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Hide and Seek: A Markov-Based Defense
Strategy Against Off-Sensing Attack in
Cognitive Radio Networks

Moinul Hossain

Abstract—In a cognitive radio-based network (CRN), secondary
users (SUs) opportunistically access underutilized spectrum
resources and stop utilizing these resources when licensed or
primary users (PUs) reappear. However, this way of opportunistic
spectrum access is susceptible to novel vulnerabilities. Recently, a
new attack, off-sensing (OS), has shed light on a vulnerability in
the Federal Communications Commission (FCC) policy of CRN,
which affects the channel utilization of the victim SU by creating
an illusion of a PU’s presence. However, prior work on OS-attack
considers a deterministic approach that is unrealistic and is futile
to fortify against conventional defense techniques. In this paper,
we propose a new random approach, the random-0S attack, which
adapts to realistic scenarios and is difficult to detect using
conventional techniques. Then, we model the interaction between
the victim SU and attackers as a stochastic zero-sum Markov game
and propose a novel safeguard approach based on the Markov
decision process to defend the proposed attack, namely hide and
seek. Finally, we introduce an OS-attack detection strategy, which
utilizes the sensing history to detect the presence of attackers
without violating any policy or design constraints and without any
networking overhead. Mathematical analysis and extensive
simulation results exhibit the superior performance of our
proposed work and advent a direction in designing safeguard
strategies without amending the current FCC policies.

Index Terms—Cognitive radio networks, off-sensing attacks,
Markov chain, and Markov decision process.

1. INTRODUCTION

THE demand for wireless services continues to increase
exponentially. However, the constrained amount of radio
resources has been impeding the growth to meet this demand.
On the other hand, the Federal Communications Commission
(FCC) has concluded that the radio spectrum is not balanced
in terms of resource and traffic-load; a significant portion of
the radio spectrum remains underutilized, whereas high vol-
ume of traffic appears in another portion. Cognitive Radio
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(CR) has been proposed as an enabling technology to off-set
this unbalanced utilization of the spectrum. A CR-enabled
device (or secondary user, SU) can opportunistically access an
underutilized licensed channel (i.e., white spaces) and utilize
it until a licensed user (or primary user, PU) reappears. Spec-
trum sensing helps CR-enabled devices to be aware of and to
be sensitive to the changes in its network environment [1]—[3].
It helps CR-enabled devices to detect white spaces and PU’s
presence without interfering with the primary network.

However, like traditional wireless networks, CR-based net-
works (CRNs) are prone to conventional network attacks [4]
(e.g., jamming, packet drop, and eavesdropping). In addition,
new genres of attacks have emerged in CRNs due to its unique
way of operation (i.e., opportunistic spectrum access) [S]-[7].

Two most studied attacks specifically in CRNs that try to com-
promise the spectrum sensing process are primary user emulation
(PUE) [8] and spectrum sensing data falsification (SSDF) [9].
Depending on the motive, these attacks help the attacker to either
maximize its own channel utilization (i.e., selfish attacker) or to
sabotage the network operation of the victim (i.e., malicious
attacker). In PUE, an attacker masquerades as a PU during the
sensing interval of the victim to trick it into avoiding the channel;
a PUE attacker forges the transmission characteristics of a benign
PU and tries to compromise the spectrum sensing process of the
victim. To avoid PUE attacks and sensing errors, cooperative
spectrum sensing approach is proposed [10], [11] as an alterna-
tive decision process to collectively estimate the spectrum avail-
ability. Nonetheless, this consensus-based approach is also
vulnerable to intelligent attacks, such as SSDF. In SSDF, an
attacker shares engineered sensing information with its neighbors
(i.e., victims) to manipulate the consensus on the channel avail-
ability in the cooperative spectrum sensing.

Under both of the above attacks, sensing interval is the
attack surface in both attacks. In [12], a novel genre of attacks
in CRNs, off-sensing (OS), is introduced. In contrast to PUE
and SSDF, OS-attack achieves similar goals with a different
attack surface: the off-sensing interval (i.e., the transmission
or reception interval). In OS-attack, an attacker interferes with
the victim’s transmission only when the victim is not sensing
but transmitting (or receiving). The attacker tries to corrupt
packets of the victim and to cause transmission failures. As
current radio designs do not permit SUSs to sense the operating
channel during transmission, a victim SU would believe that it
is interfering with a reappeared PU, thereby creating an
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illusion. Since FCC regulation requires that an SU should
leave the channel within 2 seconds of PU reappearance [13], it
will stop using the channel if the reason of interference
remains inconclusive.

Motivations: Prior work on OS-attack considered two attack
scenarios: the attacker always stays on a particular channel
and attacks anyone who tries to access the channel (i.e., selfish
attacker), or the attacker knows the channel hopping sequence
of the victim SU and interferes with each transmission attempt
of the victim to create a Denial-of-Service (DoS) situation
(i.e., DoS attacker). In either case, the attacker plays a deter-
ministic role from a victim’s perspective in terms of the oper-
ating channel (i.e., the victim can infer the future attack
channel). This deterministic hopping sequence of OS-attack-
ers makes it difficult to fortify against traditional defense tech-
niques [5], [7]. Similarly, the assumption that the attacker has
the perfect knowledge of the victim’s hopping sequence
makes it a critical disadvantage for the victim and creates
unrealistic scenarios (hopping sequence depends on each SU’s
surrounding environment, which varies in time and space).
Therefore, in realistic conditions, OS-attackers desire a
sequence that is random.

Previous work on the defense and detection of the PUE
and SSDF attack focused on the sensing interval and the
cooperative nature of CRNs, respectively. However, these
proposed methods cannot detect the OS-attack due to differ-
ent attack surfaces and, to the best of our knowledge, the
defense of OS-attacks remains unstudied. Hence, the OS-
defense requires focused efforts into the off-sensing interval
to safeguard SUs.

Challenges on OS-Attackers: SUs can follow any channel-
hopping process to rendezvous with each other [14]. More-
over, the rendezvous channel (the channel where two SUs
meet) and the transmission channel may differ [15]. Therefore,
it is difficult for an attacker to find the operating channel of the
victim to perpetrate an OS-attack without any predetermined
knowledge. In addition, OS-DoS attack requires successive
detection of the victim’s operating channel; that is, more
challenging.

Challenges on Defense Against OS-Attacks: A straight-for-
ward approach to identify an OS-attacker is to sense the chan-
nel when transmitting. However, hardware limitations (e.g.,
the transmission antenna would overwhelm the sensing
antenna), design considerations (e.g., half-duplex radio), and a
decrease in channel utilization (e.g., the victim SU could use
an extra-sensing time to utilize another white space) restrain
this approach. Therefore, the defense and detection process of
OS-attack must adhere to these constraints.

Moreover, most previous research on defense considered
that attackers are always present and safeguard process(es)
are deployed regardless of the presence of attackers. This
assumption costs SUs networking, computational, and energy
overhead. Therefore, in resource constrained networks, the
safeguard process must be aware of the presence of attackers,
and it is deployed only when under-attack. Additionally, it
must provide the flexibility to trade-off between networking
and security performance.
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Contributions: In this paper, we study these research chal-
lenges and propose solutions to these problems. The novel
contributions of this paper are summarized in the following:

1. We propose a random strategy for OS-DoS attackers,
where attackers iteratively hop through channels to
detect the operating channel of the victim and persis-
tently perpetrate OS-attacks to cause a DoS situation.

2. We propose a Markov decision process (MDP) based
safeguard approach, where victims avoid the OS-attack
by randomly hopping through different channels and
detect the attacker when deemed necessary according to
the parameters (i.e., the trade-off between networking
and security performance). The defender learns the
MDP game through reinforcement learning.

3. We consider that attackers may not always be present,
and the safeguard process must be aware of attackers’
presence. We propose an attack inference model to
detect the presence of attackers without any networking
overhead.

Paper Organization: The rest of this paper is organized as
follows. In Section II, prior DoS attacks and their defense
techniques are reviewed briefly. Then in Section III, the sys-
tem model that is considered in this paper is explained. We
provide an overview of the proposed attack model in
Section IV followed by the formulation of the Markov game
in Section V to counteract the random-OS attack. Then, we
propose the attack inference model to detect the presence of
potential OS-attackers in Section VI. Simulation results are
shown and discussed in Section VII, followed by the conclud-
ing remarks in Section VIII.

II. RELATED WORK

Unlike traditional PUE attacks, the OS-attack does not rely
on the transmission characteristics of a PU. Additionally, in
contrast to jamming attacks, it does not depend on a strong
noise signal either. Instead, it creates enough interference
using regular transmissions to corrupt the reception of the vic-
tim. Therefore, the OS-attack is neither the PUE nor jamming
attack; however, we compare it to both of these attacks
because of its close resemblance to these attacks from the per-
spective of denial-of-service attacks.

The security research community has proposed numerous
vulnerabilities and their defenses in CRNs [16]—-[22], which
laid the groundwork for the future research on dynamic spec-
trum access. The PUE attack is discussed in [23], where the vul-
nerability is exploited in a multi-hop channel environment; if a
PUE attack is launched and the victim SU has no available
channel, the transmission is dropped or delayed. The dropped
and the delayed transmissions result in unreliable communica-
tion and lower quality of service, respectively [24]. An optimal
online learning algorithm is proposed in [25], where it can be
utilized by a PUE attacker without any prior knowledge of the
PU activity and secondary user channel access strategies. In
[26], a cross-layer route manipulation attack is proposed in
CR-based wireless mesh networks, where OS-DoS attack is uti-
lized as a front-end attack to manipulate the traffic-flow and to
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induce congestion in the network. Though the PUE and the
OS-attack have similar attack objectives, the OS-attack ex-
ploits a different attack surface, i.e., the off-sensing interval. In
addition, unlike the PUE attack, the OS attacker must know the
activity of the victim.

A wide range of jamming strategies have been studied in
[27]-[31]. However, we only focus on the papers that are most
relevant to our proposed work. In [32], a frequency hopping
strategy against a jammer in 802.11 networks is proposed; the
proposed hopping strategy optimizes the channel residence
time. In [33], a similar hopping strategy is developed using
Markov decision process for a cognitive radio network. In
[34], a strategy that combines frequency hopping and rate
adaption techniques is proposed to defend jamming attacks;
the rate adaptation method helped to increase the diversity in
defense against a power constrained jammer. A different
direction to counteract jamming attacks is introduced in [35],
where the latest advances in deep learning and artificial intelli-
gence are leveraged. A sweep jammer strategy is proposed in
[36] where jammers sweep through all channels to find the
operating channel of any user. However, these proposed attack
strategies are either ineffective in realistic scenarios or does
not consider the DoS situation. Unlike previous research, we
devise a sophisticated attack strategy for OS-DoS attackers to
adapt to more realistic conditions and to force the victim in
dropping packets.

Regarding the defense strategies, a game theoretical
approach is proposed in [37], [38] to counteract PUE attacks
by adopting a combination of extra-sensing and surveillance
process. In [39], an MDP-based anti-jamming strategy is pro-
posed to counteract jamming attacks in CRNs. A zero-sum
Markov game is proposed in [34] and an optimal strategy to
defend against the reactive-sweep jammer is devised. Simi-
larly, in [36], an MDP-based strategy is proposed to thwart
jamming attacks in multi-channel networks, where radios are
equipped with in-band full-duplex capability. However, all
these works neither consider an iterative attack model to pre-
vent DoS attacks nor adopt an intelligent attack detection
model. In contrast, we consider a more sophisticated attack
model where the attacker can identify an individual victim’s
transmission and perpetrate a DoS attack on the victim, but
our proposed model can detect the presence of such attackers.

Moreover, in the proposed defenses of these attacks,
researchers have mostly considered that the victim can detect
the unauthorized transmissions of attackers in the sensing
interval. In contrast, an OS-attacker [12] ingeniously avoids
the sensing interval and interferes with the victim during the
transmission interval.

III. SYSTEM MODEL

We consider two SUs who are trying to communicate
between themselves in the presence of OS-attackers. These
two SUs could be network entities of either an infrastructure-
based network (i.e., one SU is a CR access point that opportu-
nistically accesses the licensed spectrum, and the other is a
CR user communicating with other network users through the
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Fig. 1. The network model.

access point) or an ad-hoc network. They are located within
the interference region of OS-attackers, and OS-attackers are
authorized and authenticated entities in the network.

A. Network Model

In this subsection, we explain the traffic model of both PUs
and SUs, and we illustrate the rendezvous-based channel
access mechanism for SUs.

1) PU and SU Model: We consider the presence of M
homogeneous channels (and M PUs), each with a fixed band-
width. Time is divided into equal slots. Transmissions are
packet based for both PUs and SUs, and a packet transmission
starts at the beginning of a mini-slot and finishes at the end of
a mini-slot. The length of a mini-slot is the time to perform a
fast-sensing [40] and to exchange a request-to-send/clear-to-
send (RTS/CTS) handshake, and a slot is a multiple of mini-
slots. Each PU randomly selects a channel to access and alter-
nates between the ON and OFF state, according to an ON-
OFF model (Fig. 1(a)). Let @ and 8 denote the transition prob-
abilities from the ON to OFF state and from the OFF to ON
state, respectively. We consider a saturated SU traffic scenario
, which means that SUs always have a packet in their buffer to
transmit. Hence, an SU continuously transmits on a channel
until it finds the current channel busy during a sensing interval
or experiences a transmission failure (e.g., if an ACK is not
received from the other SU). Transmission failures can result
from two reasons: collision with a reappeared PU and interfer-
ence from an OS-attacker. However, SUs are unable to deter-
mine the exact reason of transmission failures due to their
inability to sense the channel during transmission or reception.

2) SU Access Protocol: Each transmission attempt of an SU
must be preceded by a sensing interval. As shown in Fig. 1(b),
SUs periodically operate between the sensing and transmission
intervals. An SU is allowed to access a channel when it finds the
sensing result suitable to transmit (e.g., senses that no PU is pres-
ent). After sensing the channel available, two SUs exchange
RTS/CTS messages to reserve the channel. Each SU is equipped
with one half-duplex radio for spectrum sensing, control infor-
mation exchange, and data transmission. With one radio, an SU
can sense the channel only before initiating the transmission
(i.e., in the sensing interval). During a sensing interval, if an SU
senses that the current channel is busy, it pauses the communica-
tion attempt on the current channel, performs a spectrum handoff
to a new channel, and resumes the communication attempt on
the new channel (if the new channel is sensed available).
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B. Network Coordination Scheme

In this paper, we assume that a common control channel
(CCQ) is unavailable and two SUs must find a common avail-
able channel between them to initiate a data transmission.
Rendezvous technique works as the process for two SUs fol-
lowing a channel hopping process to meet and exchange con-
trol information on a common available channel. A significant
amount of research has been conducted on rendezvous techni-
ques. However, the choice of a specific rendezvous scheme
does not impact the performance of our proposed attack and
defense mechanisms, as long as attackers have no prior knowl-
edge of the victim’s hopping sequence. Thereby, we assume
that benign SUs have successfully performed rendezvous with
each other, using any existing blind rendezvous scheme, and
they share a time-seeded pseudo-random channel hopping
sequence for future communications.

C. 0S-DoS Attack

The OS-attacker intelligently interferes with a victim’s
transmission in the transmission interval (by avoiding the
sensing interval) and misleads the victim SU into believing
that the victim is interfering with a reappeared PU. With
current designs, an SU does not sense the channel during
transmission. Therefore, it cannot detect the origin of an inter-
ference. In addition, according to the FCC regulation, an SU
must leave the channel within 2 seconds [13] and perform a
spectrum handoff. These two factors facilitate an attacker to
confuse the victim with the presence of a reappeared PU and
to force the victim to leave the channel. An OS-attacker
detects the transmission of a particular victim SU from the
RTS/CTS message that precedes each transmission attempt.
Fig. 2 provides an illustration of the OS-DoS attack under a
periodic channel hopping process.

In Fig. 2, the OS-attacker knows the channel hopping
sequence of the victim SU and interferes with each transmis-
sion originating from and to the victim (by overhearing RTS/
CTS messages). Here, the attacker interferes the whole packet
time to make sure that the victim cannot decode the packet
and tries to create a DoS situation for the victim SU by causing
consecutive successful collisions. However, in reality, it is
likely that the attacker does not have any knowledge of the
victim’s hopping sequence, and it requires shrewder efforts
from the attacker to perpetrate successive transmission
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failures. Next, we propose a novel strategy for an attacker to
perpetrate the OS-DoS attack, without any knowledge of the
victim’s hopping sequence and operating channel.

IV. PROPOSED RANDOM-OS ATTACK MODEL

In our proposed OS-DoS attack, the short-term goal is to
cause successive transmission failures, and the long-term goal
is to reach the maximum limit of transmission attempts to
force the victim to drop the current packet. As shown in
Fig. 2, if the maximum transmission attempt is 3, then the SU
packet would have been dropped. However, the assumption
that attackers know the channel hopping sequence of the vic-
tim is unrealistic and so is the strategy of an attacker to inter-
fere with each transmission of the victim (due to the
deterministic hopping sequence of the attacker); the victim
can infer the attacker’s activity and detect the attacker with a
longer fine-sensing (explained in Section V). Therefore, we
propose a new random strategy for OS-DoS attackers, where
the attackers have no prior knowledge of the victim’s channel
hopping sequence, and they randomly hop to different chan-
nels in each slot to detect the victim and to perpetrate the OS-
DoS attack.

Basic Principles: We assume the presence of m OS-attackers
(m < M) with the same hardware configuration as benign SUSs.
We consider that these OS-attackers coordinate among them-
selves using an out-of-band secure channel (i.e., a secure control
channel for attackers only), and they attack non-overlapping
channels to increase their chance to detect the operating channel
of the victim sooner. Attackers detect a transmission of a parti-
cular victim by listening to the RTS/CTS messages. Then, they
perform the OS-attack in the transmission interval of the victim
by interfering the victim’s transmission. As discussed earlier,
this attack happens only when the victim is transmitting and not
sensing. The interference in the off-sensing interval (i.e., the
transmission interval) tricks the victim into believing that it is
interfering with a legitimate PUj; hence, the victim leaves the
channel.

Short-Term Strategy: With the help of coordination, the m
attackers visit m different channels during each slot. Here,
attackers randomly generate a channel hopping sequence after
each successful attack (i.e., transmission failure) and hop
through the sequence periodically until they find the operating
channel of the victim SU. As the network has M channels,
there are M! sequences with equal probability of being
selected. This strategy of channel hopping helps attackers to
put an upper bound on how long (i.e., the channel residence
time) a victim SU can continuously use a channel. The upper
bound will be discussed later in this section. Fig. 3(a) shows an
illustration of the attack sequence with M/ = 10 and m = 2. It
shows the hopping sequence of two attackers before a success-
ful OS-attack. Here, the operating channel of the victim SU is
channel-3 and, in slot-3, attackers detect the victim and perpe-
trate the attack on channel-3. Also, the attacker must attack suf-
ficiently long enough to corrupt the packet, otherwise the
victim can recover the packet from minor interference. Now,
let a; represents the channel on which attackers have conducted
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the OS-attack and ¢ represents the number of successive attacks
(or transmission failures). a; works as a queue of channels and
includes all the attacked channels, from 4,7 —1,---,1, on
which successive transmission failures have happened. How-
ever, attackers will exclude these a; channels from the next ran-
dom sequence and re-visit them at the end of the hopping
sequence. Fig. 3(b) shows an example of the new hopping
sequence of attackers to increase their chance of a successive
attack by excluding the attacked channel (i.e., channel-3) in the
previous slot (i.e., slot-3).

In the OS-attack, a victim cannot determine the exact reason
of the transmission failure. Thereby, the victim will randomly
hop to a new channel (believing that it has interfered with a
reappeared PU), try to stay on that channel as long as plausi-
ble, and not hop back to the previously attacked channels (i.e.,
a;) until it achieves a successful packet transmission. Hence, it
is inefficient for attackers to revisit the previously attacked
channels for a particular packet. After each successful perpe-
tration of the attack (or transmission failure), attackers ran-
domize their hopping sequence, excluding a;. Therefore, after
7 successive transmission failures, attackers have M — ¢ chan-
nels to randomize. Fig. 3(b) illustrates a new hopping
sequence of the attackers.

Long-Term Strategy: As the OS-DoS attack considers that
the victim must experience G consecutive transmission fail-
ures (G < M) before discarding the current packet, attackers
stay persistent to increase their chance of successful attacks
after each successive OS-attack. Hence, they keep excluding
channels that were already attacked earlier, for the current
packet. Fig. 4 shows an illustration of a scenario, where G =
4, and attackers are successful to drop the packet with 4 suc-
cessive attacks. In the illustration, we can observe that the
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attackers keep discarding the earlier consecutive attacked
channels at each time-slot, i.e., a;, and eventually after 4 suc-
cessive attacks, force the victim to drop the packet. It creates a
DoS scenario for the victim. However, attackers may not suc-
cessfully perpetrate the attack in a consecutive manner, and
they must take this into consideration in the subsequent time-
slot to increase the chance of a successful attack.

After the 7;;, successful attack, if attackers are not successful
in the subsequent time-slot, they consider that the victim had a
successful transmission. Hence, they will re-randomize their
hopping sequence (i.e., nullify a;), excluding the channels they
have visited in the current slot (since currently visited channels
are free, there is no need to visit them again in this period), and
begin a new period (one period = [M /m/] slots). Fig. 5 pro-
vides an illustration of this scenario. Fig. 5(a) illustrates an
alternate scenario if the victim SU had chosen channel-1
(instead of channel-3) in Figs. 4(c), and 5(b) illustrates the new
randomized sequence. Thereby, it is inefficient for attackers to
visit the attacked channel soon, and hence the attackers exclude
these channels.

If attackers cannot detect the operating channel and one
period has finished, they will revisit the channels following
the same sequence. Given M channels and m OS-attackers, if
the victim SU stays on the same channel, the operating chan-
nel of the victim will be detected within [M/m] slots.
Thereby, the maximum number of consecutive successful
transmissions an SU can have in a channel is K = [M/m] —
1. This is the upper-bound that was discussed earlier in this
section.

Summary: The proposed OS-DoS attack strategy introduces
uncertainties in actions of attackers; hence, we name it ran-
dom-OS attack. Unlike the deterministic approach shown in
Fig. 2, the proposed strategy introduces a random hopping
sequence for attackers. Due to this randomness, it is not
guaranteed that the victim can detect an attacker’s interference
by a single fine-sensing [41], rather it may require multiple
attempts to detect an attacker. Therefore, the victim SU must
use the fine-sensing interval (explained in the next section)
wisely to maximize the chance of detection.

V. PROPOSED SAFEGUARD APPROACH: HIDE AND SEEK

In this section, we propose a solution to the random-OS
attack problem by modeling it as an MDP-based game with
three actions: stay, hop, and extra-sense. Besides stay and
hop, we propose an action extra-sense to increase the diver-
sity of defense (Fig. 6). In extra-sense, instead of transmitting
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in the transmission interval, an SU tries to detect OS-attackers
by fine-sensing the channel which we call the extra-sensing
interval. With fine-sensing, an SU can differentiate between
the transmission of a PU and an attacker. Now, with these avail-
able actions, the MDP deduces an optimal policy, which pro-
vides the optimal action to take at each state that maximizes the
reward of playing this MDP-based game. One important point
to note, the attack strategy is integrated into the stochastic pro-
cess where the attacker acts as the environment; this strategy
reduces the game complexity from a multi-agent problem to a
single-agent problem. Therefore, in this section, we model the
attack and defense problem as an MDP, and we develop a sin-
gle agent (i.e., a victim SU) MDP-based defense method to
counteract the random-OS attack.

A. Formation of the MDP

We assume that the channel-hopping sequence of the victim
SU is unknown to the attacker; however, the attacker can itera-
tively sweep through the available channels and detect the
presence of the victim SU. As we consider the presence of
multiple (i.e., m) OS-attackers and coordination among them-
selves, they will not hop to the same channel together. Instead,
they will hop to m different channels to determine the operat-
ing channel of the victim SU faster. The SU will decide its
action at the end of each time slot, based on the observation of
the current state. The SU receives an immediate reward U(n)
in the ny, time slot,

U(n) = R.1(Success ful transmission)

— L.1(Transmission failure)

— C.1(Hopping cost) — B.1(Busy channel)

(
— F.1(Penalty for policy violation)
— Q.1(Packet drop) + E.1(Attacker detection),
(H
where 1(-) is an indicator function of the event in brackets.

As the employed strategy impacts the current state and also
the future states, the expected reward of this game is,

U= ZS” U(n )

where § represents the discount factor (0 < § < 1). It meas-
ures the significance of the future reward values.

B. Markov Model

This subsection demonstrates the proposed MDP model and
defines the state space, action space, rewards, and transition
probabilities. We assume that attackers sweep through all
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Fig. 7. The proposed MDP.

channels periodically; hence, the probability of an operating
channel being detected depends on the channels that have
been visited earlier in the sequence. This consideration helps
us to conform the requirement of a Markov process (i.e., a
future state of the Markov process depends only on the current
state).

Markov States: The state denotes the status of an SU at the
end of a time-slot. Here, the proposed Markov model (Fig. 7)
has six kinds of states:

P: The SU senses that the channel is occupied by a PU.

T;: The SU hopped onto a new channel and had 7 consecutive
successful transmissions (1 < i < K).
Dj: The SU had j consecutive transmission failures in j dif-

ferent channels (1 < j < G).

ES): The SU employed the action extra-sense and found the
channel is free (i.e., no PU or OS attacker).

ES;: The SU employed the action extra-sense and found the
channel is reoccupied by a PU.

ES,: The SU employed the action extra-sense and detected an

OS-attacker successfully.

We represent the whole state space as X2{P, T,
T27 Tty D1>D27 Tty ESO7ESI7ESa}~
Actions: Here, we have three actions available at each state:

stay (s): The SU remains on the current channel in
the next time-slot and initiates a transmis-
sion.

hop (h): The SU hops to a new channel in the next

time-slot and initiates a transmission.

The SU hops to a new channel in the next
time-slot and fine-senses the channel for
interference.

extra-sense (es):

We represent the whole action space as A 2 {s, h, es}.

Rewards: When an SU performs a handoff, it is required to
perform radio-frequency front-end reconfiguration that con-
sumes insignificant time and we must make it accountable.
Though the duration of this reconfiguration process depends
on the hardware (e.g., 30ms in USRP [42]), loss in throughput
is inevitable. In addition, synchronization between the trans-
mitter and the receiver nodes may engender more loss in
throughput. Collectively, we denote the mean cost of a chan-
nel handoff by C. Let U(S, a, S") represents the reward when
an SU takes an action a € A in state S € X and enters into
state S” € X. Now using (1), we define rewards:
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U(S,a,s") =

R, if {S,a,5} ={T;,s,T;41},i=1,..., K —1
R-C, if{S,a, 5} ={X,hT\}

—L, if {S,a,98}={T},s,D1},i=1,...,K—1
—-L-C, if{SaS}={Xh,D},j=1,...,G—-1
-Q—-C, if{S,a,5} ={D¢g-1,h, D¢}

-B, if{SaS’} {T;,s,P},i=1,...,K—1
-B-C, if{S,a,8}={Xh,P}

—F, if {S,a,5}={7,5,X},Z € {D, P}

-Q, if {S,a,5} ={X,es,Z},Z € {ES), ES:}
E—-Q, if{S,a, S} =1{X es, ES,}.

3)

Transition Probabilities: As m attackers are going through
their attack channel sequence, at state 7}, only max(M —
im,0) channels have yet to be visited by attackers, and
another m channels will be visited in the subsequent slot.
Therefore, the probability of an OS-attack (with action stay)
in absence of a PU on the channel,

m e
Pra,f,\s _ {]Wim’ if 1 < K (4)

1, otherwise.

The transition probabilities from state 7; with action stay is,

Pr(Tia|Ti,s) = (1= B) (1 = Prayy),
Pr(Di|T;,5) = (1= B){1 = (1= )’} )
+(1 - lg)lﬂp’”aﬂs,
Pr(P|T,,s) = B

where an SU packet is [ mini-slots long, and each SU packet is
preceded by 1 mini-slot long sensing interval. Note that the
action stay is a violation of hard-coded network policy in state
P and D; and subject to penalty (i.e., —I).

When there are plenty of channels in the network, the time
interval of visiting back to a channel is long; hence, we can
approximate the probability of finding the channel busy with
action hop as the steady-state probability,

B

=p, SeX. (6)

Now, the SU takes action hop and selects a new channel
randomly from M — 1 channels (the SU does not hop to the
same channel it found busy in the current slot) from the cur-
rent state P and hands off to that channel. Provided that the
new channel is available, the probability of an OS-attack is,

1 m-—1
M M-1

M—-1 m

Pra,t\h,P: Vi 'M_l.

)

Since, attackers do not know the current state of the victim
SU, they will keep hopping through the predetermined
sequence consisting of M channels. Now, let us assume that
channel ch was sensed busy by the victim SU in the previous
slot. Then, the former and latter part of (7) represents the
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scenario where attackers visit the channel ch and do not visit
the channel ch in the current slot, respectively. Now, the tran-
sition probabilities from state P with action hop is,

Pr(T1|P,h) = (1 = p)(1 = B)'(1 = Prog.p),
Pr(Dy|P,h) = (1 - p){l - (1-B)'} ®)
+(1—p)(1—B)Pr

at|h,P+

When an SU takes action hop from state 7;, it randomly
selects a channel from M — 1 channels (excluding the current
one). The probability that attackers will attack the new chan-
nel in the next slot depends on two cases:

e The new channel has already been visited by attackers:
The new channel is one of the ¢m channels visited by
attackers.

e The new channel has not been visited by attackers: The
new channel is among the M — ¢m — 1 channels that
have not been visited by attackers, and it will not be vis-
ited by attackers in the next slot.

Therefore, the probability of OS-attack,

mi M—im-—1
M—-1 M-1

—Prat\h.T =1- ( (]- - Prats)) . (9)

The transition probabilities from state 7; with action hop is,

Pr(Ty|T;, k) = (1= p)(1 = B)'(1 = Pragu),
Pr(Di|T;,h) = (1 - p){1 — (1 - B)'}
+ (1 - 10)(1 - ﬂ)lprat\h.T-

(10)

When an SU takes action hop from state Dj, it randomly
selects a channel from A — j channels. As the SU has already
experienced transmission failures j times in j different chan-
nels, it does not visit back to these channels until it success-
fully transmits the current packet. Since attackers also
randomize their attack sequence, excluding these j channels,
the probability that attackers will attack the new channel in
the next slot is uniformly distributed over M — j channels.
Therefore, the probability of an OS-attack is,

m

Pra,t|h,D = M——j .

(1D

The transition probabilities from state D; with action hop is,

Pr(T|D;, h) =(1 = p)(1 = B)'(1 = Pupn.p),
Pr(Dj1|Dj h) =(1 = p){1 = (1-p)'} (12)
+(1-p)1-p) Prognp-

The transition probabilities from state D; with action es is,
Pr(ESy|Dj,es) = (1= p)(1 = B)'(1 = Prags p),
Pr(ESi|Ds,e5) = (1= p){1 = (1= §)'), -
Pr(ES,|Dj,es) = (1 —p)(1 — IB)lPrat\h,Dy
Pr(P|Dj,es) = p.
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Lemma 1: The longer a defender stays on a channel, the
higher the chance of avoiding the attack on the next channel.

Proof: The proof of this lemma follows by verifying that
Pr(T1|T;, h) is an increasing function of 4, i.e.,

Pr(Ty|Tis1,h) > Pr(Th|Ti, h). (14)

From (4), we can understand that, the more a defender SU
stays on a certain channel, the higher the probability of
experiencing attack in the next time-slot. However, by com-
bining (4) and (9), we can also find that, the longer a defender
stays on a certain channel and transmits successfully, the
lower the probability of experiencing attack in the next time-
slot when it hops randomly to a new channel. Intuitively, the
longer a defender stays on a channel undetected, the more
channels attackers have swept—in the current sweeping
cycle—unsuccessfully. It provides the defender an extra-room
to hop to a random channel from a larger subset of available
channels and it increases the probability of experiencing a suc-
cessful transmission in the next time-slot. u

Lemma 2: The more successive attacks attackers can perpe-
trate, the higher the chance of successful attack in the next slot.

Proof: The proof of this lemma follows by verifying that
Pr(T1|Dj, h) is a decreasing function of j, i.e.,

PF(T1|D],h) > PT(T1|Dj+1,h). (15)

Intuitively, the more an SU experiences consecutive trans-
mission failures, the fewer channels it has to hop onto for the
current packet transmission. Hence, when it hops, it is more
likely to be detected by attackers. Each transmission failure
comes with a significant cost to the victim SU. However, as
the chance of experiencing an OS-attack increases, so does the
chance of detection by the victim SU if action es is employed.
This means that SUs should balance their strategy between the

encounter of the OS-attack and the detection of an attacker on
the new channel, when they hop. u

C. Optimal Defense Strategy

An MDP consists of four components: a finite set of states, a
finite set of actions, transition probabilities, and immediate
rewards. We have modeled the defense problem as an MDP.
Now, we can find the optimal defense strategy by solving it.

For an MDP, a policy is defined as the action to take in each
state, i.e., 7 : .S;, — a,. In other words, a policy maps each
state S € X to an action a € A and is represented by 7(95).
Among all possible policies, the optimal policy returns the
maximum expected total discounted payoffs. The value of a
state S is defined as the highest expected payoff, starting from
the state S and represented as,

V*(s) =max E
T

ié”’lU(n)‘S - 5] . (16
n=1

Here, the optimal policy 7*(S) returns the maximum
expected payoff. One important point is that, after making a
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move from the current state, the remaining part of an optimal
policy should still be optimal. Therefore, the first move should
maximize the immediate payoff and the future expected pay-
off, which are conditioned on the current action. This is called
Bellman equation [43],

Q(S,a) =>_Pr(SS,a)(U(S,a,8) + 8V*(5)),
Sl

V*(S) = max Q(S,a), (17)

7*(S) = argmax Q(S, a).

Now, we can use the value iteration method to derive the opti-
mal defense strategy and show that the solution has a structure
mentioned in Proposition 1.

Proposition 1: The optimal policy can be represented by two

critical states k* € {1,2,---, K} and ¢* € {1,2,---,G}, ie.,
sy ) S if T, < Ty N h, if Dj<Dg*

7 (1) = {h, otherwise ’ (D)) = {es, otherwise.
(18)

Proof: From (4) and (5), the probability of a successful trans-
mission with action stay (i.e., Pr(T;11|T;, s)) decreases over i.
Therefore, from the definition of Q(S,a) in (17), Q(T;,s) —
Q(T;—1,s) < 0.Now, (9) indicates that the probability of a suc-
cessful transmission with action hop (i.e., Pr(Ti|T;,h))
increases over i. Therefore, Q(T;,h) — Q(T;—1,h) > 0. Now,
the optimal action at state T} is stay if Q(T;,s) > Q(T;, h), or
hop if Q(T;,h) > Q(T;,s). Since Q(T;,s) is decreasing and
Q(T;, h) is increasing, there exists a k*, where Q(Tj+_1,s) >
Q(Tk*fla h) and Q(Tk*, h) > Q(T‘k*vs)’ and k"€ {1,
2,..., K}. This concludes the first part of the proof.

Similarly, from (11)-(15), we can show that Q(D;,h) <
Q(Dj-1,h) and Q(Dj,es) > Q(Dj-1,es). Therefore, there
exists a g*, where Q(Dy+_1,h) > Q(Dg_1,es) and Q(Dy, es) >
Q(Dy,h), and ¢g* € {1,2,---,G}. This concludes the second
part of the proof. u

Please note that since the defender hops to another channel
when it reaches the state &k, it refrain itself from entering the
states larger than k*. Therefore, in a scenario where k* < K,
the Markov chain becomes irreducible.

Corollary 1: The threshold k* is decreasing in L, and
increasing in both C'and M.

Proof: We begin the proof by shedding light on the fact
that for any Ty > T; (where Ty€ {2,3,---,K} and T;
e{1,2,---,K —1}), Q(Ty,s) — Q(T;,s) is increasing in L
and decreasing in K, where K is an increasing function of M.
In addition, Q(T;, h) is decreasing in C, thus verifies that k* is
increasing in C'. This concludes the proof. u

Corollary 2: The threshold ¢* is decreasing in L, F, and C,
and increasing in M.

Proof: The proof follows by noting that for any Dy > D;
(where Dyec {2,3,---,G} and D; €{1,2,---,G —1}),
Q(Dj,h) —Q(Dj,h) is increasing in L and C, and
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Fig. 8. The Q-learning and attack inference model.

decreasing in M. Moreover, Q(Dj, es) is increasing in E, thus
verifies that ¢* is decreasing in E. This concludes the proof. B

Summary: An SU’s strategy to use an underutilized channel
as long as plausible and the iterative process of random-OS
attacks facilitate the design of the attack and defense problem
as an MDP. The proposed defense can be summarized in two
aspects: (1) an SU keeps utilizing an underutilized channel for
k* time-slots and then hops to another channel, and (2) after
g* successive transmission failures, an SU takes the action
extra-sense. In this paper, we consider that the strategy of
attackers remains unchanged, and the strategy of attackers can
be learned over time. Nevertheless, an attack and defense
problem is comparable to an arms race: the attacker and
defender will change their strategies to outsmart each other.
Moreover, most existing research works consider that attack-
ers are ubiquitous, i.e., attackers are always present. This con-
sideration demands wireless devices to take defensive actions
all the time, even if these actions come at the cost of network-
ing performance. We propose a detection technique (explained
in the next section) to infer the presence of attackers and to
deploy defensive strategies accordingly.

VI. PROPOSED ATTACK INFERENCE MODEL

In this section, we propose an attack inference model to
detect the presence of attackers. The proposed model has two
features: 1) it utilizes the in-hand sensing history of the victim;
hence, no networking overhead occurs to estimate PU parame-
ters, and 2) it does not violate any policy and hardware con-
straints; hence, no policy change and extra hardware required.
Depending on the parameters of the model, it helps the safe-
guard process to detect the presence of attackers.

The optimal defense strategy in each state depends on the
transition probabilities, which requires the exact knowledge of
network parameters (i.e., «, 8, m). In reality, it is impossible
for a victim to know the exact network parameters to devise
the MDP, especially, when it can change over time (e.g.,
attackers’ presence is uncertain, the number of attackers may
change, and PU activities may change). Therefore, an SU
must learn the MDP over time. A model-based learning tech-
nique requires the Markov process to exhibit constant parame-
ters over time, and it has a limitation in scalability; hence, a
model-free learning is best suitable for this scenario. We
employ the Q-learning technique that works as a model-free
off-policy method, learns the game without the need of transi-
tion probabilities, and fits well with sudden changes in MDP

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2020

parameters. Fig. 8 shows the framework of the proposed attack
inference model and Q-learning.

A. Q-Learning

The Q-learning tries to approximate the unknown transition
probability by the empirical distribution of states that have
been experienced over time. It iteratively calculates and
updates the Q-value based on the state-action tuple (S, a, S’).

Qn(S,a) =Qn-1(S,a) + y[{R(S,a,5") + 8V, ()}
_Qn—l(Sa a’)]’
‘/n(S) = m(?x Qn(sv a)7

(19)

where y is the learning rate and § is the discount factor.

In Q-learning, there is no fixed policy while learning the
MDP and agents take random actions (with probability €) to
discover the MDP. However, the randomness decreases over
time (i.e., ¢ — 0) and defenders are more likely to take actions
with highest @)-values. After (Q-values converge, the learning
process ends. The optimal policy after the learning period is,

7°(S) = argmax Q,(5,a), a€A,SeX. (20)

In quest of learning the optimal policy, the defender makes
mistakes and takes random decisions to explore the MDP.
Hence, Q-learning engenders a cost in performance, and it is
represented by regret that quantifies the difference between
the expected rewards (while learning) and the optimal
rewards. Therefore, the more the defender learns, the fewer
mistakes it makes (i.e., regret is a decreasing function of time).

Hence, to minimize the learning cost, the attack inference
model re-initializes the learning process (i.e., reinitialize )
when the model detects the presence of OS-DoS attackers.

B. Attacker’s Presence Detection

In this approach, benign SUs initiate their operation with
three policies: 1) stay on the current channel until a transmis-
sion failure (i.e., 7(T) = s) occurs, 2) hop to another channel
after a transmission failure (i.e., 7(D) = h), and 3) hop to
another channel after sensing the channel busy in the sensing
interval (i.e., w(P) = h). Without detecting the presence of
OS-attackers, Q-learning does not employ the action es.

With recorded historic states and actions, SUs are able to
compute the occurrences of transitions given any action. For
example, the notation Nf*S/ represents the total number of
transitions from state .S to S, taking action a.

We define T, £2max{7 : NI*Tit1 = 0} (e.g., under-attack,
T, = K). From (5), we can understand that the absence of
attack (i.e., Prqys = 0) will result in an empirical probability

— NZ“,.DI
Pr(DI[T3,5) = (o

bility of transmission failure by PUs only,

777 that is close to the proba-

Pr(Dy|T;, s, Progs =0) = (1= B){1—(1-5)'}, @D
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where B represents the PU traffic parameter from empirical
observations, which will be explained later in this section.
_Now, with the presence of attackers (i.e., Prys > 0),
Pr(D;|T;,s) > Pr(D1|T;,s). We represent this by,

ﬁ"'n,(Dl‘,‘Th 5) - PI’,L(D1|E, S;Praﬂs = 0)

! Prn(DlrriaS;Prat\s = 0) ’

(22)

where f’r\n and Pr, represent empirical probabilities after n
time-slots (i.e., Pr, and Pr,, are running parameters).

SUs track these values of X; over time. From (4) and (5),
we can observe that Pr,, increases with the residence time of
SUs on a channel. Therefore, to deduce the presence of attack-
ers, X; values should conform to the requirement below,

X| <Xy <o < X)) < XL (23)
This inequality characterizes the primary condition to detect
the random-OS attack. It differentiates the random-OS attack
from the naive attack where m attackers randomly choose m
channels in each slot with equal probabilities (i.e., m/M), and
it does not consider which channels have been detected in the
past. Therefore, X' will not meet the requirement in (23),
instead, the values of X' will lie within a close approximation,

n o __ no__ L — n — N~
X{=Xp= =X =X ~c,

(24)

where c is a constant.

Since each channel has an equal probability of encountering
attack in the naive approach, hopping strategy cannot reduce
the risk of attacks. Moreover, the hopping cost makes it a futile
effort to avoid the attack by hopping from one channel to
another. Hence, SUs stay on the same channel until they sense
the PU reappearance or experience a transmission failure.

Next, we consider a safety margin 7 to finally trigger the
presence of attackers in the network. Besides a safety margin,
T also works as a trade-off parameter between performance
and security. We compare the value of X7} to 7 to decide the
presence of attackers. Since the state 7} is visited more fre-
quently than other T states, we make an educated choice of
comparing the safety margin with X7. Therefore, the second
requirement is,

XP > 1 (25)

We can further control it by starting a counter when (23) and
(25) are met, then triggering the attack flag once these require-
ments are consistently met for a certain time.

C. PU Traffic Parameter Estimation

We define S£{T,T5,---,7T,— 1} and H2{P,D,T,}.
Now, given the state transition history N2 over time, we
can deduce the empirical value of the PU traffic parameter,

ZTeS NsT o’

B= :
Sres (NI + NIV 4+ NI

(26)
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S,.p
ZSEH Nh,
S,P S.D ST
Ssen(NET+ NP+ N

p= 27)

The empirical value of E remains unaffected by the presence
of attackers. It depends on the results from the sensing inter-
val, and OS-attackers remain inactive during this interval.
Therefore, (26) provides a close estimation of the actual PU
parameter to decide the presence of attackers in the network.

D. Empirical Distribution

For transmission states (i.e., 7;), the estimated probability
from sample transitions are,

T;,5"
NT

Pr(S'|T},s) = ———,
g Ns”

(28)
where ' € {P, D1, T, + 1} and T; € {11, T, ---, T, — 1}.

For transmission failure states (i.e., D;), the estimated prob-
ability from sample transitions are,

D;.S
A J)
h

D5
70
2g Ny

Pr(S'|D;,h) = (29)

where 8" € {P,D; + 1,11} and D; € {D1, Dy, ---,D¢g — 1}.
And, for the busy state (i.e., P), the estimated probability is,

_ NPS
Pr(S'|Ph) = ', (30)
s Ny

where S’ € {P,T1, D:}.

Summary: Unlike previous research, we consider the
absence and the presence of attackers. It helps us to avoid
unnecessary defensive measures (e.g., action es), when attack-
ers are absent. When attackers initiate an OS-DoS attack, the
proposed attack inference model detects the attack using empir-
ical observations from its sensing results and re-initializes the
Q-learning process (i.e., re-initialization of €) to minimize the
regret (i.e., learning cost) and to take appropriate action (i.e.,
action es).

VII. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate the
performance of our proposed research. Here, we consider that
the victim SU detects an attacker, but does not oust it from the
network; the appropriate attack response (e.g., network isola-
tion, bandwidth limitation, and network elimination) is an
open research issue. Unless otherwise stated, the simulation
parameters are:

The presented simulation results are the average of 100
independent trials.

A. Random-OS Attack

In this work, we consider that attackers do not have any pre-
determined knowledge of the victim’s channel hopping
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Fig. 9. Performance of the random-OS attack.

sequence and operating channels. Therefore, we discard the
comparison with conventional OS-DoS attack where the vic-
tim experiences null throughput regardless of the number of
attackers (i.e., unrealistic scenario). Fig. 9 demonstrates the
performance of the random-OS strategy in contrast to the
naive approach, where attackers do not consider the knowl-
edge of which channels have been visited in the past, instead
randomly select channels at each time-slot.

In Fig. 9(a), the normalized throughput is shown, where vic-
tims experience less throughput in the random-OS attack due
to the iterative process and the re-randomization technique of
random-OS. Likewise, victims of the random-OS attack suffer
more transmission failures (Fig. 9(b)) and higher rate of
packet drop (Fig. 9(c)). However, transmission failures are not
enough to cause significant packet drop or DoS attack unless
attackers can perpetrate it consecutively. This reflects in Fig. 9
(c) where the packet drop rate follows a different trend than
the rate of transmission failure; the packet drop rate starts to
increase exponentially after m = 10. Therefore, in this sce-
nario, more than 10 attackers are required to cause significant
damage to the victim.

B. Critical States

We demonstrate the critical states k" and g* of the optimal
policy (Fig. 10) derived from the value iteration of the MDP,
with the change in the number of attackers (m), the cost of
transmission failure (L), the reward of attacker detection (F),
the cost of channel hopping (C'), and the number of operating
channels (M).

Effect of m: In Fig. 10(a)-(h), both £* and ¢* decrease with the
increase in the number of attackers. As m increases, attackers
can visit more channels in each time-slot; hence, K starts to
decrease, and SUs have less channels to hop on after each trans-
mission failure. Therefore, the channel residence time decreases
and SUs have to hop more frequently to avoid the attack.
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TABLEI
SIMULATION PARAMETERS
[ Parameter | Value
Communication gain, R 5
Cost of transmission failure, L 5
Hopping cost, C' 1
Cost of busy channel, B 1
Penalty for policy violation, F' 50
Maximum transmission attempt, GG 7
Cost of packet drop, @) G- L
Reward for detecting an attacker, £/ | 20
SU packet length [ 5
Discount factor, 0.95
Learning rate, -y 1/+/number of time-slots
PU parameters 5 =0.01, p=0.1
Number of channels, M 60

Effect of L: In Fig. 10(a) and 10(e), as the cost of transmission
failure L increases, SUs tend to hop more to avoid imminent
transmission failures, thus £* decreases. However, g* demon-
strates relatively less sensitivity towards changes in L due to the
significantly high cost of ). In transmission failure states, choos-
ing action es over h means that the defender has to compromise
its packet transmission regardless of the outcome of the action
es; hence, the defender is reluctant to take action es.

Effect of E: In Fig. 10(b), k* remains almost insensitive to
the change in the reward of attacker detection E. Because F
largely dictates the action es only, stay and hop from transmis-
sion states remain out of its influence. For the similar reason, in
Fig. 10(f), ¢" illustrates linear sensitivity to the change in F.
Therefore, as the reward for detecting an attacker increases,
SUs become more motivated to take the action es instead of
hop, to detect attackers. The parameter F works as a trade-off
parameter between the networking performance and the secu-
rity performance. Lower and higher values of £ mean that vic-
tims have more tendency toward avoiding and victims have
more tendency toward detecting OS-attackers, respectively.

Effect of C': As discussed in Section V, channel hopping
engenders insignificant cost in terms of channel throughput;
we quantify this cost by C. In Fig. 10(c), we can observe that
k* increases with C. As C increases, defenders become reluc-
tant to take action hop and stays in a channel longer. There-
fore, the cost of hopping significantly impacts the proposed
defense strategy because defenders become limited in their
capability to utilize the channel diversity a multi-channel net-
work has to offer. However, unlike k*, g*—though exhibits
very low sensitivity—decreases with C' (Fig. 10(g)).

Effect of M: As the number of channels M increases, the
maximum channel residence time K increases. Therefore,
attackers have more channels to sweep through and defenders
have more time to stay on a channel. In Fig. 10(d), we can
observe that £* increases linearly with the increase of M. Sim-
ilarly, as M increases, defenders experience more incentive to
hop through different channels than to detect attackers. As a
result, g* increases with M.

C. Hide and Seek

Fig. 11(a) compares the performance of our proposed hide
and seek strategy with three scenarios: no defense, hide and
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Fig. 11.  Performance of Hide and Seek.

seek with no reward (& = 0), and hide and seek with a high
reward (F = 50). It illustrates that both £ =0 and E = 50
follow the same line until the number of attackers surpasses
m = 10 (when E = 50); the throughput drops below the no
defense line afterwards. We call this moment the switching
point after which the victim prefers to detect attackers (using
the action es) rather than avoiding them (using the action
hop); hence, the throughput drops. As F increases, the victim
becomes more motivated to detect attackers and the switching
point moves to the left. As discussed earlier, E works as a tun-
ing parameter between the networking and security perfor-
mance. Likewise, in Fig. 11(b), we can observe that the
transmission failure decreases after the switching point. How-
ever, after m = 12, it starts to increase again due to the
increasing number of attackers.

D. Q-Learning and Attack Inference Model

We evaluate the performance of Q-learning (Fig. 12 (a)) by
showing the difference in mean reward after each episode
between an SU that knows the optimal values and an SU that
learns the MDP over time via Q-learning. Here, we can
observe that in both cases (i.e., m = 2 and m = 3), the reward

3039
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Fig. 12.  Performance of Q-learning and attack inference model.

converges to the optimal reward. However, with m = 3, the
agent converges more quickly due to the fewer amount of
states.

In Fig. 12(b), the performance of our proposed attack infer-
ence model is shown with different values of the threshold t. We
change the scenario from m =0, M = 10tom =2, M = 10
at epsiode = 501. As the MDP progresses, an SU takes fewer
random actions (i.e., € decreases); hence, it takes more time
to track the changes without the assistance from the attack in-
ference model. The proposed model assists the Q-learning to
detect changes in the MDP and re-initializes the parameter € to
minimize the regret based on the threshold 7. With 7 = 0.2 and
T = 0.6, the attack inference model detects the presence of the
attacker on epsiode = 549 and epsiode = 753, respectively.
Hence, a lower value of t assists the SU to track the changes
sooner and yields in less regret.

VIII. CONCLUSION

In this paper, we proposed a new strategy, random-OS, to
perpetrate OS-DoS attacks without any predetermined knowl-
edge of the victim’s channel hopping sequence. Afterwards,
we proposed an MDP-based safeguard approach, hide and
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seek, to avoid and detect the proposed attack. We showed that
by hopping to random channels, an SU can avoid the OS-DoS
attack, and when it becomes necessary (based on rewards) to
detect interference, it employs an extra-sensing interval to
detect the attack. Here, the victim SU learns the optimal policy
using Q-learning. Lastly, we proposed an attack inference
model to detect the presence of attackers and to reinitialize the
learning process to incur less regret.

Numerical investigations and simulation results showed that
the random-OS outperforms the naive approach and the hide
and seek improves the network throughput without ousting the
attackers. To the best of our knowledge, this is the first work
that introduced a new avenue in designing defensive measures
of OS-attack without changing the FCC policy.
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