Adaptive Security Support for Heterogeneous Memory on GPUs

Shougang Yuan', Amro Awad!, Ardhi Wiratama Baskara Yudha?, Yan Solihin?, Huiyang Zhou'

! Dept. of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, USA

{syuan3, ajawad, hzhou}@ncsu.edu
2 Dept. of Computer Science, University of Central Florida, Orlando, FL, USA

{yudha@knights.ucf.edu, Yan.Solihin@.ucf.edu}

Abstract— The wide use of accelerators such as GPUs
necessities their security support. Recent works [17], [33],
[34] pointed out that directly adopting the CPU secure memory
design to GPUs could incur significant performance overheads
due to the memory bandwidth contention between regular data
and security metadata. In this paper, we analyze the security
guarantees that used to defend against physical attacks, and
make the observation that heterogeneous GPU memory system
may not always need all the security mechanisms to achieve
the security guarantees. Based on the memory types as well as
memory access patterns either explicitly specified in the GPU
programming model or implicitly detected at run time, we
propose adaptive security memory support for heterogeneous
memory on GPUs. Specifically, we first identify the read-only
data and propose to only use MAC (Message Authentication
Code) to protect their integrity. By eliminating the freshness
checks on read-only data, we can use an on-chip shared counter
for such data regions and remove the corresponding parts in
the Bonsai Merkel Tree (BMT), thereby reducing the traffic
due to encryption counters and the BMT. Second, we detect
the common streaming data access pattern and propose coarse-
grain MACs for such stream data to reduce the MAC access
bandwidth. With the hardware-based detection of memory type
(read-only or not) and memory access patterns (streaming
or not), our proposed approach adapts the security support
to significantly reduce the performance overhead without
sacrificing the security guarantees. Our evaluation shows that
our scheme can achieve secure memory on GPUs with low
overheads for memory-intensive workloads. Among the fifteen
memory-intensive workloads in our evaluation, our design
reduces the performance overheads of secure GPU memory
from 53.9% to 8.09% on average. Compared to the state-of-
the-art secure memory designs for GPU [17], [33], our scheme
outperforms PSSM by up to 41.63% and 9.5% on average
and outperforms Common counters by 84.04% on average for
memory-intensive workloads. We further propose to use the
L2 cache as a victim cache for security metadata when the L2
is either underutilized or suffers from very high miss rates,
which further reduces the overheads by up to 4% and 0.65%
on average.

Keywords-GPUs, secure memory, heterogeneous memory,
encryption, integrity check, security metadata cache

I. INTRODUCTION

Graphic Processing Units (GPUs) are a major computing
resource in the cloud to accelerate a wide range of workloads
like machine learning and scientific computing. However,
current GPUs do not support trusted execution environments

(TEEs), which makes them vulnerable to a wide range of
attacks, including passive eavesdropping between a GPU and
its device memory [28], cold boot attacks [9], row-hammer
attacks [16], etc. Hence, there are growing needs to provide
TEEs for GPUs. CPU TEEs, such as Intel SGX [7], mainly
consider two types of threats: compromised system software
(including the operating system and hypervisor) and physical
attacks. To defend against the physical attacks, CPU TEEs
assume that the CPU chip forms the Trusted Computing
Base (TCB), and provide several security guarantees includ-
ing data confidentiality, integrity, and freshness.

Some recent works have tried to provide TEEs for GPUs
[10], [11], [17], [29], [33], [34]. Graviton [29] and HIX [11]
assume that the system software stack, including the GPU
drivers and the operating system (OS), cannot be trusted, and
the hardware (i.e., the PCle bus) is exposed to the attackers.
To protect against software attacks, Graviton offloads the
GPU management operations from GPU drivers to the GPU
command processor. HIX, alternatively, isolates the GPU
drivers from the kernel space and relies on CPU enclaves for
protection. To protect against physical attacks like the PCle
bus snooping, both Graviton and HIX provide schemes to
encrypt the data transferred over the PCle bus. However,
both Graviton and HIX include the GPU device memory in
the TCB, which makes them vulnerable to physical attacks
against GPU device memory. Common Counters [17],
PSSM [33] and the work by Yuan et al. [34] choose to
protect the GPU device memory with the similar protection
schemes to CPU TEEs, and conclude that secure memory
architectures for CPUs cannot be directly adopted for GPUs.
The main reason is that the security metadata, including
encryption counters, message authentication codes (MACs),
and integrity tree nodes lead to severe bandwidth compe-
tition with normal data accesses. Common Counters [17]
exploit the uniform memory access patterns in GPU appli-
cations by using common-value encryption counters to save
memory bandwidth due to accessing counters. PSSM [33]
recognizes that due to partitioned memory architecture on
GPUs, there can be a high amount of redundant metadata
if they are constructed using either virtual or physical
addresses. It then proposes to use partition-local addresses,
which are the addresses after partition mapping, to generate

the metadata so as to eliminate such redundancy. Further-
more, it also proposes to re-organize counter blocks for
sectored accesses. However, none of the previous works
explored how the unique memory characteristics of GPU
heterogeneous memory space can be leveraged to improve
the performance of secure memory in GPUs.

In this work, we start with investigating the security guar-
antees of CPU TEEs, and point out how the heterogeneous
nature of GPU memory space opens new opportunities for
high-performance secure implementations while retaining
the same security guarantees. GPUs have a heterogeneous
memory system including global memory, local memory,
shared memory, texture memory, and constant memory.
Moreover, even for general-purpose memory spaces (e.g.,
global memory), many GPU workloads feature streaming
memory access patterns. Our work leverages these GPU-
specific features to reduce the performance overhead due to
security metadata accesses.

In CPU TEEs like Intel SGX [3], [7], there are three
security mechanisms to protect against physical attacks.
First, Confidentiality (C), achieved usually with counter-
mode encryption, protects against memory bus snooping and
memory scanning attacks. Second, Integrity (I), achieved
with MAC (Message Authentication Code), protects against
memory tampering attacks. Third, Freshness (F), achieved
usually with integrity trees such as Bonsai Merkel Trees
(BMTs) [30] or Intel counter trees [7], protects against
replay attacks.

Our key observation is that for different types of GPU
memory, we can achieve the same security guarantees us-
ing different mechanisms. For example, constant memory
contains read-only data, which makes replay attacks mean-
ingless. Therefore guaranteeing integrity without freshness
checks for constant memory would be sufficient, which
eliminates the need for per-block encryption counters. This
observation also holds for other types of data as long as the
data are not altered during kernel execution. For many GPU
applications, all or parts of their input data, although residing
in global memory, are also read only either completely or
mostly during kernel execution. In Table I, we list different
types of GPU memory defined in the GPU programming
models like CUDA or OpenCL and the necessary security
mechanisms. Among them, on-chip memory does not need
protection as we include the GPU die in the TCB. Similarly,
in Table II, we list the types of the off-chip GPU memory
data based on their purpose and the associated security
mechanisms. Although the read-only information can be
readily available from the host programs (e.g., the OpenCL
specification of read buffers) or from compiler analysis, we
propose a lightweight hardware-based read-only detector,
which is capable of detecting part of a buffer (e.g., an array)
as read only as long as the kernel does not alter it. Once the
region is updated, the detector will no longer mark the region
as read only and will start employing per block counters as

well as fresh checks accordingly.

By leveraging the read-only property, we can reduce the
cost associated with encryption counters and the BMT. How-
ever, as identified in the previous work [33], the MAC traffic
can incur high performance overheads for memory-intensive
workloads. To address this challenge, we propose dual-
granularity MACs. Rather than the fixed MAC granularity
computed for each cache line/block, we use chunk/page-
level MAC for streaming data and block-level MAC for
random accessed data. To do so, we propose a hardware-
based streaming data detector, which classifies each memory
chunk as streaming- or random-accessed and employs the
MACs accordingly. Note that our proposed detectors, either
the read-only or streaming, do not need to be 100% accurate.
A miss-classification would simply mean lost opportunities
for performance saving rather than security vulnerability or
correctness violation. However, there are subtle issues to be
addressed as detailed in Section IV.

In summary, this work makes the following contributions:

o We analyze the security mechanisms of CPU TEEs
and make the important observation that not all the
different types of GPU memory require the same se-
curity mechanisms. The reason behind is that, GPUs’
memory system is heterogeneous and features unique
data accessing properties.

« Based on heterogeneous GPU device memory, specif-
ically, for read-only, we re-architect counter-mode en-
cryption and freshness protection to improve the per-
formance and better utilize the precious memory band-
width in GPUs.

o As MAC accesses can be a major performance over-
head, we propose dual-granularity MACs to reduce the
bandwidth consumption.

e« We propose two hardware-based detectors. One for
detecting read-only regions and the other for streaming-
accessed chunks.

« We present performance evaluation and show that our
scheme can reduce the GPU secure memory perfor-
mance overhead from 53.9% to 8.09% on average for
memory-intensive workloads.

o We further propose to use the L2 cache as the victim
cache for security metadata caches when the L2 is
either underutilized or suffers from a very high miss
rates, which further reduces the overheads by up to 4%
and 0.65% on average.

II. BACKGROUND AND RELATED WORK
A. Threat Model and Scope of Our Work

CPU TEEs such as Intel SGX assume that the system
software stack including the OS and hypervisor cannot be
trusted, and the servers can be exposed to the attackers who
may have physical control over the compute units [7]. To
protect against physical attacks, CPU TEEs assume that the

Table I
SECURITY MECHANISMS FOR GPU HETEROGENEOUS MEMORY

[Space | Location | Mechanisms |
Register on-chip —
Local Memory oft-chip C+I+F
Shared Memory on-chip -
Global Memory off-chip C+I1+F
Constant Memory | off-chip C+1
Texture Memory | off-chip | C+ 1 (+ F)
Caches on-chip -
Table II

SECURITY MECHANISMS FOR APPLICATION DATA

[Data | Property [Guarantees]
Application code | Read-only C+1
Input Read-only C+1
Output Read/Write | C+ 1+ F
In-flight Data Read/Write | C+1+F

processor chip forms the TCB [15]. In other words, all the
data leaving the processor chip need to be protected and
verified when fetched later. To this end, CPU TEEs provide
three major security guarantees, namely, confidentiality, in-
tegrity and freshness.

This paper assumes that GPUs’ device memory, specifi-
cally, the GDDR memory, is also vulnerable to the physical
attacks considered in CPU TEEs. The reason is that GDDR
memory is off-chip for GPUs and can be fully exposed
to attackers with physical access to the device. Thus, we
exclude the GPU GDDR memory modules from the TCB,
and assume that the GPU chip forms the security boundary.
High bandwidth memory (HBM), however, is not vulnerable
to physical attacks if it is soldered within the GPU chip
package, and is out of the reach for attackers.

The scope of this paper covers the protection of heteroge-
neous memory on GPUs, and we propose different schemes
to optimize the overheads resulting from the bandwidth
consumption of accessing security metadata. GPU context
isolation and management as well as PCle bus protection
scheme have been addressed in previous works [11], [17],
[29], and are assumed in our design. Furthermore, defending
against GPU side channel attacks [5], [12], [18] such as
timing-based side channel attacks is out of the scope of this
work.

B. Physical Attacks and Security Guarantees on CPU TEEs

CPU TEEs assume two types of physical attacks: passive
attacks and active attacks. Attackers with ability to perform
passive attacks can silently snoop the memory bus or scan
memory chips to steal the critical information from the
processor chip. Meanwhile, attackers with ability to perform
active attacks can tamper with memory content. Through
memory tampering attacks, attacker can randomly change
some bits in off-chip memory or communication channels

or carefully replay some old values to replace the off-chip
data.

To defend against the aforementioned attacks, CPU TEEs
define three security guarantees:

Confidentiality: The underlying mechanism to guarantee
the memory confidentiality is encryption, which enforces
every piece of data transferred over the memory bus or
stored in off-chip memory must be in ciphertext. By doing
so, attackers cannot get any meaningful information without
knowing the encryption key. Counter-mode encryption is a
commonly used way for low-latency encryption [24] in CPU
TEEs. With counter-mode encryption, per block counters
are maintained. A per block counter together with the
block address, encryption CID (a 128B cache line need
to be broken into multiple 16B chunks as the output size
of AES is 16B/128 bits) will be encrypted to generate a
one-time pad (OTP) for each last-level cache (LLC) write
back, where the same pad is used for decryption in case
of a memory read from the same address. The memory
controller can get the plaintext (ciphertext) by XORing the
OTP with ciphertext (plaintext). In counter-mode encryption,
the encryption counters cannot be reused because that would
enable known-plaintext attacks. State-of-art secure memory
implementations adopt split-counter organization [2], [22]—
[24], [30], [30], [31], in which a major counter shared by
many memory blocks in a large size memory region (e.g.,
one physical memory page) and a small minor counter is
maintained for each block. When a minor counter overflows,
only the blocks within the same memory region need to be
re-encrypted. The OTP generation of counter-mode encryp-
tion with split counters is shown as step (D and step @ in
Fig. 1.

|Ma.j0rcounlerMinorcuumerl Addressl CID ‘Paddmg| state

® _ ®

MAC engine

) " Ciphertext m g
Plaintext Oﬂ-cl"llpi

K1

Figure 1.

Counter-mode encryption and MAC generation.

Integrity: While memory encryption can protect against
passive attacks, attackers with the ability to perform active
attacks can modify the values in off-chip memory. Hence,
TEEs also need to ensure memory integrity. The underlying
mechanism to ensure memory integrity is MAC. As shown
in step @3, step @ and step @ in Fig. 1, at each LLC write-
back, the MAC is computed and stored in off-chip memory.
Note that state-of-art CPU TEEs also include the encryption
counters in the MAC computation, in which the counters
play a role of state. This scheme is proposed in [2], [22],
[30] and named stateful MACs. At each memory read, the
pre-computed MAC is fetched together with the ciphertext,

the memory controller reproduces the MAC based on the
fetched ciphertext and compares it with the fetched MAC.
If there is a mismatch, the memory controller would view
it as an attack and raise an exception.

Freshness: MAC can ensure the integrity. However, at-
tackers can carefully monitor the off-chip memory, and re-
place the memory block content with some stale values that
were legally generated by the processor in the past [27]. In
this case, the attacker can bypass MAC verification without
knowing the key of the MAC engine. This scheme is known
as a replay attack. To defend against replay attacks, the
CPU TEEs define the freshness guarantee. The mechanism
to ensure the freshness is integrity trees. An integrity tree is
a hash tree that covers the off-chip memory, while the tree
root is stored in an on-chip register. At each memory read
or write, the memory controller will traverse the integrity
tree to either verify the data read from off-chip memory or
update the tree nodes from leaf to root for writes. Fig. 2
illustrates different designs of integrity trees. Early CPU
TEEs use a regular or standard Merkle Tree to detect replay
attacks. However, as a standard Merkle Tree needs to cover
all the data and encryption counters, the integrity tree is
large. State-of-the-art CPU TEEs adopt different variants of
standard Merkle Tree, such as Bonsai Merkle Trees (BMT)
which covers only the encyption counters. In this work, we
use BMT in our evaluation while our proposed schemes are
independent upon the integrity tree implementation.

C. ECC on GPU GDDR Memory

Recent works [32] [25] show that the overhead of
accessing MACs for secure memory can be optimized by
re-purposing error correction codes (ECC). One may try
to adopt the same scheme to address the bandwidth re-
quirements of accessing MACs for GPUs. However, the
ECC implementations on GDDR memory is different from
conventional ECC designs on CPU DIMMSs, in which a
dedicated memory chip is used to store the ECC. On GDDR
memory, as officially documented on CUDA toolkits [4]:
”On GPUs with GDDR memory with ECC enabled the
available DRAM is reduced by 6.25% to allow for the
storage of ECC bits. Fetching ECC bits for each memory
transaction also reduced the effective bandwidth by approx-
imately 20% compared to the same GPU with ECC disabled,
though the exact impact of ECC on bandwidth can be higher
and depends on the memory access pattern.” In other words,
GDDR memory treats ECC as regular data and does not
have dedicate channels to access ECC. This observation
motivates our dual-granularity MAC design, which aims to
reduce the MAC bandwidth while being compatible with
GDDR memory architecture. Although it is possible to add
ECC chips for GDDR memory, such a design incurs high
bandwidth overhead (e.g., 1/8 bandwidth if 1B ECC for 8B
data). Unlike CPUs, which are latency sensitive, GPUs are
bandwidth sensitive and it is always desirable to use all the

bandwidth for data access.

III. MOTIVATION AND DESIGN PRINCIPLES
A. Heterogeneous Memory on GPUs

To achieve high-throughput computation, GPUs have a
complex heterogeneous memory system. It includes reg-
isters, local memory, global memory, constant memory,
texture memory and several levels of caches. Among these
different memory spaces, some are on-chip and do not need
any protection as the GPU chip forms the trusted boundary;
some are off-chip but have special access constraints during
kernel execution, while the remaining ones are vulnerable to
conventional physical attacks, and need strong protections.

We analyze the security mechanisms on CPU TEEs, and
make the observation that GPUs may not always need
freshness guarantee for some memory spaces due to their
read-only nature during kernel execution. We show the
summary of our analysis on Table I. One observation we
make is that the integrity tree does not need to cover read-
only spaces like constant and texture memory.

Moreover, as pointed out in previous work [17], some
global memory data are most likely to be read-only. The
reason is that GPU adopts a copy-then-execute model, and
the data copied from host memory will not be updated
anymore on device memory after the initial copy. For
example, In OpenCL programs, the input buffer can be
explicitly defined as read only. CUDA programs, however,
allow the kernel code to modify the input, which necessitates
the freshness checks. Toward this end, we also analyze the
security protections from the application perspective and
show it in Table II. Similar to the constant and texture
memory spaces, these read-only data also do not need
freshness checks.

B. Seed Generation in Counter-Mode Encryption

Counter-mode encryption fundamentally requires that the
counter used in each message encryption must be unique
because counter reuse makes the encryption vulnerable.
Hence, in counter-mode encryption, a per block counter
is maintained and incremented at every LLC write back.
Among the different components of the encryption seed that
is fed into the AES engine, the counters are used to ensure
the temporal uniqueness, while the address and CID are used
to ensure the spatial uniqueness. A key observation for read-
only memory regions, including constant memory, texture
memory and some input data, is that these memory spaces
are not modified during single kernel execution. In other
words, there is no need to maintain the temporal uniqueness
for read-only regions in single kernel execution. However,
we identify a potential physical attack scheme, called cross-
kernel replay attack, if the GPU context contains multiple
kernels. In a multi-kernel workload, the read-only memory
space (e.g., constant memory) may be reused (i.e., over-
written by the host) across different kernel invocations.

TCB Secure Root

TO Value 0 - 4

T1 Value 1

. Rad
L ,
4 s
H s’
H ,
H .
/ ;

[Secure Root |
ren (SR

!
i
/

Data

o’
T2 | Data |'\"|LN‘:S i Countersl

MT MACSs of MT
Nodes ‘ ‘ L ‘ Data Coumers‘ Nodes ‘

(U= = B

(a) Replay Attack

Figure 2.

Temporal unigueness Spatial uniqueness

¥

(a) Address | CID |Padding |

(b) |Sharedcounterl Padding |Address CID |Padding|

Temporal unigueness Spatial uniqueness

Figure 3.
data.

Seed generation for (a) not-read-only data and (b) read-only

An attacker can replay the read-only values from previous
kernels if she/he has physical access. Hence, we need a
mechanism to keep temporal uniqueness for read-only space
in such scenarios. A shared counter is introduced for this
purpose. For non-read-only memory, the full seed is still
generated with split counters as shown in Fig. 3(a). For
read-only regions, the major counter is replaced with a
shared counter, which is stored on chip as a special register,
and the minor counter are zero-padded (more details in
Section IV). Since the shared counter is stored on-chip
and is out of the reach of attackers, there is no need to
check its integrity and freshness. As a result, the integrity
tree does not need to cover the read-only data as shown in
Fig. 4. Consequently, the memory bandwidth overheads due
to integrity tree traversing are also eliminated.

[Root]

G

Non-read-only region

Read-only region

Figure 4. Integrity tree with read-only regions excluded.

C. Overhead of MAC Accesses

As pointed out by previous work [33], accessing the
MACs can be a major overhead for secure GPU memory
because at each off-chip memory read/write, the correspond-
ing MAC block must be fetched/updated if it misses in the
MAC cache.

(b) Standard Merkle Tree

(c) Bonsai Merkle Tree

Replay attacks and different integrity tree designs to defend them.

To save the memory bandwidth for accessing MACs,
PSSM [33] truncates the MAC from 8B to 4B. However,
truncating the MAC reduces the collision space as proved
by the birthday attack paradox [8] — ”With a birthday
attack, it is possible to find a collision of a hash function in
V2% = 27/2 | with 2" being the classical preimage resistance
security”. As a result, with n = 50, it is possible to find
a collision by every v/250 = 250/2 — 225 memory updates.
For a 4 GB device memory, there are 232/27 = 225 memory
blocks with the block size of 128B. If n < 50, there would
likely be a collision if an attacker writes to all the blocks.
In other words, the minimum size of MAC needs to be at
least 50 bits to provide collision resistance if the MAC is
generated for each cache line. CPU secure memory uses
a 8B MAC per cache block. Directly adopting this MAC
granularity to GPUs, however, incurs significant bandwidth
pressure.

Our work exploits the unique memory access pattern in
GPUs. As pointed out in previous work [17], [34], GPU
applications feature streaming data accesses. With stream-
ing accesses, all the blocks within a memory region are
accessed. The implication is that one 8B MAC can protect
a larger memory chunk (e.g., one memory page) than a
cache line/sector. The challenge, however, is that such a
coarse-grain MAC would incur more bandwidth pressure
for randomly accessed regions because at each MAC cal-
culation, all the memory blocks within this memory chunk
are needed. As shown in Fig. 5, although GPU features the
streaming access pattern, there is still a significant portion
of the memory accesses, which access memory in a non-
streaming (or random) manner. To solve this problem, we
propose dual-granularity MAC, in which an 8B MAC is
maintained for each streaming accessed chunk, and an 8B
MAC is maintained for each cache line within a random-
accessed chunk.

IV. ARCHITECTURE DESIGN
A. Overall Architecture

Similar to previous works [17], [33], [34], we assume
that the GPU chip forms the TCB. The overall GPU secure
memory architecture is shown in Fig. 6. We adopt a
scheme similar to PSSM [33], which integrates the memory
encryption engine (MEE) into each memory controller and

W sireamming ™ read-only
100%
80%
g
=
£ 60%
o
£
T 40%
B
o
S 20%
o
0%
R & o ad &
éd‘@ m £ & e \ @u & F 6‘“?9
,&F‘ + c,‘ P <)
‘7\@'
Figure 5. The ratio of memory accesses (i.e., L2 misses and L2 write

backs) accessing streaming data as well as read-only data in various GPU
workloads.

each MEE solely protects a single GDDR memory partition.
The metadata caches (MDCs) including the counter cache,
the MAC cache and the BMT cache, are embedded into
each memory controller to save the bandwidth for accessing
security metadata, which are generated using the partition
local addresses to remove redundancy across partitions [33].
A secure root is stored in each partition for its corresponding
integrity tree. A new on-chip shared counter is introduced
as a special on-chip register, which is shared by all the read-
only regions for encryption/decryption.

With the MEE on GPUs, each memory access is for-
warded to the MEE, to encrypt/decrypt and authenticate
the data. A key generator is also integrated onto the GPU
command processor. When a GPU context is initialized,
the key generator produces a key tuple (K, K,, K3) for
memory encryption, memory integrity and integrity tree,
respectively.

The security metadata is stored in off-chip GDDR mem-
ory. Compared with conventional CPU TEEs, we allocate
space for dual-granularity MACs, per block MAC, which is
calculated from each data cache line and its corresponding
counters as discussed in Section II; and per-chunk MAC,
which is produced by hashing the per block MAC within this
chunk. During GPU context initialization, both per chunk
and per cache line MACs are calculated and written into
the device memory since we assume streaming accesses
by default. At runtime, the hardware predicts the memory
access patterns, and makes the decision of fetching either the
per block MAC or per chunk MAC to verify the data read
from off-chip memory. Note that for the read-only regions,
neither the per block MAC nor per chunk MAC will be
updated during kernel execution.

To adaptively select the data protection mechanisms, the
GPU hardware needs to be aware of the data type (i.e., read
only or not) and the pattern (i.e., streaming or not). Hence,
we propose hardware-based detection schemes to detect the
read-only regions and streaming accessed chunks, as shown
in Fig. 7, which illustrates the design in one memory

partition. In our baseline GPU, there are two L2 banks in
each partition. In each memory partition, we maintain two
prediction bit vectors, one as read-only predictor and the
other as streaming predictor, and several memory access
trackers (MAT) to detect the streaming access pattern. For
the read-only predictor, the bit vector is maintained with
the granularity of a memory region with the region size of
M kB (e.g., M = 16) using local addresses. Here, we use
the terminology from [33], where a local address means
the offset within a partition after the physical address is
mapped to partition ID and partition offset. The streaming
data prediction vector is maintained with the granularity of
a memory chunk (e.g., 4 KB) using local addresses.

[sm][sm][sm |[sm | sm |

Key Generator

[Interconnection Network |

MEE | [“.) H v
[mDC | .. |L2 bank | | L2 bank L2 bank
) MemCtr | |MemCtr MemCtrl
Coumer ,’1’ GDDR 0| [GDDR 1 GDDR N

|Coumer5]BMT nodes Fhunk MAC| Block MAC

Figure 6. Overall architecture.

B. Detecting Read-only Regions

To detect read-only regions at runtime, we use an N-
entry bit vector, which is indexed with the region ID. For
example, with the region size of 16 KB, the least significant
14 bits of a local address will be ignored and the next
loga N bits are the index to the bit vector. All the entries
in the bit vector are initialized to 0, representing not-read-
only by default. During GPU context initialization, when
the command processor allocates the memory space for the
input region, all the regions updated by CUDA memory
copy APIs will be set to be as read only by setting the
bit vector entries to 1. If the GPU programming model is
able to provide additional information on different regions
(for example, the input buffer of openCL programs), the
corresponding bit vector entries can also be initialized by
the command processor. In our evaluation, we do not assume
such support from the programming model or compiler.

During kernel execution, once a memory region is updated
by a store instruction or another CUDA memory copy API,
the corresponding bit in the bit vector will be reset to 0,
indicating that this region is not read only. Since all read-
only regions share a single on-chip counter, once a region is
detected as not read only, we need to resort to the per block
counters, whose values will be propagated from the shared
counter. To do so, we reserve the counter storage space in
the off-chip memory as if all the protected space would use
per block counters. Note that although allocated, the per

block counters corresponding to read-only regions are not
accessed. If a region transits from read-only to not-read-only,
the shared counter will be copied as the major counter for
this memory region, and the minor counter corresponding
to the block to be updated will be incremented by one
from the padding value (0 by default). Simultaneously, the
minor counter of other blocks within this region will be
set as the padding value. Fig. 8 shows such an example.
During step (a), a memory region A is in read-only state (the
corresponding bit in read-only vector is 1), and the shared
counter value is 3. In step (b), when a write request (i.e.,
a write to A[2] or the third cache line in region A) is sent
to the memory partition where region A is located, the bit
in the read-only bit vector will be reset to 0 immediately,
indicating per-block counters will be used for region A
afterwards. In the meanwhile, counter update requests are
generated to update all the major counter corresponding
to region A as the value of shared counter and the minor
counter corresponding to block A[2] will be incremented by
1 from the padding value. These updates occur directly in
the counter cache. In our example, the shared counter is 3
and the padding value has been initialized as 0. Therefore,
the counter update increments the block counter for A[2]
by 1, and sets its corresponding major counter as 3. In step
(c), there is another update to A[l], i.e., the second block
in region A. Since per block counters have been used, the
corresponding minor counter is incremented as shown in
the figure. During step (b), after propagating the per block
counters, the BMT also needs to be updated to cover the
newly added region by traversing from BMT leaves to the
root. This is achieved naturally as a result of counter updates.

Since our bit vector is indexed with region id and we do
not keep tag information, it is possible that different regions
map to the same bit in the bit vector. This would lead to lost
opportunities for bandwidth saving but will not affect the
security or correctness. The reason is that we only allow a
chunk to transit from read-only to not-read-only. As a result,
conflicts in the bit vector can only miss-classify a read-only
region as not-read-only. In this case, per block counters are
used although all the counter values would be 0.

As mentioned above, in our read-only detection scheme,
once a region is detected as not-read-only, it will always stay
in this way. This may be over pessimistic in recognizing
read-only regions. When analyzing the GPU workloads,
we found that some multi-kernel applications may reuse
the input region such that right before each kernel invo-
cation, new input data from the host are copied to the
same device location and such inputs are read only during
kernel execution. Following our scheme, however, once a
region is overwritten, it will be recognized as not-read-only.
To recover such opportunities, we propose to a new API,
Input ReadOnlyReset(addressrange), which informs the
command processor to (a) reset the regions within the
specified address range as read only, and (b) reset the shared

counter value to the maximum major counter value within
this specific range to avoid counter reuse. The reason for
resetting the shared counter is to avoid the abuse of this API
for cross-kernel replay attacks discussed in Section III-B.
To reset the shared counter value, the command processor
need to issue a request to the memory controller and scan
the counter values for the regions specified by this new APIL.
This process can be illustrated in Fig. 9. When a memory
region, i.e, addr_range, is reset to be read-only by this
API, the corresponding counter region is scanned and the
maximum per block major counter value is returned (90,
in this case), and this maximum per block counter is then
compared with the shared counter value to update the on-
chip shared counter. As showed in previous work [17], the
memory scanning overhead is typically negligible due to the
high bandwidth accesses of consecutive memory locations.

The consequence of altering the shared counter is that
the previously detected read-only regions cannot be reused
as they are encrypted with the old shared counter value.
In our study, we found that the multi-kernel workloads
completely overwrite the input region and do not reuse read-
only regions. For a workload with such read-only region
reuses, we can choose to (a) not take advantage of this
new API and treat the otherwise read-only regions as not-
read-only, and (b) re-encrypt the affected region with the
new shared counter value. Note that resetting a not-read-
only region to read only has no impact on the BMT, as the
affected path is simply not traversed if the region is indeed
read only. If not, any update to the region will make it not-
read-only and update the per-block counters, which induces
BMT traversing to the root.

L2 bank| Prediction Path Update Path

,,,,,,,,,,,,,,,,,,,,, T

A
Read-only g vector Streaming & vector
L2 migses/write packs [EILT0 o

Wrile?{"
[T [0 o]0]-[o]

Memory Access tracker

Memory Partition

Figure 7. The read-only detector and streaming detector in a memory
partition. Their inputs are the LLC misses and write backs.

@ cnunka FEELTH
Tado]ofa]e]. Jo]

Per-blk counter

|3 0|1|1|0|...|0

(b) Write to A [2]

(c) Write to A [1]

Figure 8. An example showing the propagation from the shared counter
to the per block counters.

Memory
addr_range M
50 [so[so[ez-[o4] |EEEGREN
[90 Teo[ez2]63]..]66] [nonreadonly |

RestReadOnly(addr_range):

share counter = max (per-blk major counters, shared counter) + 1
= max (80, 90, 50) + 1 =91

91
addr_range
Memory
Figure 9. The process of shared counter update when using the

InputReadOnlyReset(addressrange) APL

C. Detecting Streaming Accessed Chunks

The purpose of streaming access detection is to use dual-
granularity MACs, i.e., coarse-grain MAC (i.e., per chunk
MAC) for streaming-accessed chunks and fine-grain MAC
(i.e., per block MAC) for random-accessed ones, to reduce
the MAC access bandwidth. To support dual-granularity
MAC:s, we reserve space for both MACs and access only
one of them at runtime based on the access pattern.

Our hardware scheme to detect streaming accessed chunks
is shown in Fig. 7. It contains two components. The first one
is a bit vector indexed by local chunk IDs to predict whether
a chunk is streaming accessed or not. The second one is
chunk-level memory access trackers, each of which contains
a chunk tag, a 1-bit write flag and a set of counters to
monitor the block access patterns within a chunk. Since GPU
applications feature streaming accesses, we eagerly initialize
the bit vector predictor to all 1s, indicating all chunks are
streaming accessed. Whenever there are memory accesses,
i.e., L2 misses or L2 write backs, a memory access tracker
will be used to start monitoring the memory access pattern
in the corresponding chunk. In our design, a chunk-level
access tracker has an array (32 entries) of 1-bit counters.
The 1-bit write flag is set whenever there is a write back
in the chunk. We maintain N memory access trackers in
each memory partition (we use N as 8 in our experiments).
In other words, our design can concurrently monitoring N
chunks in each memory partition.

When a memory access (i.e., an L2 miss or write back)
happens to a memory partition, we check the bit vector to
see whether the corresponding chunk is streaming accessed
or not. If not, the chunk is predicted as random accessed, and
we will fetch the block-level MACs for integrity verification
(i.e., compared it with the MAC computed from the fetched
data block). If the chunk is predicted as streaming accessed,
the chunk-level MAC will be fetched and used. More specif-
ically, the fetched regular data block (or the dirty eviction
block) will be used to compute the block-level MAC, which
is stored in the MAC cache. When the pattern detection

(explained next) result is available, if the chunk is streaming
accessed, the block-level MACs in the MAC cache are used
to produced the chunk-level MAC, which is then compared
with the chunk-level MAC fetched from memory. For a
write stream, all the blocks are verified first with the old
chuck-level MAC and then each block produces its block-
level MACs, which are used to produce the new chunk-level
MAC. The updated MAC:s, either chunk- or block-level, are
stored in the MAC caches. The updated block-level MACs
of a streaming accessed chunk are marked 'not dirty’ in the
MAC cache so as to eliminate the traffic overhead due to
block-level MACs for streaming accessed chunks.

In the meanwhile of using either block- or chunk-level
MAC for integrity verification, we start monitoring the sub-
sequent memory accesses to determine whether the chunk
is streaming accessed or not. To do so, the tag is set and
only accesses to the same chunk will update the access
counters based on their chunk offsets at the cache block/line
granularity. At the end of the monitoring phase of K
memory accesses, the counters in a tracker are examined.
For the chunk size of 4kB, we choose K = 32. We also
introduce a time-out scheme to prevent a randomly accessed
chunk from occupying a memory access tracker for a long
time (6K cycles) without reaching the K accesses. After
time out, the counters are examined the same way as if we
reach the end of a monitoring phase. The following criterion
is used to determine whether a chunk is streaming accessed
or not. For an access tracker, if all the blocks in the chunk
have been accessed (i.e., all access counters are non zero),
the chunk is considered streaming accessed since all of its
blocked are touched. If some blocks have non-zero accesses
while others in the same chunk are not accessed at all (i.e.,
some access counters being 0), we consider this chunk as
random-accessed. The bit vector is then updated accordingly.
Also, if the write flag is set for the chunk, we know that
there is at least one write back to the chunk. If the detected
pattern is streaming, we need to re-produce and update the
chuck-level MAC.

It is possible that one random-accessed chunk is miss-
classified/mispredicted as streaming accessed or vice versa.
The handling of mispredictions is dependent upon whether
the access is a read access or write access and whether
the accessed chunk is read-only or not. We list the dif-
ferent scenarios in Table III and Table IV. The read-only
information of the chuck is retrieved from the read-only
bit vector (Section IV-B). For a correct prediction, i.e.,
the predicted stream/random pattern matching the detected
outcome, either the per chunk MAC or per block MAC is
fetched/updated and there will be no additional bandwidth
overheads.

For a read access in a read-only region, when a random
pattern (i.e., detected as random) is mispredicted as stream-
ing (i.e., predicted as stream), besides fetching the chunk-
level MAC, the secure memory engine needs to re-fetch the

per-block MAC to verify the data. When a streaming pattern
is mispredicted as random, there is no additional bandwidth
overheads since the per-block MACs are always up to date
for read-only regions. For a read access in a non-read-only
region, when a random pattern is mispredicted as streaming,
the secure memory engine needs to fetch the chunk-MAC.
Upon the detection of the misprediction, however, the per-
block MACs in the chunk are to be updated because the
predictor entry is updated as ‘random’ and the per-block
MACs will be used from now on. To do so, all the data
blocks in the chunk need to be re-fetched (and validated
with the chunk-level MAC) to produce the updated block-
level MACs. On the other hand, when a streaming pattern is
mispredicted as random, the secure memory engine just re-
fetches and re-produces the corresponding chunk-level MAC
as all the blocks in the chunk are accessed and validated with
block-level MACs (due to the streaming access).

Predictions from write accesses are treated similar to
read accesses to a non-read-only region. For a write access,
when a random pattern is mispredicted as streaming, the
secure memory engine fetches all the blocks in the chunk
from off-chip memory, and updates all the per-block MACs.
When a streaming pattern is mispredicted as random, the
secure memory engine just updates the chunk-level MAC.
When updating the chunk-level MAC, the updated block-
level MACs in the MAC cache are marked 'not dirty’.

A more subtle issue, however, occurs when chunks with
different access patterns conflict at the bit vector. For exam-
ple, chunk A is streaming accessed while chunk B is random
accessed. Both A and B share the same index to the bit
vector due to the limited length of the bit vector. After chunk
A updates its chunk-level MAC and the bit vector entry is set
to 1 (i.e., streaming), when chunk B is accessed, its chunk-
level MAC will be accessed as a result. However, as chunk
B was previously treated as random accessed, its chunk-
level MAC can be out of date although its per block MACs
are up-to-date. Due to the out-of-date MAC, the integrity
verification would fail. There are two remedies for this
issue. One is to always update both chunk-level and block-
level MACs. This solution essentially trades write traffic for
read traffic and may lead to performance degradation for
write-intensive workloads. The second solution is that if one
integrity check fails, the other MAC needs to be checked.
This way, as long as one of the duel-granularity MACs is
up-to-date, the integrity check would be successful. If the
number of such conflicts, i.e., chunks with different MAC
granularity mapping to the same entry in the bit vector,
is small, the performance impact would be limited. In our
work, we choose the second solution.

D. Using L2 as Victim Cache for Security Metadata

In our study, we observe that some GPU applications do
not utilize the L2 cache well. Either it is underutilized or
it suffers from very high miss rates due to poor temporal

Table IIT

HANDLING STREAMING PREDICTIONS FOR READ ACCESSES

Prediction || Action Detection | Read- Bandwidth
Only Overheads
Stream Fetch Stream Y/N Zero
chunk
MAC
Stream Fetch Random Yes Re-fetch
chunk blk-MAC
MAC
Stream Fetch Random No Re-fetch
chunk all the data
MAC blocks in
the chunk
Random Fetch blk | Random Y/N Zero
MAC
Random Fetch blk | Stream Yes Zero
MAC
Random Fetch blk | Stream No Re-fetch
MAC chunk-level
MAC
Table IV
HANDLING STREAMING PREDICTIONS FOR WRITE ACCESSES
Prediction || Action Detection | Action Bandwidth
Overheads
Stream Produce Stream Produce Zero
blk MAC and update
chunk
MAC
Stream Produce Random | Update blk | Re-fetch
blk MAC MAC data and
produce the
blk-MAC
Random Produce Random Update blk | Zero
blk MAC MAC
Random Produce Stream Produce Zero
blk MAC and update
chunk
MAC

locality. Actually, streaming accesses have little data reuse
and would lead to high L2 miss rates. In such cases, we
propose to use the L2 cache as a victim cache for security
metadata caches, especially the MAC cache. The rationale
is that a MAC block (128B) would contain sixteen block-
/chunk-level MACs (128B = 16x8B) and would provide
more reuse opportunities than a 128B data block.

To ensure that the victim cache traffic would not interfere
with regular data traffic, we dynamically enable L2 as the
victim cache only if the regular data miss rate is very high
(e.g., 90%). To collect accurate data miss rates, we reserve
a small portion of the L2 cache lines such that they are
only accessed with regular data accesses, similar to the set
sampling approach used in [21].

V. METHODOLOGY

We model our proposed schemes with GPGPU-Sim v4.0
[13]. Our baseline GPU configuration is shown in Table V,
which is based on the Nvidia Turing architecture [20]. We

Table V
BASELINE GPU CONFIGURATION

Table VIII
EVALUATED DESIGNS FOR GPU SECURE MEMORY WITH BOTH MEMORY
ENCRYPTION AND INTEGRITY VERIFICATION.

SM config 30 SMs, 1506MHz
Register File 256KB/SM, 7.5MB in total | Scheme [What It Represents
L1 D-Cache / || 96KB/SM Naive Baseline GPU with secure memory,
Shared Memory and the security metadata is organized
L2 cache 2 banks per memory partition, each L2 with physical address.
cache bank is 128KB, 3MB in total. For Common_ctr Secure GPU memory with common
each L2 bank, 192 MSHR entries, and counters [17] scheme, and the security
each entry can merge 16 requests. metadata is constructed with physical
DRAM 3500MHz, 12 partitions, 336GB/s. address.

Table VI
MDC AND MEE ORGANIZATION

Counter cache 2KB / memory partition, 128B blk,
4-way sectored, 256 MSHRs, write-

allocate policy

Mac cache 2KB / memory partition, 128B blk,
4-way sectored, 256 MSHRs, write-
allocate policy.

Bonsai Merkle || 2KB / memory partition, 128B blk,

Tree cache 4-way sectored, 256 MSHRs, write-

allocate policy.
40 cycles
1 pipelined AES/memory partition

Hash/Mac latency
AES engines

assume a range of 4GB device memory to be protected by
the secure memory engine.

Our baseline secure memory support is modeled based
on PSSM [33], in which the partition-local offset is used
to construct the security metadata. The detailed MDC and
MEE organizations are listed in Table VL.

Our benchmarks are from the Rodinia-3.1 [1], Parboil [26]
and Polybench [6] benchmark suites, and cover a wide range
of workloads with different memory utilization as well as
heterogeneous memory usage. Since computation intensive
workloads are not sensitive to secure memory, we choose

Table VII
BENCHMARKS
Benchmark Bandwidth | Memory Space
Utilization
atax 23% constant
backprop 27%-50% constant
bfs 15% -50% constant
b+tree 12%-15% constant
cfd 27%-75% constant
fdtd2d 90%-93% constant
kmeans 67%-81% constant/texture
mvt 22% constant
histo 55% constant
Ibm 95% constant
mri-gridding 30%-47% constant
sad 17% constant/texture
stencil 11%-42% constant
srad 20%-22% constant
srad_v2 72%-78% constant
streamcluster 78% constant

PSSM Secure GPU memory with PSSM

scheme [33]

PSSM_cctr Secure GPU memory with common
counters scheme, and the security
metadata is constructed from local ad-

dress as PSSM [33] design.

SHM Our secure heterogeneous memory de-
sign, with the PSSM scheme to con-

struct security metadata.

SHM_cctr Our secure heterogeneous memory de-
sign, combined with common counters

scheme.

SHM_vL2 Our secure heterogeneous memory de-
sign, and using L2 cache as the victim

cache for all the security metadata.

SHM_readOnly Our secure heterogeneous memory de-
sign, which use per-blk MAC, but use
shared counter to optimize the over-

heads of encryption counters and BMT.

SHM_upper_bound || Our secure heterogeneous memory de-
sign, with unlimited MATs and unlim-
ited predictor sizes, and the predictors
are initialized with L2 miss/write back

profiling.

15 memory intensive workloads and report the benchmark
details in Table VII, including the bandwidth utilization, and
different memory spaces usage. Global and local memory
are used by all workloads, and hence we only report the
constant and texture memory usage. For benchmarks with
low simulation time, we simulate the entire benchmarks; for
benchmarks with long simulation time, we simulate the first
6 million cycles.

The different secure memory designs that we evaluate
in our experiments are listed in Table VIII. We report
normalized Instructions per cycle (IPC) in our evaluation
with the baseline being the GPU with sectored data caches
and without secure memory support. By default, we assume
8B MAC per cache line. Similar to the state-of-the-art CPU
secure memory, the data fetched from memory is sent to the
GPU cores without waiting for integrity verification results.
An exception will be thrown if a verification failure occurs.

A. Hardware Overheads

The storage overhead of our proposed hardware com-
ponents are listed in Table IX. In our design, the read-
only predictor has 1024 entries, thereby 128B in total. The
read-only predictor is maintained in the 16 KB granularity.

Table IX
HARDWARE OVERHEAD

Hardware Tag Write Entries | Entry
Flag size
read-only predictor - - 1024 1 bit
streaming predictor - - 2048 1 bit
access tracker 20 bits 1 bit 32 1 bit

The streaming access predictor has 2048 entries, thereby
256B in total. The streaming predictor is maintained in the
granularity of 4 KB. For the access tracker, each access
tracker has a 20-bit tag (32-bit local addresses and 4kB
chunk size) and 32 1-bit counters to record the number of
accesses, and 1-bit write flag, which is set for a write access.
To track the end of a monitoring phase, each memory access
tracker also needs a 5-bit access counter and 13 bit time-
out counter. Therefore, each access tracker needs 20 + 1 +
32 + 18 =71 bits. We use 8 memory access trackers in our
design. To summarize, each memory partition maintains one
read-only predictor (128B), one streaming access predictor
(256B), and 8 memory access trackers (8x71-bit = 71B).
With 12 partitions, the total overhead is 5,460B (5.33 KB).

VI. EVALUATION
A. Read Only Prediction

We first evaluate our read-only prediction scheme. We
use our read-only predictor to predict each memory access
(including all L2 misses and L2 writebacks), and compare
the predictions with the results from offline profiling. We
show the accuracy of our read-only prediction scheme in
Fig. 10. As we can see that our scheme can capture the read-
only region reasonably well, 89.31% on average. We further
break down the prediction results into three parts: correct
predictions (labeled as ’Correct-Prediction’), mispredictions
due to initialization (labeled as "MP_Init’), mispredictions
due to aliasing in the predictor (labeled as "MP_Aliasing’).
As we can see from the figure, mispredictions due to
initialization contribute to most mispredictions in read-only
regions, while the mispredictions due to aliasing in the
predictor are negligible.

B. Streaming Access Pattern Detection

We use 8 memory access trackers in each memory par-
tition and report the results in Fig. 11. We measure the
accuracy of streaming pattern prediction with an oracle
memory access tracker, which has unlimited capacity to
detect the pattern of every memory chunk. For each memory
access (either L2 miss or L2 write back), if the detection
result agrees with the prediction result, the prediction is
considered a correct one, otherwise it is a misprediction. We
count all correct predictions and mispredictions to calculate
the prediction accuracy. The prediction accuracy results are
shown in Fig. 11. As shown in the figure, our design

Correct-Prediction B MP_Init B MP_Aliasing
o
£ 08
?
& 06
G
- 0.4
g
g 0.2
©
L0
=)
Y A
oy Q,\oQ <& \z?' & 5"6 e?& & ¥ & S g;;at’ &
T & DS -
7 .S &
el o P
& o

Figure 10. Breakdown of read-only predictions.

can achieve good prediction accuracy, 83.36% on aver-
age. We break down the predictions for streaming patterns
into five parts: correct predictions (labeled as ’Correct-
Prediction’), mispredictions due to initialization (labeled as
"MP_Init"), mispredictions due to runtime pattern change in
read-only regions (labeled as "MP_Runtime_Read_Only’),
mispredictions due to runtime pattern change in non-read-
only regions (labeled as "MP_Runtime_Non_Read_Only’),
and mispredictions due to aliasing in the predictors (labeled
as 'MP_Aliasing’). As we can see from the figure, for
streaming pattern prediction, some benchmarks suffer from
high misprediction rates due to initialization of the predictor,
while some other benchmarks show high mispredictions due
to runtime pattern changes. As discussed in Section IV, not
all mispredictions incur the same bandwidth overheads.

M Correct-Prediction B MP_Init

MP_Runtime_Read_Only ® MP_Runtime_MNon_Read_Only

mMP_Aliasing
5 03l |
g 0‘6
5 0.
& 04
G 02
£ 0
[} Ny A
f S NE ES S EL G AP B
@ ‘o’bab ‘Q & <“ & & 6‘{}
N W
=] @‘\ l}gb
Figure 11. Breakdown of streaming pattern predictions

C. Overall Performance

We evaluate our secure heterogeneous memory design and
compare it with different previous works, as shown in Fig.
12. From the figure, we can make the following observations.
First, the naive design, labeled as ’Naive’, in which the
security metadata is constructed with physical addresses as
conventional CPU secure memory, degrades the GPU per-
formance by 53.9% on average. Second, compared with the

naive secure memory design, the common counters scheme
(labeled as ’Common_ctr’) can improve the performance
and reduce the overheads of secure GPU memory to 49.4%.
It is more effective for the workloads with a large portion
of streaming access pattern such as atax (23.1%) and mvt
(19.4%). The reason is that the common counters scheme
significantly reduces the memory bandwidth for accessing
the encryption counters. However, there still exists a high
overhead after common counters optimization because the
security metadata is constructed from physical addresses
and the same security metadata is accessed by different
memory partitions, leading to redundant memory traffic.
Third, compared with common counters, PSSM improves
the performance significantly, reducing the performance
overheads to 18.6% on average, and the reason is that it
eliminates the redundancy and adopts the sectored design to
save the memory bandwidth [33]. However, as the MAC is
produced in the granularity of a cache line, it remains to be
a major overhead. Fourth, our proposed design, labeled as
’SHM’, improves the performance significantly, and further
reduces the overheads to 8.09% on average, and for most
workloads, SHM can reduce the overheads to less than 5%.
The reason is that, our design leverages read-only data and
uses a dual-granularity MAC, and can effectively optimize
the overheads. However, for the workloads that feature ran-
dom access patterns and write-intensive memory footprints
such as bfs, Ibm and mri-gridding, our SHM scheme still
shows relatively high overheads. The reasons include (1)
the MACs are maintained at the block granularity, and each
memory access needs to verify/update the MAC; and (2)
these benchmarks are write intensive, and the per-block
counters are maintained for these workloads. Fifth, our upper
bound analysis, labeled as ’'SHM_upper_bound’, shows that
the performance overheads of our SHM design are very
close to the idealized design: the SHM design with unlimited
capacity of predictor sizes has 6.76% overheads on average,
which is quite close to our SHM design.

H Naive ® Common_ctr PSSM mSHM mSHM_upper_bound

[

0.8
o
&
- 0.6
=
™
€04
o
=
) || ‘ ||
0 II
%@“ ‘oQ <& e. & 6\? & & \0 q}@ "\'a 0¢ &
& b &
e g\'Q, ’bé\
A &
Figure 12. Normalized IPC of different secure GPU memory designs.

D. Performance Breakdown

To examine the effectiveness of different optimizations,
we include them one at a time and show the results in Fig.
13. From Fig. 13, we can make the following observations.
First, the combination of common counters and PSSM is
beneficial. It reduces the performance overhead by 1.2%
on average compared to PSSM. Second, compared with
PSSM, our optimization for read-only region (labeled as
’SHM_readOnly’), including the constant memory, texture
memory and instruction memory can be very effective
and further reduce the performance overhead by 2.5% on
average, the reason is that our SHM scheme does not need to
maintain per-block counters and does not need to traverse the
integrity tree for read-only regions. Consequently, the mem-
ory bandwidth for both encryption counters and integrity tree
can be saved. This scheme can be very effective for some
benchmarks that highly utilize the read-only memory spaces
like constant memory and texture memory. For example,
the benchmark kmeans shows more than 14% performance
improvement compared with PSSM, when the optimization
to read-only memory space is applied. A detailed L2 miss
breakdown shows that among all the L2 cache misses,
texture memory accesses contribute to more than 27.75% L2
misses for kmeans. Third, when our dual-granularity MAC
is applied, the MAC bandwidth is reduced for the reasons
that have been discussed in Section VI-C. Fourth, our SHM
design is compatible with the common counters scheme. As
we can see from Fig. 13, adding the common counters
scheme onto our SHM scheme (labeled as SHM_Cctr) can
further reduce the performance overhead for secure GPU
memory by 0.4% on average.

W PS5M

PSSM_Cctr m SHM_readOnly SHM m SHM_Cctr

0.8

Normalized IPC

o o o

[=] =] = =
—_
———————————

Figure 13. Performance impacts of different optimizations.

E. Bandwidth Saving

We compare the bandwidth overhead (including all the
security metadata access and additional data accesses due
to mispredictions in our SHM design) for different de-
signs, as shown in Fig. 14. The bandwidth is obtained

by counting the number of bytes for different security
metadata fetched/updated from/to DRAM, and dividing them
by the execution time. Then, we normalize them to the
regular data bandwidth. We can see that our SHM design
significantly reduces the bandwidth overhead compared to
the naive design, from 189.07% (naive secure GPU memory
design) to only 5.95% on average. For benchmarks with
high bandwidth utilization, the reduced bandwidth overheads
directly translate to performance gains as reported in Fig. 12.
On the other hand, for the benchmarks with relatively low
bandwidth utilization, such as atax or mvt (Table VII), the
high bandwidth reduction from SHM leads to relatively
small performance gains.

We also isolate the bandwidth savings from the two op-
timizations, i.e., read-only and streaming data optimization,
in our scheme. First, compared with PSSM design (17.1%
bandwidth overhead on average), SHM_readOnly reduce
the bandwidth overheads to 13.2% because our read-only
optimization can reduce the bandwidth for both encryp-
tion counters and integrity trees. Second, compared with
SHM_readOnly, our SHM design further reduces the band-
width overheads to only 5.95% on average because our SHM
design significantly reduces the bandwidth requirements
for MACs. Taking the benchmark fdtd2d as an example,
our SHM scheme can achieve near zero (0.78% in total)
bandwidth overheads. The reasons are (1) fdtd2d has 99.87%
read-only accesses in GDDR memory as we can see from
Fig. 5, and our read-only optimization reduces the overheads
of counters and BMTs to near zero (0.44%); (2) fdtd2d
also features perfect streaming (99.35% of off-chip memory
accesses are streaming) data access patterns as we can see
from Fig. 5. With SHM, only the chunk-level MACs (8B
MAC per 4KB chunk) need to be transferred over the GDDR
memory, which reduces the MACs bandwidth overheads
to 0.34%; and (3) the streaming prediction accuracy for
fdtd2d is 99.69%, meaning almost no additional bandwidth
overheads due to mispredictions.

Naive mCommon_ctr MPSSM ®SHM_readOnly BSHM

2245% 3316% 219.7% 472 3%326.3% 335.6% 206.7%
200%

180%
160%
140%
120%
100%

80%

60%

40%

o Il L o I

0% I e [S o e, III I s, (AU LR . Dl T

Ratio of Metadata

F R o éb & O &0 DA s Ao
SR QL F PSS FE F S F
’b%e}g \0,(& & *@e o {\5 o ‘36\(}0 G\(\

R @;\\' c}&@

Figure 14. Bandwidth overheads due to security metadata, normalized to
regular data bandwidth, of different designs.

E. Power Saving

We report the power efficiency of our SHM design, and
compare it with the prior works, as shown in Fig. 15. We
extend the GPUWattch [14] to model the power and energy
consumption of different designs. We use CACTIL_v6.5 [19]
to evaluate the power/energy consumption of metadata
caches (32 nm technology). our energy model includes all
the GPU components and the metadata caches while the
energy consumption of the AES and MAC engines are not
included. We accumulate the total energy of the kernels
and calculate the energy per instruction for different secure
GPU memory designs, and normalize it to the baseline GPU
without secure memory support. As we can see from the
figure, compared to the naive secure GPU memory design,
our SHM design reduces the normalized energy consumption
per instruction from 215.06% to 106.09% on average. In
other words, the energy overhead of our SHM scheme
is 6.09% compared to the baseline GPU without secure
memory support.

o Navie Common_ctr ®mPSSM ESHM
22 3.5 10.1 5.24 2.26

2

18

16
14
1.2 ‘
1 I| L

Normalized Energy per Inst

|I‘I| w e T II I Illl II i L K. II
&

g IR N o O & b & 0
g Q“:;Q & & & S &5 & & @S‘_b&o #F & P2
,b(} A Q’;\ & &
o 3 o

Figure 15. Normalized Energy Consumption per Instruction for different
designs.

G. Using L2 as a Victim Cache

We present our results of using L2 as the victim cache for
security metadata caches in Fig. 16. We dynamically sample
the miss rate from the L2 cache in each memory partition,
and enable this feature only when the sampled L2 miss rate
is higher than 90%. For benchmarks with multiple kernels,
the sampling counters are reset after each kernel execution.
From Fig. 16, we make the observation that using L2 as the
victim cache for security metadata can further reduce the
performance overhead by 0.65% on average. This scheme is
more effective for memory-intensive benchmarks that suffer
very high L2 miss rates, e.g., 4% performance improvement
for the benchmark 1bm and 3.4% for the benchmark sad.

VII. CONCLUSIONS

Security metadata traffic is the key performance bottle-
neck for GPU secure memory. In this paper, we propose

SHM mSHM_vl2

o a4 o
ES =8 oo =

Normalized IPC

o
o

o

3
Qa‘;‘

& 6&(\

5
e Q‘QQ & - ép,% 5b ‘&b ébo 6\4“ ~<\\,;\!3‘ @
& A & &

& S
&+ &

R S
O e 2 >
o s & &
<
o 65}‘} &

Figure 16. Normalized IPC when enabling L2 as a victim cache for
security metadata.

adaptive security support for GPU heterogeneous memory
to reduce the performance overhead. First, we point out
that read only regions do not need freshness protections as
they are immune to replay attacks. By letting all read-only
regions share an on-chip counter, we can reduce the traffic
of counters and BMT. To optimize bandwidth for MAC
access, we propose dual-granularity MACs with coarse-grain
MAC:s for streaming-accessed regions and fine-grain MACs
for random-accessed regions. Our hardware design consists
of two lightweight predictors to detect read-only regions
and streaming-accessed regions so as to adapt the security
mechanisms accordingly. Our evaluation results show that it
outperforms the state-of-the-art schemes: by up to 41.63%
and 9.5% on average compared to PSSM and 84.04%
on average compared to common counters for memory-
intensive workloads.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
comments. For this work, the NSCU team is funded in
part by NSF grants 1717550 and 1908406, an AMD gift
fund, and Office of Naval Research (ONR). The UCF team
is supported in part by NSF grant 1908079, AMD gift,
and UCF. The views, opinions and/or findings expressed
are those of the authors and should not be interpreted as
representing the official views or policies of the Department
of Defense or the U.S. Government. Approved for public
release. Distribution is unlimited.

REFERENCES

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in Proceedings of the 2009 IEEE
International Symposium on Workload Characterization,
IISWC 2009, October 4-6, 2009, Austin, TX, USA.
USA: IEEE Computer Society, 2009, pp. 44-54. [Online].
Available: https://doi.org/10.1109/IISWC.2009.5306797

[2] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic,
“Making secure processors OS- and performance-friendly,”
ACM Trans. Archit. Code Optim., vol. 5, no. 4, pp.
16:1-16:35, 2009. [Online]. Available: https://doi.org/10.
1145/1498690.1498691

[3] I. Corporation, “Intel® 64 and ia-32 architectures software
developer’s manual (325462-071us),” Intel Corporation, USA,
Tech. Rep., 2019.

[4

[

CUDAToolkit, “Cuda c++ best practices guide,” 2021.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-
best-practices- guide/index.html#performance-metrics

[5] Y. Gao, H. Zhang, W. Cheng, Y. Zhou, and Y. Cao, “Electro-
magnetic analysis of gpu-based AES implementation,”
in Proceedings of the 55th Annual Design Automation
Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018. USA: ACM, 2018, pp. 121:1-121:6. [Online].
Available: https://doi.org/10.1145/3195970.3196042

[6] S. Grauer-Gray and J. Cavazos, “Optimizing and auto-tuning
belief propagation on the GPU,” in Languages and Compilers
for Parallel Computing - 23rd International Workshop, LCPC
2010, Houston, TX, USA, October 7-9, 2010. Revised Selected
Papers, ser. Lecture Notes in Computer Science, K. D.
Cooper, J. M. Mellor-Crummey, and V. Sarkar, Eds.,
vol. 6548. USA: Springer, 2010, pp. 121-135. [Online].
Available: https://doi.org/10.1007/978-3-642-19595-2_9

[7]1 S. Gueron, “Memory encryption for general-purpose proces-
sors,” IEEE Secur. Priv., vol. 14, no. 6, pp. 54-62, 2016.
[Online]. Available: https://doi.org/10.1109/MSP.2016.124

[8] G. Gupta, “What is birthday attack??”” 2015. [Online]. Avail-
able: https://www.researchgate.net/profile/Ganesh-Gupta-
7/publication/271704029_What_is_Birthday_attack/links/
54cfbdcc0cf24601c0958ale/What-is-Birthday-attack.pdf

[9] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: Cold boot attacks
on encryption keys,” in Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose,
CA, USA. USA: USENIX Association, 2008, pp. 45-60.
[Online]. Available: http://www.usenix.org/events/secO8/tech/
full_papers/halderman/halderman.pdf

[10] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J.
Rossbach, and E. Witchel, “Telekine: Secure computing with
cloud gpus,” in 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020, R. Bhagwan and
G. Porter, Eds. USA: USENIX Association, 2020, pp. 817-
833. [Online]. Available: https://www.usenix.org/conference/
nsdi20/presentation/hunt

[11] I Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh,
“Heterogeneous isolated execution for commodity gpus,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA,
April 13-17, 2019, 1. Bahar, M. Herlihy, E. Witchel, and A. R.
Lebeck, Eds. USA: ACM, 2019, pp. 455-468. [Online].
Available: https://doi.org/10.1145/3297858.3304021

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery
timing attack on a gpu,” in Symposium on High Performance
Computer Architecture (HPCA), 2016.

M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers,
“Accel-sim: An extensible simulation framework for validated
GPU modeling,” in 47th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. Spain: IEEE, 2020,
pp. 473-486. [Online]. Available: https://doi.org/10.1109/
ISCA45697.2020.00047

J. Leng, T. H. Hetherington, A. ElTantawy, S. Z. Gilani,
N. S. Kim, T. M. Aamodt, and V. J. Reddi, “Gpuwattch:
enabling energy optimizations in gpgpus,” in The 40th
Annual International Symposium on Computer Architecture,
ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, A. Mendelson,
Ed. ACM, 2013, pp. 487-498. [Online]. Available:
https://doi.org/10.1145/2485922.2485964

D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz, “Architectural support
for copy and tamper resistant software,” in ASPLOS-
IX Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, USA, November 12-15,
2000. USA: ACM Press, 2000, pp. 168-177. [Online].
Available: https://doi.org/10.1145/356989.357005

O. Mutlu, “The rowhammer problem and other issues
we may face as memory becomes denser,” CoRR, vol.
abs/1703.00626, 2017. [Online]. Available: http://arxiv.org/
abs/1703.00626

S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common
counters: Compressed encryption counters for secure GPU
memory,” in [EEE International Symposium on High-
Performance Computer Architecture, HPCA 2021, Seoul,
South Korea, February 27 - March 3, 2021. IEEE,
2021, pp. 1-13. [Online]. Available: https://doi.org/10.1109/
HPCA51647.2021.00011

H. Naghibijouybari, A. Neupane, Z. Qian, and N. B. Abu-
Ghazaleh, “Rendered insecure: GPU side channel attacks
are practical,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Canada: ACM, 2018, pp. 2139-2153. [Online]. Available:
https://doi.org/10.1145/3243734.3243831

N. P. J. Naveen Muralimanohar, Rajeev Balasubramonian,
“Cacti 6.0: A tool to model large caches,” 4HP Laboratories,
20009.

Nvidia, “Nvidia turing gpu architecture.” [Online]. Available:
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-
Turing- Architecture- Whitepaper.pdf

M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches,” in 39th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO-39 2006), 9-13 December 2006, Orlando, Florida,
USA. IEEE Computer Society, 2006, pp. 423—432. [Online].
Available: https://doi.org/10.1109/MICRO.2006.49

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai merkle trees
to make secure processors OS- and performance-friendly,”
in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-40 2007), 1-5 December 2007,
Chicago, Illinois, USA. USA: IEEE Computer Society,
2007, pp. 183-196. [Online]. Available: https://doi.org/10.
1109/MICRO.2007.16

B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and
Y. Solihin, “Single-level integrity and confidentiality
protection for distributed shared memory multiprocessors,”
in [4th International Conference on High-Performance
Computer Architecture (HPCA-14 2008), 16-20 February
2008, Salt Lake City, UT, USA. USA: IEEE
Computer Society, 2008, pp. 161-172. [Online]. Available:
https://doi.org/10.1109/HPCA.2008.4658636

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A.
Joao, and M. K. Qureshi, “Morphable counters: Enabling
compact integrity trees for low-overhead secure memories,”
in 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2018, Fukuoka, Japan, October
20-24, 2018. Japan: IEEE Computer Society, 2018,
pp. 416-427. [Online]. Available: https://doi.org/10.1109/
MICRO.2018.00041

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser,
and M. K. Qureshi, “SYNERGY: rethinking secure-memory
design for error-correcting memories,” in /EEE International
Symposium on High Performance Computer Architecture,
HPCA 2018, Vienna, Austria, February 24-28, 2018. Austria:
IEEE Computer Society, 2018, pp. 454-465. [Online].
Available: https://doi.org/10.1109/HPCA.2018.00046

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil:
A revised benchmark suite for scientific and commercial
throughput computing,” Champaign, IL USA, Tech. Rep.,
2009.

M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT:
reducing paging overheads in SGX with efficient integrity
verification structures,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018. USA:
ACM, 2018, pp. 665-678. [Online]. Available: https:
//doi.org/10.1145/3173162.3177155

J. K. Tugnait, “Detection of active eavesdropping attack by
spoofing relay in multiple antenna systems,” IEEE Wirel.
Commun. Lett., vol. 5, no. 5, pp. 460463, 2016. [Online].
Available: https://doi.org/10.1109/LWC.2016.2585549

S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted
execution environments on gpus,” in [3th USENIX Sym-
posium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, A. C.
Arpaci-Dusseau and G. Voelker, Eds. USA: USENIX
Association, 2018, pp. 681-696. [Online]. Available:
https://www.usenix.org/conference/osdil8/presentation/volos

(30]

(31]

(32]

(33]

[34]

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and
Y. Solihin, “Improving cost, performance, and security of
memory encryption and authentication,” in 33rd International
Symposium on Computer Architecture (ISCA 2006), June
17-21, 2006, Boston, MA, USA. USA: IEEE Computer
Society, 2006, pp. 179-190. [Online]. Available: https:
//doi.org/10.1109/ISCA.2006.22

J. Yang, Y. Zhang, and L. Gao, “Fast secure processor
for inhibiting software piracy and tampering,” in
Proceedings of the 36th Annual International Symposium on
Microarchitecture, San Diego, CA, USA, December 3-5, 2003.
USA: IEEE Computer Society, 2003, pp. 351-360. [Online].
Available: https://doi.org/10.1109/MICR0O.2003.1253209

S. F. Yitbarek and T. M. Austin, “Reducing the overhead of
authenticated memory encryption using delta encoding and
ECC memory,” in Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA,
USA, June 24-29, 2018. USA: ACM, 2018, pp. 35:1-35:6.
[Online]. Available: https://doi.org/10.1145/3195970.3196102

S. Yuan, Y. Solihin, and H. Zhou, “PSSM: achieving secure
memory for gpus with partitioned and sectored security
metadata,” in ICS °21: 2021 International Conference on
Supercomputing, Virtual Event, USA, June 14-17, 2021,
H. Zhou, J. Moreira, E. Mueller, and Y. Etsion, Eds.
USA: ACM, 2021, pp. 139-151. [Online]. Available:
https://doi.org/10.1145/3447818.3460374

S. Yuan, A. W. B. Yudha, Y. Solihin, and H. Zhou,
“Analyzing secure memory architecture for gpus,” in IEEE
International Symposium on Performance Analysis of Systems
and Software, ISPASS 2021, Stony Brook, NY, USA, March
28-30, 2021. 1EEE, 2021, pp. 59-69. [Online]. Available:
https://doi.org/10.1109/ISPASS51385.2021.00017

