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ANCIENT GRADIENT FLOWS OF ELLIPTIC FUNCTIONALS AND
MORSE INDEX

By KYEONGSU CHOI and CHRISTOS MANTOULIDIS

Abstract. We study closed ancient solutions to gradient flows of elliptic functionals in Riemannian
manifolds, including mean curvature flow and harmonic map heat flow. Our work has various conse-
quences. In all dimensions and codimensions, we classify ancient mean curvature flows in Sn with
low area: they are steady or shrinking equatorial spheres. In the mean curvature flow case in S3, we
classify ancient flows with more relaxed area bounds: they are steady or shrinking equators or Clifford
tori. In the embedded curve shortening case in S2, we completely classify ancient flows of bounded
length: they are steady or shrinking circles.

1. Introduction.

1.1. Mean curvature flow. The mean curvature flow is a one-parameter
family of submanifolds Σt of a Riemannian manifold (M,g) satisfying the evolu-
tion equation

∂

∂t
x= H(x,t), x ∈ Σt,(1.1)

where H(x,t) denotes the mean curvature vector of the Σt at x, and which is
the negative gradient of the area element of Σt. As a gradient flow of the area
functional, the mean curvature flow describes a natural area minimizing process.
Moreover, in Euclidean space (M,g) = (Rn,dx2

1+ · · · ,dx2
n), the normalized mean

curvature flow is a gradient flow of the Huisken density [23].
In this paper, we shall discuss ancient solutions of the mean curvature flow in

Riemannian manifolds; that is, solutions existing for t ∈ (−∞,T ). Since the mean
curvature flow is a gradient flow, ancient solutions with finite energy are quite
rare. Therefore, the classification of ancient solutions has been studied as a type of
parabolic Liouville theory.

There have been a number of important classification results for ancient mean
curvature flows inside Euclidean space, under suitable assumptions on the convex-
ity or the entropy of the flow:

• X.-J. Wang [37] showed that a closed convex ancient solution converges
locally to a sphere or a cylinder after rescaling. Huisken–Sinestrari [24] proved

Manuscript received March 4, 2019; revised January 21, 2020.
Research of the first author supported by NSF grant DMS-1811267 and KIAS Individual Grant MG078901;

research of the second author supported by NSF grant DMS-1905165.
American Journal of Mathematics 144 (2022), 541–573. © 2022 by Johns Hopkins University Press.

541



542 K. CHOI AND C. MANTOULIDIS

that a closed convex ancient solution with suitably pinched curvatures must be the
shrinking sphere. In the one dimensional case, Daskalopoulos–Hamilton–Sesum
[19] proved that the shrinking circle and the Angenent ovals are the only closed
ancient solutions.

• Angenent–Daskalopoulos–Sesum [2, 3] showed that the only non-collapsed
closed 2-convex ancient solutions are the shrinking sphere and ancient ovals, which
were constructed by White [38] and later by Haslhofer–Hershkovits [21]. Bourni–
Langford–Tinaglia [4] have constructed collapsed examples of closed convex an-
cient flows.

• Brendle and the first author [6, 7] settled the uniqueness of non-collapsed
complete non-compact 2-convex ancient flows.

• The first author, Haslhofer and Hershkovits showed in [13], en route to prov-
ing Ilmanen’s “mean convex neighborhood” conjecture, that a low entropy ancient
solution in R3 must be one of the convex complete (or closed) non-collapsed an-
cient solutions, which were classified in [3, 6].

Much less is known about ancient solutions in Riemannian manifolds:
• Huisken–Sinestrari [24] showed that closed mean convex and suitably cur-

vature pinched ancient solutions in Sn, n≥ 3, must be a shrinking spherical cap.
• Bryan–Louie [9] showed that the only closed convex ancient solutions in S2

are shrinking circles. Bryan–Ivaki–Scheuer [8] extended that conclusion to convex
fully nonlinear flows in Sn, n≥ 3, including the mean curvature flow.

In this work we study ancient mean curvature flows of closed submanifolds
in Riemannian manifolds, as well as more general gradient flows of elliptic func-
tionals. The goal, roughly, is to derive a sharp characterization of a large class of
ancient flows as arising from the “unstable manifold” (i.e., the space of unstable
directions for the area functional) of a given closed minimal submanifold. See Sec-
tion 1.2 for the more abstract framework.

Our work can be used to classify low area ancient solutions in Sn in arbitrary
codimension:

THEOREM 1.1. There exists a δ = δ(n) > 0 such that if (Σt)t≤0 is an ancient
mean curvature flow of closedm-dimensional surfaces embedded in a round sphere
Sn, with

lim
t→−∞

Area
(
Σt

)
< (1+ δ)Area

(
Sm

)
,(1.2)

then (Σt)t≤0 is a steady or a shrinking equatorial Sm one along one of n−m

orthogonal directions.

Remark 1.2. Mean curvature flow has been studied primarily in codimension
1 as a result of the more subtle nature of singularity formation in high codimen-
sions. On the other hand, the parabolic Liouville nature of ancient gradient flows
renders them quite rigid. As such, they can serve as a tangible stepping stone to a
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better understanding of high codimension mean curvature flows. Theorem 1.1 is an
example of a result for mean curvature flows that can be obtained just as easily in
high codimension as in codimension 1.

This theorem has some interesting consequences. First, it recovers the classifi-
cation of convex ancient mean curvature flows in Sn in [8, 9], since ancient convex
solutions will satisfy (1.2).

Second, it implies a complete classification of ancient embedded curve short-
ening flows in S2 with bounded length:

COROLLARY 1.3. Let (Γt)t≤0 be an ancient curve shortening flow of embed-
ded curves inside a round 2-sphere with

lim
t→−∞

Length
(
Γt

)
< ∞.(1.3)

Then (Γt)t≤0 is a steady or a shrinking equator along circles of latitude.

Huisken conjectures there exist ancient solutions that fill out S2 as t→−∞, so
one expects that assumption (1.3) is sharp.

Remark 1.4. One gets a classification of ancient embedded curve shortening
flows with bounded length in RP2 by lifting to S2 and applying Corollary 1.3: they
are steady equators and circles of latitude coming out of a multiplicity two equator.
A similar proof shows that no non-steady ancient embedded curve shortening flows
with bounded length exist in flat tori or closed hyperbolic surfaces.

Theorem 1.1 can also be strengthened in n= 3 dimensions due to the validity
of the Willmore conjecture, proven by Marques–Neves [26]. Recall that the Clif-
ford torus

{
(x,y,z,w) ∈ R2 ×R2 : x2 +y2 = z2 +w2 =

1
2

}
⊂ S3

is a smoothly embedded minimal submanifold of S3 with area 2π2. By the work
of Marques–Neves [26], this is the second smallest area among smooth minimal
surfaces, following the equatorial S2 (area 4π). We can show:

COROLLARY 1.5. Let (Σt)t≤0 be an ancient mean curvature flow of closed
surfaces in a round S3, with

lim
t→−∞

Area
(
Σt

)
< 2π2 + δ.(1.4)

If δ > 0 is sufficiently small, then either:
• limt→−∞ Area(Σt) = 4π, and (Σt)t≤0 is a steady or shrinking equator along

spheres of latitude; or,
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• limt→−∞ Area(Σt)= 2π2, and (Σt)t≤0 is a steady or shrinking Clifford torus
along one of its 5 linearly unstable directions.

Recall also that the number of linearly unstable directions (the “Morse index”)
of a Clifford torus was computed by Urbano [35] to be 5. See [26] for a geometric
interpretation of these 5 unstable directions.

We now summarize our tools, which should be interesting in their own right.
First, we prove that the Morse index of a minimal submanifold gives rise to a family
of exponentially decaying ancient mean curvature flows:

THEOREM 1.6. (cf. Theorem 3.3) Let S be a closed, smoothly embedded min-
imal submanifold in a Riemannian manifold (M,g) with Morse index I ∈ N. Then
there exists an I-parameter family of ancient mean curvature flows on (−∞,0] that
are uniquely determined by their trace at time t = 0 and converge exponentially
quickly to S as t→−∞.

Only few non-convex (or nonpositively curved) ancient solutions to geometric
flows have been previously discovered; see, e.g., the ancient Yamabe flow from
two spheres [18]. Theorem 1.6 shows the existence of infinitely many non-steady
non-convex ancient solutions.

Second, we prove a sharp characterization of ancient flows; if a flow decays as
t→−∞ in an “integrable” (L1) sense, then it is one of the flows that was generated
by the Morse index.

THEOREM 1.7. (cf. Theorem 5.2) Let S be a closed, smoothly embedded mini-
mal submanifold of a Riemannian manifold (M,g). There exists an ε > 0 such that
if (Σt)t≤0 is an ancient mean curvature flow which stays uniformly ε-close to S in
the sense of measures, and

∫ 0

−∞
distg

(
Σt,S

)
dt < ∞,(1.5)

then there exists τ ≥ 0 so that (Σt−τ )t≤0 is one of the flows from Theorem 1.6.

Assumption (1.5) is key for the conclusion. Indeed, in Appendix A we con-
struct examples of flows which are not generated by a negative eigenfunction and
which decay arbitrarily slowly as t→−∞.

We also give a sufficient geometric condition which guarantees the decay
needed for (1.5). Indeed, we show that ancient flows that remain suitably close to
a so-called “integrable critical point” (see Definition 4.8), will converge exponen-
tially quickly, as t→ −∞, to a (possibly different) critical minimal submanifold.
This notion of integrability and its implication on rates of convergence was pi-
oneered by Allard and Almgren [1] in their study of tangent cones of minimal
surfaces with isolated singularities.
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PROPOSITION 1.8. (cf. Proposition 5.3) Let S be an integrable, closed,
smoothly embedded minimal submanifold of a Riemannian manifold (M,g). There
exist ε,c,κ > 0 such that if (Σt)t≤0 is an ancient mean curvature flow which stays
uniformly ε-close to S in the sense of measures, and

lim
t→−∞

Areag
(
Σt

)≤ Areag(S),(1.6)

then Σt is ceκt-close, in the C2,θ sense, to a (possibly different) fixed, closed,
smoothly embedded minimal submanifold.

Two important cases that automatically guarantee (1.6) are:
(1) when S is nondegenerate (i.e., its linearization has no eigenvalues equal to

zero), or
(2) when the ambient Riemannian metric is real analytic.

See Remark 4.13.

1.2. General theory. Let (Σ,g) be a closed Riemannian manifold and V →
Σ be a Euclidean vector bundle. We consider ancient solutions to gradient flows for
functionals of the form

A(f) :=
∫

Σ
A
(
x,f(x),∇gf(x)

)
dμg(x),(1.7)

whose arguments are sections f of the bundle V and whose integrand A(x,z,q) is
such that:

(1) A(x,z,q) is a smooth real-valued function of (x,z,q), x ∈ Σ, z ∈ Vx, q ∈
TxΣ⊗Vx;

(2) A(x,z,q) satisfies the Legendre–Hadamard ellipticity condition

[
d2

ds2A
(
x,0,s(τ ⊗ v))

]

s=0
≥ c|τ |2|v|2,(1.8)

for c > 0 independent of x ∈ Σ, τ ∈ TxΣ, v ∈ Vx.
The negative L2 gradient of A(f), denoted H(f), is determined by the pairing

〈H(f), ζ〉L2(Σ) =−
[
d

ds
A(f + sζ)

]

s=0
, ∀ζ ∈ C∞(Σ;V ).(1.9)

A “gradient flow” of A is an evolution equation

∂

∂t
u=H(u).(1.10)

A solution u of (1.10) is called ancient if its time domain contains an interval of
the form (−∞,T ), T ∈ R. In this paper we are interested in smooth solutions of
(1.10).
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Our main results are described below. We refer the reader to Sections 2, 3, 4
for all relevant definitions and precise statements.

THEOREM 1.9. (cf. Theorem 3.3, Corollary 3.4) Let 0 be a critical point of A
with Morse index I ∈ N. There exists an I-parameter family of ancient solutions to
(1.10), which are uniquely determined by their trace at t= 0 and which converge
to 0 exponentially as t→−∞. The space of their traces at t = 0 is tangent to the
I-dimensional space of negative eigenfunctions.

THEOREM 1.10. (cf. Theorem 4.1) Let 0 be a critical point of A, θ ∈ (0,1),
C0 > 0. There exists ε > 0 such that if u : Σ → V is a smooth ancient solution
of (1.10) with spatial C1 norm bounded by ε, parabolic C1,θ norm bounded by
C0, and finite spacetime L1 norm, then u belongs to the space of solutions from
Theorem 1.9.

PROPOSITION 1.11. (cf. Proposition 4.12) Let 0 be an integrable critical point
of A, and θ ∈ (0,1). There exist ε,c,κ > 0 such that if u is a smooth ancient solution
of (1.10) with parabolic C1,θ norm bounded by ε and

lim
t→−∞

A(
u(·, t)) ≤A(0),(1.11)

then u is ceκt-close in the parabolic C1,θ sense to a fixed (but possibly different)
critical point of A.

See Remark 4.13 for natural sufficient conditions that guarantee the validity of
(1.11).

Remark 1.12. A subtle remark is in order regarding whether the results of this
section immediately imply those of Section 1.1. One could hope to immediately
recover the results of Section 1.1 by taking V to be the normal bundle NS of
Σ⊂ (M,g) and defining the elliptic functional A as the area of the graphical sub-
manifold induced by a map f : S → NS. While this is an admissible functional
(see, e.g., [30]), we point out that its gradient flow is a “nonparametric” gradient
flow, so it differs from the classical mean curvature flow considered in Section 1.1,
which is a “parametric” gradient flow for the area functional of embedded sub-
manifolds. This detail, unfortunately, interferes with the divergence structure of
the evolution equation (1.10). With this in mind, we have sought to exploit the di-
vergence structure as little as possible in order for our proofs to carry over, with
only minor modifications, to the classical mean curvature flow setting in Section
1.1. We discuss these modifications in very specific terms in Section 5, where we
give the proofs of the results announced in Section 1.1,

1.3. Harmonic map heat flow. Let (M,g) be a closed Riemannian man-
ifold (the “domain”) and (N,h) be another Riemannian manifold (the “target”).
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The harmonic map heat flow is the gradient flow of the Dirichlet energy functional

E(f) :=
1
2

∫

M
‖df‖2 dμg, f ∈C1(M ;N).

Namely, it is the flow
∂

∂t
f = τ

(
f(·, t)),

where τ denotes the negative L2 gradient of the Dirichlet energy functional. Our
results, namely Theorems 1.9, 1.10, and Proposition 1.11 apply to harmonic map
heat flows modulo the same minor modifications that had to be carried out for
mean curvature flow; namely, modifications to go from the “parametric” gradient
flow (the harmonic map heat flow) to the “nonparametric” gradient flows discussed
in Section 1.2.

Outline of paper and some motivation. In Section 2 we set up our notation
and relevant necessary background. In Sections 3, 4, we show the existence and
uniqueness of ancient gradient flows within the class of flows that originate, with
certain L1 control, out of a critical point. In Section 5 we extend our results to
ancient mean curvature flows. In Appendix A we discuss examples of flows with
slow convergence which therefore are not meant to meet our characterization. In
Appendix B we discuss an extension of an ODE lemma due to Merle–Zaag [27]
that we need. In Appendix C we discuss the form of Schauder estimates we need
for our linear parabolic systems.

Our study of ancient gradient flows requires a few ideas that are familiar to the
experts of two neighboring fields:

• the study of minimal surfaces with isolated singularities;
• the forward-time study of uniqueness of tangent flows for mean curvature

flow at the first singular time.
Namely, we use the notion of integrable critical points for Proposition 1.11 and

the Łojasiewicz–Simon inequality for Theorem 1.1. For context, see the pioneering
works of Allard–Almgren [1] and Simon [30]. The Łojasiewicz–Simon inequality
has found spectacular success in the study of singularities in mean curvature flow:
novel variants were used by Schulze [29], Colding–Minicozzi [14], and Chodosh–
Schulze [12] to prove uniqueness of certain “multiplicity one” tangent flows. The
“dynamical” study of singularities in the recent work of Colding–Minicozzi [15,
16] is also reminiscent of some aspects of Theorem 1.1.

Theorem 1.10 follows a different set of ideas. Key is a Cacciopoli type in-
equality, (4.6), which is deeply connected to the ancient and the gradient nature of
the flow. For context, see Angenent–Daskalopoulos–Sesum [2, Lemma 4.12]. The
Caccioppoli inequality lets us estimate the C2,θ decay of our flow in terms of its
L2 energy, which relates more naturally to the gradient nature of the flow. Indeed,
we decompose the L2 norm into the stable, neutral, and unstable components, and
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directly study the dynamics of these components by building on an ODE result
originally due to Merle–Zaag [27]; see Lemma B.1.

Acknowledgments. We are grateful to F. C. Marques and J. Bernstein for sug-
gesting to us that Corollary 1.5 (which did not appear on the first version of the
paper) follows from our proof of Theorem 1.1 and the (now proven) Willmore
conjecture. We are grateful to the journal’s referee for their recommendations. We
would like to thank B. Choi for pointing out a point that had to be clarified, F.
Schulze, O. Hershkovits, C. Mooney, and N. Edelen for insightful conversations,
and T. Colding, B. Minicozzi, M. Langford, T. Bourni, M. Ivaki, Y. Sire, and A.
Payne for their interest.

2. Background and notation.

2.1. Functional spaces. Let (Σ,g) be a closed Riemannian manifold and
V →Σ be a Euclidean vector bundle. Let Ω⊂Σ×R, θ ∈ (0,1]. For u : Ω→ V we
define:

[u]Cθ
P (Ω;V ) := sup

{
dV

(
u(p,t),u(q,s)

)

dΣ(p,q)θ+ |t− s|θ/2
: (p,t),(q,s) ∈ Ω, (p,t) �= (q,s)

}

,

and for k ∈ N:

‖u‖
Ck,θ

P (Ω;V )
:=

∑

i+2j≤k

sup
Ω

∥
∥∇i

x∇j
tu
∥
∥+

∑

i+2j=k

[
∇i
x∇j

tu
]
Cθ

P (Ω;V )
.

The corresponding parabolic Hölder spaces are Ck,θ
P (Ω;V ).

Now suppose Ω ⊂ Σ. Without the subscript P , [u]Cθ(Ω;V ), ‖u‖Ck,θ(Ω;V ) refer
to the standard seminorm and norm of the Banach space Ck,θ(Ω;V ).

Finally, when Ω = Σ×R−, we will need to consider spaces of functions with
controlled exponential decay. For δ > 0, define

‖u‖
Ck,θ,δ

P (Σ×R−;V )
:= sup

t∈R−

[
e−δt‖u‖

Ck,θ
P (Σ×[t−1,t];V )

]
.(2.1)

The vector space

Ck,θ,δ
P

(
Σ×R−;V

)
:=

{
u ∈ Ck,θ

P

(
Σ×R−;V

)
: ‖u‖

Ck,θ,δ
P (Σ×R−;V )

< ∞
}

is evidently a Banach space when endowed with ‖ · ‖
Ck,θ,δ

P (Σ×R−;V )
.

2.2. Space of critical points. We will be actively interested in the space of
critical points with small Ck,θ norm:

Mk,θ(δ) :=
{
f : H(f) = 0, ‖f‖Ck,θ(Σ;V ) < δ

}
,(2.2)
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particularly when f = 0 is itself a critical point, which we will assume throughout
this paper. From, (1.9) we find that

H(f) = divg
[
∇qA

(
x,f,∇gf

)]−∇zA
(
x,f,∇gf

)
.(2.3)

We interpret H(f) = 0 as a weak second order divergence-form system as in
(2.3). Schauder theory for elliptic systems [33] implies that M1,θ(δ), θ ∈ (0,1),
already captures all solutions near the origin as long as one suitably adjusts δ.

Remark 2.1. When V is a line bundle, elliptic De Giorgi–Nash–Moser theory
[20, Chapter 8] allows us to use M1,0(δ′) instead of M1,θ(δ).

The linearization of H(f) at f = 0 will play an important role in our work, so
let us define:

Lf :=

[
d

ds
H(sf)

]

s=0
.(2.4)

An elementary computation involving (1.8), (2.3) shows that

Lf = divg
[〈

∇2
qA(x,0,0),∇gf

〉
g

]
+
(

divg ∇q∇zA(x,0,0)−∇2
zA(x,0,0)

)
f

is a uniformly elliptic self-adjoint divergence form operator. We will denote the
eigenvalues of −L as

λ1 < λ2 ≤ ·· · ≤ λI < λI+1 = · · ·= λI+K = 0 < λI+K+1 ≤ ·· · ,(2.5)

repeated according to their multiplicity; note that limj λj = ∞ [20, Chapter 5].
Here, I = ind(L) is the “Morse index” of L, and K = nul(L) is the “nullity” of L.
We also fix once and for all an L2 orthonormal sequence of corresponding eigen-
functions ϕj : Σ→ V :

• ϕ1, . . . ,ϕI are called “unstable modes”,
• ϕI+1, . . . ,ϕI+K are called “neutral modes” or “Jacobi fields”,
• ϕI+K+1,ϕI+K+2, . . . are called “stable modes”.

We consider auxiliary operators:

ι− : RI −→ L2(Σ×R−;V
)
, ι−(a) :=

I∑

j=1

aje
−λjtϕj ,(2.6)

Π− : L2(Σ;V )−→ L2(Σ;V ),

Π−ϕ := ι−
(〈
ϕ,ϕ1

〉
L2(Σ;V )

, . . . ,
〈
ϕ,ϕI

〉
L2(Σ;V )

)
(·,0),(2.7)

ι0 : RK −→ L2(Σ;V ), ι0
(
a1, . . . ,aK

)
:=

K∑

�=1

a�ϕI+�,(2.8)
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Π0 : L2(Σ;V )−→ L2(Σ;V ),

Π0ϕ := ι0
(〈
ϕ,ϕI+1

〉
L2(Σ;V )

, . . . ,
〈
ϕ,ϕI+K

〉
L2(Σ;V )

)
.

(2.9)

We now briefly recall the structure result for M2,θ(δ) in [30, Section 2]. It is
occasionally convenient to rewrite

H(f) = Lf +
〈
N

(
x,f,∇gf

)
,∇2

gf
〉
g
+Q

(
x,f,∇gf

)
,(2.10)

where L is as above; N (x,z,q) is a smooth symmetric bilinear form mapping into
V satisfying

(‖z‖+‖q‖)min{−1+j+k,0}∥∥∇i
x∇j

z∇k
qN (x,z,q)

∥
∥ ≤ c, i,j,j ≥ 0;(2.11)

and Q(x,z,q) is a smooth V -valued function satisfying

(‖z‖+‖q‖)min{−2+j+k,0}∥∥∇i
x∇j

z∇k
qQ(x,z,q)

∥
∥ ≤ c, i,j,k ≥ 0.(2.12)

Adding Π0 from (2.9) to both sides of H(f) = 0, and recalling (2.10), the critical
point equation is equivalent to

Lf +
〈
N

(
x,f,∇gf

)
,∇2

gf
〉
g
+Q

(
x,f,∇gf

)
+Π0f =Π0f.(2.13)

By the invertibility L+Π0, the implicit function theorem on Banach spaces im-
plies that there exist neighborhoods W1, W2 of 0 in C2,θ(Σ;V ), C0,θ(Σ;V ), and a
diffeomorphism Ψ :W2 →W1 such that

(
L+

〈
N ,∇2

g

〉
g
+Q+Π0

)◦Ψ= IdW2 ,(2.14)

Ψ◦ (L+
〈
N ,∇2

g

〉
g
+Q+Π0

)
= IdW1 .(2.15)

Set U := {a ∈ RK : ι0(a) ∈W2} ⊂ RK , and consider the finite dimensional reduc-
tion Afin : U → R,

Afin(a) :=A(
Ψ
(
ι0(a)

))
.

For f with Π0f ∈ W2, (2.13) is equivalent to f = (Ψ ◦ ι0)(a) with a ∈ U ,
∇Afin(a) = 0. Shrinking W1, we conclude that for small δ > 0,

M2,θ(δ) =
{(

Ψ◦ ι0
)
(a) : a ∈ U, ∇Afin(a) = 0

}
(2.16)

for some open neighborhood U of 0 ∈ RK . The same representation will also hold
true for M1,θ(δ′), for a smaller δ′ > 0, by elliptic Schauder theory [20, Chapter 6];
see also Remark 2.1.
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3. Existence of ancient flows. In this section we construct ancient flows
converging exponentially quickly to arbitrary unstable critical points along their
unstable eigenspaces, in the spirit of an unstable manifold theorem. Results of this
flavor are true for nonlinear parabolic PDEs in various settings (see [25, Chap-
ter 9]), but we opt for a short self-contained proof modeled on an elliptic result
of Caffarelli–Hardt–Simon [10]. As a side consequence of our contraction map-
ping technique we naturally get a uniqueness result within exponentially decaying
flows, but we will sharpen this uniqueness substantially in Section 4.

We start by considering the inhomogeneous linear PDE

∂

∂t
u= Lu+h(x,t), (x,t) ∈Σ×R−,(3.1)

where h : Σ×R− → V is some given smooth function. It is well known that solu-
tions of (3.1) can be expressed as

u(x,t) =

∞∑

j=1

uj(t)ϕj(x),(3.2)

and the uj are, formally, solutions of u′j(t) = −λjuj(t)+hj(t), where h(x,t) =∑∞
j=1hj(t)ϕj(x).

LEMMA 3.1. Suppose that δ > 0 is such that

∫ 0

−∞

∣
∣e−δt

∥
∥h(·, t)∥∥

L2(Σ;V )

∣
∣2dt < ∞.

Fix a ∈ RI . There exists a unique solution u of (3.1) such that

Π−
(
u(·,0)) = ι−(a)(·,0),

∫ 0

−∞

∣∣e−δ′t∥∥u(·, t)∥∥
L2(Σ;V )

∣∣2 dt < ∞

for some 0 < δ′ <min{δ,−λI}. It is given by the series in (3.2) with

uj(t) := aje
−λjt−

∫ 0

t
eλj(s−t)hj(s)ds, j = 1,2, . . . , I,(3.3)

uj(t) :=
∫ t

−∞
eλj(s−t)hj(s)ds, j = I+1, I+2, . . . .(3.4)

For every t≤ 0, and 0< δ′ <min{δ,−λI},

e−δ′t∥∥u(·, t)− ι−(a)
∥
∥
L2(Σ;V )

≤ c

[∫ 0

−∞

∣
∣e−δτ

∥
∥h(·, τ)∥∥

L2(Σ;V )

∣
∣2dτ

]1/2

,(3.5)

for some c= c(δ,δ′,λI)> 0.
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Proof. This is a straightforward computation given (3.3), (3.4). �

Schauder theory for linear parabolic equations implies:

COROLLARY 3.2. Suppose that h ∈ C0,θ,δ
P (Σ×R−) for θ ∈ (0,1), δ > 0. The

solution in Lemma 3.1 satisfies, for every 0< δ′′ <min{δ,−λI},
∥
∥u− ι−(a)

∥
∥
C2,θ,δ′′

P (Σ×R−;V )
≤ c‖h‖

C0,θ,δ
P (Σ×R−;V )

,(3.6)

for some c= c(θ,δ,δ′′,λI)> 0.

We now turn to the construction of solutions u : Σ×R− → V to:

∂

∂t
u= Lu+

〈
N

(
x,u,∇gu

)
,∇2

gu
〉
g
+Q

(
x,u,∇gu

)
,(3.7)

where N , Q are as in (2.11), (2.12). Note that ancient solutions of (1.10) are
precisely of this form because of (2.10).

THEOREM 3.3. Fix δ0 ∈ (0,−λI). There is a μ0 > 0 such that for any μ≥ μ0,
a ∈ Bη(0) ⊂ RI , with η depending on μ, there is a unique solution S (a) : Σ×
R− → V of (3.7) satisfying

∥
∥S (a)− ι−(a)

∥
∥
C

2,θ,δ0
P (Σ×R−;V )

≤ μ|a|2, Π−
[
S (a)(·,0)] = ι−(a)(·,0).(3.8)

Proof. The space

C(a) :=
{
u ∈ C2,θ,δ0

P

(
Σ×R−;V

)
: Π−

(
u(·,0)) = ι−(a)(·,0)

}

is a closed subspace ofC2,θ,δ0
P (Σ×R−;V ), so it is also a Banach space. For brevity,

we will write ‖ · ‖ for ‖ · ‖
C

2,θ,δ0
P (Σ×R−;V )

in this proof.

For u ∈ C[a]∩C∞(Σ×R−;V ), define S (u;a) to be a solution in C[a] of
(
∂

∂t
−L

)
S (u;a) =

〈
N

(
x,u,∇gu

)
,∇2

gu
〉
g
+Q

(
x,u,∇gu

)
, t≤ 0.

Existence and uniqueness hold by Corollary 3.2, which applies with δ = 2δ0 in
view of (2.11)-(2.12) and shows that, for some c > 0,

∥
∥S (u;a)− ι−(a)

∥
∥≤ c‖u‖2,(3.9)

∥
∥S (u;a)−S (u′;a)

∥
∥≤ c

(‖u‖+‖u′‖)‖u−u′‖.(3.10)

By (3.10), S (·;a) extends to a C1 map of C[a]. By (3.9), (3.10), S (·;a) is a con-
traction mapping of the convex subset {u ∈ C[a] : ‖u− ι−(a)‖ ≤ μ|a|2}, provided
μ > 2c and η is small depending on μ, c. The result follows from the contraction
mapping principle. �

As an immediate corollary of (3.9)-(3.10) we get:
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COROLLARY 3.4. The mapping S :Bη(0)→C2,θ,δ0
P (Σ×R−;V ) of Theorem

3.3 satisfies S (0) = 0 and
[
d
dsS (sa)

]
s=0 = ι−(a), ∀a ∈ RI .

In other words, S can be viewed as parametrizing the “unstable manifold”
that corresponds to the critical point at the origin, which is tangent to the subspace
of eigenfunctions of L with negative eigenvalues. It is not hard to see that S is a
smooth Banach functional.

4. Uniqueness. Our main theorem in this section is:

THEOREM 4.1. Fix θ ∈ (0,1), C0 > 0. There exists ε > 0 such that if u : Σ×
R− → V is a smooth solution of (1.10) satisfying

‖u‖
C1,θ

P (Σ×R−;V )
≤ C0,(4.1)

∥∥u(·, t)∥∥
C1(Σ;V )

< ε, ∀t≤ 0,(4.2)

and

‖u‖L1(Σ×R−;V ) < ∞,(4.3)

then there exists τ ≥ 0 and a ∈ RI such that u(x,t− τ) coincides with S (a) from
Theorem 3.3.

Let us spend a moment to contrast Theorem 4.1 to generic center-unstable
manifold type results; see [25, Chapter 9.2], [17]. The latter ascertain that ancient
flows near critical points decompose into a “slow” neutral component and a “fast”
unstable component (exponentially decaying with speed eαt, α <−λI ). We prove
a finer result by exploiting the quasilinear gradient flow structure. Iterating a lemma
of Merle–Zaag (Appendix B), we study the dynamics across all eigenspace projec-
tions. We show that an ancient flow that converges to a critical point with at least an
“L1” rate must a posteriori be fully dominated by one of its “fast” unstable modes
λI∗ , with I∗ ≤ I . We obtain sharp decay rates that are sensitive to the dominating
unstable eigenvalue (i.e., e−λI∗ t). This lets us invoke the contraction mapping from
Section 3 with much weaker a priori conditions.

Remark 4.2. Recall, from (2.10), that solutions u of (1.10) satisfy an evolution
equation of the form

∂

∂t
u= Lu+

〈
N

(
x,u,∇gu

)
,∇2

gu
〉
g
+Q

(
x,u,∇gu

)
.(4.4)

For reasons that will become clearer later, we will seek to resort to (4.4) instead of
the variational equation (1.10) whenever possible.

Remark 4.3. When V is a line bundle, all C1,θ
P norms in this section can be

replaced by spatial C1 norms due to fully nonlinear parabolic PDE theory [36].
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Proof of Theorem 4.1. It will be convenient to write � for inequalities that
hold up to multiplicative constants that may depend on A, Σ, g, V , θ, C0. Denote:

σ(t) :=
∥
∥u(·, t)∥∥

C2(Σ;V )
.

Linear parabolic Schauder theory, (4.1), (4.2), (4.3) imply

σ(t)� ε, σ ∈ L1(R−
)
.(4.5)

For sufficiently small ε > 0, the negative gradient flow nature of (1.10), the criti-
cality of 0, the Legendre–Hadamard condition (1.8) and the uniform C2 control in
(4.5) imply, by Gårding’s inequality, that

A(0)≥A(
u(·, t))≥A(0)+C−1

∥∥∇gu(·, t)
∥∥2
L2(Σ;V )

−C−1
∥∥u(·, t)∥∥2

L2(Σ;V )

for a fixed C > 0, so

∥
∥u(·, t)∥∥

W 1,2(Σ;V )
�

∥
∥u(·, t)∥∥

L2(Σ;V )
, ∀t≤ 0.(4.6)

From now on don’t need to use (1.10) again, and will just use (4.4).
Now (4.4), (2.11), (2.12) imply
∥
∥∥
∥

(
∂

∂t
−L

)
u(·, t)

∥
∥∥
∥
L2(Σ;V )

� σ(t)
∥∥u(·, t)∥∥

W 1,2(Σ)
� σ(t)

∥∥u(·, t)∥∥
L2(Σ;V )

.(4.7)

Denote

U−(t) :=
∥
∥Π−

(
u(·, t))∥∥

L2(Σ;V )
,

U0(t) :=
∥∥Π0

(
u(·, t))∥∥

L2(Σ;V )
,

U+(t) :=
∥
∥(Id−Π−−Π0

)(
u(·, t))∥∥

L2(Σ;V )
,

so that

∥
∥u(·, t)∥∥2

L2(Σ;V )
= U−(t)2 +U0(t)

2 +U+(t)
2.

Proceeding as in [2, Lemma 5.5], we see that (4.7) implies:

d

dt
U−+λIU− �−σ∥∥u(·, t)∥∥

L2(Σ;V )
,(4.8)

∣
∣∣
∣
d

dt
U0

∣
∣∣
∣� σ

∥∥u(·, t)∥∥
L2(Σ;V )

,(4.9)

d

dt
U++λI+K+1U+ � σ

∥
∥u(·, t)∥∥

L2(Σ;V )
.(4.10)

CLAIM 4.4. U++U0 � σU−, t≤ 0.
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Proof of claim. We apply the ODE Lemma B.1 with x= U0, y = U+, z =U−.
This already implies U+ � σ(U−+U0). Our claim will follow once we can show
that (B.6) holds true. Note that this is trivially true in case K = dimkerL= 0.

Suppose, for the sake of contradiction, that K ≥ 1 and (B.5) holds true instead
of (B.6). Then U++U− � σU0 and, therefore,

∥∥u(·, t)∥∥
L2(Σ;V )

� U0(t)(4.11)

for t≤−τ and some τ > 0.
Linear parabolic Schauder theory, (4.4), and (4.11) imply

σ(t)�
∫ t

t−1
U0(s)ds≤ max

[t−1,t]
U0, t≤−τ.

Therefore, (4.9), (4.11) together imply that V (t) := max[t−1,t]U0 satisfies V ′(t)�
V (t)2. Integrating and recalling the definition of U0

max
[t−1,t]

U0 � |t|−1, t≤−τ.

Together with (4.9), (4.11), again, this implies U0(t) � |t|−1 for every t ≤ −τ ,
which contradicts the L1 finiteness in (4.5). The claim follows. �

Claim 4.4 improves (4.8) to:

d

dt
U−+λIU− �−σU−.(4.12)

At this point we may assume, without loss of generality, that U−(t)> 0 for t≤ 0;
otherwise, Claim 4.4 forces the trivial stationary situation U− ≡ U0 ≡ U+ ≡ 0.

CLAIM 4.5. σ(t)� e−λI t, t≤ 0.

Proof of claim. We first prove a weaker statement. For a ∈ (0,−λI):
σ(t)≤ Cae

at, t≤ 0.(4.13)

It follows from Claim 4.4, (4.5), (4.8), that (logU−)′ ≥ −a for t ≤ −τa, with τa
large depending on a. Integrating,

logU−
(− τa

)− logU−(t) =
∫ −τa

t

(
logU−

)′ ≥ −a(t+ τa
)
, t≤−τa.

Rearranging, U−(t) ≤ U−(−τa)ea(t+τa). Claim 4.4, (4.1), (4.2), and linear para-
bolic Schauder theory on (4.4) now imply (4.13).

We now prove the strong bound. If a ∈ (0,−λI), (4.12), (4.13) imply

logU−(0)− log
(
eλI tU−(t)

)
=

∫ 0

t

(
log

(
eλIsU−(s)

))′
ds≥−1

a
Ca.
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The claim follows by Claim 4.4, (4.1), (4.2), and linear parabolic Schauder theory
on (4.4). �

For j = 1, . . . , I and λ < 0 denote:

uj(t) :=
〈
u(·, t),ϕj

〉
L2(Σ;V )

ϕj ,

S≥λ :=
{
j ∈ {1, . . . , I} : λj ≥ λ

}
,

U≥λ(t) :=

⎡

⎣
∑

j∈S≥λ

∥
∥uj(t)

∥
∥2
L2(Σ;V )

⎤

⎦

1/2

,

and so on for all symbols <, =, etc.

CLAIM 4.6. Suppose I ′ ∈ {1, . . . , I} is such that

j ∈ S≥λI′ =⇒ lim
t→−∞

eλjtuj(t) = 0.(4.14)

Then S<λI′ �= /0 and U≥λI′ � σU<λI′ , t≤ 0.

Proof of claim. We prove this by backward induction on I ′. Let us see how the
base case, I ′ = I , goes. Thus, assume (4.14) holds for I ′ = I . For any λ < λI and
λ≥ max{λj : j ∈ S<λI

}, we have:
∣
∣∣
∣
d

dt
U=λI

+λIU=λI

∣
∣∣
∣� σU−,(4.15)

d

dt
U<λI

+λU<λI
�−σU−;(4.16)

the second ODE being interpreted as vacuously true in case S<λI
= /0.

Note that U=λI
� U<λI

. If not, then (4.15) would imply
∣∣
∣∣
d

dt

(
eλI tU=λI

)
∣∣
∣∣� σeλI tU− � σeλI tU=λI

=⇒
∣∣
∣∣
d

dt
log

(
eλI tU=λI

)
∣∣
∣∣� σ.

Integrating, and using σ ∈ L1 from (4.5), we get limt→−∞ e
λI tU=λI

(t) > 0; this
contradicts (4.14). Therefore, U=λI

� U<λI
as claimed.

As a consequence, S<λI
�= /0. Moreover, the ODE Lemma B.1 applied to

(4.15), (4.16) with x := eλI tU=λI
, z := eλI tU<λI

, improves U=λI
� U<λI

to
U=λI

� σU<λI
. This completes the base case of the backward induction.

For the general case, repeat with I ′ instead of I in (4.15), (4.16). �

Let I∗ ∈ {1, . . . , I} be the largest index for which (4.14) fails. Then:

d

dt
U≤λI∗ +λI∗U≤λI∗ �−σU≤λI∗ .(4.17)
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We have thus established that the analog of (4.12) holds for the topmost modes
that do not vanish at infinity, and Claim 4.6 now plays the role of Claim 4.4. Thus,
arguing as in Claim 4.5, we obtain the following sharp estimate:

σ(t)� e−λI∗ t.(4.18)

In all that follows, τ ≥ 0 and t≤ 0. Set

u(τ)(·, t) := u(·, t− τ).

Our assumption on I∗ guarantees that

limsup
τ→∞

e−λI∗τ
∥∥Π−

(
u(τ)(·,0))∥∥

L2(Σ;V )
> 0.(4.19)

CLAIM 4.7. For every t≤ 0,

e−2λI∗τ
∥∥u(τ)(·, t)− ι−

(
u1(−τ), . . . ,uI(−τ)

)
(·, t)∥∥

L2(Σ;V )
� e−λI t.(4.20)

Proof of claim. First:

e−2λI∗τ (U0 +U+)(t− τ)� e−2λI∗τσ(t− τ)U−(t− τ)� e−2λI∗ t.(4.21)

where we’ve used Claim 4.4 and (4.18). Second, for j ∈ {1, . . . , I}, it is easy to
see that Claims 4.4, 4.6 imply ‖ d

dtuj+λjuj‖� σU≤λI∗ . Multiplying through with
eλjt, integrating, and using (4.18) again:

e−2λI∗τ
∥∥uj(t− τ)− e−λjtuj(−τ)

∥∥� e−max{λj ,2λI∗ }t(4.22)

when λj �= 2λI∗, or, in case λj = 2λI∗ ,

e−2λI∗τ
∥
∥uj(t− τ)− e−λjtuj(−τ)

∥
∥� |t|e−2λI∗ t.(4.23)

Combining (4.21), (4.22), (4.23) gives the result. �

Let δ0 ∈ (0,−λI). Linear parabolic Schauder theory on (4.4) promotes (4.20)
to

e−2λI∗τ
∥
∥u(τ)− ι−

(
u1(−τ), . . . ,uI(−τ)

)∥∥
C

2,θ,δ0
P (Σ×R−;V )

� 1.(4.24)

The result follows from the uniqueness aspect of Theorem 3.3 applied to u(τ) af-
ter choosing a sufficiently large μ, depending on the implicit constants of (4.19),
(4.24), and a sufficiently large τ from (4.19). �

We now seek to provide sufficient conditions that will guarantee the L1 decay
needed to apply Theorem 4.1. To that end, we recall the notion of integrable critical
points:
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Definition 4.8. The critical point f = 0 of A is said to be integrable if for
every φ ∈ kerL there exists a family of {ft}0<t<1 ⊂M1,θ(1) with A(ft) =A(0)
and limt→0 ‖1

t ft−φ‖C1,θ(Σ;V ) = 0.

LEMMA 4.9. (cf. [32, Lemma 6.4, Part II]) Let 0 be an integrable critical
point of A. Fix θ ∈ (0,1). There exist ε,c,τ > 0 such that if ψ∗ ∈ M1,θ(ε) and
u : Σ×R− → V is a smooth solution of (1.10) with ‖u‖

C1,θ
P (Σ×R−;V )

< ε, then

∥∥u−ψ∗∗
∥∥
C1,θ

P (Σ×[−3τ,−τ ];V )

≤ 1
2

max

{

c

[
lim

t→−∞
A(
u(·, t))−A(

ψ∗
)
]1/2

+

,
∥
∥u−ψ∗

∥
∥
C1,θ

P (Σ×[−2τ,0];V )

}
(4.25)

for some ψ∗∗ ∈M1,θ(1).

Proof. Below, � will be used for inequalities that hold up to multiplicative
constants that depend on A, Σ, g, V , θ, C0. We will adapt Simon’s proof from the
elliptic and forward-parabolic settings in [32] to the backward parabolic setting.
We argue by contradiction. If the conclusion were false, then there would exist
sequences

• ψ
(k)
∗ ∈M1,θ(1/k), and

• u(k) : Σ×R− → R of solutions to (1.10) with

∥∥u(k)
∥∥
C1,θ

P (Σ×R−;V )
< 1/k,

so that

inf
{∥
∥u(k)−ψ(k)

∗∗
∥
∥
C1,θ

P (Σ×[−3τ,−τ ];V )
: ψ∗∗ ∈M1,θ(1)

}

>
1
2

max

{
k1/2

[
lim

t→−∞
A(
u(k)(·, t))−A(

ψ
(k)
∗

)]1/2

+
,
∥
∥u(k)−ψ(k)

∗
∥
∥
C1,θ

P (Σ×[−2τ,0];V )

}
.

(4.26)

It follows from (1.10) that

∫ 0

−∞

∫

Σ

∥
∥∥
∥
∂

∂t
u(k)(·, t)

∥
∥∥
∥

2

dμg dt� lim
t→−∞

A(
u(k)(·, t))−A(

u(k)(·,0)).(4.27)

By a crude estimate on A(u(k)(·,0))−A(ψ
(k)
∗ ) this implies

∫ 0

−∞

∫

Σ

∥∥
∥∥
∂

∂t
u(k)(·, t)

∥∥
∥∥

2

dμg dt

�
∥
∥u(k)(·,0)−ψ(k)

∗
∥
∥2
C1(Σ;V )

+ lim
t→−∞

A(
u(k)(·, t))−A(

ψ
(k)
∗

)
.

(4.28)
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Therefore,

∥
∥u(k)(·, t)−ψ(k)

∗
∥
∥2
L2(Σ;V )

� |t|
[∥
∥u(k)(·,0)−ψ(k)

∗
∥
∥2
C1(Σ;V )

+ lim
t→−∞

A(
u(k)(·, t))−A(

ψ
(k)
∗

)]
, t≤−1.

(4.29)

At this point we will no longer need to use the variational structure of (1.10), and
will instead use (4.4). Linear parabolic Schauder theory implies

∥
∥u(k)−ψ(k)

∗
∥
∥2
C1,θ

P (Σ×[t,−1];V )

� |t|
[∥
∥u(k)(·,0)−ψ(k)

∗
∥
∥2
C1(Σ;V )

+ lim
t→−∞

A(
u(k)(·, t))−A(

ψ
(k)
∗

)]
, t≤−1.

(4.30)

Together with (4.26) applied with ψ(k)
∗∗ = ψ

(k)
∗ , (4.30) implies

∥
∥u(k)−ψ(k)

∗
∥
∥2
C1,θ

P (Σ×[t,−1];V )

� |t|∥∥u(k)−ψ(k)
∗

∥
∥2
C1,θ

P (Σ×[−2τ,0];V )
, t≤−1.

(4.31)

Define

β(k) :=
∥
∥u(k)−ψ(k)

∗
∥
∥
C1,θ

P (Σ×[−2τ,0];V )
,

û(k) :=
(
β(k)

)−1(
u(k)−ψ(k)

∗
)
.

Using linear parabolic Schauder theory, the û(k) have uniform C2,θ
P estimates as

k→ ∞. By Arzelà–Ascoli on (4.31), Fatou’s lemma on (4.28), and β(k) → 0, we
see that, after passing to a subsequence, û(k) converges locally in C1,θ

P to a function
û : Σ×R− → V which satisfies

‖û‖
C1,θ

P (Σ×[−2τ,0];V )
= 1,(4.32)

∂

∂t
û= Lû,(4.33)

∫ 0

−∞

∫

Σ

∥∥
∥∥
∂

∂t
û

∥∥
∥∥

2

dμg dt� 1,(4.34)

where L is as in (2.4). It follows from (4.33), (4.34) that

û= φ̂+ ι−(â)(4.35)
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for φ̂ ∈ kerL and a ∈ RI . By the C1,θ
P (Σ× [−3τ,0];V ) convergence û(k) → û,

Claim 4.10 below (where ξ ∈ (0,1) is yet to be determined), and (4.32):

∥
∥u(k)−ψ(k)

∗ −β(k)φ̂∥∥
C1,θ

P (Σ×[−3τ,−τ ];V )

= β(k)
∥
∥(β(k)

)−1(
u(k)−ψ(k)

∗
)− φ̂∥∥

C1,θ
P (Σ×[−3τ,−τ ];V )

= β(k)
∥
∥û− φ̂∥∥

C1,θ
P (Σ×[−3τ,−τ ];V )

+ o
(
β(k)

)

≤ ξβ(k)
∥∥û− φ̂∥∥

C1,θ
P (Σ×[−2τ,0];V )

+ o
(
β(k)

)

= ξβ(k)
∥∥(β(k)

)−1(
u(k)−ψ(k)

∗
)− φ̂∥∥

C1,θ
P (Σ×[−2τ,0];V )

+ o
(
β(k)

)

≤ ξβ(k) + ξβ(k)‖φ̂‖C1,θ(Σ;V ) + o
(
β(k)

)
.

By elliptic theory, (4.32), and (4.35) we can choose ξ uniformly so that
ξ+ ξ‖ψ̂‖C1,θ(Σ) ≤ 1

4 . Thus:

∥
∥u(k)−ψ(k)

∗ −β(k)φ̂∥∥
C1,θ

P (Σ×[−3τ,−τ ];V )
≤
(

1
4
+ o(1)

)
β(k).

Together with Definition 4.8, this contradicts (4.26). �

CLAIM 4.10. Fix ξ, θ ∈ (0,1). There exists τ > 0 such that

∥∥ι−(a)
∥∥
C1,θ

P (Σ×[−3τ,−τ ];V )
≤ ξ ·∥∥ι−(a)

∥∥
C1,θ

P (Σ×[−2τ,0];V )
,(4.36)

independently of a ∈ RI .

Proof. This is a straightforward consequence of the exponential decay as t→
−∞ in (2.6). �

Remark 4.11. If A(ψ∗) = A(0) in Lemma 4.9, then we can guarantee that
A(ψ∗∗) =A(0). This follows because all perturbed solutions are produced by Def-
inition 4.8.

PROPOSITION 4.12. Let 0 be an integrable critical point of A. Fix θ ∈ (0,1).
There exist ε, c, κ > 0 such that if u : Σ×R− → R is a smooth solution of (1.10)
with ‖u‖

C1,θ
P (Σ×R−;V )

< ε and

lim
t→−∞

A(
u(·, t)) ≤A(0),(4.37)

then there exists ψ∗ ∈M1,θ(ε) such that

‖u−ψ∗‖C1,θ,κ
P (Σ;V )

≤ c.(4.38)
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Proof. We will iterate Lemma 4.9. On every iteration we can estimate:
∥
∥ψ∗ −ψ∗∗

∥
∥
C1,θ(Σ;V )

≤ ∥∥u(·,−τ)−ψ∗
∥∥
C1,θ(Σ;V )

+
∥∥u(·,−τ)−ψ∗∗

∥∥
C1,θ(Σ;V )

≤ 3
2

∥
∥u−ψ∗

∥
∥
C1,θ

P (Σ×[−2τ,0];V )
.

(4.39)

Suppose μ ∈ (0,1) is yet to be determined, and set ε := με0. From Lemma 4.9 and
(4.39), applied with ψ∗,0 := 0, there exists a critical point ψ∗,1 such that

∥
∥u−ψ∗,1

∥
∥
C1,θ

P (Σ×[−3τ,−τ ];V )
≤ 1

2
με0,

∥
∥ψ∗,1 −ψ∗,0

∥
∥
C1,θ(Σ;V )

≤ 3
2
με0.

By Remark 4.11, A(ψ∗,1) = A(0). Iterating indefinitely, we obtain critical points
ψ∗,k with A(ψ∗,k) =A(0), and

∥
∥u−ψ∗,k

∥
∥
C1,θ

P (Σ×[−(k+2)τ,−kτ ];V )
≤ 2−kμε0,

∥
∥ψ∗,k−ψ∗,k−1

∥
∥
C1,θ(Σ;V )

≤ 3 ·2−kμε0.

Using this geometric decay, we find that there exists ψ∗,∞ ∈M1,0(3ε) as asserted.
The result follows with ε/3 in place of ε. �

Remark 4.13. We list two general sufficient conditions for assumption (4.37)
in Proposition 4.12 to hold:

(1) The critical point 0 is nondegenerate, i.e., dimkerL= 0. It is then simple to
see that there exists ε > 0 such that M1,θ(ε) = {0} (e.g., this follows immediately
from the analysis in Section 2.2). As a side consequence, the limiting ψ∗ is ψ∗ = 0.

(2) The integrand A(x,z,q) in (1.7) is an analytic function of z, q. It is then
easy to see that Afin in Section 2.2 is constant on a neighborhood of the origin so,
by (2.16), the left and right-hand sides of (4.37) are equal. (Assumption (4.37) also
follows from the much stronger Łojasiewicz–Simon inequality [30]. However, the
conclusion of Proposition 4.12 certainly needn’t hold if we’re not near an integrable
critical point; see Appendix A for examples of arbitrarily slow convergence.)

5. Mean curvature flow.

LEMMA 5.1. Let S ⊂ (M,g) be a closed and smoothly embedded minimal sub-
manifold. For θ ∈ (0,1), 0 < σ < 1

2τ , ε > 0, there exists δ > 0 so that if (Σt)0≤t≤τ

is a mean curvature flow that stays δ-close to S in the sense of measures, i.e., for
all t ∈ [0, τ ],

∣∣
∣∣

∫

Σt

f dμg�Σt −
∫

S
f dμg�S

∣∣
∣∣≤ δ‖f‖C0(M), ∀f ∈ C0(M),(5.1)
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then, for all t ∈ [σ,2σ], Σt is a graph of some function on S with values in the
normal bundle NS and C2,θ(S;NS) norm < ε.

Proof. Let m be the dimension of S. Denote Gaussian density ratios for points
x ∈M , a surface T , and a scale r > 0, by

Θ(x;T,r) :=
(
4πr2)−m/2

∫

T
exp

(−d(x,y)2/4r2)dμT (y).

Fix η > 0. Because S is closed and smoothly embedded, there exists r0 ∈ (0,1)
such that Θ(·;S,r0)≤ 1+η on M . Thus:

Θ
(·;Σt,r0

)≤ 1+η+
(
4πr2

0

)−m/2
δ ≤ 1+2η, t≤ 0,

provided δ > 0 is sufficiently small. White’s local regularity theorem [39] for point
with Gaussian density close to one yields uniform estimates on the second funda-
mental forms of Σt, t ∈ [σ,2σ]. The fact that the hypersurfaces Σt are all graphical
over S with small C2 norm follows by a straightforward contradiction argument
given that we now know uniform curvature bounds and uniform measure closeness
to S; the C2 norm is improved to a C2,θ norm by standard regularity theory. �

Lemma 5.1 implies the following results, whose proofs will be given momen-
tarily:

THEOREM 5.2. Let S ⊂ (M,g) be a closed and smoothly embedded minimal
submanifold. There exists δ > 0 such that if (Σt)t≤0 is a mean curvature flow that
stays measure theoretically δ-close to S in the sense of (5.1), and

∫ 0

−∞
distg

(
Σ,Σt

)
dt < ∞,(5.2)

then there exists τ ≥ 0 and a ∈ RI such that (Σt−τ )t≤0 coincides with S (a) from
Theorem 3.3.

By virtue of the a posteriori C2,θ bound in Lemma 5.1, the distance function
in (5.2) can be one of several equivalent distance type functions, but for simplicity
we take the supremum distance.

PROPOSITION 5.3. Let S ⊂ (M,g) be an integrable, closed, smoothly embed-
ded minimal surface. There exists c,δ,κ > 0 such that if (Σt)t≤0 is an ancient mean
curvature flow which is measure theoretically δ-close to S in the sense of (5.1), and

lim
t→−∞

Areag
(
Σt

)≤ Areag(Σ),(5.3)

then there exists a possibly different closed, smoothly embedded minimal surface
S∗ such that Σt, t ≤ −1, is a graph of some function on S∗ with values in the
normal bundle NS∗ and C2,θ(S∗;NS∗) norm < ceκt.
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We remind the reader that Remark 4.13 describes situations where the area
condition of Proposition 5.3 is met.

We now turn to the proof of Theorem 5.2 and Proposition 5.3. We would like
to apply Theorem 4.1 and Proposition 4.12. Unfortunately, mean curvature flow
is not the gradient flow, in the sense of (1.10), for the elliptic nonparametric area
functional; see Remark 1.12. It is, however, an evolution of the form (4.4) for the L,
N , Q that come from the nonparametric area functional. Therefore, Theorem 4.1
and Proposition 4.12 will apply provided we ensure the validity of all steps where
the variational implications (1.10) were used, and not just the general evolution
(4.4).

Proof of Theorem 5.2. By Lemma 5.1, we can write the Σt as small C2,θ

graphs of u(·, t), where u : S × R− → NS is a normal bundle valued solution
of the nonparametric mean curvature flow equation. So, we seek to apply the
proof of Theorem 4.1. Inspecting the proof, we see that the negative gradient flow
equation (1.10) was only used to derive (4.6), which nevertheless continues to hold
for our parametric gradient flow, as we are C1-near a minimal submanifold. The
remainder of the proof applies verbatim. �

Proof of Proposition 5.3. By Lemma 5.1, we can write the Σt as small C2,θ

graphs of u(·, t), where u : S×R− → NS is a normal bundle valued solution of
the nonparametric mean curvature flow equation. So, we seek to apply the proof
of Proposition 4.12. Inspecting the proof, we see that the negative gradient flow
equation (1.10) was only used to derive (4.27), which nevertheless continues to
hold, since ‖ ∂

∂tu‖2 dμg is bounded by a fixed constant times ‖HΣt‖2 dμg�Σt , as we
are C1-near a fixed submanifold. Thus, by the first variation formula,

∫ 0

−∞

∫

S

∥∥
∥∥
∂

∂t
u(k)(·, t)

∥∥
∥∥

2

dμg dt�
∫ 0

−∞

∫

S

∥
∥HΣt

∥
∥2
dμg�Σt dt

�
∫ 0

−∞

d

dt
Areag

(
Σt

)
dt

= lim
t→−∞

Areag
(
Σt

)−Areag
(
Σ0

)
.

The remainder of the proof applies verbatim. �

Before proving our Allard-type characterization of ancient mean curvature
flows in the sphere, we prove the following toy result:

PROPOSITION 5.4. Let (Σt)t≤0 be an ancient mean curvature flow of hyper-
surfaces embedded in a round hemisphere Sn

+. If

lim
t→−∞

Area
(
Σt

)
< 2Area

(
Sn−1),(5.4)

then (Σt)t≤0 is the steady ∂Sn
+ or spheres of latitude flowing out of it.
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It would be interesting to know whether (5.4) can be relaxed.

Proof of Proposition 5.4. We seek to employ Theorem 5.2 and Proposition 5.3
with S = ∂Sn

+. Indeed, I = ind(L) = 1 on ∂Sn
+ by [34, Proposition 5.1.1], and it is

trivial (e.g., by direct construction) to see that this one-parameter family of ancient
flows corresponds to one of spheres of latitude.

CLAIM 5.5. limt→−∞Σt = ∂Sn
+ in the sense of measures.

Proof of claim. Consider any sequence ti→−∞ and the sequence of translated
flows Σ(i)

t := Σt+ti . By Brakke’s compactness theorem and the uniform bounded-

ness of areas, (Σ(i)
t )t converges subsequentially to an integral eternal Brakke flow

with constant area equal to limt→−∞ Area(Σt). Since the area is constant, the inte-
gral Brakke flow is supported on a stationary integral varifold V , with spt‖V ‖ ⊂
Sn
+. It is easy to see that all such varifolds will, in fact, satisfy spt‖V ‖ ⊂ ∂Sn

+ (use,
e.g., the conformal Killing field normal to ∂Sn

+). By the constancy theorem for
integral varifolds [31] and (5.4) it follows that V is ∂Sn

+ with multiplicity one. �

Claim 5.5 and Proposition 5.3, together, show that Σt → S exponentially as
t→−∞. We are using the well-known fact that equatorial Sm ⊂ Sn are integrable
(see [34, Proposition 5.1.1] for the dimension of the space of Jacobi fields, which
trivially matches the space of Sm’s generated by symmetries). Therefore, Theorem
5.2 yields the result, since the Morse index of an equatorial Sm ⊂ Sn is n−m [34,
Proposition 5.1.1]. �

LEMMA 5.6. Let (Σt)t≤0 be an ancient mean curvature flow of closed sub-
manifolds in a real analytic manifold (M,g). Suppose that there exists a closed
minimal submanifold S0 and times ti →−∞ so that limiΣti = S0 in C2,θ. For all
small η > 0, there exists τ ≥ 0 so that Σt is η-close to S0, in C2,θ(S0;NS0), for all
t≤−τ .

Proof. We seek to invoke, backward in time, the Łojasiewicz–Simon inequality
[30, Theorem 3] on the real analytic manifold (M,g). Recall that its content is that
there exist η0 > 0, μ ∈ (0,1) (depending on S0, M , g) such that if f : S0 → NS0

has ‖f‖C2,θ(S0;NS0) < η0, then

∥∥H(f)
∥∥
L2(S0;NS0)

≥ ∣∣Area(S0)−Area(f)
∣∣1−μ

.(5.5)

Here we’re writing H(f) and Area(f) for the mean curvature vector and area of
the graph of f .

Without loss of generality, η < η0. For each i, let t′i be the first time > ti at
which Σt cannot be written as a graph u(·, t) over S0 with ‖u(·, t)‖C2,θ(S0;NS0) <
1
2η, or t′i = 0 if no such time exists. Clearly, t′i is nonincreasing in i. Our lemma is
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equivalent to showing

lim
i
t′i >−∞.(5.6)

Assume (5.6) is false. In that case, we first show that:

liminf
i

∫ t′i

ti

∥
∥∥
∥
∂

∂t
u(·, t)

∥
∥∥
∥
L2(S0;NS0)

> 0.(5.7)

If (5.7) were false, then limiΣti = S0 in C2,θ (and thus L2) would imply

lim
i

sup
[ti,t′i]

∥∥u(·, t)∥∥
L2(S0;NS0)

−→ 0.

Note that t′i− ti → ∞ due to limiΣti = S, which is a minimal submanifold. There-
fore, t′i > ti+1 for sufficiently large i. By Schauder theory, we can estimate

∥∥u
(·, t′i

)∥∥2
C2,θ(S0;NS0)

�
∫ t′i

t′i−1

∥∥u(·, t)∥∥2
L2(S0;NS0)

dt−→ 0,

which contradicts ‖u(·, t′i)‖C2,θ(S0;NS0) =
1
2η. Therefore, (5.7) is true. By the para-

metric mean curvature flow evolution equation and (5.5), there exists a constant c
(close to 1) such that

d

dt

(
Area

(
S0

)−Area
(
Σt

))μ

≥ cμ
(

Area
(
S0

)−Area
(
Σt

))μ−1∥∥H
(
u(·, t))∥∥

L2(S0;NS0)

∥∥
∥∥
∂

∂t
u(·, t)

∥∥
∥∥
L2(S0,NS0)

≥ cμ

∥
∥∥
∥
∂

∂t
u(·, t)

∥
∥∥
∥
L2(S0;NS0)

.

Integrating,

(
Area

(
S0

)−Area
(
Σt′i

))μ− (
Area

(
S0

)−Area
(
Σti

))μ

≥ cμ

∫ t′i

ti

∥∥
∥∥
∂

∂t
u(·, t)

∥∥
∥∥
L2(S;NS)

dt.

By (5.7), this right-hand side has a positive liminf, which contradicts that the left-
hand side gives terms of a convergent series, due to the monotonicity of area. Thus,
(5.6) holds true. �

Proof of Theorem 1.1. First we show:

CLAIM 5.7. limt→−∞ Σt exists in C2,θ and is an equatorial Sm.
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Proof. First, pick an arbitrary ti →−∞. By Brakke’s compactness theorem [5],
(Σt+ti)t≤0 has a subsequence which converges in a measure theoretic sense to an
integral Brakke flow whose area is a constant ≤ (1+ δ)Area(Sm), due to by (1.2).
Therefore, this is a static flow of a stationary integral varifold V in Sn. By Allard’s
regularity theorem [31] applied to the stationary cone 0#V , if δ is sufficiently small
then 0#V must be a smooth cone, so V must be an equatorial Sm with multiplicity
one. Therefore, all backward in time subsequential measure theoretic limits are
multiplicity one equatorial Sm’s. Note that then White’s regularity theorem by way
of Lemma 5.1 promote the convergence to C2,θ. By Lemma 5.6, Σt is close to a
fixed Sm for sufficiently negative t. But then Proposition 5.3 promotes this to full
convergence in C2,θ, as t→−∞, to a fixed Sm. �

The result now follows as it did in Proposition 5.4 with the combination of
Proposition 5.3 and Theorem 5.2. The n−m potential flow directions of Sm ⊂ Sn

are predicted by the Morse index, which is n−m [34, Proposition 5.1.1]. �

Proof of Corollary 1.3. It suffices to show that (1.3) implies (1.2). Recall that

lim
t→−∞

Length
(
Γt

)−Length
(
Γ0

)
=

∫ 0

−∞

∫

Γt

κ2
Γt
d�Γt .

Therefore, by virtue of (1.3), there exists a sequence ti →−∞ with

lim
i

∫

Γti

κ2
Γti
d�Γti

= 0.

By the Sobolev embedding theorem and Allard’s varifold compactness theorem
[31], after passing to a subsequence {ti′ }i′ ⊂ {ti}i, the curves Γti′ converge in
C1,θ, θ ∈ (0, 1

2 ), to a stationary C1,1/2 curve Γ∗. The only stationary C1,1/2 curves
inside S2 are equators and multiples thereof, but a simple degree argument shows
that embedded curves cannot converge inC0 to an equator with multiplicity greater
than one. Therefore,

lim
i′

Length
(
Γti′

)
= Length

(
S1).

This implies (1.2), and the result follows by Theorem 1.1. �

Below we prove a technical lemma needed for Corollary 1.5:

LEMMA 5.8. Let T be a 2-dimensional stationary integral varifold in S3. If
Area(T ) ≤ 2π2 and its associated Z2 chain [T ] has ∂[T ] = 0, then T is a multi-
plicity one equator or Clifford torus.

Proof. If T is smooth, the result follows by Marques–Neves’s [26] resolution
of the Willmore conjecture: smooth minimal surfaces in S3 have area 4π (equator),
2π2 (Clifford torus), or larger.
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We will show that T is, indeed, smooth by arguing by contradiction. If T 2 := T

were singular, then the 3-dimensional stationary cone C3 := 0#T 2 would be one
where the origin is not an isolated singularity. If x0 �= 0 denotes a singular point of
C3, then, by the monotonicity formula, the densities of C3 at x0 and the origin 0
satisfy (see [31]):

Θ3(C3,x0
)≤Θ3(C3,0

)
=

1
4π

Area
(
T 2)≤ 1

2
π.(5.8)

Let C
3

be a tangent cone to C3 at x0. Automatically, C
3 ∼= C

2 ×R for some sta-

tionary 2-dimensional cone C
2 ⊂ R3. Let T 1 ⊂ S2 be the link of C

2
. It has

Length
(
T 1)= 2πΘ2(C2

,0
)
= 2πΘ3(C3,x0

)≤ 2π · 1
2
π = π2.(5.9)

If T 1 is smooth, then π2 < 4π and (5.9) imply T 1 ∼= S1 with multiplicity one, so

C
2 ∼= R2 with multiplicity one, so C

3 ∼= R3 with multiplicity one; this violates the
singular nature of x0 ∈C3 by Allard’s theorem [31].

Therefore, T 1 has to be singular, too. We repeat our previous argument. Let
x1 �= 0 denote a singular point of the 2-dimensional cone C2 := 0#T 1 ⊂ R3. By the
same argument as in (5.8), and using (5.9),

Θ2(C2,x1
)≤Θ2(C2,0

)
=

1
2π

Length
(
T 1)≤ 1

2
π.

Let Ĉ2 be a tangent cone to C2 at x1. Automatically, Ĉ2 ∼= Ĉ1 ×R for some 1-
dimensional stationary cone Ĉ1 ⊂ R2 with

Θ1(Ĉ1,0
)
=Θ2(C2,x1

)≤ 1
2
π.(5.10)

It is well known that all 1-dimensional stationary cones are unions of k ≥ 2 half-
rays and have Θ1(Ĉ1,0) = 1

2k. We have k ≤ 3 by (5.10). Moreover, k is even

because Ĉ1 is obtained by various blow ups of the Z2 cycle T . Therefore, k = 2.
This means Ĉ1 ∼= R with multiplicity one and Ĉ2 ∼= R2 with multiplicity one; this
violates the singular nature of x1 ∈ C2 by Allard’s theorem. �

Proof of Corollary 1.5. We proceed as in the proof of Theorem 1.1. Note that
both S2 and the Clifford torus are integrable minimal surfaces; for the latter see [22,
Theorem 10] which shows the space of Jacobi fields is 4-dimensional on Clifford
tori, which matches the dimension of the space of Clifford tori (≈ RP2 ×RP2).
Therefore, in either case we will have a unique backward in time limit (by repeating
the argument from Claim 5.7, which involved Lemma 5.6 and Proposition 5.3), as
long as we can show:

CLAIM 5.9. If δ in (1.4) is small enough, then every backward subsequential
limit of (Σt)t≤0 is a multiplicity one equator or Clifford torus.
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Proof of Claim 5.9. We first prove a weaker result; namely, that the claim
holds true if we replace (1.4) by limt→−∞ Area(Σt) ≤ 2π2. Arguing as in Claim
5.7, we know that any subsequential limit of the translated flows is an eternal
integral Brakke flow with constant area ≤ 2π2. By [40, Theorem 4.2], the limiting
stationary integral varifold T has an associated Z2 chain [T ] with ∂[T ] = 0.
Therefore, the claim follows from Lemma 5.8 above.

We now prove the general claim. Suppose (Σ
(k)
t )t≤0 is a sequence of ancient

flows in S3 satisfying (1.4) with δ = δk → 0. Let T (k) be some backward subse-
quential limit of (Σ(k)

t )t≤0.
By White’s mean curvature flow theorem [40, Theorem 4.2], T (k) is a sta-

tionary integral varifold in S3 with Area(T (k))≤ 2π2 + δk and a corresponding Z2

chain [T (k)] with ∂[T (k)] = 0. Passing to a subsequence and using Allard’s theorem
[31] and White’s enhanced convergence theorem [40, Theorem 1.1], limk T

(k) = T ,
a stationary integral varifold in S3 with Area(T )≤ 2π2 and a corresponding Z2 Z2

chain [T ] with ∂[T ] = 0. By Lemma 5.8, T is a multiplicity one equator or Clifford
torus. Therefore, by Allard’s theorem [31], each T (k), with k sufficiently large, is
smooth. Thus, T (k) is also a multiplicity one equator or Clifford torus; this follows
from the integrability of equators and Clifford tori and the discussion regarding
(2.16). Thus,

lim
t→−∞

Area
(
Σ
(k)
t

)
= Area

(
T (k)

)≤ 2π2.

The claim follows from the weaker result we initially proved. �

The result again follows as it did in Theorem 1.1. �

Appendix A. Examples with arbitrarily slow convergence. We describe
examples of ancient mean curvature flows which converge to their backward-in-
time limits arbitrarily slowly. In particular they converge slower than polynomially,
in contrast with the integrable case and the real analytic case. We wish to point out
that Carlotto–Chodosh–Rubinstein [11] recently used the Łojasiewicz–Simon in-
equality for an interesting systematic study of the speed of convergence of Yamabe
flows, another example of a parabolic flow. Their argument can be reasonably ex-
pected to be adaptable to our setting, too. However, for our purposes there are fairly
explicit examples of slow ancient mean curvature flows, which we construct below.

We will construct examples (S2,g), where the metric g is rotationally symmet-
ric and, away from two antipodal points p, p′,

g := ds2 + e2f(s)dθ2,

for (s,θ)× (−2,2)×S1 ≈ S2 \{p,p′} and f : (−2,2)→ R is to be determined. Let
τ : (0,1] → (−∞,0] be smooth and such that lims→0 τ(s) =−∞, τ(1) = 0, τ ′ > 0,
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and
∫ 1

0

dσ

τ ′(σ)
< ∞.

Such a function τ(s) can be prescribed as a time of arrival function for a curve
in a rotationally symmetric space that is s units away from the backward-in-time
limit geodesic. We point out that our admissible time of arrival functions include,
for instance, the sub-polynomial function τ(s) := log |s|. It is a straightforward
exercise to check that

f(s) :=
∫ s

0

dσ

τ ′(σ)

is such that t �→ {s : τ(s) = t} is an curve shortening flow with time of arrival
function τ . Of course, f can be extended to (−2,2) in such a way so that the two-
sphere closes up smoothly.

Appendix B. An ODE lemma. We point out that the ODE lemma of
Merle–Zaag [27, Lemma A.1] holds true without certain assumptions they made
(namely, that x, z → 0 as s → −∞, or that y(sj) → 0 along all sequences
sj →−∞):

LEMMA B.1. Suppose x, y, z : (−∞,0]→ [0,∞) be absolutely continuous func-
tions such that

x+y+ z > 0,(B.1)

liminf
s→−∞

y(s) = 0,(B.2)

and, for some ε > 0,

|x′| ≤ ε(x+y+ z),

y′+y ≤ ε(x+ z),

z′ − z ≥−ε(x+y).
(B.3)

There exist ε0 > 0, c > 0, such that if ε≤ ε0, then

y ≤ 2ε(x+ z) on (−∞,0],(B.4)

and one of the following holds:

either ∃s∗ ∈ (−∞,0] such that z ≤ 8εx on (−∞,s∗],(B.5)

or x≤ cεz on (−∞,0].(B.6)

Proof. Conclusion (B.4) follows as in [27, p. 172]. Indeed, we claim that β :=
y−2ε(x+z)≤ 0. If this were false, there would exist s∗ ≤ 0 with β(s∗)> 0. Then
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computing as in [27, p. 172], β > 0 ⇒ β′ ≤ 0. In particular, β ≥ β(s∗) > 0 on
(−∞,s∗], contradicting liminfs→−∞β(s)≤ 0, which follows from (B.2).

Now either there exists s∗ ∈ (−∞,0] such that z(s∗) < 8εx(s∗), or 8εx ≤ z

on (−∞,0]. In the first case, we proceed as in [27, p. 173] to show that z ≤ 8εx
everywhere on (−∞,s∗]. In the second case, we can proceed as follows. First, note
that z′ ≥ 1

4z. Then,

z(s)≥ 1
4

∫ s

−∞
z, s≤ 0.(B.7)

Thus, there exists a sequence si → −∞ with z(si) → 0 as i→ ∞. Thus, x(si) ≤
(8ε)−1z(si) → 0 along the same sequence. Note that x′ ≤ (2ε+ 1

4 )z. By the fun-
damental theorem of calculus, the dominated convergence theorem, and (B.7),

x(s) = lim
i→∞

[
x
(
si
)
+

(
2ε+

1
4

)∫ s

si

z

]
=

(
2ε+

1
4

)∫ s

−∞
z ≤ (1+8ε)z(s).

Bootstrapping this improved bound on x in terms of z into the estimate for x′,
and proceeding with the same exact argument, the result follows with c = 8ε(2+
8ε). �

Appendix C. Parabolic Schauder theory. We collect here some facts re-
garding regularity theory for parabolic systems that we need to use. We will work
on Rn+1

+ = Rn×R+ with RQ-valued systems of the form ut = Lu where:

Lu :=
n∑

i,j=1

aijDiju+

n∑

i=1

biDiu+ cu.(C.1)

The coefficients aij , bi, c : Rn+1
+ →E := End(RQ) are such that:

n∑

i,j=1

〈aijv,v〉τiτj ≥ λ|τ |2|v|2, ∀(x,t) ∈ Rn+1
+ , τ ∈ Rn, v ∈ RQ,(C.2)

∥
∥aij

∥
∥
C0,θ

P (Rn+1
+ ;E)

,‖bi‖C0,θ
P (Rn+1

+ ;E)
,‖c‖

C0,θ
P (Rn+1

+ ;E)
≤ Λ,(C.3)

for some fixed constants λ > 0, Λ > 0, θ ∈ (0,1). We recall that, in this setting,
the Gårding inequality for elliptic systems remains valid; see the discussion near
[30, (1.8)’]. (Going from this Euclidean setting to the curved setting is standard;
we are working on smooth Riemannian manifolds whose connections factor into
the coefficients aij , bi, c in ways that are allowed by (C.2), (C.3).)

We now state the “interior” Schauder estimate for parabolic equations. Refer-
ences include Schlag [28] and Simon [33]:
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THEOREM C.1. (C2,θ-Cθ-L∞ interior Schauder estimate) If u : Rn+1
+ → RQ is

smooth, then
[
∂

∂t
u

]

Cθ
P (Rn×[1,∞);RQ)

+
[
D2u

]
Cθ

P (Rn×[1,∞);RQ)

≤ C

([(
∂

∂t
−L

)
u

]

Cθ
P (Rn+1

+ ;RQ)

+‖u‖L∞(Rn+1
+ ;RQ)

)(C.4)

for some constant C = C(n,λ,Λ,θ)> 0.

Note that one has the global interpolation inequality

‖w‖L∞(Rn×R) ≤ ε[w]Cθ
P (Rn×R) +C(n,ε,q)‖w‖Lq(Rn×R),(C.5)

for all q ∈ [1,∞), ε > 0. A classical absorption and localization argument that com-
bines (C.5) with standard Hölder interpolation inequalities ([28, Lemma 7]; see
also [33, (1.5)]) yields:

THEOREM C.2. (C2,θ-Cθ-Lq interior Schauder estimate) If u : Rn+1
+ → RQ is

smooth, q ∈ [1,∞), and B1 is a unit ball in Rn, then
[
∂

∂t
u

]

Cθ
P (B1×[1,2];RQ)

+
[
D2u

]
Cθ

P (B1×[1,2];RQ)

≤ C

([(
∂

∂t
−L

)
u

]

Cθ
P (B1×[0,2];RQ)

+‖u‖Lq(B1×[0,2];RQ)

)(C.6)

for some constant C = C(n,λ,Λ,θ,q)> 0.
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