n + 1’s pre-experimental context, which cues
recall of item n + 2, and so on. We explored how sensitive the optimal policy is to the
specific variant of CMR that was used. A similar optimal policy was obtained when we
allowed intrusions from other lists in the simulations, in a different variant of CMR (CMR2;
Lohnas et al., 2015). We also found that the optimal policy was qualitatively identical
when we used an alternative primacy mechanism: the attention-based account instantiated
in TCM and CMR, (Polyn et al., 2009b, Lohnas et al., 2015). Full results of these analyses
can be found in the Appendix. When obtaining the optimal policy, we assumed that the

fixed parameters that characterize the cognitive constraints during the retrieval process are
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shared across all participants. We observe that splitting all participants into two
performance groups when fitting CMR, i.e. assuming that better-performing subjects and
worse-performing subjects are different in their cognitive constraints, does not change our
main conclusions about the optimal policy (see more details in the Appendix).

The derived optimal policy is non-trivial for several reasons. First, it is not obvious
that the optimal policy is to serially recall in a task where one can recall items in any
order; second, even if one figures out intuitively that chaining (in this case, indirectly
through context) is a useful strategy because it minimizes the odds that an item will be
inadvertently skipped, it is not obvious that one should carry out forward chaining rather
than backward chaining, given that the active context at the start of recall is the end-of-list
context. We will come back to the comparison between forward chaining and backward
chaining in the General Discussion. Interestingly, the optimal policy resembles the
stereotyped walk that characterizes the method of loci, a mnemonic technique commonly
adopted for memorizing a long list of information (Yates, 1966). In the method of loci, one
mentally walks through a pre-defined route, associating each item with loci along this route
during encoding; when it comes to recall, one simply mentally walks through the same
route and uses loci along the route as memory cues to subsequently retrieve each item. We
will come back to the comparison with mnemonic techniques in the General Discussion.

There are two features of the optimal policy that might appear non-intuitive and
require closer examination. First, under the strategy to drift all the way to each encoded
item (Bene = 1), each item is associated with the item presented right before it but not any
other items. This appears to contradict the compound cuing effect commonly observed in
free recall experiments (Lohnas and Kahana, 2014), where multiple prior items combine to
form a compound cue for the next response. To obtain the compound cuing effect in CMR,
Bene must be set to a value less than one. Here we show the conditions when it is optimal
to have fe,. < 1 instead of f,. = 1. With increasing noise during encoding (Figure 4B) or

during recall (Figure 4C), the optimal value of f3,., expressed as 3 ., decreases.

*
enc’
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Figure 4. The effect of encoding and retrieval noise on the optimal policy. (A) When

Bene = 1 in the optimal policy, each item is only associated with the item before and after
(chained through context); when f,,. < 1, items are also connected with items not
immediately adjacent. (B) Encoding noise is increased by introducing the possibility that,
on a percentage of trials (horizontal-axis), an item fails to be associated with the current

context. The optimal drift rate during encoding 3*

e decreases when encoding noise

*

increases. The optimal drift rate during recall 5.,

also decreases accordingly from .. = 1
to Brec = 0.90 at the highest level of encoding noise. Optimal ¢, stays at 0. The fixed
parameters in the simulation are: k = 5.38, ¢; = 2.72. (C) Retrieval noise is increased

through the parameter k in the softmax retrieval rule. Smaller k£ values correspond to

*

larger retrieval noise. 3}, .

decreases when retrieval noise increases. ;.. also decreases
accordingly from Syec = 1 to S, = 0.56 at the highest level of retrieval noise. Optimal 7.

stays at 0. For this simulation, ¢; = 2.72.
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Intuitively this makes sense — when there is more noise in the system, “chaining” one item
to the next through context is suboptimal, because of the high likelihood that the chain
will be broken. Though having (.,. values smaller than 1 can cause occasional skipping of
an item during recall, which is not ideal, it is more robust to such an interruption: When
an item is associated with other nearby items in addition to the immediate adjacent item,
occasionally failing to encode or recall the next item in the chain due to noise will not
prevent other items from being recalled, as shown in Figure 4A. In contrast, when S.,. = 1,
failing to encode or recall the next item in the chain will prevent all of the successive items
from being recalled. In the simulations, encoding noise is implemented as the percentage of
time when there is a failure to associate an item with the current context; the recall noise
is controlled by the scale parameter k£ in the softmax retrieval rule during retrieval.

The second feature in the optimal policy that merits closer examination is the
optimal starting context. It is optimal to initiate recall with the beginning-of-list context
during study. If humans are indeed rational, one might wonder why participants often start
recalling items from the end of the list. This can be explained based on the idea that
participants start recall with the end-of-list context active in their mind; their ability to
adopt the optimal policy is constrained by how much they are able to suppress the
end-of-list context and reactivate the beginning-of-list context.

To account for this cognitive constraint in the model, we derive the optimal policy
under the scenario when one is not able to reactivate the beginning-of-list context. Figure
5A shows the proportion of items recalled, as a function of the starting study context,
assuming (for illustrative purposes) that participants can initiate recall at any serial
position. We are most interested in two scenarios: One is when the participant is able to
reactivate the beginning-of-list context (¢4 = 0), and the other is when the participant is
occupied with the end-of-list context (csre = 10). When starting recall from the beginning
of the list, the optimal value of S, is large (Figure 5B), for reasons described in the

previous section; by contrast, if starting recall from the end of the list, the optimal value of
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Bene is small (Figure 5C) — in this case, the model can no longer rely on the strategy of
chaining items through context in a forward manner, and instead the model makes items
accessible at retrieval by placing them close by in the context space during encoding. The
challenge here is that — at encoding — the participant does not know whether they will
succeed or fail at initiating recall from the start of the list. To address this challenge, an
optimal participant would need to choose the single value of f.,. that yields the highest
expected value of recall performance, factoring in the relative probabilities of the two
outcomes (i.e., initiating recall from the start vs. the end of the list). Put another way:
While a participant cannot anticipate whether they will succeed at initiating recall from
the start of the list on a particular trial, it is reasonable to think that the participant
would know how successful they are on average, and they can use this information when
deciding how to parameterize encoding.

To capture this, Figure 5D shows how overall recall accuracy varies as a function of
Bene and also the average proportion of trials where the participant succeeds at initiating
recall from the start (vs. end) of the list. To obtain the results shown in Figure 5D, we
fixed the values of these parameters (f.,. and the probability of initiating recall from the
start of the list), and then selected values of the parameters that control retrieval policy
(7fc and fByec) in order to optimize recall performance. Importantly, at test, participants
have the option of parameterizing recall differently depending on whether they were
successful (on that trial) at initiating recall from the beginning of the list. Accordingly, the
model was allowed to select different values of ;. and 3, on trials where recall was
initiated from the start vs. the end of the list. Figure 5D shows that, as the probability of
initiating recall from the start of the list increases, the optimal value of f,,. increases.

So far, we have provided a rational account of primacy and forward asymmetry. As
discussed earlier, forward asymmetry arises from updating context at retrieval using the
pre-experimental context associated with the retrieved item (ys. = 0). Next, we identify

the conditions where it is optimal to update context at retrieval using the context that was
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(for illustrative purposes) that participants can start recall by reinstating the context
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initiate recall with the beginning-of-list context. The plot shows the effect of [.,. on overall
recall accuracy, as a function of the proportion of trials in which participants succeed at
starting recall from the beginning of the list (each colored line corresponds to a different
proportion), under noisy retrieval conditions (k = 3). A total of five parameters are
optimized in the simulations: S, for all trials, and different 3,.. and ~¢. for trials that
start from the beginning or start from the end; the fixed parameters are k = 3, ¢, = 2.72.
(E) On trials where the starting recall context is the end-of-list context, it is optimal to use
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probability of initiating recall with the beginning-of-list context is 80%, in which case the
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associated with the retrieved item at study (v = 1), which gives rise to symmetric
contiguity effects (i.e., backward recalls in addition to forward recalls). Figure 5E shows
that, on trials when one is not able to jump back to the beginning of the list (i.e., the
starting context is the end-of-list context), it is optimal to use both backward recalls and
forward recalls by setting v¢. = 1, providing a rational account of the symmetric contiguity
effect. This pattern holds when [, is smaller than 0.8: When f,,. is too large, the
context at encoding ¢; = pc;_1 + Benec'” is dominated by the pre-experimental context
induced by newly encoded items f.,.c', leaving a very weak amount of experimental
context ¢;_; to generate backward recalls, even if one can fully reinstate this experimental
context with v, = 1 (Bene = 0.6 in the specific example given in Figure 5E — this is the

optimal S, value for when the proportion of start-of-list trials is 80%).

Testing the predictions of the optimal behavior function on empirical data

We have learned from rational-CMR that the optimal behavior function in free recall
is to start recalling from the beginning of the list and then sequentially recall forward,
relying on the forward asymmetry induced by updating context with the recalled item’s
pre-experimental context (v, = 0). In addition, when recall cannot be initiated at the
beginning-of-list context, it is optimal to minimize the amount of forward asymmetry and
instead rely on symmetric contiguity, induced by updating context with the context that
was associated with the recalled item at study (7. = 1). These observations serve as
predictions for human behavioral data. Here, we test these predictions at the level of
individuals, using a large free recall database: the Penn Electrophysiology of Encoding and
Retrieval Study (PEERS). The present analysis is based on the behavioral data from the
171 participants (age range: 18-30) in Experiment 1 of the PEERS dataset, which used an
immediate free recall task. More details of the PEERS dataset can be found in previous
studies (Lohnas et al., 2015; Healey and Kahana, 2016; Healey et al., 2018). The present

analysis also incorporates the behavioral data from the 61 participants in Howard and
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Kahana (2008) with an immediate free recall condition and a delayed free recall condition.
The criteria for including participants and sessions into the current analysis can be found
in the Appendix.

Prediction 1: Better-performing participants will demonstrate a stronger
tendency to initiate recall from the beginning of the list and recall in a forward
direction. According to rational-CMR, participants who perform better in the free recall
task should demonstrate a stronger tendency to initiate recall from the beginning of the
list, and they should make more forward recalls than backward recalls. Figure 6A-C
summarizes the serial position curve, the probability of first recall, and the conditional
response probability in the PEERS dataset. Participants were divided into two groups
based on their average performance in the experiment: the better-performing participants
are from the top 10% (grey) and the worse-performing participants are from the remaining
90% (orange). Dividing the participants at this percentile highlights the behavior of the
participants who completed the free recall task with high performance (on average 85%
correct recall) versus the worse-performing participants (on average 59% correct recall).
Figure 6B shows that, consistent with the model’s predictions, better-performing
participants showed a higher tendency to start the recall process from the first item
compared with the rest of the participants(Mann—Whitney U = 940, n; = 17, ny = 154,

p = 0.02, two-tailed), and they also showed a lower tendency to start the recall process
from the last item compared with the rest of the participants (Mann—Whitney U = 719.5,
ny = 17, ny = 154, p < 0.01, two-tailed). In addition, Figure 6C shows that
better-performing participants were more likely to carry out forward recalls, compared to
the rest of the participants. To further examine this effect, we summarized forward
asymmetry as a single value — the difference between the summed probability of four
forward lags and the summed probability of four backward lags from the conditional
response probability curve. Figure 6D shows that the Spearman’s correlation between the

forward asymmetry and free recall performance was p = 0.25 among the 171 individuals
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Figure 6. Better-performing participants demonstrate a stronger tendency to initiate recall
from the beginning of the list and carry out forward recalls. (A-C) Behavioral patterns of
the top 10% of participants (grey) in terms of performance in PEERS dataset compared
with the rest of the participants (orange): serial position curve, probability of first recall,
conditional response probability. The first three recalls are removed when computing the
conditional response probability curve as they are heavily influenced by the recency effect.
(D) Correlation between the forward recall asymmetry and participants’ recall performance.
Forward recall asymmetry is calculated as the difference between the summed probability
of four forward lags and the summed probability of four backward lags from the conditional
response probability. (E) Serial position curves for each output position for the top 10%

and the bottom 90% of performers. The vertical dashed lines represent the optimal policy.
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(p < 0.001). Importantly, this correlation between forward asymmetry and performance is
not a trivial consequence of better-performing individuals exhibiting higher primacy. When
participants start recall from the beginning of the list, this naturally leads to a larger
number of available forward recalls than backward recalls; however, it does not necessarily
lead to forward asymmetry, since our measure of forward asymmetry (calculated from the
conditional response probability) controls for the availability of recall transitions (i.e., the
conditional probability of a forward transition at a particular lag is the observed probability
of that transition, divided by the number of times when that transition was possible).

To visualize in more detail how serial positions change by output position during
recall, Figure 6E plots serial position curve for each output position, averaged across the
top 10% and the bottom 90% of performers. The optimal policy of starting recall from the
beginning of the list and then sequentially recalling forwards corresponds to the dashed
vertical line for each subplot, where the first recall is at the first serial position, and the
second recall is at the second serial position, etc. Consistent with our model predictions,
Figure 6E shows that recall transitions among the top 10% of performers are more aligned
with the optimal policy than recall transitions among the bottom 90% of performers.

One might worry that higher-performing participants will always show greater
consistency with the optimal policy, regardless of whether our rational-CMR, theory is
correct; however, this is not the case. A simple counterexample to this would be if the
participants all follow random policies that demonstrate some variability, but none of these
policies are close to the optimal policy. In this case, even if we looked at the
high-performing participants, those participants would be following strategies that differ
from the optimal policy (see Appendix for a simulation that demonstrates this).

Prediction 2: Better-performing participants will demonstrate a stronger
effect of forward asymmetry when recall is initiated from the beginning of the
list and a stronger effect of symmetric contiguity when recall is initiated from

the end of the list. Participants are not able to activate the beginning-of-list context on
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all trials. According to rational-CMR, patterns of recall transitions (operationalized using
conditional response probability) should depend on whether recall can be initiated at the
beginning of-list context. Specifically, the model predicts that it is optimal to maximize
forward asymmetry in recall transitions if the recall is initiated from the beginning-of-list
context; conversely, it is optimal to minimize forward asymmetry and maximize the ability
to carry out backward recalls through the symmetric contiguity effect if the recall is
initiated from the end-of-list context. In Figure 7, trials are divided into primacy trials
(A-C) and recency trials (D-F) based on patterns of recall initiation. In human data, there
is no “ground truth” way of measuring the starting context at recall. Consequently, we
sorted trials into primacy trials and recency trials based on behavioral patterns. The most
obvious way to define primacy trials would be to select trials where recall started from the
first item in the study list (Ward et al., 2010). However, applying this criterion would leave
us with fewer than 7 out of 96 trials for more than half of the 171 participants and zero
primacy trials for 25% of all participants (who must therefore be removed from the
analysis). To improve the power of our analysis, we relaxed the definition of the primacy
trials to encompass all trials where the first item at study was retrieved during the first
four recalls (we nevertheless examined the results under both definitions of primacy trials
and observed that the major conclusions of the analysis did not change). This is based on
the observation that sometimes participants can recall from the beginning of the list — they
just cannot do that right from the first recall. In the PEERS free recall dataset, the first
item during study is retrieved the most frequently at the fourth position, as the first three
recalls are dominated by the recency effect. Next, we had to operationally define recency
trials. Here, we wanted to select trials where performance was unlikely to have been
influenced by the beginning-of-list context at any point during the recall period; to meet
this criterion, we defined recency trials as those without recalls of the first item.

Figure 7A plots the conditional response probability for the top 10% and the bottom

90% of performers in the human data, where the analysis was limited to primacy trials and
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Figure 7. Better-performing participants demonstrate a stronger effect of forward
asymmetry than other participants on primacy trials (A-B), and a stronger effect of
symmetric contiguity than other participants on recency trials, as characterized by
backward transitions (C-D); see text for definitions of primacy and recency trials. The
behavioral score of forward asymmetry in B is calculated as the difference between the
summed probability of four forward lags and the summed probability of four backward lags
from the conditional response probability of each participants (N=171). The behavioral
score of backward transitions in D is calculated as the summed probability of four
backward lags from the conditional response probability curve of each participant (N=171).
In A and B, “Top 10%” refers to participants whose performance during primacy trials is
in the top 10*" percentile of the population. In C and D, “Top 10%" refers to participants
whose performance during recency trials is in the top 10** percentile of the population.

Error bars indicate the SEM.



OPTIMAL FREE RECALL 30

“top 10%” and "bottom 90%” were computed based on performance on these primacy
trials. We found that the better performers showed higher levels of forward asymmetry. To
formally test this, we calculated a behavioral forward asymmetry score (plotted in Figure
7B separately for the top 10% and the bottom 90% of performers), operationalized as the
difference between the summed probability of four forward lags and the summed
probability of four backward lags from the conditional response probability curve in Figure
7A; this score was higher in the top 10% of performers (Mann—Whitney U = 807, n; = 17,
ny = 154, p < 0.01, two-tailed) than in rest of the participants.

Figure 7C plots the conditional response probability for the top 10% and the bottom
90% of performers in the human data, where the analysis was limited to recency trials and
“top 10%” and "bottom 90%” were computed based on performance on these recency trials.
We found that the better performers showed a stronger effect of symmetric contiguity. As
discussed earlier, CMR posits that forward transitions (as captured in the conditional
response probability curve) are contributed by both forward asymmetry and symmetric
contiguity, whereas backward transitions are uniquely contributed by symmetric contiguity;
we therefore calculated the behavioral influence of symmetric contiguity by computing a
backward transition score (plotted in Figure 7D separately for the top 10% and the bottom
90% of performers), operationalized as the summed probability of four backward lags from
the conditional response probability curve in Figure 7C. The score was higher in the top
10% of performers (Mann—Whitney U = 641, ny = 17, ny = 154, p < 0.001, two-tailed).
Though the forward asymmetry in the top 10% of performers is still sizable and similar
with the bottom 90% of performers (Mann—Whitney U = 1235, n; = 17, ny = 17, p = 0.35,
two-tailed), there is decreased forward asymmetry in the top 10% of performers during
recency trials compared with that in primacy trials (Mann-Whitney U = 1235, n; = 154,
ny = 154, p = 0.03, two-tailed) but this is not observed in the bottom 90% of performers
(Mann—Whitney U = 1235, ny = 17, ny = 154, p = 0.30, two-tailed). We also carried out

the same analysis using an alternative way of scoring forward asymmetry, calculated as the



OPTIMAL FREE RECALL 31

ratio, instead of the difference, between the summed probability of four forward lags and
the summed probability of four backward lags from the conditional response probability of
each participant. This does not change the main conclusions.

Analysis of the PEERS dataset provided evidence for the model prediction that it is
optimal to maximize forward asymmetry when the recall is initiated from the
beginning-of-list context, and maximize backward recall when the recall is initiated from
the end-of-list context. However, demonstrating that recall transitions are correlated with
how recall is initiated is not the same as demonstrating that recall transitions depend on
the how recall is initiated, where the accessibility of the beginning-of-list context (relative
to the end-of-list context) is experimentally manipulated. The latter is a stronger test of
the model predictions. To investigate this latter scenario, we analyzed publicly available
datasets from Howard and Kahana (1999), where the recall phase of the free recall
experiments was conducted either immediately after studying the list, or with a delayed
period of distractor activities. Participants could not predict during encoding whether it
would be an immediate or delayed condition; they were warned that sometimes there would
be a math test between the end of the list and the signal to recall and sometimes there
would not. Adding a period of delay after studying the list helps with disengaging from the
end-of-list context (Murdock, 1962), and leads to increased accessibility of the
beginning-of-list context during recall, as can been from Figure 8B, where there is a higher
tendency to start the recall process from the first item in the delayed free recall condition
than the immediate free recall condition (Mann—Whitney U = 185.500, n; = 65, ny = 62,
p = 0.04, two-tailed).

Having confirmed that recall initiation is affected by the manipulation of immediate
vs. delayed recall in this dataset, the next step is to examine whether optimal recall
transitions vary in the immediate vs. delayed recall conditions. Consistent with the model
predictions, there is stronger forward asymmetry in the delayed free recall condition than

in the immediate free recall condition (Figure 8C; Mann-Whitney U = 1188.00, n; = 65,
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Figure 8. Behavioral patterns in the dataset of Howard and Kahana (1999) for the delayed
free-recall condition and the immediate free-recall condition (A-C), the delayed condition
split by performance level of participants (D-F), and the immediate condition split by
performance level of participants (G-I). From left to right, the three columns show the

serial position curve, probability of the first recall, and conditional response probability.
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ny = 62, p = 0.020, two-tailed), where there is higher accessibility of the beginning-of-list
context. Moreover, we can divide participants into two groups based on their average
performance in the experiment: the better-performing participants are from the top 20%
(grey) and the worse-performing participants are from the remaining 80% (orange). We
used a 20/80 split here (instead of dividing the participants into the top 10% and
remaining 90% as in the PEERS dataset) to make sure that there were at least 10
participants in each group. Figure 8F shows that, in the delayed free recall condition
(when it is easier to access the beginning-of-list context), better-performing participants
demonstrate numerically (but not significantly) stronger forward asymmetry compared to
the worse-performing participants (Mann—Whitney U = 198.50, n; = 12, ny = 41,

p = 0.159, two-tailed; however, at the 4+1 lag of the conditional response probability curve,
the difference between better-performing participants and worse-performing participants is
significant: Mann—Whitney U = 187.50, n; = 12, ny = 41, p = 0.007, two-tailed);
conversely, in the immediate free recall condition (when the end-of-list context is relatively
more accessible) better-performing participants demonstrate stronger backward transitions
compared to the worse-performing participants (Mann—Whitney U = 144.00, n; = 10,

ny = 48, p = 0.025, two-tailed). Taken together, these results provide converging support

for the model’s predictions about how recall initiation will affect recall policy.

General Discussion

Much of the work in the free recall literature has sought to understand the processes
and representations that give rise to different patterns of recall organization; however, it
remains unclear why certain types of recall organization arise in the first place. Our work
provides a rational analysis of the free recall task, deriving the optimal policy under the
internal representations and processes of memory search described by CMR. Our model,
which we call rational-CMR, demonstrates that the optimal policy in free recall is to start

recall from the beginning of the list and then sequentially recall forwards, providing a
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rational account of primacy and forward asymmetry effects typically observed in free recall.
In addition, the rational model also makes a novel prediction that the optimal policy in
recall transitions should depend on recall initiation. These predictions from the rational
model were confirmed in human behavioral data, where top human participants
demonstrated stronger primacy and forward asymmetry than the rest of the participants,
and the amount of forward asymmetry in participants depended on the starting context at

recall. We now turn to the broader implications of these results.

Why is the optimal policy optimal?

We show that the optimal policy in free recall is to start recall from the beginning of
the list and then sequentially recall forwards, which corresponds to a strategy that chains
items through context (Figure 3B). Intuitively, chaining (in this case, indirectly through
context) is a useful strategy because it minimizes the odds that an item will be
inadvertently skipped. However, if the chained structure in the optimal policy is the key
factor for effective recalls, one might ask why is it necessary to start recall from the
beginning and then recall forwards, rather than starting recall from the end and then
recalling backwards. The latter would be more convenient, because one already has access
to the end-of-list context at the start of recall, whereas re-activating the beginning-of-list
context requires an extra retrieval step. To understand this better, we need to review the

encoding mechanism in CMR in Figure 1. In CMR, there is a reliable way to proceed

IN

2v.) but there is not a reliable way to proceed backward — the only

forward (by reinstating ¢
way to promote backward transitions is to reinstate the drifting contextual state associated
with the item at study, which is equally likely to propel recall forward and backward. Since
there is a reliable way to propel recall forward but no reliable way to propel recall

backward, proceeding forward yields better results (assuming that the participant is able to

succeed in initiating recall from the start of the list).
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A rational account of the primacy effect

In the free recall task, words presented at the beginning and at the end of the list are
better remembered than those presented in the middle of the list. This U-shape in the
serial position curve of free recall is one of the most robust findings in cognitive psychology
(Murdock, 1962). There exist a number of theories that account for primacy.
Rehearsal-based explanations of the primacy effect posit that increased rehearsal
opportunities for early items in the list lead to increased encoding in the short-term
memory buffer (Atkinson and Shiffrin, 1968; Murdock and Metcalfe, 1978; Rundus, 1971;
Rundus and Atkinson, 1970; Brodie and Murdock, 1977). Even if no short-term buffer is
presumed, the repetition, the distribution, and the recency of rehearsals can make primacy
items more accessible at test (Tan and Ward, 2000). Despite the success of the rehearsal
account in explaining primacy, there are empirical studies showing that primacy is still
found when rehearsal is minimized, such as when a five-item list is presented in less than
one second (Neath and Crowder, 1996), when there is semantic judgement required
encoding each word (Howard and Kahana, 1999), or when there is an interval of distractor
activity between every two adjacent words that are presented (Polyn et al., 2009b). Other
accounts of primacy do not depend on the rehearsal process. For example, some accounts
posit that the first items are more distinctive than the other items (Murdock, 1960; Neath,
1993), although this has been critiqued on the grounds that distinctiveness is an effect
rather than an explanation (Hunt and Lamb, 2001). Other accounts posit that primacy is
caused by contextual change at the beginning of the list, induced by either a prediction
error (Rouhani et al., 2020) or novelty (Davelaar, 2013). CMR captures the primacy effect
by assuming a gradient by serial position, without explicitly committing to a particular
mechanism of primacy.

In contrast to the debate in the literature on the mechanisms that give rise to
primacy, our work provides a rational account of why primacy is important to have in the

first place. In a rational analysis of the free recall task based on CMR simulations, we
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showed that initiating recall from the beginning of the list gives better performance than
initiating recall from other positions of the list. This model prediction was tested using a
large free recall dataset. Consistent with the model’s predictions, the better-performing
participants in the dataset showed a higher probability of initiating recall from the
beginning of the list and a lower probability of initiating recall from the end of the list,
compared with those of the worse-performing participants. Notably, the first recall in the
better-performing participants did not always consist of the first item in the study list, but
rather was dominated by the last few items. This can be explained in terms of the idea
that, at the start of recall, the end-of-list context is active; to activate the beginning-of-list
context, participants need to suppress the end-of-list context and retrieve the
beginning-of-list context — both of these processes are prone to failure, and the difficulty of
activating the first part of the list can be modulated by situational factors (e.g., the
presence of a distinctive event at the start of the list). Thus, the challenging nature of
replacing the end-of-list context with the start-of-list context serves as a constraint on
optimal behavior (Sahakyan and Kelley, 2002). The second part of the model simulations
take into account this constraint, by deriving what the optimal behavior is when one is
only able to retrieve the beginning-of-list of context on a proportion of trials. Implications
of these results are discussed in the next section.

There has been other work that has considered how participants vary how they
initiate recall as a function of task instructions. Tan et al. (2016) found that the tendency
to start recall from the first item occurred only when participants were required to recall as
many items as possible. When participants were asked to recall only 1 or 2 items, they
tended to initiate recall with end-of-list items (Tan et al., 2016). These findings show that
different retrieval strategies exist for searching for different numbers of items, and that
participants have some control over these retrieval strategies (Ward and Tan, 2019). Our
analysis provides a rational explanation for why participants would adopt different retrieval

strategies under different task demands. When the goal of the memory task is to retrieve
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as many items as possible, recalling from the beginning meets the goal better than recalling
from the end, as shown in the optimal policy. When the goal of the memory task is to
retrieve only 1 or 2 items, recalling from anywhere in the list can meet the goal equally
well; under this scenario, participants do not have to expend the effort to reinstate the
beginning-of-list context — it is optimal to start recalling from the end-of-list context, which

is already active at the start of recall.

A rational account of forward asymmetry

During memory search, forward transitions are more likely than backward transitions
for small absolute values of lag (Kahana, 1996). This effect has been shown in immediate
free recall (Kahana, 1996), as well as delayed free recall (Howard and Kahana, 1999).
Unlike primacy, for which CMR does not commit to a particular mechanism, CMR can
account for the mechanism of forward asymmetry. However, CMR does not address why
there is forward asymmetry. It is possible under the space of CMR parameterization to
turn off the asymmetry entirely (vs. = 1). Our work provides a rational account of why
forward asymmetry is an important feature in free recall. By making a connection between
forward asymmetry and overall task performance, we were able to account for the
individual differences in free recall performance observed in a large free recall database.
Specifically, there was a significant correlation between the amount of forward asymmetry
and overall performance at the level of individuals.

In addition to explaining the forward asymmetry, rational-CMR can also explain the
presence of backward transitions. Our results show that optimal recall transitions depend
on recall initiation; forward asymmetry is only important when recalls are initiated from
the beginning of the list. When participants are not able to initiate recall from the
beginning of the list, it is optimal to rely on symmetric contiguity to recall backwards
instead of forward asymmetry. This model prediction was further tested over a large free

recall database and a dataset containing both immediate and delayed free recall conditions.
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Consistent with the model’s predictions, better-performing participants demonstrated a
stronger effect of forward asymmetry when recall was initiated from the beginning of the
list and a stronger effect of the symmetric contiguity when recall was initiated from the end
of the list.

Both forward asymmetry and symmetric contiguity contribute to temporal contiguity
effects commonly observed in free recall (Kahana, 1996), and it has been shown that
participants’ temporal contiguity effects correlate highly with their recall performance
(Sederberg et al., 2010). Results from rational-CMR are consistent with this empirical
finding, while also providing additional insight into which type of temporal contiguity is
most useful for performance, conditioned on how recall is initiated.

Our results also connect to several empirical results in the literature that examined
the relationship between primacy /recency and memory performance (Dalezman, 1976).
Dalezman (1976) instructed participants to recall either from the beginning, the end or the
middle of a list before they recalled the rest of the items. Though the amount of primacy
and recency can be reliably altered by the recall instruction, the overall performance largely
stays unchanged. Why is it the case that altering recall initiation does not affect the overall
performance? Our results emphasize that one needs to coordinate both recall initiation and
recall transitions to achieve optimal recall. Though the optimal policy is to demonstrate
primacy and forward asymmetry, having primacy alone, as induced from one of the recall
conditions in Dalezman (1976), does not guarantee improvement in memory performance.

Other work by Unsworth et al. (2011) has looked at individual differences in
primacy /recency and memory performance. Participants were clustered into three groups
according to their serial position curves: a high-primacy low-recency group, a low-primacy
high-recency group, and a high-primacy high-recency group; Unsworth et al. (2011) found
that the last group demonstrated the highest level of memory performance. In the
Appendix, we include a “proof-of-concept” simulation showing one way that our model can

explain this pattern of results. We assume that all participants have a similar mix of trials
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where they start recall from the beginning vs. the end of the list, but they vary in how well
they can optimize their recall strategy as a function of how they initiate recall. In our
simulation, we have one group that pursues the optimal policy (adjusting . based on how
recall is initiated), another group that uses the “optimal-for-beginning-of-list” .
regardless of how recall is initiated, and a third group that uses the “optimal-of-end-of-list”
7fec parameters regardless of how recall is initiated. With these assumptions, our model
qualitatively replicates the key results from Unsworth et al. (2011) — the “optimal policy”
group has the best overall performance and demonstrates a high level of performance for
both primacy and recency items compared with other groups, whereas the other two groups
demonstrate high levels of performance for primacy or recency items (but not both) and

lower overall levels of performance. Details of the simulation can be found in the Appendix.

Connection to mnemonic techniques

Rational-CMR may also help to explain the efficacy of mnemonic techniques such as
the method of loci. The method of loci was first documented in Roman and Greek
rhetorical treatises, where orators adopted this technique to memorize key points in a long
speech (Yates, 1966). Practicing this method first involves familiarizing oneself with an
environment, such as a street or a building, and mentally constructing an ordered route
between well-defined locations (loci). When given a list of items to remember, the method
of loci is characterized by a stereotyped walk during both encoding and recall: During
encoding, one mentally walks through the pre-defined route, associating each item with loci
along this route; during recall, one simply imagines oneself walking through the same
familiar route, using loci along the route as memory cues to subsequently retrieve each
item (Yates, 1966).

The stereotyped walk used in the method of loci resembles the optimal policy derived
in rational-CMR, which is to start recall from the beginning of the list and sequentially

recall forwards. We propose that one of the reasons why the method of loci works so well is
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that it enforces the optimal policy of memory search through explicit instructions and
pre-training. During free recall, without using mnemonic techniques, there are two
potential reasons why it is hard for individual participants to adopt the exact optimal
policy derived in the rational-CMR model. First, participants start recall with the
end-of-list context in their mind. Their ability to adopt the optimal policy is constrained
by how much they are able to drop the end-of-list context and reactivate the
beginning-of-list context. Second, participants have limited encoding time to fully process
and store an item. Their ability to start recall from the beginning of the list and recall
sequentially forwards is constrained by the fidelity of their encoding. Using the method of
loci, one can enforce the usage of optimal policy during free recall by directing the recall
process to always start from the beginning; also, the method of loci leverages a pre-learned
spatial representation so that information can be more easily encoded in a sequence on the
fly during the encoding stage.

Our results also shed light on the recent empirical finding that two other mnemonics
— the peg method and the temporal encoding method — achieve comparable improvements
in recall performance compared to the method of loci (Bouffard et al., 2018; Caplan et al.,
2019). Both methods emphasize a temporal feature as the scaffold. The peg method works
by pre-memorizing a list of “peg words”; during encoding, items to study are associated
with this list of words in the order that they are presented. The temporal encoding method
works similarly to the peg method. Instead of pre-memorizing a list of words, participants
pre-define a chronological timeline using a list of their most vivid memories and later
associate items to study with these memories. Despite their differences with the method of
loci (in the exact instructions that are used, and their use of a non-spatial “scaffold”
instead of spatial knowledge) these techniques all share an encoding and recall policy that
resembles the optimal policy in free recall, which may help to explain why they achieve

comparable improvements in recall performance.
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Limitations and future work

Committing to the architectural assumptions of CMR, the current work derived the
optimal policy and demonstrated that the derived optimal policy can explain performance
observed in human data. It is possible that there is additional variance in memory
performance that can be explained by altering the architectural assumptions of CMR. In
future work, we will explore the consequences on the optimal policy if specific assumptions
of CMR are altered (for example, if we allowed parameters to vary dynamically as the
recall process unfolds, instead of being held constant). For simplicity, the current work
assumes that the semantic representations of words are independent from each other. We
acknowledge that semantic associations between words drive a significant amount of the
recall dynamics. Typically, in categorized-list free recall experiments, with
semantically-related items located at different locations of the list, the semantic structure
can overshadow the effect from temporal context, with semantic context driving recalls in
different directions than the temporal context. Therefore, we might not be able to arrive at
a stable solution for optimal policy under the influence of semantic associations. The first
step of the rational analysis is to isolate the two and focus on discovering optimal policy
without effect from semantic associations. Future work will examine the two components

jointly.

Conclusion

The discovery of the primacy effect and the recency effect in free recall dates back to
the times of Hermann Ebbinghaus (Ebbinghaus, 1885). Since then, psychologists have used
the free recall task to gain insight into processes and representations underlying memory
search (Murdock, 1960; Murdock, 1962; Roberts, 1972; Standing, 1973). The field has
primarily focused on identifying an array of behavioral patterns that are consistently
shown across free recall experiments, and building computational models to capture these

behavioral patterns. To our knowledge, our work is the first to examine why humans
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demonstrate these recall patterns in the first place. Under the architectural assumptions
about internal representations and processes during memory search instantiated by the
CMR model, we showed that recall patterns including primacy, forward asymmetry,
compound cuing, and symmetric contiguity can arise naturally from optimizing the overall
recall performance. In particular, we showed that, although participants are free to recall
items in any order (hence “free” recall), the optimal policy is one where participants recall
items in the same order that items are studied. We connected these results with the
literature on mnemonic techniques, and proposed that mnemonic techniques support
superior memory by enforcing the optimal policy of memory search through explicit
instructions and pre-training. These findings also offer tantalizing insights into how to

further improve human memory through the intelligent choice of memory cues.
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Appendix
Additional CMR simulations

The effect of CMR variants on the optimal policy. We explored how
sensitive the optimal policy is to the specific variant of CMR that was used. For simplicity,
the variant of CMR we used only recalls from the current list and does not incorporate
intrusions from other lists in the experiment. It is possible that intrusions could reduce the
efficacy of the chaining policy in the optimal strategy (by “breaking the chain”). To
capture intrusion errors, we repeated the analysis on CMR2 where memories accumulate
both within and across lists (Lohnas et al., 2015), enabling the model to account for recall
of both current list items (“correct recalls”) and prior list items (“intrusions”). In addition
to intrusions, we also explored the effect of an alternative primacy mechanism: the
attention-based account instantiated in TCM and CMR, (Polyn et al., 2009b, Lohnas et al.,
2015), which posits that there is increased attention during recall to the early list items,
thereby increasing the encoding strengths of these items. This will provide a constant pull
to the beginning of the list even after recall initiation, which can potentially affect the
success of the chaining strategy.

To incorporate these effects, we fit CMR2 to the same dataset (Kahana, 2002);
CMR2 successfully captures the amount of intrusions observed in empirical recalls (6.1% of
total recalls in the data and 6.3% in the model). As with CMR, CMR2 parameters can be
divided into two distinct categories: parameters that correspond to core architectural
constraints of the memory system, and parameters that specify the space of possible
policies that can be pursued (given these constraints) during encoding and recall. CMR2
adds some additional parameters to the former (“core architectural constraints”) group:
parameters that characterize the retrieval process (k = 0.31, A = 0.13), and parameters
that prevent intrusions and recall repetitions (cipresn = 0.073, w = 11.89, av = 0.68)
correspond to the core architectural constraints of the memory system. Differing from our

previous analysis, we also considered the attention-based primacy mechanism to be part of
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the constraints of the memory system (¢g = 0.99, ¢s = 1.81). The latter (“policy
specifying”) group of parameters is the same for CMR2 and CMR,; the fit values for these
parameters were B, = 0.63, Bene = 0.52, and v4. = 0.43. Repeating the rational analysis as
before, we fix the first set of parameters to capture the architectural constraints during the
retrieval process, and then optimize the parameter values in the second set that describe
the space of encoding and recall policies to achieve maximum free recall performance.

We observed a similar optimal policy with large §.,. = 0.94, large (... = 0.88 and
small 7. = 0.17 for CMR2 (which incorporates intrusions and attention-based primacy),
compared with Bepe = 0.99, Bree = 0.99, and v, = 0.001 for CMR. There are also some
differences, with ;.. < 1 and 4. > 0 in CMR2. Allowing intrusions does not qualitatively
change the optimal policy, for two reasons: First, and most importantly, intrusions are
rare; second, using a [3,.. value that is < 1 (but still large) implements a kind of “soft
chaining” that allows for the chain to sometimes be continued even after an intrusion.
Specifically, when (... < 1, the current context is not entirely dominated by the retrieved
context from the intrusion — there is still some context from the item recalled before the
intrusion, which can sometimes cue recall of the correct next item (although, more often,
the intrusion results in stoppage of recall, mirroring experiments results from Miller et al.,
2012). We also found that there is no influence on the optimal policy from adding the
attention-based primacy effect. Even though there is stronger encoding of the early list
items, we do not observe a constant pull to the beginning of the list in recall patterns. The
strengthening of early list items is negligible compared with the memory support to recall
the next item in the chaining strategy.

The effect of alternative assumptions for the cognitive constraints on the
optimal policy. To identify the optimal encoding and recall policy in the free recall
task, we need to fix the parameters that characterize the cognitive constraints during the
retrieval process. To obtain a set of reasonable values for these parameters, we fit CMR to

all participants in an immediate free recall dataset (Kahana et al., 2002). To explore the
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consequence that participants at high and low levels of performance demonstrate different
cognitive constraints to start with, we fit CMR separately to the top half of participants
and the bottom half of participants in Kahana (2002). The obtained fixed parameters are
€g =3.01, k =5.47 and ¢; = 2.11, k = 4.41, respectively. In other words, the top half of
participants are less likely to terminate recall, and have a lower noise level during retrieval,
compared with the bottom half of participants.

We repeated the same analysis to optimize recall performance on the two groups of
participants, given the differences in their cognitive constraints. We observe that splitting
all participants into two performance groups when fitting CMR, i.e. assuming that
better-performing participants and worse-performing participants are different in their
cognitive constraints, does not change our main conclusions about the optimal policy.

For the top half of participants, when we allow the model to decide where to start
recall, it is optimal to recall from the beginning-of-list context, with ¢, = 0.007,

Bene = 0.99, and .. = 0.98. When recalling from the end-of-list context, under large
Bene = 0.6, the optimal parameters for v¢. = 0.98 and S,.. = 0.98. For the bottom half of
participants, when we allow the model decide where to start recall, it is optimal to recall
from the beginning-of-list context, with v, = 0.004, B.,. = 1.00, and Bec = 0.98. When
recalling from the end-of-list context, under large f.,. = 0.6, the optimal parameters are
Ve = 0.99 and S, = 1.00.

Is there always greater consistency with the optimal policy among higher
performing participants? Our finding that higher-performing participants show
greater consistency with the optimal policy is not trivially true. A simple counterexample
to this would be if the participants all follow random policies that demonstrate some
variability, but none of these policies are close to the optimal policy. To demonstrate this,
we simulated a population of participants who follow random policies in the part of the
parameter space far from the optimal policy (for each simulated participant, their 7., Benc,

Bree, and the proportion of primacy trials are uniformly sampled from 0.3 to 0.6.) and
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Figure A.1. Behavioral patterns for the better-performing and worse-performing simulated
participants. 171 participants are simulated following random policies that are inconsistent
with the optimal policy, with their 7., Bene, Brec, and the proportion of primacy trials
uniformly sampled from 0.3 to 0.6. “Top 10%” refers to simulated participants whose
performance is in the top 10" percentile of the population. From left to right of the three
columns are the serial position curve, probability of the first recall, and conditional

response probability. The fixed parameters in the simulations are ¢; = 4.60, k = 5.09.

subjected them to the same analysis as Figure 6. If we looked at the high-performing
participants in Figure A.1, they follow strategies (lower primacy and lower forward
symmetry) that differ from the optimal policy (higher primacy and higher forward
asymmetry). These simulation results do not look similar to the patterns we observe with
human participants in Figure 6.

Simulations of qualitative patterns in Unsworth et al. (2011). We ran a
“proof of concept” simulation to show that our model can account for the qualitative
patterns shown in Unsworth et al. (2011). In Unsworth et al. (2011), participants were
clustered into three groups according to their serial position curves: a high-primacy
low-recency group, a low-primacy high-recency group, and a high-primacy high-recency
group, with the last group demonstrating the highest memory performance. We simulate
three groups of 50 participants. The three groups have a similar proportion of trials in

which they start recalling from the beginning versus from the end of a list (p = 0.5), but
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Figure A.2. Proportion correct for all items, primacy items (the first three items only) and
recency items (the last three items only) for each group (n = 50), comparing current
simulations (A) and Unsworth et al. (2011) (B). For our simulations, “Hi Primacy / Hi
Recency” represents the high-primacy high-recency group that changes 4. based on where
recall starts; “Hi Primacy / Lo Recency” represents the high-primacy low-recency group
that fails to have optimal transitions when recall starts from the beginning (fixed ;. = 1);
“Hi Recency / Lo Primacy” represents the low-primacy high-recency group that fails to
have optimal transitions when recall starts from the end (fixed . = 0). The fixed
parameters in the simulations are Be,. = 0.6, 5. = 1.0, ¢4 = 4.60, k = 5.09. For the data
shown in B, group labels (e.g., “Hi Primacy / Hi Recency” ) represent the groups identified
in the clustering analysis conducted by Unsworth et al. (2011). Error bars represent one
standard error of the mean. Values in B were estimated from Figure 2 and Table 1 in

Unsworth et al. (2011).
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they differ in how optimal their recall transitions are. The best-performing group is able to
optimally adjust the amount of forward asymmetry given the recall initiation on a given
trial (7. = 0 when recall is initiated from the start of the list and v, = 1 when recall is
initiated from the end of the list). In contrast, the high-primacy low-recency group fails to
increase forward asymmetry during the primacy trials (¢ = 1 in all cases), and the
low-primacy high-recency group fails to increase backward transitions during the recency
trials (7. = 0 in all cases). Figure A.2A plots the proportion correct for all items, primacy
items (the first three items only) and recency items (the last three items only) for each
group; these results closely resemble the qualitative patterns from Unsworth et al. (2011),
as shown in Figure A.2B: the “optimal policy” group has the best overall performance and
demonstrates a high level of performance for both primacy and recency items compared
with other groups, whereas the other two groups demonstrate high levels of performance for

primacy or recency items only (but not both), and show lower levels of performance overall.

Parameter estimation in CMR and rational-CMR

CMR. There are three sets of behavioral patterns and a total of N = 2] 4+ 8 data
points we are interested in modeling: the serial position curve (S = {sy, s1, ..., 5;}), the
probability of first recall curve (R = {ry,r1,...,r}), and the conditional response
probability curve with -4/+4 lag (C' = {¢1, ¢4, ...,¢cs}). Lis the list length of the free recall
data. The goal in fitting CMR to a human behavioral dataset is to obtain a set of
parameter values 6 that minimize the difference between the simulated values s,r, ¢ as a
function of 8, and empirical values s, f’, ¢’ of these data points, expressed in the

normalized root mean square error (NRMSE):

l l 8
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where the normalization in each component rescales each set of behavioral patterns so that

they are comparable across each other. Given some domain of the parameter space ©, the
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goal is to find the set of parameters § that minimizes the error function f(6):

6" = argming.q f(6).

The exact functional form for f is not available, but rather f arises as a complex
function of the free recall behavior simulated based on mechanisms specified in CMR.
Applying a grid search to the parameter space would not be feasible since it requires a
total of m!'Y evaluations assuming there are m possible values for each parameter. Each
evaluation is expensive, as it requires simulating a new dataset and calculating behavioral
patterns s, r, ¢ from it.

We apply Bayesian optimization to estimate the parameters in CMR (Mockus et al.,
1978), as it has recently become popular for training expensive machine-learning models
whose behavior depend in a complicated way on their parameters such as convolutional
neural networks (Snoek et al., 2012). Bayesian optimization models f as a Gaussian
process, with a prior p(f) = GP(f; u, K). Given existing evaluations of f in D = (O, f),
the posterior of f can be written as p(f|D) = GP(f; pyip, Kfp). Then, a new set of
parameters 0,,.,, to evaluate can be proposed by estimating how desirable evaluating f at
Onew is expected to be for the minimization problem, measured as the probability of
improvement function E(u(#)|0, D), where u(f) =1 if f(#) < minf or 0 if f(6) > minf.

Parameters values reported in the current work are based on 200 iterations of
Bayesian optimization, after 500 random initializations, which sums up to a total of 700
evaluations of f.

Rational-CMR. Instead of fitting the model to minimize the discrepancy with the
human behavioral data, the goal in rational-CMR is to find the set of parameter values 6

that maximize task performance f:

0" = argmaxycq f(6).

where task performance f is a function of €, and can be obtained from the simulated

dataset as the average proportion of items correctly recalled. 6 is then obtained using the
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same Bayesian optimization procedure that was described in the previous section.

Kahana et al. (2002) dataset

Fitting of CMR and rational-CMR is based on free recall data from 31 university
undergraduates (age range: 17-21) in Experiment 1 from Kahana et al. (2002).
Participants studied 33 lists of words in an immediate free recall experiment (the first three
lists were practice and were not included in the analyses). Lists were composed of 10
common, two-syllable nouns chosen at random and without replacement from the Toronto
Noun Pool (Friendly et al., 1982). At the start of each trial, a fixation cross appeared for
1400 ms, followed by a 100 ms blank inter-stimulus interval. Then, the computer screen
displayed each list item for 1400 ms, followed by a 100 ms blank inter-stimulus interval.
During list presentation, participants were instructed to say each word aloud. Immediately
following the list, participants were given 30s to recall list items. It was made clear that
they need not attempt to recall the items in the order of presentation. Each session lasted

around 1.5h.

Penn Electrophysiology of Encoding and Retrieval Study

We tested the predictions from rational-CMR using the Penn Electrophysiology of
Encoding and Retrieval Study (PEERS), a large database characterizing the
electrophysiological correlates of memory encoding and retrieval; see full details of the
experiment in Lohnas et al. (2015), Healey and Kahana (2016) and Healey et al. (2018).
The present analysis is based on the behavioral data from the 171 young participants (age
range: 18-30) who completed Experiment 1 of the PEERS dataset. Participants performed
an immediate free recall experiment. Each participant completed one practice session and
six subsequent experimental sessions, each with 16 lists. Only the experimental sessions are
included in the analysis. Each study list was composed of 16 words, and was followed by an
immediate free recall test. Words were either presented concurrently with a task cue (size

judgement or animacy judgment), or with no encoding task. There were three conditions of
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study lists: no-task lists, single-task lists and task-shift lists. List and task order were
counterbalanced across sessions and participants. Each item was presented on the screen
for 3000 ms, followed by a jittered inter-stimulus interval uniformly drawn from 800-1200
ms. If the word was associated with an encoding task, participants indicated their response
via a keypress. Once the presentation of the last item was completed, after a jittered delay
of 1200-1400 ms, the participant was given 75 seconds to recall any items from the
just-presented list. Some sessions were randomly selected for final free recall task and a
recognition task after the immediate free recall task. Only the immediate free recall task

was considered in the analysis.

Howard and Kahana (1999) dataset

We tested the predictions from rational-CMR using the dataset from Howard and
Kahana (1999). 61 participants studied lists of words for a subsequent free-recall test. Lists
were composed of 12 common, two-syllable nouns chosen at random and without
replacement from the Toronto Noun Pool (Friendly et al., 1982), and were presented
visually at a rate of 1 word per second. During list presentation, participants were required
to perform a semantic orienting task on the presented words. The participants were to
press the left control key if they judged the word to be concrete and the right control key if
they judged it to be abstract. In an immediate condition, the free-recall test was given
immediately after list presentation. In a delayed condition, participants performed an
arithmetic distractor task for 10 s before recall. Participants were given 45s to recall all
items in the list in any order. Participants could not predict during encoding whether it
would be an immediate or delayed condition; they were warned that sometimes there would
be a math test between the end of the list and the signal to recall and sometimes there

would not.



