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Abstract—In a cognitive radio-based network (CRN), secondary
users (SUs) opportunistically access underutilized spectrum
resources and stop utilizing these resources when licensed or
primary users (PUs) reappear. However, this way of opportunistic
spectrum access is susceptible to novel vulnerabilities. Recently, a
new attack, off-sensing (OS), has shed light on a vulnerability in
the Federal Communications Commission (FCC) policy of CRN,
which affects the channel utilization of the victim SU by creating
an illusion of a PU’s presence. However, prior work on OS-attack
considers a deterministic approach that is unrealistic and is futile
to fortify against conventional defense techniques. In this paper,
we propose a new random approach, the random-OS attack, which
adapts to realistic scenarios and is difficult to detect using
conventional techniques. Then, we model the interaction between
the victim SU and attackers as a stochastic zero-sumMarkov game
and propose a novel safeguard approach based on the Markov
decision process to defend the proposed attack, namely hide and
seek. Finally, we introduce an OS-attack detection strategy, which
utilizes the sensing history to detect the presence of attackers
without violating any policy or design constraints and without any
networking overhead. Mathematical analysis and extensive
simulation results exhibit the superior performance of our
proposed work and advent a direction in designing safeguard
strategies without amending the current FCCpolicies.

Index Terms—Cognitive radio networks, off-sensing attacks,
Markov chain, and Markov decision process.

I. INTRODUCTION

THE demand for wireless services continues to increase

exponentially. However, the constrained amount of radio

resources has been impeding the growth to meet this demand.

On the other hand, the Federal Communications Commission

(FCC) has concluded that the radio spectrum is not balanced

in terms of resource and traffic-load; a significant portion of

the radio spectrum remains underutilized, whereas high vol-

ume of traffic appears in another portion. Cognitive Radio

(CR) has been proposed as an enabling technology to off-set

this unbalanced utilization of the spectrum. A CR-enabled

device (or secondary user, SU) can opportunistically access an

underutilized licensed channel (i.e., white spaces) and utilize

it until a licensed user (or primary user, PU) reappears. Spec-

trum sensing helps CR-enabled devices to be aware of and to

be sensitive to the changes in its network environment [1]–[3].

It helps CR-enabled devices to detect white spaces and PU’s

presence without interfering with the primary network.

However, like traditional wireless networks, CR-based net-

works (CRNs) are prone to conventional network attacks [4]

(e.g., jamming, packet drop, and eavesdropping). In addition,

new genres of attacks have emerged in CRNs due to its unique

way of operation (i.e., opportunistic spectrum access) [5]–[7].

Twomost studied attacks specifically in CRNs that try to com-

promise the spectrum sensing process are primary user emulation

(PUE) [8] and spectrum sensing data falsification (SSDF) [9].

Depending on the motive, these attacks help the attacker to either

maximize its own channel utilization (i.e., selfish attacker) or to

sabotage the network operation of the victim (i.e., malicious

attacker). In PUE, an attacker masquerades as a PU during the

sensing interval of the victim to trick it into avoiding the channel;

a PUE attacker forges the transmission characteristics of a benign

PU and tries to compromise the spectrum sensing process of the

victim. To avoid PUE attacks and sensing errors, cooperative

spectrum sensing approach is proposed [10], [11] as an alterna-

tive decision process to collectively estimate the spectrum avail-

ability. Nonetheless, this consensus-based approach is also

vulnerable to intelligent attacks, such as SSDF. In SSDF, an

attacker shares engineered sensing informationwith its neighbors

(i.e., victims) to manipulate the consensus on the channel avail-

ability in the cooperative spectrum sensing.

Under both of the above attacks, sensing interval is the

attack surface in both attacks. In [12], a novel genre of attacks

in CRNs, off-sensing (OS), is introduced. In contrast to PUE

and SSDF, OS-attack achieves similar goals with a different

attack surface: the off-sensing interval (i.e., the transmission

or reception interval). In OS-attack, an attacker interferes with

the victim’s transmission only when the victim is not sensing

but transmitting (or receiving). The attacker tries to corrupt

packets of the victim and to cause transmission failures. As

current radio designs do not permit SUs to sense the operating

channel during transmission, a victim SU would believe that it

is interfering with a reappeared PU, thereby creating an
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illusion. Since FCC regulation requires that an SU should

leave the channel within 2 seconds of PU reappearance [13], it

will stop using the channel if the reason of interference

remains inconclusive.

Motivations: Prior work on OS-attack considered two attack

scenarios: the attacker always stays on a particular channel

and attacks anyone who tries to access the channel (i.e., selfish

attacker), or the attacker knows the channel hopping sequence

of the victim SU and interferes with each transmission attempt

of the victim to create a Denial-of-Service (DoS) situation

(i.e., DoS attacker). In either case, the attacker plays a deter-

ministic role from a victim’s perspective in terms of the oper-

ating channel (i.e., the victim can infer the future attack

channel). This deterministic hopping sequence of OS-attack-

ers makes it difficult to fortify against traditional defense tech-

niques [5], [7]. Similarly, the assumption that the attacker has

the perfect knowledge of the victim’s hopping sequence

makes it a critical disadvantage for the victim and creates

unrealistic scenarios (hopping sequence depends on each SU’s

surrounding environment, which varies in time and space).

Therefore, in realistic conditions, OS-attackers desire a

sequence that is random.

Previous work on the defense and detection of the PUE

and SSDF attack focused on the sensing interval and the

cooperative nature of CRNs, respectively. However, these

proposed methods cannot detect the OS-attack due to differ-

ent attack surfaces and, to the best of our knowledge, the

defense of OS-attacks remains unstudied. Hence, the OS-

defense requires focused efforts into the off-sensing interval

to safeguard SUs.

Challenges on OS-Attackers: SUs can follow any channel-

hopping process to rendezvous with each other [14]. More-

over, the rendezvous channel (the channel where two SUs

meet) and the transmission channel may differ [15]. Therefore,

it is difficult for an attacker to find the operating channel of the

victim to perpetrate an OS-attack without any predetermined

knowledge. In addition, OS-DoS attack requires successive

detection of the victim’s operating channel; that is, more

challenging.

Challenges on Defense Against OS-Attacks: A straight-for-

ward approach to identify an OS-attacker is to sense the chan-

nel when transmitting. However, hardware limitations (e.g.,

the transmission antenna would overwhelm the sensing

antenna), design considerations (e.g., half-duplex radio), and a

decrease in channel utilization (e.g., the victim SU could use

an extra-sensing time to utilize another white space) restrain

this approach. Therefore, the defense and detection process of

OS-attack must adhere to these constraints.

Moreover, most previous research on defense considered

that attackers are always present and safeguard process(es)

are deployed regardless of the presence of attackers. This

assumption costs SUs networking, computational, and energy

overhead. Therefore, in resource constrained networks, the

safeguard process must be aware of the presence of attackers,

and it is deployed only when under-attack. Additionally, it

must provide the flexibility to trade-off between networking

and security performance.

Contributions: In this paper, we study these research chal-

lenges and propose solutions to these problems. The novel

contributions of this paper are summarized in the following:

1. We propose a random strategy for OS-DoS attackers,

where attackers iteratively hop through channels to

detect the operating channel of the victim and persis-

tently perpetrate OS-attacks to cause a DoS situation.

2. We propose a Markov decision process (MDP) based

safeguard approach, where victims avoid the OS-attack

by randomly hopping through different channels and

detect the attacker when deemed necessary according to

the parameters (i.e., the trade-off between networking

and security performance). The defender learns the

MDP game through reinforcement learning.

3. We consider that attackers may not always be present,

and the safeguard process must be aware of attackers’

presence. We propose an attack inference model to

detect the presence of attackers without any networking

overhead.

Paper Organization: The rest of this paper is organized as

follows. In Section II, prior DoS attacks and their defense

techniques are reviewed briefly. Then in Section III, the sys-

tem model that is considered in this paper is explained. We

provide an overview of the proposed attack model in

Section IV followed by the formulation of the Markov game

in Section V to counteract the random-OS attack. Then, we

propose the attack inference model to detect the presence of

potential OS-attackers in Section VI. Simulation results are

shown and discussed in Section VII, followed by the conclud-

ing remarks in Section VIII.

II. RELATED WORK

Unlike traditional PUE attacks, the OS-attack does not rely

on the transmission characteristics of a PU. Additionally, in

contrast to jamming attacks, it does not depend on a strong

noise signal either. Instead, it creates enough interference

using regular transmissions to corrupt the reception of the vic-

tim. Therefore, the OS-attack is neither the PUE nor jamming

attack; however, we compare it to both of these attacks

because of its close resemblance to these attacks from the per-

spective of denial-of-service attacks.

The security research community has proposed numerous

vulnerabilities and their defenses in CRNs [16]–[22], which

laid the groundwork for the future research on dynamic spec-

trum access. The PUE attack is discussed in [23], where the vul-

nerability is exploited in a multi-hop channel environment; if a

PUE attack is launched and the victim SU has no available

channel, the transmission is dropped or delayed. The dropped

and the delayed transmissions result in unreliable communica-

tion and lower quality of service, respectively [24]. An optimal

online learning algorithm is proposed in [25], where it can be

utilized by a PUE attacker without any prior knowledge of the

PU activity and secondary user channel access strategies. In

[26], a cross-layer route manipulation attack is proposed in

CR-based wireless mesh networks, where OS-DoS attack is uti-

lized as a front-end attack to manipulate the traffic-flow and to
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induce congestion in the network. Though the PUE and the

OS-attack have similar attack objectives, the OS-attack ex-

ploits a different attack surface, i.e., the off-sensing interval. In

addition, unlike the PUE attack, the OS attacker must know the

activity of the victim.

A wide range of jamming strategies have been studied in

[27]–[31]. However, we only focus on the papers that are most

relevant to our proposed work. In [32], a frequency hopping

strategy against a jammer in 802.11 networks is proposed; the

proposed hopping strategy optimizes the channel residence

time. In [33], a similar hopping strategy is developed using

Markov decision process for a cognitive radio network. In

[34], a strategy that combines frequency hopping and rate

adaption techniques is proposed to defend jamming attacks;

the rate adaptation method helped to increase the diversity in

defense against a power constrained jammer. A different

direction to counteract jamming attacks is introduced in [35],

where the latest advances in deep learning and artificial intelli-

gence are leveraged. A sweep jammer strategy is proposed in

[36] where jammers sweep through all channels to find the

operating channel of any user. However, these proposed attack

strategies are either ineffective in realistic scenarios or does

not consider the DoS situation. Unlike previous research, we

devise a sophisticated attack strategy for OS-DoS attackers to

adapt to more realistic conditions and to force the victim in

dropping packets.

Regarding the defense strategies, a game theoretical

approach is proposed in [37], [38] to counteract PUE attacks

by adopting a combination of extra-sensing and surveillance

process. In [39], an MDP-based anti-jamming strategy is pro-

posed to counteract jamming attacks in CRNs. A zero-sum

Markov game is proposed in [34] and an optimal strategy to

defend against the reactive-sweep jammer is devised. Simi-

larly, in [36], an MDP-based strategy is proposed to thwart

jamming attacks in multi-channel networks, where radios are

equipped with in-band full-duplex capability. However, all

these works neither consider an iterative attack model to pre-

vent DoS attacks nor adopt an intelligent attack detection

model. In contrast, we consider a more sophisticated attack

model where the attacker can identify an individual victim’s

transmission and perpetrate a DoS attack on the victim, but

our proposed model can detect the presence of such attackers.

Moreover, in the proposed defenses of these attacks,

researchers have mostly considered that the victim can detect

the unauthorized transmissions of attackers in the sensing

interval. In contrast, an OS-attacker [12] ingeniously avoids

the sensing interval and interferes with the victim during the

transmission interval.

III. SYSTEM MODEL

We consider two SUs who are trying to communicate

between themselves in the presence of OS-attackers. These

two SUs could be network entities of either an infrastructure-

based network (i.e., one SU is a CR access point that opportu-

nistically accesses the licensed spectrum, and the other is a

CR user communicating with other network users through the

access point) or an ad-hoc network. They are located within

the interference region of OS-attackers, and OS-attackers are

authorized and authenticated entities in the network.

A. Network Model

In this subsection, we explain the traffic model of both PUs

and SUs, and we illustrate the rendezvous-based channel

access mechanism for SUs.

1) PU and SU Model: We consider the presence of M
homogeneous channels (and M PUs), each with a fixed band-

width. Time is divided into equal slots. Transmissions are

packet based for both PUs and SUs, and a packet transmission

starts at the beginning of a mini-slot and finishes at the end of

a mini-slot. The length of a mini-slot is the time to perform a

fast-sensing [40] and to exchange a request-to-send/clear-to-

send (RTS/CTS) handshake, and a slot is a multiple of mini-

slots. Each PU randomly selects a channel to access and alter-

nates between the ON and OFF state, according to an ON-

OFF model (Fig. 1(a)). Let a and b denote the transition prob-

abilities from the ON to OFF state and from the OFF to ON

state, respectively. We consider a saturated SU traffic scenario

, which means that SUs always have a packet in their buffer to

transmit. Hence, an SU continuously transmits on a channel

until it finds the current channel busy during a sensing interval

or experiences a transmission failure (e.g., if an ACK is not

received from the other SU). Transmission failures can result

from two reasons: collision with a reappeared PU and interfer-

ence from an OS-attacker. However, SUs are unable to deter-

mine the exact reason of transmission failures due to their

inability to sense the channel during transmission or reception.

2) SU Access Protocol: Each transmission attempt of an SU

must be preceded by a sensing interval. As shown in Fig. 1(b),

SUs periodically operate between the sensing and transmission

intervals. An SU is allowed to access a channel when it finds the

sensing result suitable to transmit (e.g., senses that no PU is pres-

ent). After sensing the channel available, two SUs exchange

RTS/CTS messages to reserve the channel. Each SU is equipped

with one half-duplex radio for spectrum sensing, control infor-

mation exchange, and data transmission. With one radio, an SU

can sense the channel only before initiating the transmission

(i.e., in the sensing interval). During a sensing interval, if an SU

senses that the current channel is busy, it pauses the communica-

tion attempt on the current channel, performs a spectrum handoff

to a new channel, and resumes the communication attempt on

the new channel (if the new channel is sensed available).

Fig. 1. The network model.
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B. Network Coordination Scheme

In this paper, we assume that a common control channel

(CCC) is unavailable and two SUs must find a common avail-

able channel between them to initiate a data transmission.

Rendezvous technique works as the process for two SUs fol-

lowing a channel hopping process to meet and exchange con-

trol information on a common available channel. A significant

amount of research has been conducted on rendezvous techni-

ques. However, the choice of a specific rendezvous scheme

does not impact the performance of our proposed attack and

defense mechanisms, as long as attackers have no prior knowl-

edge of the victim’s hopping sequence. Thereby, we assume

that benign SUs have successfully performed rendezvous with

each other, using any existing blind rendezvous scheme, and

they share a time-seeded pseudo-random channel hopping

sequence for future communications.

C. OS-DoS Attack

The OS-attacker intelligently interferes with a victim’s

transmission in the transmission interval (by avoiding the

sensing interval) and misleads the victim SU into believing

that the victim is interfering with a reappeared PU. With

current designs, an SU does not sense the channel during

transmission. Therefore, it cannot detect the origin of an inter-

ference. In addition, according to the FCC regulation, an SU

must leave the channel within 2 seconds [13] and perform a

spectrum handoff. These two factors facilitate an attacker to

confuse the victim with the presence of a reappeared PU and

to force the victim to leave the channel. An OS-attacker

detects the transmission of a particular victim SU from the

RTS/CTS message that precedes each transmission attempt.

Fig. 2 provides an illustration of the OS-DoS attack under a

periodic channel hopping process.

In Fig. 2, the OS-attacker knows the channel hopping

sequence of the victim SU and interferes with each transmis-

sion originating from and to the victim (by overhearing RTS/

CTS messages). Here, the attacker interferes the whole packet

time to make sure that the victim cannot decode the packet

and tries to create a DoS situation for the victim SU by causing

consecutive successful collisions. However, in reality, it is

likely that the attacker does not have any knowledge of the

victim’s hopping sequence, and it requires shrewder efforts

from the attacker to perpetrate successive transmission

failures. Next, we propose a novel strategy for an attacker to

perpetrate the OS-DoS attack, without any knowledge of the

victim’s hopping sequence and operating channel.

IV. PROPOSED RANDOM-OS ATTACK MODEL

In our proposed OS-DoS attack, the short-term goal is to

cause successive transmission failures, and the long-term goal

is to reach the maximum limit of transmission attempts to

force the victim to drop the current packet. As shown in

Fig. 2, if the maximum transmission attempt is 3, then the SU

packet would have been dropped. However, the assumption

that attackers know the channel hopping sequence of the vic-

tim is unrealistic and so is the strategy of an attacker to inter-

fere with each transmission of the victim (due to the

deterministic hopping sequence of the attacker); the victim

can infer the attacker’s activity and detect the attacker with a

longer fine-sensing (explained in Section V). Therefore, we

propose a new random strategy for OS-DoS attackers, where

the attackers have no prior knowledge of the victim’s channel

hopping sequence, and they randomly hop to different chan-

nels in each slot to detect the victim and to perpetrate the OS-

DoS attack.

Basic Principles:We assume the presence ofm OS-attackers

(m < M) with the same hardware configuration as benign SUs.

We consider that these OS-attackers coordinate among them-

selves using an out-of-band secure channel (i.e., a secure control

channel for attackers only), and they attack non-overlapping

channels to increase their chance to detect the operating channel

of the victim sooner. Attackers detect a transmission of a parti-

cular victim by listening to the RTS/CTS messages. Then, they

perform the OS-attack in the transmission interval of the victim

by interfering the victim’s transmission. As discussed earlier,

this attack happens only when the victim is transmitting and not

sensing. The interference in the off-sensing interval (i.e., the

transmission interval) tricks the victim into believing that it is

interfering with a legitimate PU; hence, the victim leaves the

channel.

Short-Term Strategy: With the help of coordination, the m
attackers visit m different channels during each slot. Here,

attackers randomly generate a channel hopping sequence after

each successful attack (i.e., transmission failure) and hop

through the sequence periodically until they find the operating

channel of the victim SU. As the network has M channels,

there are M! sequences with equal probability of being

selected. This strategy of channel hopping helps attackers to

put an upper bound on how long (i.e., the channel residence

time) a victim SU can continuously use a channel. The upper

bound will be discussed later in this section. Fig. 3(a) shows an

illustration of the attack sequence with M ¼ 10 and m ¼ 2. It
shows the hopping sequence of two attackers before a success-

ful OS-attack. Here, the operating channel of the victim SU is

channel-3 and, in slot-3, attackers detect the victim and perpe-

trate the attack on channel-3. Also, the attacker must attack suf-

ficiently long enough to corrupt the packet, otherwise the

victim can recover the packet from minor interference. Now,

let ai represents the channel on which attackers have conducted

Fig. 2. OS-DoS attack under periodic channel hopping process.
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the OS-attack and i represents the number of successive attacks

(or transmission failures). ai works as a queue of channels and
includes all the attacked channels, from i; i� 1; � � � ; 1, on

which successive transmission failures have happened. How-

ever, attackers will exclude these ai channels from the next ran-

dom sequence and re-visit them at the end of the hopping

sequence. Fig. 3(b) shows an example of the new hopping

sequence of attackers to increase their chance of a successive

attack by excluding the attacked channel (i.e., channel-3) in the

previous slot (i.e., slot-3).

In the OS-attack, a victim cannot determine the exact reason

of the transmission failure. Thereby, the victim will randomly

hop to a new channel (believing that it has interfered with a

reappeared PU), try to stay on that channel as long as plausi-

ble, and not hop back to the previously attacked channels (i.e.,

ai) until it achieves a successful packet transmission. Hence, it

is inefficient for attackers to revisit the previously attacked

channels for a particular packet. After each successful perpe-

tration of the attack (or transmission failure), attackers ran-

domize their hopping sequence, excluding ai. Therefore, after
i successive transmission failures, attackers have M � i chan-
nels to randomize. Fig. 3(b) illustrates a new hopping

sequence of the attackers.

Long-Term Strategy: As the OS-DoS attack considers that

the victim must experience G consecutive transmission fail-

ures (G < M) before discarding the current packet, attackers

stay persistent to increase their chance of successful attacks

after each successive OS-attack. Hence, they keep excluding

channels that were already attacked earlier, for the current

packet. Fig. 4 shows an illustration of a scenario, where G ¼
4, and attackers are successful to drop the packet with 4 suc-

cessive attacks. In the illustration, we can observe that the

attackers keep discarding the earlier consecutive attacked

channels at each time-slot, i.e., ai, and eventually after 4 suc-

cessive attacks, force the victim to drop the packet. It creates a

DoS scenario for the victim. However, attackers may not suc-

cessfully perpetrate the attack in a consecutive manner, and

they must take this into consideration in the subsequent time-

slot to increase the chance of a successful attack.

After the ith successful attack, if attackers are not successful
in the subsequent time-slot, they consider that the victim had a

successful transmission. Hence, they will re-randomize their

hopping sequence (i.e., nullify ai), excluding the channels they
have visited in the current slot (since currently visited channels

are free, there is no need to visit them again in this period), and

begin a new period (one period ¼ dM=me slots). Fig. 5 pro-

vides an illustration of this scenario. Fig. 5(a) illustrates an

alternate scenario if the victim SU had chosen channel-1

(instead of channel-3) in Figs. 4(c), and 5(b) illustrates the new

randomized sequence. Thereby, it is inefficient for attackers to

visit the attacked channel soon, and hence the attackers exclude

these channels.

If attackers cannot detect the operating channel and one

period has finished, they will revisit the channels following

the same sequence. Given M channels and m OS-attackers, if

the victim SU stays on the same channel, the operating chan-

nel of the victim will be detected within dM=me slots.

Thereby, the maximum number of consecutive successful

transmissions an SU can have in a channel is K ¼ dM=me �
1. This is the upper-bound that was discussed earlier in this

section.

Summary: The proposed OS-DoS attack strategy introduces

uncertainties in actions of attackers; hence, we name it ran-

dom-OS attack. Unlike the deterministic approach shown in

Fig. 2, the proposed strategy introduces a random hopping

sequence for attackers. Due to this randomness, it is not

guaranteed that the victim can detect an attacker’s interference

by a single fine-sensing [41], rather it may require multiple

attempts to detect an attacker. Therefore, the victim SU must

use the fine-sensing interval (explained in the next section)

wisely to maximize the chance of detection.

V. PROPOSED SAFEGUARD APPROACH: HIDE AND SEEK

In this section, we propose a solution to the random-OS

attack problem by modeling it as an MDP-based game with

three actions: stay, hop, and extra-sense. Besides stay and

hop, we propose an action extra-sense to increase the diver-

sity of defense (Fig. 6). In extra-sense, instead of transmitting

Fig. 3. First phase of the random-OS attack.

Fig. 4. A scenario of a successful OS-DoS attack withG ¼ 4.

Fig. 5. Re-randomization of the attack sequence.
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in the transmission interval, an SU tries to detect OS-attackers

by fine-sensing the channel which we call the extra-sensing

interval. With fine-sensing, an SU can differentiate between

the transmission of a PU and an attacker. Now, with these avail-

able actions, the MDP deduces an optimal policy, which pro-

vides the optimal action to take at each state that maximizes the

reward of playing this MDP-based game. One important point

to note, the attack strategy is integrated into the stochastic pro-

cess where the attacker acts as the environment; this strategy

reduces the game complexity from a multi-agent problem to a

single-agent problem. Therefore, in this section, we model the

attack and defense problem as an MDP, and we develop a sin-

gle agent (i.e., a victim SU) MDP-based defense method to

counteract the random-OS attack.

A. Formation of the MDP

We assume that the channel-hopping sequence of the victim

SU is unknown to the attacker; however, the attacker can itera-

tively sweep through the available channels and detect the

presence of the victim SU. As we consider the presence of

multiple (i.e., m) OS-attackers and coordination among them-

selves, they will not hop to the same channel together. Instead,

they will hop to m different channels to determine the operat-

ing channel of the victim SU faster. The SU will decide its

action at the end of each time slot, based on the observation of

the current state. The SU receives an immediate reward UðnÞ
in the nth time slot,

UðnÞ ¼ R:1ðSuccessful transmissionÞ
� L:1ðTransmission failureÞ
� C:1ðHopping costÞ � B:1ðBusy channelÞ
� F:1ðPenalty for policy violationÞ
�Q:1ðPacket dropÞ þ E:1ðAttacker detectionÞ;

(1)

where 1(�) is an indicator function of the event in brackets.
As the employed strategy impacts the current state and also

the future states, the expected reward of this game is,

U ¼
X1
n¼1

dn�1UðnÞ; (2)

where d represents the discount factor (0 < d � 1). It meas-

ures the significance of the future reward values.

B. Markov Model

This subsection demonstrates the proposed MDP model and

defines the state space, action space, rewards, and transition

probabilities. We assume that attackers sweep through all

channels periodically; hence, the probability of an operating

channel being detected depends on the channels that have

been visited earlier in the sequence. This consideration helps

us to conform the requirement of a Markov process (i.e., a

future state of the Markov process depends only on the current

state).

Markov States: The state denotes the status of an SU at the

end of a time-slot. Here, the proposed Markov model (Fig. 7)

has six kinds of states:
P : The SU senses that the channel is occupied by a PU.

Ti: The SU hopped onto a new channel and had i consecutive
successful transmissions (1 � i � K).

Dj: The SU had j consecutive transmission failures in j dif-
ferent channels (1 � j � G).

ES0: The SU employed the action extra-sense and found the

channel is free (i.e., no PU or OS attacker).

ES1: The SU employed the action extra-sense and found the

channel is reoccupied by a PU.

ESa: The SU employed the action extra-sense and detected an
OS-attacker successfully.

We represent the whole state space as X , fP; T1;
T2; � � � ; D1; D2; � � � ; ES0; ES1; ESag.

Actions: Here, we have three actions available at each state:
stay ðsÞ: The SU remains on the current channel in

the next time-slot and initiates a transmis-

sion.

hop ðhÞ: The SU hops to a new channel in the next

time-slot and initiates a transmission.

extra-sense ðesÞ: The SU hops to a new channel in the next

time-slot and fine-senses the channel for

interference.

We represent the whole action space as A , fs; h; esg.
Rewards: When an SU performs a handoff, it is required to

perform radio-frequency front-end reconfiguration that con-

sumes insignificant time and we must make it accountable.

Though the duration of this reconfiguration process depends

on the hardware (e.g., 30ms in USRP [42]), loss in throughput

is inevitable. In addition, synchronization between the trans-

mitter and the receiver nodes may engender more loss in

throughput. Collectively, we denote the mean cost of a chan-

nel handoff by C. Let UðS; a; S0Þ represents the reward when

an SU takes an action a 2 A in state S 2 X and enters into

state S0 2 X. Now using (1), we define rewards:

Fig. 6. The extra-sensing interval.

Fig. 7. The proposed MDP.
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UðS; a; S0Þ ¼
R; if fS; a; S0g ¼ fTi; s; Tiþ1g; i ¼ 1; . . . ; K � 1
R� C; if fS; a; S0g ¼ fX; h; T1g
�L; if fS; a; S0g ¼ fTi; s;D1g; i ¼ 1; . . . ; K � 1
�L� C; if fS; a; S0g ¼ fX; h;Djg; j ¼ 1; . . . ; G� 1
�Q� C; if fS; a; S0g ¼ fDG�1; h;DGg
�B; if fS; a; S0g ¼ fTi; s; Pg; i ¼ 1; . . . ; K � 1
�B� C; if fS; a; S0g ¼ fX; h; Pg
�F; if fS; a; S0g ¼ fZ; s;Xg; Z 2 fD;Pg
�Q; if fS; a; S0g ¼ fX; es; Zg; Z 2 fES0; ES1g
E �Q; if fS; a; S0g ¼ fX; es; ESag:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
(3)

Transition Probabilities: As m attackers are going through

their attack channel sequence, at state Ti, only maxðM �
im; 0Þ channels have yet to be visited by attackers, and

another m channels will be visited in the subsequent slot.

Therefore, the probability of an OS-attack (with action stay)
in absence of a PU on the channel,

Pratjs ¼
m

M�im ; if i < K
1; otherwise.

�
(4)

The transition probabilities from state Ti with action stay is,

PrðTiþ1jTi; sÞ ¼ ð1� bÞlþ1ð1� PratjsÞ;
PrðD1jTi; sÞ ¼ ð1� bÞf1� ð1� bÞlg

þ ð1� bÞlþ1Pratjs;
PrðP jTi; sÞ ¼ b;

(5)

where an SU packet is l mini-slots long, and each SU packet is

preceded by 1 mini-slot long sensing interval. Note that the

action stay is a violation of hard-coded network policy in state
P andDj and subject to penalty (i.e., �F ).

When there are plenty of channels in the network, the time

interval of visiting back to a channel is long; hence, we can

approximate the probability of finding the channel busy with

action hop as the steady-state probability,

PrðP jS; hÞ ¼ b

aþ b
¼ r; S 2 X: (6)

Now, the SU takes action hop and selects a new channel

randomly from M � 1 channels (the SU does not hop to the

same channel it found busy in the current slot) from the cur-

rent state P and hands off to that channel. Provided that the

new channel is available, the probability of an OS-attack is,

Pratjh;P ¼ 1

M
� m� 1

M � 1
þM � 1

M
� m

M � 1
: (7)

Since, attackers do not know the current state of the victim

SU, they will keep hopping through the predetermined

sequence consisting of M channels. Now, let us assume that

channel ch was sensed busy by the victim SU in the previous

slot. Then, the former and latter part of (7) represents the

scenario where attackers visit the channel ch and do not visit

the channel ch in the current slot, respectively. Now, the tran-

sition probabilities from state P with action hop is,

PrðT1jP; hÞ ¼ ð1� rÞð1� bÞlð1� Pratjh;P Þ;
PrðD1jP; hÞ ¼ ð1� rÞf1� ð1� bÞlg

þ ð1� rÞð1� bÞlPratjh;P :
(8)

When an SU takes action hop from state Ti, it randomly

selects a channel from M � 1 channels (excluding the current

one). The probability that attackers will attack the new chan-

nel in the next slot depends on two cases:

� The new channel has already been visited by attackers:

The new channel is one of the im channels visited by

attackers.

� The new channel has not been visited by attackers: The

new channel is among the M � im� 1 channels that

have not been visited by attackers, and it will not be vis-

ited by attackers in the next slot.

Therefore, the probability of OS-attack,

Pratjh;T ¼ 1� mi

M � 1
þM � im� 1

M � 1
ð1� PratjsÞ

� �
: (9)

The transition probabilities from state Ti with action hop is,

PrðT1jTi; hÞ ¼ ð1� rÞð1� bÞlð1� Pratjh;T Þ;
PrðD1jTi; hÞ ¼ ð1� rÞf1� ð1� bÞlg

þ ð1� rÞð1� bÞlPratjh;T :
(10)

When an SU takes action hop from state Dj, it randomly

selects a channel from M � j channels. As the SU has already

experienced transmission failures j times in j different chan-
nels, it does not visit back to these channels until it success-

fully transmits the current packet. Since attackers also

randomize their attack sequence, excluding these j channels,

the probability that attackers will attack the new channel in

the next slot is uniformly distributed over M � j channels.

Therefore, the probability of an OS-attack is,

Pratjh;D ¼ m

M � j
: (11)

The transition probabilities from state Dj with action hop is,

PrðT1jDj; hÞ ¼ð1� rÞð1� bÞlð1� Patjh;DÞ;
PrðDjþ1jDj; hÞ ¼ð1� rÞf1� ð1� bÞlg

þ ð1� rÞð1� bÞlPratjh;D:
(12)

The transition probabilities from state Dj with action es is,

PrðES0jDj; esÞ ¼ ð1� rÞð1� bÞlð1� Pratjh;DÞ;
PrðES1jDj; esÞ ¼ ð1� rÞf1� ð1� bÞlg;
PrðESajDj; esÞ ¼ ð1� rÞð1� bÞlPratjh;D;
PrðP jDj; esÞ ¼ r:

(13)
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Lemma 1: The longer a defender stays on a channel, the

higher the chance of avoiding the attack on the next channel.

Proof: The proof of this lemma follows by verifying that

PrðT1jTi; hÞ is an increasing function of i, i.e.,
PrðT1jTiþ1; hÞ > PrðT1jTi; hÞ: (14)

From (4), we can understand that, the more a defender SU

stays on a certain channel, the higher the probability of

experiencing attack in the next time-slot. However, by com-

bining (4) and (9), we can also find that, the longer a defender

stays on a certain channel and transmits successfully, the

lower the probability of experiencing attack in the next time-

slot when it hops randomly to a new channel. Intuitively, the

longer a defender stays on a channel undetected, the more

channels attackers have swept—in the current sweeping

cycle—unsuccessfully. It provides the defender an extra-room

to hop to a random channel from a larger subset of available

channels and it increases the probability of experiencing a suc-

cessful transmission in the next time-slot. &

Lemma 2: The more successive attacks attackers can perpe-

trate, the higher the chance of successful attack in the next slot.

Proof: The proof of this lemma follows by verifying that

PrðT1jDj; hÞ is a decreasing function of j, i.e.,

PrðT1jDj; hÞ > PrðT1jDjþ1; hÞ: (15)

Intuitively, the more an SU experiences consecutive trans-

mission failures, the fewer channels it has to hop onto for the

current packet transmission. Hence, when it hops, it is more

likely to be detected by attackers. Each transmission failure

comes with a significant cost to the victim SU. However, as

the chance of experiencing an OS-attack increases, so does the

chance of detection by the victim SU if action es is employed.

This means that SUs should balance their strategy between the

encounter of the OS-attack and the detection of an attacker on

the new channel, when they hop. &

C. Optimal Defense Strategy

An MDP consists of four components: a finite set of states, a

finite set of actions, transition probabilities, and immediate

rewards. We have modeled the defense problem as an MDP.

Now, we can find the optimal defense strategy by solving it.

For an MDP, a policy is defined as the action to take in each

state, i.e., p : Sn ! an. In other words, a policy maps each

state S 2 X to an action a 2 A and is represented by pðSÞ.
Among all possible policies, the optimal policy returns the

maximum expected total discounted payoffs. The value of a

state S is defined as the highest expected payoff, starting from

the state S and represented as,

V �ðsÞ ¼ max
p

E
X1
n¼1

dn�1UðnÞ
���S ¼ s

" #
: (16)

Here, the optimal policy p�ðSÞ returns the maximum

expected payoff. One important point is that, after making a

move from the current state, the remaining part of an optimal

policy should still be optimal. Therefore, the first move should

maximize the immediate payoff and the future expected pay-

off, which are conditioned on the current action. This is called

Bellman equation [43],

QðS; aÞ ¼
X
S0

PrðS0jS; aÞ UðS; a; S0Þ þ dV �ðS0Þð Þ;

V �ðSÞ ¼ max
Q

QðS; aÞ;
p�ðSÞ ¼ argmax QðS; aÞ:

(17)

Now, we can use the value iteration method to derive the opti-

mal defense strategy and show that the solution has a structure

mentioned in Proposition 1.

Proposition 1: The optimal policy can be represented by two

critical states k� 2 f1; 2; � � � ;Kg and g� 2 f1; 2; � � � ;Gg, i.e.,

p�ðTiÞ ¼ s; if Ti < Tk�
h; otherwise

;p�ðDjÞ ¼ h; if Dj < Dg�
es; otherwise:

��
(18)

Proof: From (4) and (5), the probability of a successful trans-

mission with action stay (i.e., PrðTiþ1jTi; sÞ) decreases over i.
Therefore, from the definition of QðS; aÞ in (17), QðTi; sÞ �
QðTi�1; sÞ < 0. Now, (9) indicates that the probability of a suc-
cessful transmission with action hop (i.e., PrðT1jTi; hÞ)
increases over i. Therefore, QðTi; hÞ �QðTi�1; hÞ > 0. Now,

the optimal action at state Ti is stay if QðTi; sÞ � QðTi; hÞ, or
hop if QðTi; hÞ � QðTi; sÞ. Since QðTi; sÞ is decreasing and

QðTi; hÞ is increasing, there exists a k�, where QðTk��1; sÞ �
QðTk��1; hÞ and QðTk� ; hÞ > QðTk� ; sÞ, and k� 2 f1;
2; . . . ;Kg. This concludes the first part of the proof.

Similarly, from (11)-(15), we can show that QðDj; hÞ <
QðDj�1; hÞ and QðDj; esÞ > QðDj�1; esÞ. Therefore, there

exists a g�, where QðDg��1; hÞ � QðDg��1; esÞ and QðDg� ; esÞ >

QðDg� ; hÞ, and g� 2 f1; 2; � � � ;Gg. This concludes the second

part of the proof. &

Please note that since the defender hops to another channel

when it reaches the state k�, it refrain itself from entering the

states larger than k�. Therefore, in a scenario where k� < K,

the Markov chain becomes irreducible.

Corollary 1: The threshold k� is decreasing in L, and

increasing in both C andM.

Proof: We begin the proof by shedding light on the fact

that for any Ti0 > Ti (where Ti02 f2; 3; � � � ; Kg and Ti

2 f1; 2; � � � ; K � 1g), QðTi0 ; sÞ �QðTi; sÞ is increasing in L
and decreasing in K, where K is an increasing function of M.

In addition, QðTi; hÞ is decreasing in C, thus verifies that k� is
increasing in C. This concludes the proof. &

Corollary 2: The threshold g� is decreasing in L, E, and C,

and increasing inM.

Proof: The proof follows by noting that for any Dj0 > Dj

(where Dj02 f2; 3; � � � ; Gg and Dj 2 f1; 2; � � � ; G� 1g),
QðDj0 ; hÞ �QðDj; hÞ is increasing in L and C, and
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decreasing inM. Moreover, QðDj; esÞ is increasing in E, thus

verifies that g� is decreasing in E. This concludes the proof. &

Summary: An SU’s strategy to use an underutilized channel

as long as plausible and the iterative process of random-OS

attacks facilitate the design of the attack and defense problem

as an MDP. The proposed defense can be summarized in two

aspects: (1) an SU keeps utilizing an underutilized channel for

k� time-slots and then hops to another channel, and (2) after

g� successive transmission failures, an SU takes the action

extra-sense. In this paper, we consider that the strategy of

attackers remains unchanged, and the strategy of attackers can

be learned over time. Nevertheless, an attack and defense

problem is comparable to an arms race: the attacker and

defender will change their strategies to outsmart each other.

Moreover, most existing research works consider that attack-

ers are ubiquitous, i.e., attackers are always present. This con-

sideration demands wireless devices to take defensive actions

all the time, even if these actions come at the cost of network-

ing performance. We propose a detection technique (explained

in the next section) to infer the presence of attackers and to

deploy defensive strategies accordingly.

VI. PROPOSED ATTACK INFERENCE MODEL

In this section, we propose an attack inference model to

detect the presence of attackers. The proposed model has two

features: 1) it utilizes the in-hand sensing history of the victim;

hence, no networking overhead occurs to estimate PU parame-

ters, and 2) it does not violate any policy and hardware con-

straints; hence, no policy change and extra hardware required.

Depending on the parameters of the model, it helps the safe-

guard process to detect the presence of attackers.

The optimal defense strategy in each state depends on the

transition probabilities, which requires the exact knowledge of

network parameters (i.e., a, b, m). In reality, it is impossible

for a victim to know the exact network parameters to devise

the MDP, especially, when it can change over time (e.g.,

attackers’ presence is uncertain, the number of attackers may

change, and PU activities may change). Therefore, an SU

must learn the MDP over time. A model-based learning tech-

nique requires the Markov process to exhibit constant parame-

ters over time, and it has a limitation in scalability; hence, a

model-free learning is best suitable for this scenario. We

employ the Q-learning technique that works as a model-free

off-policy method, learns the game without the need of transi-

tion probabilities, and fits well with sudden changes in MDP

parameters. Fig. 8 shows the framework of the proposed attack

inference model and Q-learning.

A. Q-Learning

The Q-learning tries to approximate the unknown transition

probability by the empirical distribution of states that have

been experienced over time. It iteratively calculates and

updates the Q-value based on the state-action tuple (S; a; S0).

QnðS; aÞ ¼Qn�1ðS; aÞ þ g RðS; a; S0Þ þ dVnðS0Þf g½
�Qn�1ðS; aÞ�;

VnðSÞ ¼max
Q

QnðS; aÞ;
(19)

where g is the learning rate and d is the discount factor.

In Q-learning, there is no fixed policy while learning the

MDP and agents take random actions (with probability �) to
discover the MDP. However, the randomness decreases over

time (i.e., � ! 0) and defenders are more likely to take actions

with highest Q-values. After Q-values converge, the learning

process ends. The optimal policy after the learning period is,

p�ðSÞ ¼ argmax QnðS; aÞ; a 2 A; S 2 X: (20)

In quest of learning the optimal policy, the defender makes

mistakes and takes random decisions to explore the MDP.

Hence, Q-learning engenders a cost in performance, and it is

represented by regret that quantifies the difference between

the expected rewards (while learning) and the optimal

rewards. Therefore, the more the defender learns, the fewer

mistakes it makes (i.e., regret is a decreasing function of time).

Hence, to minimize the learning cost, the attack inference

model re-initializes the learning process (i.e., reinitialize �)
when the model detects the presence of OS-DoS attackers.

B. Attacker’s Presence Detection

In this approach, benign SUs initiate their operation with

three policies: 1) stay on the current channel until a transmis-

sion failure (i.e., pðT Þ ¼ s) occurs, 2) hop to another channel

after a transmission failure (i.e., pðDÞ ¼ h), and 3) hop to

another channel after sensing the channel busy in the sensing

interval (i.e., pðP Þ ¼ h). Without detecting the presence of

OS-attackers, Q-learning does not employ the action es.
With recorded historic states and actions, SUs are able to

compute the occurrences of transitions given any action. For

example, the notation NS;S0
a represents the total number of

transitions from state S to S0, taking action a.
We define Tp , maxfT : NTi;Tiþ1

s ¼ 0g (e.g., under-attack,

Tp ¼ K). From (5), we can understand that the absence of

attack (i.e., Pratjs ¼ 0) will result in an empirical probabilitycPrðD1jTi; sÞ ¼ N
Ti;D1
s

N
Ti;D1
s þN

Ti;P
s þN

Ti;Tiþ1
s

that is close to the proba-

bility of transmission failure by PUs only,

PrðD1jTi; s; Pratjs ¼ 0Þ ¼ ð1� bbÞf1� ð1� bbÞlg; (21)

Fig. 8. The Q-learning and attack inference model.
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where bb represents the PU traffic parameter from empirical

observations, which will be explained later in this section.

Now, with the presence of attackers (i.e., Pratjs > 0),cPrðD1jTi; sÞ > PrðD1jTi; sÞ. We represent this by,

Xn
i ¼

cPrnðD1jTi; sÞ � PrnðD1jTi; s;Pratjs ¼ 0Þ
PrnðD1jTi; s;Pratjs ¼ 0Þ ; (22)

where cPrn and Prn represent empirical probabilities after n
time-slots (i.e., cPrn and Prn are running parameters).

SUs track these values of Xi over time. From (4) and (5),

we can observe that Pratjs increases with the residence time of

SUs on a channel. Therefore, to deduce the presence of attack-

ers,Xi values should conform to the requirement below,

Xn
1 < Xn

2 < � � � < Xn
p�1 < Xn

p : (23)

This inequality characterizes the primary condition to detect

the random-OS attack. It differentiates the random-OS attack

from the naive attack where m attackers randomly choose m
channels in each slot with equal probabilities (i.e., m=M), and

it does not consider which channels have been detected in the

past. Therefore, Xn
i will not meet the requirement in (23),

instead, the values ofXn
i will lie within a close approximation,

Xn
1 ¼ Xn

2 ¼ � � � ¼ Xn
p�1 ¼ Xn

p 	 c; (24)

where c is a constant.
Since each channel has an equal probability of encountering

attack in the naive approach, hopping strategy cannot reduce

the risk of attacks. Moreover, the hopping cost makes it a futile

effort to avoid the attack by hopping from one channel to

another. Hence, SUs stay on the same channel until they sense

the PU reappearance or experience a transmission failure.

Next, we consider a safety margin t to finally trigger the

presence of attackers in the network. Besides a safety margin,

t also works as a trade-off parameter between performance

and security. We compare the value of Xn
1 to t to decide the

presence of attackers. Since the state T1 is visited more fre-

quently than other T states, we make an educated choice of

comparing the safety margin with Xn
1 . Therefore, the second

requirement is,

Xn
1 > t: (25)

We can further control it by starting a counter when (23) and

(25) are met, then triggering the attack flag once these require-

ments are consistently met for a certain time.

C. PU Traffic Parameter Estimation

We define S , fT1; T2; � � � ; Tp � 1g and H , fP;D; Tpg.
Now, given the state transition history NS;S0

a over time, we

can deduce the empirical value of the PU traffic parameter,

bb ¼
P

T2S N
T;P
sP

T2S NT;P
s þNT;D

s þNT;Tþ1
s

� � ; (26)

br ¼
P

S2H NS;P
hP

S2H NS;P
h þNS;D

h þN
S;T1
h

� � : (27)

The empirical value of bb remains unaffected by the presence

of attackers. It depends on the results from the sensing inter-

val, and OS-attackers remain inactive during this interval.

Therefore, (26) provides a close estimation of the actual PU

parameter to decide the presence of attackers in the network.

D. Empirical Distribution

For transmission states (i.e., Ti), the estimated probability

from sample transitions are,

cPrðS0jTi; sÞ ¼ NTi;S
0

sP
S0 N

Ti;S
0

s

; (28)

where S0 2 fP;D1; Ti þ 1g and Ti 2 fT1; T2; � � � ; Tp � 1g.
For transmission failure states (i.e., Di), the estimated prob-

ability from sample transitions are,

cPrðS0jDj; hÞ ¼ N
Dj;S

0
hP

S0 N
Dj;S

0
h

; (29)

where S0 2 fP;Dj þ 1; T1g andDj 2 fD1; D2; � � � ; DG � 1g.
And, for the busy state (i.e., P ), the estimated probability is,

cPrðS0jP; hÞ ¼ NP;S0
hP

S0 N
P;S0
h

; (30)

where S0 2 fP; T1; D1g.
Summary: Unlike previous research, we consider the

absence and the presence of attackers. It helps us to avoid

unnecessary defensive measures (e.g., action es), when attack-

ers are absent. When attackers initiate an OS-DoS attack, the

proposed attack inference model detects the attack using empir-

ical observations from its sensing results and re-initializes the

Q-learning process (i.e., re-initialization of �) to minimize the

regret (i.e., learning cost) and to take appropriate action (i.e.,

action es).

VII. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate the

performance of our proposed research. Here, we consider that

the victim SU detects an attacker, but does not oust it from the

network; the appropriate attack response (e.g., network isola-

tion, bandwidth limitation, and network elimination) is an

open research issue. Unless otherwise stated, the simulation

parameters are:

The presented simulation results are the average of 100

independent trials.

A. Random-OS Attack

In this work, we consider that attackers do not have any pre-

determined knowledge of the victim’s channel hopping
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sequence and operating channels. Therefore, we discard the

comparison with conventional OS-DoS attack where the vic-

tim experiences null throughput regardless of the number of

attackers (i.e., unrealistic scenario). Fig. 9 demonstrates the

performance of the random-OS strategy in contrast to the

naive approach, where attackers do not consider the knowl-

edge of which channels have been visited in the past, instead

randomly select channels at each time-slot.

In Fig. 9(a), the normalized throughput is shown, where vic-

tims experience less throughput in the random-OS attack due

to the iterative process and the re-randomization technique of

random-OS. Likewise, victims of the random-OS attack suffer

more transmission failures (Fig. 9(b)) and higher rate of

packet drop (Fig. 9(c)). However, transmission failures are not

enough to cause significant packet drop or DoS attack unless

attackers can perpetrate it consecutively. This reflects in Fig. 9

(c) where the packet drop rate follows a different trend than

the rate of transmission failure; the packet drop rate starts to

increase exponentially after m ¼ 10. Therefore, in this sce-

nario, more than 10 attackers are required to cause significant

damage to the victim.

B. Critical States

We demonstrate the critical states k� and g� of the optimal

policy (Fig. 10) derived from the value iteration of the MDP,

with the change in the number of attackers (m), the cost of

transmission failure (L), the reward of attacker detection (E),

the cost of channel hopping (C), and the number of operating

channels (M).

Effect ofm: In Fig. 10(a)-(h), both k� and g� decrease with the
increase in the number of attackers. As m increases, attackers

can visit more channels in each time-slot; hence, K starts to

decrease, and SUs have less channels to hop on after each trans-

mission failure. Therefore, the channel residence time decreases

and SUs have to hopmore frequently to avoid the attack.

Effect ofL: In Fig. 10(a) and 10(e), as the cost of transmission

failure L increases, SUs tend to hop more to avoid imminent

transmission failures, thus k� decreases. However, g� demon-

strates relatively less sensitivity towards changes in L due to the

significantly high cost ofQ. In transmission failure states, choos-

ing action es over h means that the defender has to compromise

its packet transmission regardless of the outcome of the action

es; hence, the defender is reluctant to take action es.
Effect of E: In Fig. 10(b), k� remains almost insensitive to

the change in the reward of attacker detection E. Because E
largely dictates the action es only, stay and hop from transmis-

sion states remain out of its influence. For the similar reason, in

Fig. 10(f), g� illustrates linear sensitivity to the change in E.

Therefore, as the reward for detecting an attacker increases,

SUs become more motivated to take the action es instead of

hop, to detect attackers. The parameter E works as a trade-off

parameter between the networking performance and the secu-

rity performance. Lower and higher values of E mean that vic-

tims have more tendency toward avoiding and victims have

more tendency toward detecting OS-attackers, respectively.

Effect of C: As discussed in Section V, channel hopping

engenders insignificant cost in terms of channel throughput;

we quantify this cost by C. In Fig. 10(c), we can observe that

k� increases with C. As C increases, defenders become reluc-

tant to take action hop and stays in a channel longer. There-

fore, the cost of hopping significantly impacts the proposed

defense strategy because defenders become limited in their

capability to utilize the channel diversity a multi-channel net-

work has to offer. However, unlike k�, g�—though exhibits

very low sensitivity—decreases with C (Fig. 10(g)).

Effect of M: As the number of channels M increases, the

maximum channel residence time K increases. Therefore,

attackers have more channels to sweep through and defenders

have more time to stay on a channel. In Fig. 10(d), we can

observe that k� increases linearly with the increase ofM. Sim-

ilarly, as M increases, defenders experience more incentive to

hop through different channels than to detect attackers. As a

result, g� increases withM.

C. Hide and Seek

Fig. 11(a) compares the performance of our proposed hide

and seek strategy with three scenarios: no defense, hide and

Fig. 9. Performance of the random-OS attack.

TABLE I
SIMULATION PARAMETERS
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seek with no reward (E ¼ 0), and hide and seek with a high

reward (E ¼ 50). It illustrates that both E ¼ 0 and E ¼ 50
follow the same line until the number of attackers surpasses

m ¼ 10 (when E ¼ 50); the throughput drops below the no

defense line afterwards. We call this moment the switching

point after which the victim prefers to detect attackers (using

the action es) rather than avoiding them (using the action

hop); hence, the throughput drops. As E increases, the victim

becomes more motivated to detect attackers and the switching

point moves to the left. As discussed earlier, E works as a tun-

ing parameter between the networking and security perfor-

mance. Likewise, in Fig. 11(b), we can observe that the

transmission failure decreases after the switching point. How-

ever, after m ¼ 12, it starts to increase again due to the

increasing number of attackers.

D. Q-Learning and Attack Inference Model

We evaluate the performance of Q-learning (Fig. 12 (a)) by

showing the difference in mean reward after each episode

between an SU that knows the optimal values and an SU that

learns the MDP over time via Q-learning. Here, we can

observe that in both cases (i.e., m ¼ 2 andm ¼ 3), the reward

converges to the optimal reward. However, with m ¼ 3, the
agent converges more quickly due to the fewer amount of

states.

In Fig. 12(b), the performance of our proposed attack infer-

ence model is shown with different values of the threshold t. We

change the scenario from m ¼ 0, M ¼ 10 to m ¼ 2, M ¼ 10
at epsiode ¼ 501. As the MDP progresses, an SU takes fewer

random actions (i.e., � decreases); hence, it takes more time

to track the changes without the assistance from the attack in-

ference model. The proposed model assists the Q-learning to

detect changes in the MDP and re-initializes the parameter � to
minimize the regret based on the threshold t. With t ¼ 0:2 and

t ¼ 0:6, the attack inference model detects the presence of the

attacker on epsiode ¼ 549 and epsiode ¼ 753, respectively.
Hence, a lower value of t assists the SU to track the changes

sooner and yields in less regret.

VIII. CONCLUSION

In this paper, we proposed a new strategy, random-OS, to

perpetrate OS-DoS attacks without any predetermined knowl-

edge of the victim’s channel hopping sequence. Afterwards,

we proposed an MDP-based safeguard approach, hide and

Fig. 10. The sensitivity of optimal values to the changes in L, E, C, andM.

Fig. 11. Performance of Hide and Seek. Fig. 12. Performance of Q-learning and attack inference model.
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seek, to avoid and detect the proposed attack. We showed that

by hopping to random channels, an SU can avoid the OS-DoS

attack, and when it becomes necessary (based on rewards) to

detect interference, it employs an extra-sensing interval to

detect the attack. Here, the victim SU learns the optimal policy

using Q-learning. Lastly, we proposed an attack inference

model to detect the presence of attackers and to reinitialize the

learning process to incur less regret.

Numerical investigations and simulation results showed that

the random-OS outperforms the naive approach and the hide

and seek improves the network throughput without ousting the

attackers. To the best of our knowledge, this is the first work

that introduced a new avenue in designing defensive measures

of OS-attack without changing the FCC policy.
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