
https://helda.helsinki.fi

Context-driven Encrypted Multimedia Traffic Classification on
Mobile Devices

Hoque, Mohammad Ashraful
IEEE
2022-04-27

Hoque , M A , Finley , B J , Rao , A , Kumar , A , Hui , P , Ammar , M & Tarkoma , S 2022 ,
Context-driven Encrypted Multimedia Traffic Classification on Mobile Devices . in 2022 IEEE
International Conference on Pervasive Computing and Communications (PerCom) . IEEE
International Conference on Pervasive Computing and Communications , IEEE , The 20th
International Conference on Pervasive Computing and Communications , Pisa , Italy ,
21/03/2022 . https://doi.org/10.1109/PerCom53586.2022.9762389

http://hdl.handle.net/10138/345971
https://doi.org/10.1109/PerCom53586.2022.9762389

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Context-driven Encrypted Multimedia Traffic
Classification on Mobile Devices

Mohammad A. Hoque∗, Benjamin Finley∗, Ashwin Rao∗, Abhishek Kumar∗, Mostafa Ammar†,
Pan Hui‡∗, and Sasu Tarkoma∗§

∗ University of Helsinki, Finland. Email: firstname.lastname@cs.helsinki.fi
†Georgia Institute of Technology, Atlanta, USA. Email: ammar@cc.gatech.edu

‡Hong Kong University of Science and Technology, Hong Kong. Email: panhui@cse.ust.hk
§University of Oulu. Email: sasu.tarkoma@oulu.fi

Abstract—The Internet has been experiencing immense growth
in multimedia traffic from mobile devices. The increase in
traffic presents many challenges to user-centric networks, net-
work operators, and service providers. Foremost among these
challenges is the inability of networks to determine the types
of encrypted traffic and thus the level of network service the
traffic needs for maintaining an acceptable quality of experience.
Therefore, end devices are a natural fit for performing traffic
classification since end devices have more contextual information
about the device usage and traffic. This paper proposes a novel
approach that classifies multimedia traffic types produced and
consumed on mobile devices. The technique relies on a mobile
device’s detection of its multimedia context characterized by
its utilization of different media input/output components, e.g.,
camera, microphone, and speaker. We develop an algorithm,
MediaSense, which senses the states of multiple I/O components
and identifies the specific multimedia context of a mobile device in
real-time. We demonstrate that MediaSense classifies encrypted
multimedia traffic in real-time as accurately as deep learning
approaches and with even better generalizability.

Index Terms—multimedia context, deep learning, traffic clas-
sification, VoIP, streaming, broadcast.

I. INTRODUCTION

Mobile devices have been generating 60% of all Internet
traffic, and the most significant proportion of this traffic
comes from multimedia applications that involve streaming
and interactive video and audio. Along with the content from
popular content providers, user-generated content is also on
the rise due to online lectures from academic institutions and
additional remote collaborations worldwide [1]. The Cisco
Visual Network index predicts that traffic from various services
such as video broadcast, live streaming, AR/VR applications
would grow by five-to-seven fold by 2022 [2]. As the Corona
pandemic continues, perhaps we have already reached such
levels because millions of people are engaged in remote work,
interactive online education, and consuming entertainment at
significantly higher levels than before.

While ubiquitous devices enable a diverse set of multimedia
activities [3], users generally have no control over their result-
ing traffic after such traffic leaves their device. Fortunately, a
new set of personalized or user-centric networking applications
are emerging, such as Personal Virtual Network (PVN) [4] and
Middle Box Zero (MBZ) [5]. These virtual networks perform
traffic inspection [6], and monitor network performance [7]
on mobile devices. While these networks promise users more

control over their traffic, they lack a privacy-aware traffic
classification mechanism to assist in performing networking
activities, such as performance monitoring, protecting privacy,
and requesting QoS.

Existing approaches rely on root certificates to perform deep
packet inspection on encrypted packets [8], [6] or certificate
pinning to perform similar inspection [9], [10]. Naturally,
these approaches have significant privacy concerns. Relatedly,
deep learning algorithms that learn very application-specific
features, such as Deep Packet [11] leverages application signa-
tures from the initial SSL/TLS packets, raises privacy concerns
(since the usage of a specific application can be considered
private information). Furthermore, they require large training
datasets and significant energy and hence are not optimal for
mobile devices. Besides, an application can be responsible for
different types of traffic.

In contrast, we propose an approach that classifies multi-
media traffic into specific multimedia activity categories (such
as streaming, broadcasting, and conversation) using a set of
general (non app-specific) features. Our approach relies on
a mechanism to identify such multimedia activities, which
we call multimedia contexts. PVNs or MBZs can employ our
approach to detect multimedia traffic types and then perform
various optimizations (such as network selection, performance
monitoring for different traffic types, traffic padding for pre-
serving privacy, or route optimization for improved QoS) in a
more privacy-preserving fashion.

A device’s multimedia context describes whether the device
user is producing content, consuming content, or conversing
(thus both producing and consuming content) on a mobile
device. We present a unique sensing algorithm, MediaSense, to
accurately detect eleven such multimedia contexts of a device.
MediaSense can be used to identify various multimedia traffic
scenarios in real-time on mobile devices. MediaSense relies
on the answers to the following questions: (i) what are the
content types users interact with?, (ii) how do users interact
with each type of content?, (iii) which I/O components are
utilized during such interactions on smart devices, and (iv)
what are the states of these I/O components while interacting
with different content types?
Our key contributions are the following.

(1) Context Definition and MediaSense. To the best of
our knowledge, we are the first to define multimedia contexts

multimedia
production

multimedia
consumption

AudioRecord AudioCast

audio video
audio

VideoRecord VideoCast LocalAudio AudioStream

audio video
audio

LocalVideo VideoStream

conversational
multimedia

audio video
audio

1 2 3

GSM/VoLTE AudioConv VideoConv

Lo
ca
l

Lo
ca
l

gs
m
/v
olt
e

Lo
ca
l

Lo
ca
lIP IP

IP IP

IP IP

Fig. 1: Multimedia interaction types on mobile devices. The second layer denotes the typical content types produced, consumed,
or exchanged during the interaction. The third layer represents the context according to the multimedia type and their medium of
use; ‘local’ implies media production and consumption without any IP communication.

and propose a method to detect such contexts on mobile
devices. We study sixty-two popular multimedia applications
on Android and iOS devices and classify them according to
how users interact with different multimedia contents using
these applications (Section 2). From the investigation, we
initially define eleven multimedia contexts. These contexts can
be abstracted into three high-level multimedia contexts: (i)
multimedia production, (ii) multimedia consumption, and (iii)
conversational multimedia, as demonstrated in Figure 1.

Next, we explore how these contexts use several media I/O
hardware components on mobile devices and present a multi-
media context sensing algorithm called MediaSense. Through
an extensive evaluation using over 52 applications, we demon-
strate that with flow-level information MediaSense identifies
the correct multimedia contexts with 97-100% accuracy. Fur-
thermore, it identifies the corresponding voice/video over IP,
live broadcast, and multimedia streaming network flows in
real-time with an accuracy higher than 93% (Section IV) with
negligible energy.

(2) Comparison with state-of-the-art approaches We fur-
ther evaluate the performance of state-of-the-art deep learning
approaches, such as 1D/2D Convolutional Neural Networks
(CNNs) [12], [13], [11], for encrypted multimedia traffic
classification (Section V). We capture traffic of the target
multimedia applications and label them according to six IP-
based multimedia contexts presented in Figure 1 and train the
CNNs. Our evaluation shows that these approaches perform
poorly or have inadequate generalization performance (e.g.,
to new applications in a multimedia context). In contrast,
MediaSense is generic across different multimedia types and
for new apps, and very energy efficient.

The rest of the article is organized as follows. We detail the
contexts of various multimedia applications and their usage
of I/O components in Section II. MediaSense is presented
and evaluated in Sections III and IV respectively. Section V
investigates the performance of CNNs for encrypted multi-
media traffic classification and compares with MediaSense.
Section VI highlights the potential use cases of MediaSense,
and the related works are discussed in Section VII. The paper
concludes in Section VIII.

TABLE I: Multimedia production contexts and the corre-
sponding 19 Applications for Android and iOS devices. The
Periscope service is discontinued from March 2021.

AudioRecord: Voice Memes(i), Voice Recorder(a), Dolby
On(a), Hi-Q Recorder(a), RecForge II(a), ASR Recorder(a),
Wear Recorder(a).
AudioCast: Mixlr(a/i), Spreaker(a/i).
VideoRecord: Open Camera(a), Camera(i), Dolby On(a), HD
Camera(a), Camera MX(a), Camera360(a).
VideoCast: Periscope(a/i), StreamLab(a/i), BroadcastMe(a/i),
Facebook Live(a/i).

II. MULTIMEDIA APPLICATIONS AND CONTEXTS

This section develops a foundation for describing multime-
dia contexts determined by how applications use I/O compo-
nents on mobile devices. We investigate the I/O component
utilization of sixty two multimedia applications (see Tables I,
II, and III) on Android and iOS devices, such as Nexus 6,
LG G5, and iPhone 6/6s. Thirty-five applications are available
on both Android and iOS devices, 17 are only available for
Android devices, and ten are only available for iOS devices.
All the required I/O components are typically initialized
simultaneously depending on the application’s characteristics.
Since the user needs to launch an app via the touch screen, it
is intuitive that the screen is busy. Therefore, the initial states
of the I/O components for all the multimedia applications are
the same. In Figures 2-4, we represent the status of the I/O
components with ‘1’ and ‘0’, where the bits represent the
busy and free status of the corresponding I/O components.
In practice, a free I/O component can be physically off, e.g.,
as with a display. In contrast, the network I/O status does
not represent the network interface status. Rather the status
depends on network activities, such as the bit rates of the
applications in terms of sending, receiving, or both.

A. Multimedia Production Contexts

A mobile device is in a production context when an appli-
cation records audio/video on local storage or broadcasts live
to some remote consumers. Voice Memos and Camera are
the default audio and video production applications on iOS

C

M

S

D

N

T0 T1time

0

0

0

0
b

0
1

1

1

VideoRecord AudioRecord

VideoCast AudioCast AudioCast

AudioRecord

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

(b) I/O states for Periscope live video broadcast(a) Media Production Contexts and I/O States

1 1 0 1 1 0 1 0 1 1 0 1 0 0 1

0 1 0 0 00 1 0 1 01 1 0 1 0

0 0 0 1 0
C M S D N Initial State

Fig. 2: The media production contexts and the corresponding
I/O states. (a) AudioRecord and VideoRecord refer to local (on-
device) recording of audio and video, whereas AudioCast and
VideoCast refer to live audio and video broadcast from a device
using microphone and camera. (b) States of the I/O components
while broadcasting live with Periscope.

TABLE II: 32 applications/services of four multimedia con-
sumption contexts for Android (a) and iOS (i) devices.

LocalAudio: Vox(i), Flacbox(i), Radsone(i), jetAudio(i),
Stezza(i), Music Player Go(a), Poweramp(a), Omnia(a),
Pulsar(a), VLC(a), AIMP(a).
AudioStream: Spotify(a/i), TuneIn(a/i), Tidal(a/i),
qobuz(a/i), Idagio(a/i), ShoutCast(a/i), Soundcloud(a/i).
LocalVideo: VLC(a/i), MX Player(a/i), PlayerXtreme(a/i),
KMPlayer (a/i), OPlayer Lite(i), 8Player (i).
VideoStream:YouTube (a/i), Vimeo(a/i), Dailymo-
tion(a/i), HBO(a/i), Netflix(a/i), Twitch(a/i), Prime Video
(a/i), Periscope(a/i).

devices. Similarly, Android devices have built-in microphone
and camera applications. In addition to these applications,
Mixlr, Periscope, and StreamLab are popular live audio and
video broadcasting applications as presented in Table I. By
investigating these applications, we derive four media pro-
duction contexts emerging from the initial state as shown in
Figure 2(a). Since video recording typically requires users’
attention, the application must ideally be in the foreground
while recording. If the user switches to another app or turns
off the display, the camera and microphone become free.
In contrast, audio recordings and live audio broadcasts can
continue in the background. Thus, the states of I/O components
for the recording applications differ from those of the live
broadcasting applications only by the network (as they do not
transmit).

Figure 2 (b) shows the states of the I/O components during
a live video broadcasting session of Periscope. We observe
that the live broadcast begins at T0, and the application ini-
tializes the camera and microphones. The output component,
the display, is also used, and data transmission begins. The
broadcasting terminates at T1. Periscope also initiates TCP
connections. We observed that the uplink bit rates of Periscope
and Mixlr are 459 kbps and 128 kbps for broadcasting live
video and audio, respectively.

B. Multimedia Consumption Contexts
A mobile device is in a consumption context, when an end-

user plays multimedia content from local storage or streams

C

M

S

D

N

T0 T1 T2time T3

0

0

0
1

0
1

0
b

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

LocalVideo LocalAudio

VideoStream AudioStream AudioStream

LocalAudio

0 0 1 1 1

0 0 1 1 0

0 0 0 1 0
C M S D N

0 0 1 01 0 0 1 00

0 0 1 11 0 0 1 10

(b) I/O states for TuneIn Audio Streaming(a) Media consumption Contexts and I/O states

Initial State

Fig. 3: The media consumption contexts and the states of the
I/O components. (a) LocalAudio and LocalVideo refer to audio
and video playback from the local (on-device) storage, whereas
AudioStream and Video Stream refer to streaming audio and
video from remote services. (b) States of the I/O components
while streaming audio with TuneIn.

from a remote service provider.
Both Android and iOS devices have default applications

for audio/video playback from local storage. In addition, we
investigated popular streaming applications, such as YouTube,
TuneIn, Periscope live streaming, and many others presented
in Table II. Through this exploration, we derive four media
consumption contexts, as shown in Figure 3(a). For watching
videos from local storage or video streaming, display and
speaker are mandatory; i.e., the playback stops when the user
switches to another application. In contrast, audio applications
can still play audio while in the background. Furthermore,
streaming applications download content from a remote server
and thus require IP connectivity. Despite the diverse set of
multimedia streaming applications, such as on-demand stream-
ing and live/pseudo live streaming, we observe that audio
and video consumption exhibit the same I/O states. Overall
the media consumption applications vary significantly: some
apps play with negligible initial playback delay, whereas some
continue to cache and depend on the user’s input.

Figure 3(b) shows that only speaker and network activities
begin when a TuneIn audio streaming session starts at T0. The
display is turned off at T1 and turned on again T2. Finally, the
user terminates the streaming session at T3. TuneIn initiates
multiple TCP flows as soon as the playback begins. The
bitrates of the TuneIn audio streams vary from 24 kbps to 320
kbps. We also observe that the downlink bit rate of Periscope,
i.e., the bit rate when viewing a Periscope live stream of other
Periscope users, is similar to the uplink bit rate. Along with
the application-specific bit rates, we also observed different
ON/OFF patterns in the network traffic [14].

C. Conversational Multimedia Contexts

A device is in a conversation context when a user engages
in an audiovisual conversation with another remote user using
a conversational application.

In addition to GSM and VoLTE calls, we also experiment
with the popular VoIP applications presented in Table III. Fig-
ure 4 (a) shows that the states of the I/O components change
according to the conversation types. An audio conversation

TABLE III: Conversational contexts and 11 applications on
Android (a) and iOS (i) devices. Only VoLTE/GSM calls are
responsible for non-IP AudioConv context.

AudioConv: WhatsApp(a/i), IMO(a/i), Viber(a/i), Kakao
Talk(a/i), Line(a/i), Skype(a/i), Messenger(a/i), Duo(a/i),
VoLTE/GSM(a/i), Snapchat (a/i).
VideoConv: WhatsApp(a/i), IMO(a/i), Viber(a/i), Kakao
Talk(a/i), Line(a/i), Skype(a/i), Messenger(a/i), Duo(a/i),
Snapchat (a/i), FaceTime (i).

C

M

S

D

N

T0 T1 T2 T3time

0

0

0

0
1

0

b

1

1

1

VideoConv

AudioConv

Initial State

VideoConv

AudioConv

0 0 0 1 0
C M S D N

0 1 1 1 1 0 1 1 0 1

1 1 1 1 1 0 1 1 1 1

Camera (C)
Microphone (M)
Speaker (S)
Display (D)
Network (N)

(b) I/O states for WhatsApp audio call(a) Conversation contexts and I/O states

Fig. 4: The conversation contexts and the states of the
corresponding I/O components. (a) AudioConv and VideoConv
represent Audio and Video call contexts respectively. (b) States
of the I/O components during a WhatsApp audio conversation.

does not need the display to be active during the call. In
contrast, a video call uses all the media I/O components.

Conversational applications have two media contexts, i.e.,
audio or video conversations. Figure 4(b) demonstrates that a
WhatsApp VoIP call begins at T0, and all the I/O components
become busy, except the camera. The display turns off at T1
and turns on again at T2. Finally, the call terminates at T3.
WhatsApp initiates both TCP and UDP flows as soon as the
call begins. The TCP flows are mostly used for signaling, and
UDP flows carry the media. The bitrate of the audio flow
in each direction ranges from 17-22 kbps, and the bitrate
increases to a few hundred kbps during video conversations.

A video conversation can also proceed without an active
camera on either the caller’s or callee’s device. When the caller
initiates a video call, all the media sensors are activated on the
callee’s device. If the caller turns off the camera after the call
is established, the user still needs to keep the display active,
as the caller device receives video from the other end. When
both users turn off their cameras, the media context changes
to an audio call (Figure 4).

D. Mixed Multimedia Contexts

Multiple applications cannot utilize some I/O components
simultaneously. We also explore these limitations. Table IV
demonstrates our findings when using applications of two
media contexts together on single screen devices, iPhone 6s
and Nexus 6. The table shows that a user cannot use two media
production applications simultaneously on a single screen
device. The user also cannot record audio and video content
simultaneously on two separate applications. We also tried to

TABLE IV: Mixed contexts on Android and iOS devices.

Multimedia
context

Media
Production

Conversation Media
Consumption

Media
Production

No No No

Conversation No No Yes
Media
Consumption

No Yes Yes

Algorithm 1: MediaSense
. Comment 1: Pre-computed features.;
mediaFeatures = Map(mediaContext, bitrate);
while true do

trafficstat = getTXRXbytes();
mic = sampleMicrophone() ∈ {1,0};
speaker = sampleSpeaker() ∈ {1,0};
camera = sampleCamera() ∈ {1,0};
display = sampleDisplay()∈ {1,0};
. Comment 2: Audio/Video media contexts.
mediaContext = camera|mic|speaker|display;
media = camera|mic|speaker;
Tmedia = gettimeoftheday();
. Comment 3: IP-based media contexts
if (mediaContext(!network)) then

mediaVec = computeFeatures(trafficstat,
mediaContext);

mediaFet = getFeatures(mediaContext,
mediaFeatures);

if (mediaVec ≈ mediaFet) then
mediaContext = mediaContext|network;

end
end
. Comment 4: Updating Video to Audio consumption.
if ((mediaContext == V ideoStream)&&(!display))

then
mediaContext = mediaContext|(!display);

end
. Comment 5: Voice/Video call state changes.
if ((mediaContext == V ideoConf)&&(!camera))

then
mediaContext = mediaContext|(!camera);

end
if (media==0) then

. Comment 6: MediaContext duration.
Mediasession = gettimeoftheday()− Tmedia

end
end

record audio via the default voice recording application, and
the recorder stops as soon as Periscope starts broadcasting.

Figures 2 & 3 show that media production and consumption
applications do not necessarily overlap in terms of requiring
the camera, microphone or speaker. However, the Nexus 6
does not allow recording or broadcasting media when another
streaming application is running. For example, running an
audio recording application in the background and streaming
via YouTube or TuneIn in the foreground is impossible. In
this case, the audio recording terminates as soon as the player
initializes the required sensors. Similarly, the user cannot use
recording applications during a VoIP call. Nevertheless, we
were able to stream audio in the presence of a VoIP call on a
single screen.

TABLE V: Android APIs for detecting media contexts and
utilization of Media I/Os.

Android API I/O com-
ponent

User
Permission

AudioManger.getMode() Micrphone,
Speaker

No

AudioManager.getMode(),
CameraManager.
registerAvailabilityCallBack()

Camera,
Microphone,
Speaker

No

AudioManager.isMusicActive() Speaker No
CameraManager.
registerAvailabilityCallBack()

Camera,
Microphone

No

MediaRecorder.record() Microphone Yes

E. Summary

In this section, we have investigated many multimedia
applications for mobile devices. We have shown that the
utilization of the I/O components by multimedia applications
can be generalized across both Android and iOS devices. This
requirement of I/O components also allows us to extend the
generalization to an arbitrary number of applications for media
consumption, production, or conversation.

At the first level (Figure 1), the distinct usage of the
microphone and speaker components differentiates the produc-
tion, conversational, and consumption contexts. While at the
second level, the camera separates video from audio contexts
for production and conversational media, whereas the display
separates video from audio for media consumption. All the
contexts are separated at the third level according to network
activities, i.e., transmitting, receiving, or exchanging traffic.

Note that augmenting a phone with a headset via Bluetooth
or cable does not affect the state of the I/O components; it only
changes the route of the audio signal. Thus, being outdoors,
indoors, or mobile does not change the need for these I/O
components. This also applies to adjusting brightness, camera
focus, or adjusting volume. However, loss of signal or poor
signal may disrupt a VoIP call, streaming session, or a live
broadcast and may terminate the media context.

III. MEDIASENSE

Given that a user interacts with an arbitrary multimedia
application, we devise MediaSense (Algorithm 1) that scans
the states of five I/O components to infer the resulting mul-
timedia context. We implement MediaSense as a user-level
service for Android devices. The service runs as a background
service and looks for multimedia contexts periodically at 1Hz.
Whenever one or more I/O components changes states, Me-
diaSense initiates a new multimedia context. The algorithm
first checks whether the media context is audio or video-related
with the camera and display (Comment 2 in Algorithm 1).
Then, the algorithm checks the traffic flow statistics in the
uplink and downlink to separate IP-based contexts from local
media (Comment 3 in Algorithm 1). We describe these steps
in detail below.

A. Separating Audio/Video Contexts

The algorithm periodically scans the states of the I/O
components using on-device system APIs to determine the
media context.

(1) Conversational Multimedia Context. Fortunately, An-
droid provides APIs for applications to indicate their modes
of operation to the AudioManager [15], thus allowing other
applications to query the status of the AudioManager via
getMode() API. AudioManager operates in one of three
modes; IN CALL, IN COMMUNICATION, and RING-
TONE. These modes indirectly indicate that an ongoing
context is conversational and that both the microphone and
speaker are busy. TelephonyManager has getCallState() to
indicate a GSM/VoLTE call [16] and thus expresses the states
of the microphone and speaker.

Table V summarizes the mapping between Android
APIs and the corresponding media I/O components. Medi-
aSense characterizes a context as a video conversation if the
AudioManager is in one of the modes and one of the cam-
eras is initialized at the same time. MediaSense implements
registerAvailabilityCallback() from CameraManager [17]
to poll camera status, i.e., available/unavailable, exactly when
the audio mode changes.

(2) Multimedia Consumption Contexts. The isMusicAc-
tive() API from AudioManager helps to differentiate mu-
sic playback contexts from VoIP/GSM calls or other media
production contexts on the device. This API provides the
speaker information. However, the API does not differentiate
whether the playback is audio or video. In other words, it
could be an audio-only application or a video application
that uses the speaker for the audio track. We also could not
find APIs hinting about streaming. In Figure 3, we notice
that distinguishing between audio and video consumption
contexts is not straightforward, given just the statuses of the
I/O components. The reason is that audio applications require
only speakers and can work while keeping the display active
or inactive. Therefore, the algorithm first assumes a media
consumption context is video type. Then when the display
turns off, the media context is changed to audio type as the
media session continues.

(3) Multimedia Production Contexts. MediaSense uses
APIs which do not require explicit user permission to detect
the earlier described media contexts. Similarly, the algorithm
uses registerAvailabilityCallback() from CameraManager
to detect the video production contexts from the Camera or
Periscope like applications. This API initializes the camera
and microphone together. However, detecting the state of
the mic is not possible without explicit user permission.
MediaSense implements MediaRecorder APIs with user
permission to detect the audio production contexts due to the
applications presented in Table I.

B. Separating Local/IP-based media contexts

MediaSense distinguishes IP-based contexts from the local
media context by identifying the traffic flows from a set of live
flows using flow-level information, as presented in Table VI.

TABLE VI: Features considered for the identifying the media
contexts. “faststartbyte” denotes the amount of data down-
loaded during the first 10 seconds of streaming.

uplink
bitrate

downlink
bitrate

Features ? Context

X X if (bitrate≥8 kbps, microphone) ? AudioCast :
AudioRecord

X X if (bitrate ≥8 kbps, microphone, camera) ?
VideoCast : VideoRecord

X X if (bitrate ≥8 kbps, microphone, speaker) ?
AudioConv : GSM/LTE

X X (bitrate ≥8 kbps, microphone, speaker, camera)
? VideoConv

X X (faststartbytes ≥100 KB,
bitrate>300kbps,speaker, display) ?
VideoStream : LocalVideo

X X (faststartbytes ≥100 KB, bitrate<300kbps,
speaker, !display) ? AudioStream : LocalAudio

It relies on the Android VPN API to gain access to such
information from live flows. There is no other way to access
network traffic information on mobile devices. This API was
also used by Lumen [18], Mopeye [7], and AntMonitor [19].
Unlike these, MediaSense neither installs root certificates
nor performs deep packet inspection. The algorithm uses five
tuples as the flow identifier. MediaSense does not compute
all the features in the table for a media context. It rather
computes media context-specific features. These features are
derived from our observations in Section II with the following
reasoning.

(1) Conversational Multimedia Contexts. Unlike the other
applications, conversational traffic carries voice or video data
in both directions. Voice traffic has a minimum bit rate of
14 kbps. However, the bitrates of these applications depend
on the underlying codec [20], which can be as low as 8 kbps
in one direction [21]. A GSM/VoLTE call be identified using
the getMode() API and by noting that there is no uplink and
downlink traffic (see Table VI).

(2) Multimedia Consumption Contexts. On-demand
streaming applications, e.g., YouTube, Spotify, begin stream-
ing with a fast start phase and download 10-40 seconds of
equivalent playback content. Spotify streams audio via per-
sistent HTTP connections over TCP, regardless of the device
type [22]. The audio streams are encoded at 96-360 kbps,
and the selection depends on the subscription type. The size
of the first segment is 139.53 KB [22]. YouTube downloads
more than one megabyte during the fast start phase. Periscope
downloads content at a constant bit rate after the fast start.
Therefore, MediaSense relies on isMusic() API and the flow
features presented in Table VI to separate streaming contexts
from local music playback.

(3) Multimedia Production Contexts. Periscope’s outgoing
bitrate is 459 kbps. A 64 kbps outgoing bitrate is very common
for live audio broadcasting. Mixlr supports 32-128 kbps. We
consider a lower bound of 8 kbps as the context feature.
Overall MediaSense uses the bitrate feature along with the
CameraManager & MediaRecorder APIs to separate the
IP-based based contexts from the local recording contexts.

IV. PERFORMANCE EVALUATION

We installed MediaSense on an LG G5 (Android 8.0) with
an LTE connection for evaluation. The data plan allowed a
maximum of 45 Mbps and 20 Mbps speed for downlink and
uplink, respectively. The device had 101 applications installed,
including 52 multimedia apps. However, we interacted with
only one multimedia application at a time, and the session
duration remained between 30-60 seconds. We denote this as
a media session or the duration of a media context. The device
was fully charged during the experiments to avoid any system-
assisted performance degradation [23].

We evaluate MediaSenseon how accurately it can differenti-
ate local versus IP-based media contexts in the media sessions
and how accurately it can identify the corresponding network
flows. We estimate flow detection accuracy as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

We define the proportions in the equation as follows. True
positive (TP) denotes the number of cases correctly identified
as IP-based contexts. False positive (FP) denotes the number of
cases incorrectly identified as IP-based contexts. True negative
(TN) denotes the number of cases correctly identified as local
contexts. And False negative (FN) denotes the number of cases
incorrectly identified as local contexts.

The accuracy in identifying an IP-based context is expressed
by the precision, which estimates the proportion of true
positives in the corresponding sessions. This can be stated as:

Precision = TP/(TP + FN) (2)

In contrast, the recall expresses the local context accuracy,
which estimates the proportion of true negatives in the IP-
based context that resemble local media contexts. This can be
stated as:

Recall = TN/(TN + FP) (3)

For network flow identification or traffic classification per-
formance, we only use the accuracy measure.

TABLE VII: MediaSense correctly identified 100% (all true
positives) of multimedia sessions and network flows for au-
dio/video broadcasts during the first 10 seconds of broadcasts.

VideoCast AudioCast
App TP/

#sess
TP/
#flow

bitrate-
mbps

App TP/
#sess

TP/
#flow

bitrate-
kbps

Periscope 53/53 53/53 0.4-0.7 Mixlr 76/76 76/76 16-128
Streamlabs 39/39 39/39 0.5-1.5 Spreaker 20/20 20/20 16-128
BroadcastMe 26/26 26/26 0.2-0.7 - - - -
FacebookLive 29/29 29/29 0.6-1.4 - - - -

A. Multimedia Production Contexts.

We first experiment with the multimedia production appli-
cations presented in Table I.

Local/non-IP production context identification. There
are 220 sessions for 11 local media production applications.
MediaSense did not identify any media network flows dur-
ing these local media production contexts. In other words,

MediaSense correctly identified all the AudioRecord and
VideoRecord sessions without any FNs, and therefore, the
recall is 100%.

IP-based production context identification. We exper-
imented with six applications. The bitrates of the audio
broadcasts varied between 16 and 128 kbps. Periscope and
BroadcastMe had the average bitrates for medium quality
videos, whereas Streamlabs and Facebook Live transmitted
high definition videos. Network traffic should be generated
by the broadcasting applications when the media context is
initiated or later on based on user interaction with the appli-
cation. MediaSense correctly identified all 243 media contexts
as presented in Table VII. Consequently, there were no FPs
while detecting the broadcast contexts, and the precision is
100% for both AudioCast and VideoCast.

Traffic Classification. The very high precision in detect-
ing IP-based media contexts (see Table VII) also indicates
that MediaSense detects the relevant flows. However, it can
generate TPs (detecting the actual flow), FPs (detecting a
wrong flow), or FNs (not detecting a flow). Note that TNs are
not possible for flow detection. Therefore, we use eq. (1) to
determine the flow detection accuracy. Table VII shows that
MediaSense identified 243 audio/video live broadcast flows
during 243 sessions of Mixlr, Spreaker, Periscope, Streamlabs,
BroadcastMe, and Facebook Live. There were no FP or FN,
and MediaSense is 100% accurate in identifying the broad-
casting flows.

TABLE VIII: MediaSense’s performance in identifying Au-
dioStream contexts and network flows real-time (display-off).

AudioStream
Sessions Flows

App TP FN TP FP FN bitrate-mbps
TuneIn 52 0 47 5 0 0.03-0.44
ShoutCast 43 0 38 5 0 0.03-0.44
Qobuz 50 0 49 1 0 0.6-4.1
Idago 39 0 37 2 0 0.5-5.0
Tidal 33 0 31 2 0 1.2-5.2
Spotify 29 0 26 3 0 2.5-7.5
SounCloud 23 0 22 1 0 0.8-4.5

B. Multimedia Consumption Contexts.

Media consumption contexts relate to live streaming,
pseudo-live streaming, or on-demand streaming applications
and other local playback applications (see Table II). In the
streaming cases, since the content is first downloaded and then
played, there is an initial playback delay of 3-5 seconds [14].
Therefore MediaSense considers this absolute time difference,
i.e., |tmedia − tflow|, in filtering the flows. In addition to dis-
play status, we also consider 16-300 kbps bitrates to indicate
audio streams and higher bitrates to indicate video streams.
The absence of network flows with such features indicates a
local media consumption context.

Local/non-IP context identification. We did not observe
FNs for the local audio and video playbacks from the ten
applications, as MediaSense associates the flow initiation
time with context beginning and considers the flow bitrates.

TABLE IX: MediaSense’s performance in identifying
VideoStream contexts and network flows real-time.

VideoStream
Sessions Flows

App TP FN TP FP FN bitrate-mbps
YouTubeLive 49 3 52 0 0 0.35-4.7
Periscope 48 4 47 5 0 0.2-3.01
Twitch 53 0 53 0 0 0.6-6.3
Vimeo 47 0 47 0 0 0.4-6.2
Dailymotion 42 3 38 5 0 0.35-11
Netflix 43 0 43 0 0 3.5-29
Prime Video 36 0 36 0 0 0.35-4.7
HBO Nordic 29 0 29 0 0 0.5-9.1

TABLE X: MediaSense identified audio and video conversa-
tion contexts as 100% true positives.

Apps VideoConv AudioConv
TP/
#sess

TP/
#flow

bitrate-
mbps

TP/
#sess

TP/
#flow

bitrate-
kbps

WhatsApp 50/50 50/50 0.3-0.51 50/50 50/50 10-23
Skype 50/50 50/50 0.4-0.8 50/50 50/50 43-73
Viber 50/50 50/50 0.9-2.2 50/50 50/50 10-18
IMO 50/50 50/50 0.3-0.7 50/50 50/50 14-18
Kakao 28/28 28/28 0.3-0.5 22/22 22/22 10-24
Duo 26/26 26/26 0.35-1.8 26/26 26/26 40-55
Messenger 25/25 25/25 0.4-1.1 23/23 23/23 8-23
Snapchat 25/25 25/25 0.3-0.7 25/25 25/25 14-18
Line 25/25 25/25 0.3-0.7 25/25 25/25 10-40

Therefore, it identifies 200 local audio/video playback contexts
from 10 applications with 100% recall.

IP-based video consumption context and Traffic Classi-
fication. Table IX shows that MediaSense correctly identified
97% of 357 VideoStream contexts from eight applications.
Three YouTube, four Periscope, and three Dailymotion ses-
sions were identified as AudioStreams, as the bitrates were
below 300 kbps. Likewise, MediaSense correctly detected
95% of the multimedia flows during VideoStream contexts
as shown in Table IX. However, MediaSense incorrectly
detected additional flows in ten sessions (FPs), including
during Dailymotion and Periscope contexts. MediaSense also
revealed that Twitch, Vimeo, and Prime Video use multiple
flows to download content. More than 70% of the 48 Twitch
sessions and all the 47 Vimeo sessions had two flows, and 36
Prime sessions had four flows per session. Table IX shows that
MediaSense identified their network flows with 97% accuracy.

IP-based audio consumption context and Traffic Clas-
sification. Table VIII shows that MediaSense identified 269
AudioStream contexts from seven applications with 100%
accuracy as there were no FNs. However, it identified some
of the corresponding network flows as FPs. The FPs occurred
due to unrelated background flows during streaming. Likewise,
MediaSense detected the corresponding network flows with
93% accuracy due to some false positives resulting from
background flows.

C. Conversational Multimedia Contexts.

We investigated the performance of MediaSense with all
the conversational applications in Table III. Since the delay

requirement of conversation multimedia is very strict, Medi-
aSense considers the flows initiated within three seconds of
the media contexts, i.e., |tmedia − tflow| ≤ 3s.

Local/non-IP context identification. Conversational con-
texts have data exchange in both directions. However, GSM
and VoLTE data do not follow the same path as normal
application data. Therefore, the absence of flows with at least
eight kbps bitrates in both directions indicates an ongoing
GSM/VoLTE call. On LG-G5, the algorithm identified 20
conversational sessions due to 20 GSM calls without any FN;
thus, the recall is 100%.

IP-based context identification and Traffic Classification.
MediaSense identified 329 AudioConv and 329 VideoConv
contexts with similar features with 100% precision on LG
G5, as shown in Table X. There were no FPs. Although
there could be rate control by these applications [24], [25],
an 8 kbps bitrate (and an active camera) are sufficient for
detecting video calls and flows. A conversational context can
switch to a hybrid mode when the camera is off/on during
a conversation. Consequently, MediaSense also accurately
identifies such hybrid contexts via camera status and flow
bitrate features. Similarly to the audio/video broadcasting
flows, MediaSense identified 658 conversational flows with
100% accuracy without any FP or FN (see Table X).

Audio Production

Video Production

Audio Conversation

Video Conversation

Audio Consumption

Video Consumption
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

local/non-IP context (recall) IP-based context (precision)

Fig. 5: MediaSense performance in identifying the 11 mul-
timedia contexts from Figure 1. Note that the local/non-IP
context for audio conversation represents GSM and VoIP calls.

AudioCast

VideoCast

AudioConv

VideoConv

AudioStream

VideoStream
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Fig. 6: Real-time flow classification performance of Medi-
aSense for different IP-based multimedia contexts.

D. Discussions and Energy Consumption
We further measured the electric current consumption of

MediaSense on the Nexus 6. Although Power Monitor [26]

TABLE XI: The average current consumption of Nexus 6 over
the periods 60 seconds for the multimedia applications.

Application Context Basline
(mA)

MediaSense
(mA)

Voice Recorder AudioRecord 110 119
Camera VideoRecord 700 800
Mixlr AudioCast 140 139
BroadcastMe VideoCast 439 440
TuneIn AudioStream 140 200
YouTubeLive VideoStream 525 540
WhatsApp AudioConv 222 231
Phone AudioConv(GSM) 135 155
WhatsApp VideoConv 743 700
VLC LocalVideo 545 579
VLC LocalAudio 130 122

would provide better estimates, modern mobile devices come
with difficult-to-access batteries, and thus, instrumenting these
devices is very challenging. We instrumented MediaSense with
Android API to sample the run time current consumption at 1
Hz and tested on the Nexus 6. The device had 101 applications
installed, including the 52 multimedia applications connected
to a WiFi access point. The device was fully charged during
the measurements. MediaSense consumes 70 mA on average
while the device is idle. Table XI compares the average
current consumption of the Nexus 6 for nine applications with
eleven media contexts in the absence (baseline) and presence
of MediaSense. During the video contexts, the display was
ON, and the front camera was used for the VideoConv and
VideoCast contexts. The display was off during the audio
contexts. MediaSense computes flow statistics, tracks media
contexts, and associates contexts with the flows. We notice
MediaSense does not consume considerably more energy
compared to the baseline.

V. PERFORMANCE COMPARISON

In this section, we compare the performance of Medi-
aSense with state-of-the-art deep learning methods for traffic
classification [12], [13], [11].

A. Deep Learning Approaches

We evaluate the performance of session and flow-level
1D and 2D Convolution Neural Networks (CNN)s and a
packet-level 1D-CNN to classify encrypted multimedia traffic.
The session and flow-level 1D-CNN models have two 1D
convolution layers with 32 and 64 filters, respectively. Each
convolution layer is followed by a 1D max-pooling and termi-
nated by two fully connected layers. The session and flow-level
2D-CNN model is constructed by replacing 1D convolution
and pooling layers with the corresponding 2D layers. Further
details of the models can be found in [12], [13]. In contrast, the
packet-level 1D-CNN has two 1D convolution layers also each
followed by 1D max-pooling and a final three fully connected
layers. Further details of this model can be found in [11].
These deep models train on actual byte data (as we discuss
further), thus flow, or packet-level feature engineering is not
required.

0.00 0.02 0.00 0.00

0.00 0.96 0.00 0.00 0.04 0.01

0.05 0.01 0.79 0.02 0.02

0.25 0.00 0.05 0.69 0.00 0.00

0.00 0.00 0.00 0.03

0.00 0.02 0.00 0.00 0.04

0.83

0.86

0.94

0.15

0.11

0.11

Predicted Label
AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

AudioCast

AudioConv
Audio

Stream

VideoCast
VideoConv

Video
Stream

Tr
ue

 L
ab

el

(a) 1D-CNN (Flow)

0.00 0.03 0.00 0.00 0.97 0.00

0.00 0.03 0.00 0.00 0.00 1.0

0.00 0.00 0.00 1.0 0.00 0.00

0.43 0.00 0.49 0.04 0.00 0.03

0.00 0.97 0.00 0.00 0.03 0.00

AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

Predicted Label

0.98 0.00 0.00 0.02 0.00 0.00

AudioCastAudioConvAudioStream

VideoCast

VideoStream

Tr
ue

 L
ab

el

VideoConv

(b) 1D-CNN (Packet)

0 20 40 60 80 100

AudioCast

AudioConv

AudioStream

VideoCast

VideoConv

VideoStream

Generalization Performance

MediaSense Packet (1D-CNN) Session (1D-CNN)

(c) Generalization Performance

Fig. 7: Confusion Matrices for Session and Packet Level 1D-CNN Models and Comparison with MediaSense.

B. Dataset & Training the Networks

The total size of the training dataset is 6.7 GB in pcap
format. It contains the traces for the subsets of applications
of six IP-based classes (contexts) discussed in the previous
sections. A traffic session is defined by a 5-tuple (source
IP, source port, destination IP, destination port, and transport
protocol). A flow is similar and considers traffic direction (so
the IP and port are not reversible).

We use 80% of total flows or sessions for the flow and
session-level models to train the 1D and 2D-CNN models and
the remainder for testing. Each flow or session is represented
(to the model) by the first 784 bytes of the PCAP file
containing only that session or flow (as in the original model
[12]) and thus includes the first few packets of the flow or
session along with packet metadata (which is part of the PCAP
file format) such as their capture timestamps.

Whereas for the packet-level model, we also use 80% of
the packets for training and the remainder for testing. Each
packet is represented (to the model) by the first 1500 bytes
of the packet (with zero-padding if necessary). Additionally,
we need to consider the high-class imbalance due to the
significant differences in packet volumes for different mul-
timedia classes (e.g., video vs. audio). Therefore, we perform
random undersampling of the training data to equalize the class
frequencies. In contrast, the testing dataset is not undersampled
to maintain a realistic evaluation. Finally, we provide the
complete confusion matrix results, as only accuracy values
can be misleading [27].

For all models, we additionally test model generalization
concerning new apps in categories by testing with different
apps in the training data and the testing data (e.g., for video
streaming, we have Netflix and Vimeo in the training data
and YouTube in the testing data). In this additional test, for
the session-level model, we also mask the IP address due to
concerns that this can unfairly imply or leak app identity [13].

We train the CNN models using Tensorflow [28] for the
flow and session-level models and PyTorch for the packet level

model on a Linux server with an Nvidia Tesla K80 GPU. In
terms of metrics, we train the flow and session-level models
for about 30 epochs until the performance levels, and similarly,
we train the packet-level model for five epochs.

C. Evaluation

Figures 7a, and 7b illustrate the test confusion matrices for
the 1D-CNN session and packet-level model respectively. We
omit the flow-level and 2D-CNN model results because their
performance is similar to those presented in the figure. The
results show that all the deep learning approaches achieve
reasonable accuracy (whether on a flow or packet level). How-
ever, the session-level methods have difficulty distinguishing
VideoCast from AudioCast sessions as both contexts resemble
constant bitrate traffic and have similar packet header at-
tributes. In contrast, the packet-level approach faces difficulty
distinguishing AudioStream sessions from AudioCast sessions.

Furthermore, in Figure 7c, we find that the generalization
performance for both deep learning models is significantly
worse compared to the base evaluations (from Figures 7a and
7b) and MediaSense. Specifically, we find that the accuracies
of 1D-CNN session-level model for categories are 76%, 79%,
30%, 39%, 67%, and 34% (compared to 89%, 96%, 79%,
56%, 89%, 95% for the base evaluation) for a new application.
Likewise, the 1D-CNN packet-level model the accuracies are
95%, 55%, 95%, 60%, 80%, and 88% (compared to 98%,
97%, 49%, 100%, 97%, 100% for the base evaluation). This
suggests that these models are learning app specific features,
for example from the first few bytes of the SSL/TLS exchange,
rather than the more general category specific features of
multimedia traffic. Ref. [13] also notes similar findings for
the packet-level model.

Overall, by determining and associating contexts, Medi-
aSense identifies such traffic with similar or higher accuracy
and better generalization (for new apps) on mobile devices
without any training as demonstrated in Figure 6, and with
negligible energy cost.

VI. DISCUSSION

There are many potential uses of information about a
device’s multimedia context. In this work, we demonstrated
how multimedia context information could be used to classify
encrypted multimedia traffic in real-time on mobile devices.
Desktop computers, laptops, and other handheld devices have
similar I/O components. Therefore, MediaSense can be gen-
eralized across such devices as well.

Mobile multimedia contexts further can be used to judicially
select the radio network interface (WiFi/LTE) on multi-homing
devices. Specifically, on-device traffic conditioning according
to signal strength and multimedia context can improve the
quality of experience. The CPU governor can plug/unplug
the cores and scale CPU frequency according to the context.
Similarly, the devices can schedule tasks according to the
media context. Any user application can use such contexts
for energy-aware scheduling of background traffic [29], [30].

Different stakeholders in the networks also can benefit from
MediaSense. In 5G, the access networks classify traffic and
send the QoS policies to mobile devices for applying [31]. The
policies include dropping packets, routing packets according
to IP/MAC address, and marking flows with Differentiated
Service Code Points (DSCPs). MediaSense is a practical ap-
proach that can be used to extend DiffServ on mobile devices
to complement the QoS architecture in 5G. As a result, the
network operators do not have to perform multimedia traffic
classification, as the traffic can be marked even before arriving
at the access network. Furthermore, the operators can map the
DSCP marked traffic to core or radio network slices [32]. The
network service providers can further use such information for
billing, network planning/provisioning, and security [33].

VII. RELATED WORK

Identifying multimedia traffic is essential. Significant works
have been done that are most suitable for network service
providers to manage their networks. Different traffic classifi-
cation methods can be divided into three categories.
Deep Packet Inspection. The MIMIC system [34] looks into
HTTP logs of the adaptive streaming requests to estimate the
average bitrates, bitrate switch, and the playback buffer status.
Similarly, BUFFEST [35] investigates the HTTP logs. Lu-
men [8], and VPNGuard [6] investigate the encrypted packet
payloads with the help of a VPN service and using custom
root certificates. Several approaches investigated the codec
formats of encrypted VoIP packets from Skype [36]. However,
modern multimedia services, such as Periscope, and Netflix,
communicate over HTTPS [37]. Therefore, the traditional port-
based classification techniques do not work, and deep packet
inspection [38] is difficult given the encryption.
Statistical Methods. Statistical methods rely on flow features,
such as packet size distribution, packet gap, burstiness, and
packet headers [39]. These features can be used to understand
VoIP applications’ traffic patterns, such as Skype [40]. Bon-
figlio et al. [36] first looked into the statistical properties of
message content and then matched with the Skype voice traffic
sources by using Naive Bayesian techniques. Do and Branch

used inter-packet gaps to classify VoIP traffic in real-time [41].
However, the flow features can vary with speech codecs and
ambient noise [42].
Machine Learning. We have already evaluated two deep
learning approaches in Section V using packet [11] and
flow [12], [13] level features. Some recent studies identified
YouTube videos of different qualities from the encrypted traffic
by modeling the relationship between burstiness, i.e., chunk
size and gaps, and videos’ quality [43]. The basic flow
features can be used by machine learning algorithms, such as
K-NN clustering, to classify encrypted multimedia traffic [44].
Kim et al. [45] showed that Support Vector Machine achieves
more than 98% accuracy with less training data than other
machine learning algorithms.
Summary. The deep packet inspection methods are difficult
on encrypted traffic. The various machine learning approaches
require retraining the models, large training data, and energy
consumption as the traffic pattern changes. In contrast, Medi-
aSense is specifically for user-centric networks on end-devices.
It performs much better with the help of media contexts.
MediaSense is as accurate as of the existing deep learning
approaches as demonstrated in Section V.

VIII. CONCLUSIONS

This article introduces the multimedia context concept and
presents a novel algorithm to identify the corresponding en-
crypted multimedia traffic on mobile devices in real-time. Me-
diaSense computes and leverages the media context-specific
flow features for finding and identifying the corresponding
multimedia flows. The approach is energy efficient and can
generalize across multimedia applications without training.
MediaSense is also privacy-preserving, as it neither infers the
application nor examines the actual packet data nor leaks the
contexts. MediaSense opens the door for context-aware system
and traffic optimization on mobile devices.

ACKNOWLEDGMENT

The work has been supported by the Academy of Finland
IDEA-MILL project (Grant Number 335934), the Academy
of Finland 5GEAR project (Grant Number 319669), and the
Academy of Finland FIT project (Decision No. 325570).
In addition, the authors wish to thank the Finnish Com-
puting Competence Infrastructure (FCCI) for supporting this
project with computational and data storage resources. Finally,
Mostafa Ammar’s work was partially supported by NSF grant
NETS: 1909040.

REFERENCES

[1] Anja Feldmann and Others. The Lockdown Effect: Implications of the
COVID-19 Pandemic on Internet Traffic. In Proceedings of the ACM
Internet Measurement Conference, IMC ’20, page 1–18, New York, NY,
USA, 2020. ACM.

[2] Cisco. Cisco Visual Networking Index: Forecast and Methodology,
2016−–2021. Technical report, 2017.

[3] Mohammad A. Hoque, Ashwin Rao, Abhishek Kumar, Mostafa Ammar,
Pan Hui, and Sasu Tarkoma. Sensing multimedia contexts on mobile
devices. In Proceedings of the 30th ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV ’20,
page 40–46, New York, NY, USA, 2020. ACM.

[4] David Choffnes. A case for personal virtual networks. HotNets ’16,
page 8–14, New York, NY, USA, 2016. ACM.

[5] James Newman, Abbas Razaghpanah, Narseo Vallina-Rodriguez,
Fabian E. Bustamante, Mark Allman, Diego Perino, and Alessandro
Finamore. Back in control – an extensible middle-box on your phone.
CoRR, 2020.

[6] Yihang Song and Urs Hengartner. Privacyguard: A vpn-based platform
to detect information leakage on android devices. In Proceedings
of the 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’15, pages 15–26, New York,
NY, USA, 2015. ACM.

[7] Daoyuan Wu, Rocky K. C. Chang, Weichao Li, Eric K. T. Cheng,
and Debin Gao. MopEye: Opportunistic Monitoring of Per-app Mobile
Network Performance. In Proceedings of USENIX ATC ’17, pages 445–
457. USENIX Association, 2017.

[8] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Christian Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson.
Haystack: In Situ Mobile Traffic Analysis in User Space. CoRR, 2015.

[9] Study on encrypted traffic detection and verification. Technical Spec-
ification (TS) 23.787, 3rd Generation Partnership Project (3GPP), 03
2018. Version 16.0.0.

[10] Certificate Pinning. https://www.symantec.com/content/dam/symantec/
docs/white-papers/certificate-pinning-en.pdf, 2017.

[11] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein
Zade, and Mohammdsadegh Saberian. Deep packet: A novel approach
for encrypted traffic classification using deep learning. Soft Computing,
24(3):1999–2012, 2020.

[12] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Mobile encrypted traffic classification using deep learning:
Experimental evaluation, lessons learned, and challenges. IEEE Trans-
actions on Network and Service Management, 16(2):445–458, 2019.

[13] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen
Yang. End-to-end encrypted traffic classification with one-dimensional
convolution neural networks. In 2017 IEEE International Conference
on Intelligence and Security Informatics (ISI), pages 43–48, 2017.

[14] Mohammad Ashraful Hoque, Matti Siekkinen, Jukka K. Nurminen,
Mika Aalto, and Sasu Tarkoma. Mobile multimedia streaming tech-
niques: Qoe and energy saving perspective. Pervasive and Mobile
Computing, 16:96 – 114, 2015.

[15] Android AudioManager. https://developer.android.com/reference/androi
d/media/AudioManager, 2020.

[16] Android TelephonyManager. https://developer.android.com/reference/an
droid/telephony/TelephonyManager, 2020.

[17] Android CameraManager. https://developer.android.com/reference/andr
oid/hardware/camera2/CameraManager, 2020.

[18] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. Studying
tls usage in android apps. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’17, pages 350–362, New York, NY, USA, 2017. ACM.

[19] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas
Gjoka, and Athina Markopoulou. AntMonitor: A System for Monitoring
from Mobile Devices. In Proceedings of C2B(1)D ’15, pages 15–20.
ACM, 2015.

[20] Anssi Rämö and Henri Toukomaa. Voice Quality Characterization of
IETF Opus Codec. In INTERSPEECH, 2011.

[21] Voice Over IP - Per Call Bandwidth Consumption. https://www.cisco.co
m/c/en/us/support/docs/voice/voice-quality/7934-bwidth-consume.html,
2016.

[22] Anika Schwind, Florian Wamser, Thomas Gensler, Phuoc Tran-Gia,
Michael Seufert, and Pedro Casas. Streaming characteristics of spo-
tify sessions. In 2018 Tenth International Conference on Quality of
Multimedia Experience (QoMEX), pages 1–6, May 2018.

[23] Mohammad A. Hoque, Ashwin Rao, and Sasu Tarkoma. Network and
application performance measurement challenges on android devices.
SIGMETRICS Perform. Eval. Rev., 48(3):6–11, mar 2021.

[24] Xiaoqing Zhu and Rong Pan. NADA: A Unified Congestion Control
Scheme for Low-Latency Interactive Video. In 2013 20th International
Packet Video Workshop, pages 1–8, 2013.

[25] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo.
Analysis and design of the google congestion control for web real-
time communication (webrtc). In Proceedings of the 7th International
Conference on Multimedia Systems, MMSys ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[26] Monsoon Power Monitor. https://www.msoon.com, 2020.

[27] Paula Branco, Luı́s Torgo, and Rita P. Ribeiro. A survey of predictive
modeling on imbalanced domains. ACM Comput. Surv., 49(2):31:1–
31:50, 8 2016.

[28] Martı́n Abadi and Others. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[29] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring,
Pralhad Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N.
Padmanabhan. Bartendr: A practical approach to energy-aware cellular
data scheduling. In Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking, MobiCom ’10, pages
85–96, New York, NY, USA, 2010. ACM.

[30] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra, Long
Jin, Yongguang Zhang, and Qun Li. Optimizing Background Email
Sync on Smartphones. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
’13, pages 55–68, New York, NY, USA, 2013. ACM.

[31] 3GPP. System Architecture for 5G. Technical Specification (TS) 23.501,
3rd Generation Partnership Project (3GPP), 12 2017. Version 15.0.0.

[32] Ramon Ferrus, Oriol Sallent, Jordi Perez-Romero, and Ramon Agusti.
On 5G Radio Access Network Slicing: Radio Interface Protocol Features
and Configuration. IEEE Communications Magazine, 56(5):184–192,
May 2018.

[33] Alok Tongaonkar, Ram Keralapura, and Antonio Nucci. Challenges
in network application identification. In Presented as part of the 5th
USENIX Workshop on Large-Scale Exploits and Emergent Threats, San
Jose, CA, 2012. USENIX.

[34] Tarun Mangla, Emir Halepovic, Mostafa Ammar, and Eellen Zegura.
Mimic: Using passive network measurements to estimate http-based
adaptive video qoe metrics. In 2017 Network Traffic Measurement and
Analysis Conference (TMA), pages 1–6, June 2017.

[35] Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and
Eric Petajan. Buffest: Predicting buffer conditions and real-time re-
quirements of http(s) adaptive streaming clients. In Proceedings of the
8th ACM on Multimedia Systems Conference, MMSys’17, pages 76–87,
New York, NY, USA, 2017. ACM.

[36] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo
Tofanelli. Revealing Skype Traffic: When Randomness Plays with You.
SIGCOMM Comput. Commun. Rev., 37(4):37–48, August 2007.

[37] Andrew Reed and Michael Kranch. Identifying HTTPS-Protected Netflix
Videos in Real-Time. In Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, CODASPY ’17, pages
361–368, New York, NY, USA, 2017. ACM.

[38] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and
Jonathan Turner. Algorithms to Accelerate Multiple Regular Expressions
Matching for Deep Packet Inspection. SIGCOMM Comput. Commun.
Rev., 36(4):339–350, August 2006.

[39] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick
Duffield. Class-of-service mapping for qos: A statistical signature-
based approach to ip traffic classification. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, IMC ’04, page
135–148, New York, NY, USA, 2004. ACM.

[40] Kyoungwon Suh, Daniel R. Figueiredo, Jim Kurose, and Don Towsley.
Characterizing and detecting relayed traffic: A case study using Skype.
IEEE Infocom, 2006.

[41] Philip Branch and Lam Hoang Do. Real time voip traffic classification.
Technical report, Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, 2009.

[42] Mohammad A. Hoque, Petteri Nurmi, Matti Siekkinen, Pan Hui, and
Sasu Tarkoma. The bits of silence: Redundant traffic in voip. MMSys
’20, New York, NY, USA, 2020. ACM.

[43] Feng Li, Jae Won Chung, and Mark Claypool. Silhouette: Identifying
youtube video flows from encrypted traffic. In Proceedings of the 28th
ACM SIGMM Workshop on Network and Operating Systems Support for
Digital Audio and Video, NOSSDAV ’18, pages 19–24, New York, NY,
USA, 2018. ACM.

[44] Weirong Jiang and Maya Gokhale. Real-time classification of multi-
media traffic using fpga. In 2010 International Conference on Field
Programmable Logic and Applications, pages 56–63, Aug 2010.

[45] Hyunchul Kim, KC Claffy, Marina Fomenkov, Dhiman Barman,
Michalis Faloutsos, and KiYoung Lee. Internet traffic classification
demystified: Myths, caveats, and the best practices. In Proceedings of
the 2008 ACM CoNEXT Conference, CoNEXT ’08, pages 11:1–11:12,
New York, NY, USA, 2008. ACM.

