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A B S T R A C T

We consider creases and folds in compressed hyperelastic solids from the point of view of
bifurcation theory. They refer to highly localized surface deformations that occur at compressive
loads significantly below the value of the well-known Biot instability. Much work from the
literature attempts to make the case that this phenomenon corresponds to a ‘‘local bifurcation’’
distinct from the Biot instability. A local bifurcation is a path of equilibrium solutions emanating
from a (bifurcation) point on the trivial solution branch that exists in all sufficiently small
neighborhoods of that bifurcation point. The inference is usually made by first introducing a
small surface imperfection; a solution curve is then obtained that is seemingly close to a perfect
bifurcation diagram. However, imperfection theory is valid only in some sufficiently small
neighborhood of a bifurcation point. Thus, in the absence of an equilibrium path connecting
these solutions to the trivial one, there is no justification for concluding that creasing and folding
are local bifurcations of the perfect system.

In this work, we directly address the nucleation of these solutions in the perfect, imperfection-
free case. We demonstrate that surface instabilities in functionally graded and bilayer elastic
halfspaces, corresponding to local bifurcations from the homogeneous state, are necessarily
smooth and oscillatory; creases/folds eventually do develop along the global bifurcating solution
branches, albeit ‘‘far ’’ from the trivial solution, as evidenced by the corresponding bifurcation
diagrams. In addition, we find that their stable realization occurs at load levels well below that
of the initial surface instability. Moreover, we obtain such results for the perfect homogeneous
halfspace, by switching the continuation parameter from macroscopic lateral strain to the film-
to-substrate shear modulus ratio. When this ratio reaches unity, we obtain the desired localized
deformation solution, avoiding the need for analysis near the highly degenerate homogeneous
state at the Biot instability.
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1. Introduction

The classic stability problem of the axially compressed nonlinear hyperelastic halfspace was first presented by Biot (1963). In his
linearized analysis of the homogeneous, perfect halfspace’s surface wrinkling, he established the critical strain for the onset of this
phenomenon1 with its arbitrary wavelength and eigenmode having an exponentially decaying amplitude away from the free surface.
It was subsequently established that this phenomenon also occurs under tension on the surfaces of axially strained elastoplastic bars
by Hill and Hutchinson (1975) as well as under finite strain bending by Triantafyllidis (1980). Similar phenomena were found to
occur in the case of functionally graded materials (e.g. see Lee et al. (2008)) and in thin films on compliant substrates (e.g. see Audoly
and Boudaoud (2008a)), where in contrast to the perfect, homogeneous halfspace, a finite wavelength for the eigenmode can be
determined.

Of particular interest here is Biot’s instability, the nucleation and subsequent evolution of a small-amplitude surface waviness
to a highly localized deformation corresponding to folds or creases. Following the experiments of Gent and Cho (1999) and the
influential investigations of Hohlfeld and Mahadevan (2011, 2012), new life has recently been injected into this problem due to
the observation — at compressive loads significantly below the Biot instability — of highly localized deformation regions known
as ‘‘creases’’ (i.e. crack-like regions of surface self-contact) and ‘‘folds’’ (i.e. regions of surface self-contact forming a void). In
particular, Hohlfeld and Mahadevan (2011) study the bending (to break the challenging translational symmetry of the perfect
Biot problem) of a finite strip and perform finite element simulations, regularized through the use of Hermite polynomial shape
functions and the introduction of surface beam elements. They find creased configurations with a crease depth that approaches zero
as the surface beam stiffness tends to zero. The resulting crease depth vs. compression plots show a ‘‘T-shaped’’ diagram which the
authors term a ‘‘nonlinear instability ’’ in Hohlfeld and Mahadevan (2011). In Hohlfeld and Mahadevan (2012), they perform a further
analysis and present bifurcation diagrams indicating that the phenomenon is a ‘‘local bifurcation’’2 occurring for loads significantly
below the Biot instability. These observations have led to an impressive amount of subsequent experimental and modeling work
in the mathematical and engineering literature. In many cases these subsequent works claim the local bifurcation nature of the
creasing/folding instabilities through the use of numerical imperfection methods. Additionally, and independently of the study of
creases as an evolution to Biot’s surface instability problem, self-folding surface deformation patterns have also been studied. First
as part of universal solutions in incompressible, finite elasticity by Singh and Pipkin (1965) and subsequently in compressible,
nonlinear elastic solids (e.g. see Silling, 1991; Ciarletta, 2018).

A detailed review of the voluminous literature on this subject is beyond the scope of the present work; the interested reader
is referred to the extensive review article by Li et al. (2012). However some references are given below in order to discuss the
prevalent, imperfection-based approach in the literature for numerically calculating creases and folds, and to contrast this approach
with our imperfection-free local bifurcation and global solution branch following methodology based on group-theoretic tools, which
was introduced for this class of problems in Pandurangi et al. (2020).

In the recent mechanics literature pertaining to the development of folds, the work on ‘‘ruga mechanics’’ by Diab et al. (2013),
Diab and Kim (2014), Zhao et al. (2015b, 2016) focuses on the development of folds and creases in functionally graded and bilayer
configurations. These problems admit a finite wavelength for the Biot surface instability, which guides the selection of imperfections
needed to find the creased and folded solutions by numerical methods (FEM) (Chen et al., 2012, 2014; Jin et al., 2014, 2015). The
transition from wrinkles – Biot surface instability – to creases was concurrently studied, for halfspaces as well as bilayers, by Cao
and Hutchinson (2012), Hutchinson (2013), who showed, using Koiter’s post-bifurcation asymptotic analysis, that the wrinkled
paths are unstable and strongly imperfection sensitive. Akerson and Elliott (2021) have recently showed, using imperfection-free
methods, that the stability of the initial post-bifurcation wrinkles depends strongly on the through-thickness spatial gradient of the
shear modulus 𝜇 (fiber-to-substrate stiffness ratio 𝜇𝑓∕𝜇𝑠 for bi-layers or exponential rate constant for continuously graded systems).

Although the main thrust of research focuses on calculating folded and creased solutions in a two-dimensional (plane strain)
context, efforts have also been directed at investigating the three-dimensional aspects of the problem using Von-Karman plate theory
combined with a linear elastic halfspace (Audoly and Boudaoud, 2008a,b,c) or fully nonlinear continua (Zhao et al., 2015a; Chen
et al., 2018). An additional reason for the revival of the Biot Problem is its importance in ‘‘soft solids’’ and biological problems, such
as the problems of ‘‘unfolding the sulcus’’ (Hohlfeld and Mahadevan, 2011, 2012), ‘‘elastosis in arteries’’ (Eskandari et al., 2016), and
the instabilities associated with the clogging of arteries.

It is well-known that a linearized stability analysis of the flat surface of a halfspace predicts wrinkles (see Biot (1963)), indicating
that a local bifurcation from a flat state to a creased/folded one is not possible. A straight-forward application of the implicit
function theorem (see for example page 7 of Kielhöfer (2012), for the PDE version of this classic theorem) shows that a local
bifurcation is not possible, unless the linearized stability operator becomes singular. For the problem at hand, it is well-known that this
first occurs at the Biot load. Despite this, the methods employed in the existing literature — as in all of the above mentioned
references (excluding Akerson and Elliott, 2021) — avoid this inconvenient fact by introducing an ‘‘a priori’’ imperfection biasing
the system toward a desired configuration.3 However, imperfection theory is only valid in sufficiently small neighborhoods of a

1 This is related to the ‘‘complementing condition’’ (see Agmon et al., 1964; Simpson and Spector, 1987; Negrón-Marrero and Montes-Pizarro, 2011) used for
boundary value problems with traction boundary conditions.

2 A ‘‘local bifurcation’’ is a path of nontrivial solutions emanating from a (bifurcation) point on the trivial solution branch that exists in all sufficiently small
neighborhoods of the bifurcation point.

3 The ‘‘imperfection’’ can be either of geometric nature – the more frequently used method – or in the form of a lateral force, as more recently proposed
by Yang et al. (2021).
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bifurcation point (e.g. Iooss and Joseph, 1990), i.e. there is no known ‘‘global imperfect bifurcation theory ’’ (see Marsden and Hughes,
1983). Indeed, drawing mathematically precise conclusions from numerical global continuation in the presence of imperfections is
risky, as pointed out in Healey (1989). It is exactly this issue which we aim to eliminate from the study of creases and folds with
our present work. Accordingly, we employ the imperfection-free local bifurcation and global solution branch following method
introduced by Pandurangi et al. (2020) for the study of a beam on a nonlinear elastic foundation.

Due to the high degree of symmetry present in perfect structures, such as the one considered here, it is common to have multiple
paths emerging from the same bifurcation point. As a consequence, even near a bifurcation point the use of numerical ‘‘imperfection
methods’’ for bifurcation problems is insufficient to thoroughly discover and organize the rich solution set. Accordingly, we employ
a rigorous and systematic group-theoretic framework that enables the prediction of all generic bifurcations, each based on its
geometric symmetry group. This approach draws on ‘‘equivariant bifurcation theory ’’ (Golubitsky et al., 1988; Chossat and Lauterbach,
2000; Ikeda and Murota, 2010) and is integrated with efficient numerical branch-following algorithms (Keller, 1987; Healey, 1988;
Gatermann and Hohmann, 1991; Wohlever and Healey, 1995; Allgower and Georg, 2003) to create a robust, consistent methodology
for the theoretical and numerical study of highly-symmetric (imperfection-free) bifurcation problems.

In this work we address the thus far poorly understood (see Yang et al., 2021) issue of ‘‘fold/crease nucleation’’ in hyperelastic
solids. We show that highly localized (creased) stable equilibrium solutions evolve ‘‘far ’’ from the initial smooth and oscillatory
bifurcation near the flat trivial solution, as evidenced by the corresponding bifurcation diagrams of amplitude 𝜉, energy change
( − 0) and axial force change ( − 0),𝜀 versus the applied lateral macroscopic strain 𝜀. Furthermore, we show that isolated stable
creases (i.e., a single crease surrounded by long flat regions) evolve, along the long wavelength secondary bifurcating paths, far from the
flat trivial solution. These secondary paths bifurcate in a cascading fashion from the short wavelength, wrinkled, primary bifurcation
paths. These primary paths in turn emerge from the system’s symmetry-breaking bifurcation points along its flat configuration path.
Moreover, by switching control parameters in a bilayer problem using the film-to-substrate stiffness ratio, we obtain isolated crease
solutions in the perfect homogeneous halfspace without ever using an imperfection.

We present the theoretical aspects of the boundary value problem in Section 2 and the numerical method in Section 3. The
perfect bifurcation diagrams and stability results for the functionally graded and bilayer structures are given in Section 4. The
constitutive law dependent evolution of the primary bifurcation orbits into creases and folds is studied. We also show how one
can obtain isolated localized deformation solutions in a perfect homogeneous halfspace without using an imperfection, and thus
avoiding the need for analysis near the highly degenerate homogeneous state at the Biot instability. This is achieved by switching
control parameters in the bilayer problem – using the ratio of film-to-substrate shear moduli instead of the lateral strain – and
following the equilibrium path until the value of this ratio reaches unity. This same multiparameter approach has been employed in
nearly singular problems for phase transitions with small interfacial energy in Healey and Miller (2007) and for wrinkling of highly
stretched thin films in Healey et al. (2013). Conclusions are presented in Section 5. A brief presentation of relevant group theory
and how it applies to the problem at hand is provided in A. Proof of local stability (polyconvexity) of the chosen material model,
and expressions for stress and moduli tensors along the principal solution are given in B. Finally, the influence of mesh sensitivity
on the bifurcated orbits – due to the presence of infinitely short wavelength instabilities at adequately large strains – is presented
in C.

2. Theory

This section presents the theoretical aspects of the model. The boundary value problem is discussed in Section 2.1 and the
stability of the problem’s equilibrium solutions is presented in Section 2.2. The constitutive laws for the materials considered
(representing rubber, polymeric foams and biological tissues) are discussed in Section 2.3. The symmetry group of the problem
appears in Section 2.4 while its principal solution is presented in Section 2.5.

2.1. Boundary value problem

Fig. 1. Schematics of the 2D layer model: (a) the functionally graded layer and (b) the film–substrate system.

Here, the general formulation of Akerson and Elliott (2021) is adopted and extended. The plane strain, 2D model adopted here
is that of an infinite extent (along 𝑋1) hyperelastic layer, with thickness 𝐻 and 𝑋2-dependent material properties, as seen in Fig. 1.

Two cases are considered: a) the layer consists of a functionally graded material, i.e. its material properties are continuous
functions of 𝑋2 and b) the layer’s material properties are piecewise constant along 𝑋2, corresponding to a thin film of thickness
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𝐻𝑓 perfectly bonded to a much thicker substrate of thickness 𝐻𝑠 ≫ 𝐻𝑓 . The layer thus occupies the domain 𝛺 ≡ {(𝑋1, 𝑋2) ∶ 𝑋1 ∈

R, 0 ≤ 𝑋2 ≤ 𝐻} ⊂ R2 in the reference configuration. The bottom surface of the layer 𝜕𝛺1 ≡ {(𝑋1, 𝑋2) ∶ 𝑋1 ∈ R, 𝑋2 = 0} is restricted
to the 𝑋2 = 0 line but allowed to freely slide along 𝑋1 (i.e. shear-free), while its top surface 𝜕𝛺2 ≡ {(𝑋1, 𝑋2) ∶ 𝑋1 ∈ R, 𝑋2 = 𝐻} is
traction-free.

A far-field compressive stretch of 0 < 𝜆1 ≤ 1 is applied to the layer along the 𝑋1 direction, as seen in Fig. 1. We define 𝜀 ≡ 1−𝜆1
to be the loading parameter of the layer. A Lagrangian formulation of the problem is adopted; a point at 𝐗 in the undeformed
(stress-free), reference configuration occupies position 𝐱 in the deformed (stressed), current configuration. The layer consists of a
hyperelastic material of energy density 𝑊 (𝐅;𝑋2) per unit reference area, where 𝐅 is the local deformation gradient. In order to
make the problem manageable – and deal with compact symmetry groups – we consider the 𝐿𝑑 -periodic solutions, defined on the
finite subdomain4 𝛺𝑑 ≡ {(𝑋1, 𝑋2) ∶ −𝐿𝑑∕2 ≤ 𝑋1 ≤ 𝐿𝑑∕2, 0 ≤ 𝑋2 ≤ 𝐻} ⊂ 𝛺, and choose 𝐿𝑑∕𝐻 ≫ 1. The total potential energy (per
unit reference length) of the system is hence given by5

(𝐮; 𝜀) = 1

𝐿𝑑 ∫𝛺𝑑 𝑊 (𝐅;𝑋2)𝑑𝐴 ; 𝐅 ≡ ∇𝐱(𝐗) =
0

𝐅(𝜀) + ∇𝐮(𝐗) ,

0

𝐅(𝜀) = diag[𝜆𝑖(𝜀)] , 𝐱(𝐗; 𝜀) =
0

𝐅(𝜀) ⋅ 𝐗 + 𝐮(𝐗; 𝜀) ; ∀𝐗 ∈ 𝛺𝑑 ,

∫
𝐿𝑑∕2

−𝐿𝑑∕2

𝑢1(𝑋1, 0)𝑑𝑋1 = 0 , 𝑢2(𝑋1, 0) = 0 ; ∀𝑋1 ∈ [−
𝐿𝑑

2
,
𝐿𝑑

2
] ,

𝐮(−
𝐿𝑑

2
, 𝑋2) = 𝐮(

𝐿𝑑

2
, 𝑋2) ; ∀𝑋2 ∈ [0,𝐻].

(2.1)

The deformation is described by a uniform biaxial strain – corresponding to the principal equilibrium path, constant deformation

gradient
0

𝐅(𝜀) – plus an additional displacement field 𝐮 ∈ 𝑈 , where 𝑈 denotes the space of admissible perturbation displacement
functions.6 Some appropriate growth conditions on 𝑊 as det 𝐅 → 0 and ‖𝐅‖ → ∞ are also tacitly assumed as to ensure a realistic
energy density 𝑊 (𝐅;𝑋2).

Pointwise equilibrium equations and natural boundary conditions are obtained by setting to zero the first variation7 of the total
potential energy functional defined in (2.1)

(,𝐮, 𝛿𝐮) = 1

𝐿𝑑 ∫𝛺𝑑
𝜕𝑊 (𝐅;𝑋2)

𝜕𝐅
∶ (∇𝛿𝐮) 𝑑𝐴 = 0 ; ∀𝛿𝐮 ∈ 𝑈 ⟹

⎧
⎪⎪⎨⎪⎪⎩

∇ ⋅ 𝐒 = 𝟎 ; ∀𝐗 ∈ 𝛺𝑑 , 𝐒 ≡ 𝜕𝑊 (𝐅;𝑋2)

𝜕𝐅
,

𝑆12 = 0 ; ∀𝐗 ∈ 𝜕𝛺𝑑1 , 𝑆𝑖2 = 0 ; ∀𝐗 ∈ 𝜕𝛺𝑑2 ,

(2.2)

where 𝐒 denotes the first Piola–Kirchhoff stress tensor. We seek the equilibrium solutions for the layer structure as a function of the
load parameter (imposed lateral compressive strain) 𝜀.

Of interest here is also the work-conjugate quantity of the load parameter 𝜀, which is shown to be the total lateral force applied at
any cross-section 𝑋1 = 𝑐𝑜𝑛𝑠𝑡. of the structure. From the energy and the kinematic definitions in (2.1), one can show using integration
by parts8 that ,𝜀 equals the axial (lateral) force of the structure, i.e. the layer thickness integral of first Piola–Kirchhoff stress 𝑆11,
which – due to the absence of shear stresses at the boundaries 𝜕𝛺𝑑1 and 𝜕𝛺𝑑2 – is independent of the 𝑋1 coordinate

,𝜀 = 𝑑

𝑑𝜀

{
1

𝐿𝑑 ∫𝛺𝑑 [𝑊 (
0

𝐅(𝜀) + ∇𝐮(𝐗))] 𝑑𝐴

}
= −∫

𝐻

0

[𝑆11(𝑋1, 𝑋2)] 𝑑𝑋2 = −∫
𝐻

0

[𝑆11(0, 𝑋2)] 𝑑𝑋2 . (2.3)

The nonlinear boundary value problem defined by (2.2) admits a large symmetry group resulting in a complex structure with an
infinite number of equilibrium paths. Equilibrium paths related by symmetry can be grouped into ‘‘orbits’’. Accordingly, it is more
appropriate, for the problem at hand, to discuss ‘‘orbits of equilibrium solutions’’ than it is to speak of a single solution. However,

for convenience of exposition, the two terms are used interchangeably. From the ‘‘principal solution’’
0
𝐮(𝐗; 𝜀) = 𝟎, corresponding

to the constant deformation gradient
0

𝐅(𝜀) (but no additional displacement, see (2.1)), an infinity of ‘‘primary bifurcated paths’’
(more precisely continuous orbits) emerge. From each one of these, ‘‘secondary bifurcated paths’’ with different periods also emerge.
Additionally, ‘‘tertiary bifurcated paths’’ emerge from the secondary ones and so on. Although the symmetry group of each orbit is
reduced at each bifurcation, enough symmetries remain to allow further bifurcations. The goal is to follow each one of these orbits,

4 Analogous definitions hold for the corresponding bottom 𝜕𝛺𝑑1 and top 𝜕𝛺𝑑2 surfaces of the finite domain 𝛺𝑑 .
5 The 𝑋2-dependent isotropic material properties adopted here give a homogeneous strain principal solution with transverse principal stretch ratio 𝜆2(𝜀). For

more general orthotropic, graded materials with arbitrary 𝑋2-dependent properties, 𝜆2(𝑋2; 𝜀).
6 The space 𝑈 of admissible fields 𝐮 consists of all continuous vector fields 𝐮(𝐗) satisfying the zero vertical displacement at the bottom of the layer and

periodicity boundary conditions in (2.1). Additionally, the integral constraint on 𝑢1 excludes rigid body motion along the 𝑋1 direction.
7 By (,𝐮 , 𝛿𝐮) we denote the scalar result of linear operator ,𝐮 – first functional derivative of  with respect to 𝐮 – operating on an arbitrary admissible (test)

function 𝛿𝐮 ∈ 𝑈 .
8 Using the principle of virtual work where the kinematically admissible displacement field is the actual principal solution.
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away from the bifurcation point of their origin and study their stability. The numerical solution of the boundary value problem
given by (2.2) is presented in Section 4.

2.2. Stability of equilibria

The problem at hand is conservative, with energy given by (2.1). To determine the stability of any equilibrium solution
0

𝐅(𝜀) ⋅ 𝐗 + 𝐮(𝐗; 𝜀) of (2.2), one may apply the principle of minimum potential energy and check if it is a local energy minimizer,
i.e. check the positive definiteness of the self-adjoint bilinear operator ,𝐮𝐮, evaluated at the investigated solution,9 by finding its
eigenvalues 𝛽

((,𝐮𝐮, 𝛥𝐮), 𝛿𝐮) = 𝛽⟨𝛥𝐮, 𝛿𝐮⟩ ; ∀𝛿𝐮 ∈ 𝑈 , ,𝐮𝐮 ≡ ,𝐮𝐮(
0

𝐅(𝜀) ⋅ 𝐗 + 𝐮(𝐗; 𝜀); 𝜀) , (2.4)

where 𝛥𝐮 is the corresponding eigenmode and ⟨⋅ , ⋅⟩ denotes an inner product in 𝑈 . A stable solution corresponds to a positive
minimum eigenvalue.10 𝛽. For the stability of periodic solutions of period 𝐿 (where 𝐿 < 𝐿𝑑) one can take advantage of the Bloch-
wave representation theorem, according to which any eigenmode 𝛥𝐮 of the stability operator ,𝐮𝐮 in (2.4) admits the following
representation

𝛥𝐮(𝐗) = exp(𝑖2𝜋𝑘𝑋1∕𝐿) 𝐩(𝐗) , (2.5)

where 𝑖 =
√
−1 is the imaginary unit, 𝐩(𝐗) is 𝐿-periodic in the 𝑋1 direction and

11 𝑘 ∈ [0, 1) is the wavenumber. Thus, the Bloch-wave
representation reduces the eigenvalue problem (2.4) to a set of smaller dimensional ones (one such problem for each value of the
wavenumber). By scanning all admissible values of 𝑘, one can find 𝛽𝑚𝑖𝑛(𝑘) for each fixed value of 𝑘.

For a well-posed problem, the neighborhood of the stress-free (unloaded) configuration near 𝜀 = 0 is stable, i.e. 𝛽𝑚𝑖𝑛(𝑘; 𝜀) ≥
0 ; ∀𝑘 ∈ [0, 1), 0 ≤ 𝜀 ≪ 1. As the applied compressive strain 𝜀 increases, stability of the uniform strain (principal) solution will be
lost at the first bifurcation point encountered along the principal loading path at some 𝜀𝑐 , as elaborated in Section 4.1. The emerging
primary bifurcation orbit will be found and followed until secondary bifurcations appear and so on.

2.3. Material selection

We consider two types of material models: a weakly compressible Neo-Hookeanmaterial model, representative of a natural rubber,
and a power-law material model that can be adjusted to represent open cell foams and soft biological tissues. For the Neo-Hookean
material model we investigate two different layered structures: (a) functionally graded and (b) thin film, using an 𝑋2-dependent
shear modulus. Accordingly, for (a) we choose an exponentially varying shear modulus while for (b) a piecewise constant. For the
power-law model we only consider the thin film case (b).

1. Neo-Hookean material model The stored energy density of the Neo-Hookean layer structure has an energy density12

𝑊 (𝐅;𝑋2) = 𝜇(𝑋2)
[
1

2
(𝐼1 − 2 − ln 𝐼2) +

𝜈

1 − 𝜈
(
√
𝐼2 − 1)2

]
, (2.6)

where 𝜈 denotes the (2D) Poisson’s ratio in plane strain13 (where 0 ≤ 𝜈 ≤ 1), 𝜇 denotes the shear modulus and 𝐼1 and 𝐼2 are the
invariants of the right Cauchy–Green tensor 𝐂 = 𝐅𝑇 ⋅ 𝐅 given by 𝐼1 = Tr(𝐂) and 𝐼2 = det(𝐂). Depending on the case (functionally
graded layer or a film on a substrate), the shear modulus is

𝜇(𝑋2) =

⎧⎪⎨⎪⎩

𝜇(𝑋2) = 𝜇0𝑒
𝛼𝑋2 ;𝑋2 ∈ [0,𝐻] , 𝛼 > 0 for case (a) ,

𝜇(𝑋2) = 𝜇𝑠 ;𝑋2 ∈ [0,𝐻𝑠) , 𝜇(𝑋2) = 𝜇𝑓 ;𝑋2 ∈ [𝐻𝑠,𝐻] for case (b) .

(2.7)

2. power-law model The power-law model has an adjustable power exponent 𝑝; it can thus model a strain softening material
(𝑝 < 1, typical of open cell foams) or a strain hardening material (𝑝 > 1, typical of biological tissue)14. Since for 𝑝 ≠ 1 this model
has undesirable properties (infinite stiffness for 𝑝 < 1 and zero stiffness for 𝑝 > 1) in its undeformed state 𝐅 = 𝐈, a Neo-Hookean

9 By ((,𝐮𝐮 , 𝛥𝐮), 𝛿𝐮) we denote the scalar result of the self-adjoint bilinear operator ,𝐮𝐮 – second functional derivative of  with respect to 𝐮 – operating on
admissible functions 𝛥𝐮, 𝛿𝐮 ∈ 𝑈 .
10 We find here continuous orbits of equilibria, symmetry-related but with the same energy, implying the existence of a zero eigenvalue of the stability operator

,𝐮𝐮 in (2.4) Thus, all equilibria are, at best, neutrally stable. Accordingly, we ignore the zero eigenvalue associated with an equilibrium orbit and require that
all other eigenvalues be positive for stability.
11 Without loss of generality, we consider 𝐿𝑑 = 𝑞𝐿, 𝑞 ∈ N. From translational symmetry in (2.5) 𝑘 ∈ Q, i.e. 𝑘 = 𝑟∕𝑞; 𝑟, 𝑞 ∈ N, 1 ≤ 𝑟 ≤ 𝑞. For 𝐿𝑑 ⟶ ∞, i.e. for

the stability of the infinitely long layer, we can consider 𝑘 ∈ R; 0 ≤ 𝑘 ≤ 1.
12 The logarithmic term (ln 𝐼2) in the energy density drives it to infinity when the material’s area is reduced to zero.
13 The 2D Poisson ratio must satisfy −1∕2 < 𝜈 < 1 for plane strain linear elasticity, with incompressibility corresponding to 𝜈 = 1; however the positivity of

bulk energy in (2.6) dictates positive 𝜈 values.
14 The terminology strain hardening (𝑝 > 1) or strain softening (𝑝 < 1) is due to the incompressible version (𝜈 = 1) of (2.8), where the shear modulus

𝜇(𝛾) = 2𝑝(2𝑝 − 1)𝛾2(𝑝−1) is respectively an increasing or decreasing function of the shear strain 𝛾.
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response is assumed (𝑝 = 1) in the neighborhood of small strains, i.e. for an equivalent shear strain 0 ≤ 𝛾 ≤ 𝛾𝑦 ≪ 1. A continuous
stress state is ensured at transition, i.e. when the equivalent shear strain 𝛾 = 𝛾𝑦. The corresponding energy density is

𝑊 (𝐅;𝑋2) = 𝜇(𝑋2)
[
𝑐

2
(𝐼1 − 2 − ln 𝐼2)

𝑝 +
𝜈

1 − 𝜈
(
√
𝐼2 − 1)2

]
,

𝛾 ≡ (𝐼1 − 2 − ln 𝐼2)
1∕2 ;

⎧⎪⎨⎪⎩

𝑝 = 1 , 𝑐 = 1 for 0 ≤ 𝛾 ≤ 𝛾𝑦 ,

𝑝 ≠ 1 , 𝑐 =
1

𝑝
(𝛾𝑦)

2(1−𝑝) for 𝛾 > 𝛾𝑦 .

(2.8)

For the power-law material only the thin film structure is considered and 𝜇(𝑋2) is given by case (b) in (2.7).

An important property of the selected constitutive law in (2.8) (of which the Neo-Hookean material is a special case at 𝑝 = 1) is
its ‘‘local stability ’’, i.e. ‘‘rank one convexity ’’. It is shown in B.1 that the stronger condition of polyconvexity applies for 𝑝 > 0.5 and
𝜈 > 0.05, thus guaranteeing rank one convexity for the values of 𝑝 used in this work.

2.4. Symmetry

The symmetry group and the lattice of isotropy subgroups of this problem explaining the structure of the bifurcated equilibrium
paths are well known, e.g. see Ikeda and Murota (2010). However, for reasons of clarity and completeness, we give here a
brief presentation of the pertaining theory (Healey, 1988; Gatermann and Hohmann, 1991; Golubitsky et al., 1988; Chossat and
Lauterbach, 2000; Field, 1996; Vanderbauwhede, 1982; Sattinger, 1979; Ikeda and Murota, 2010). For the layer model at hand, there
exists a group 𝐺 of transformations that leave its energy (𝐮; 𝜀) – defined in (2.1) – invariant under the action of all transformations
𝑔 ∈ 𝐺. For practical purposes, we want to deal with a compact symmetry group 𝐺. To this end a maximum period 𝐿𝑑 of all sought
equilibrium solutions must be selected. In principle, the choice of 𝐿𝑑 is limited only by the available computational resources. It is
also desirable to choose 𝐿𝑑 so that it is commensurate with (i.e., an integer multiple of) the fundamental period 𝐿𝑐 of the primary
bifurcation orbit15: 𝐿𝑑 = 𝐿𝑐𝑞 and 𝑞 ∈ N. Finally, it is important to point out that the selection of 𝑞 > 1 facilitates the inclusion of
‘‘period-extending’’ (period-doubling, -tripling, etc.) solutions.16

The symmetry group 𝐺 of the 𝐿𝑑 -periodic, layered system with energy density given by (2.1), is the infinite, compact group
𝐺 = 𝐶∞𝑣 ≃ 𝑂(2). The generators of this group are denoted by {𝜎𝑣, 𝑐(𝜃)}, where 𝜎𝑣 is the reflection about the plane 𝑋1 = 0 and 𝑐(𝜃) is
the phase shift by an angle 𝜃 ∈ [−𝜋, 𝜋). The faithful representation of 𝐺 on the space of admissible displacement functions 𝐮(𝐗) ∈ 𝑈

are as follows

- Reflection 𝜎𝑣 with respect to the 𝑋2 axis:

𝑇𝜎𝑣
∶ 𝑈 ⟶ 𝑈 , 𝑇𝜎𝑣

[
𝑢1(𝑋1, 𝑋2)

𝑢2(𝑋1, 𝑋2)

]
=

[
−𝑢1(−𝑋1, 𝑋2)

𝑢2(−𝑋1, 𝑋2)

]
. (2.9)

- Phase-shift 𝑐(𝜃) by a phase angle 𝜃 ∈ [−𝜋, 𝜋):

𝑇𝑐(𝜃) ∶ 𝑈 ⟶ 𝑈 , 𝑇𝑐(𝜃)

[
𝑢1(𝑋1, 𝑋2)

𝑢2(𝑋1, 𝑋2)

]
=

⎡⎢⎢⎢⎣

𝑢1

(
𝑋1 +

𝐿𝑑𝜃

2𝜋
,𝑋2

)

𝑢2

(
𝑋1 +

𝐿𝑑𝜃

2𝜋
,𝑋2

)
⎤⎥⎥⎥⎦
. (2.10)

One can easily verify that energy density given by (2.1) is invariant under any transformation of 𝐺 = 𝐶∞𝑣

(𝑇𝑔𝐮; 𝜀) = (𝐮; 𝜀) ; ∀𝐮 ∈ 𝑈 , ∀𝜀 ∈ [0, 1) , ∀𝑔 ∈ 𝐶∞𝑣. (2.11)

The fixed-point space 𝐶∞𝑣 ≡ {𝐮 ∈ 𝑈 ∶ 𝑇𝑔𝐮 = 𝐮 , ∀𝑔 ∈ 𝐶∞𝑣} consists of fields 𝐮 ∈ 𝑈 that remain unaltered under the action of the
group. It can be shown that these fields are of the form 𝑢1 = 0, 𝑢2 = 𝑓 (𝑋2), where 𝑓 is an admissible, arbitrary, real-valued function.

The principal solution – also termed fundamental solution – is
0
𝐮(𝐗; 𝜀) = 𝟎 ∈ 𝐶∞𝑣 .

Attention is now turned to the action of symmetry group 𝐶∞𝑣 on the bifurcated solutions. It will be shown in Section 4 that
the primary bifurcation orbits have symmetry group 𝐶𝑞𝑣, which is generated by 𝑇𝜎𝑣 , 𝑇𝑐(2𝜋∕𝑞) . These orbits can be calculated in the
corresponding fixed point space 𝐶𝑞𝑣 . It will also be shown that secondary bifurcation orbits emerge from the primary one, each
with a (lower) symmetry group 𝐶𝑟𝑣, generated by 𝑇𝜎𝑣 , 𝑇𝑐(2𝜋∕𝑟) , where 𝑟 ∈ N with 1 ≤ 𝑟 ≤ (𝑞 − 1)∕2 or 1 ≤ 𝑟 ≤ 𝑞∕2 for an odd or
even 𝑞, respectively. These orbits can be calculated in the corresponding fixed point space 𝐶𝑟𝑣 . All of these bifurcations, i.e. from
fundamental to primary orbit and from primary to secondary orbits are found to be pitchfork bifurcations (i.e. symmetric). The reader
is referred to Appendix A for details.

15 In Section 4.2 it is shown how one can determine 𝐿𝑐 for the layer structure.
16 Indeed, with (as below) 𝑞 = 4, the primary bifurcation branch will have period 𝐿𝑐 . Then each secondary bifurcating branch may be associated with one of

the periods 𝐿𝑟 = 𝑟𝐿𝑐 with 𝑟 divisor of 𝑞.
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2.5. Principal solution

The principal solution of the problem
0
𝐮(𝐗; 𝜀) = 𝟎 is the solution of (2.2) corresponding to a constant strain field

0

𝐅(𝜀) =

diag[𝜆1(𝜀), 𝜆2(𝜀)], due to the adopted form of the constitutive law in (2.7) and (2.8) where only the shear modulus 𝜇(𝑋2) is spatially-
dependent but the Poisson ratio 𝜈 is constant. The transverse principal stretch ratio 𝜆2(𝜀) is found in terms of the axial stretch ratio
𝜆1(𝜀) = 1 − 𝜀 from the requirement that the transverse normal stress vanishes (𝑆22 = 0), as dictated by equilibrium and the free
surface 𝜕𝛺𝑑2 boundary condition in (2.2), giving the following relation between the principal stretches

𝑝𝑐[𝜆2
1
+ 𝜆2

2
− 2 − 2 ln(𝜆1𝜆2)]

𝑝−1
(
𝜆2
2
− 1

)
+

2𝜈

1 − 𝜈

(
𝜆2
1
𝜆2
2
− 𝜆1𝜆2

)
= 0 ; 𝜆1 = 1 − 𝜀 , 𝜆2(𝜀) . (2.12)

For a fixed 𝜆1 = 1− 𝜀 ; 𝜀 ∈ [0, 1), one can show that there will always exist at least one positive root 𝜆2 of (2.12), found numerically
using the bisection method, as the closest to unity root of the above equation.

The resulting dimensionless axial compressive stress |𝑆11|∕𝜇 vs. strain 𝜀 response for the Neo-Hookean (𝑝 = 1) and power-law
models (strain hardening: 𝑝 > 1, and strain softening: 0.5 < 𝑝 < 1) for the principal solution are plotted in Fig. 2. As discussed
in (2.8), to avoid the singularity in the power-law stress–strain response at 𝜀 = 0, is it assumed that 𝑝 = 1 in a neighborhood,17

0 ≤ 𝜀 ≤ 𝜀𝑦, where we chose 𝜀𝑦 = 0.05.

Fig. 2. Dimensionless axial compressive stress component (1st Piola–Kirchhoff) |𝑆11|∕𝜇 vs. its work-conjugate strain 𝜀 for the Neo-Hookean and power-law
constitutive laws used in the different layer models.

We recall here that the power-law models with 𝑝 = 0.75 < 1 and 𝑝 = 1.25 > 1 are selected to represent open cell foams and
biological tissue, respectively, while the Neo-Hookean case 𝑝 = 1 – used here for purposes of comparison with (Akerson and Elliott,
2021) – is a popular choice for polymeric materials. It is worth noticing in Fig. 2 that for a constant power-law exponent 𝑝 the
reduction of the Poisson ratio 𝜈 results in a softer response, thus explaining the use in all subsequent calculations of the combination
𝑝 = 0.75, 𝜈 = 0.3333 for the softening and 𝑝 = 1.25, 𝜈 = 0.8182 for the hardening materials respectively.

3. Numerical method

As discussed in Section 2, calculations are performed on a finite domain 𝛺𝑑 = [−𝐿𝑑∕2, 𝐿𝑑∕2]×[0, 𝐻] with periodicity conditions
on 𝐮 applied at𝑋1 = ±𝐿𝑑∕2, as dictated by (2.1). The domain𝛺𝑑 is discretized using a rectangular mesh with four node isoparametric
quadrilaterals and a 2 × 2 Gauss integration scheme. The mesh is progressively refined from 𝑋2 = 0 to the free surface 𝑋2 = 𝐻 in
order to capture the expected highly localized surface deformations. As a result of this discretization, a node with position vector
𝐗𝑛 carries two degrees of freedom 𝑢1(𝐗𝑛), and 𝑢2(𝐗𝑛). We thus obtain from (2.1) the discretized energy (𝐯; 𝜀) as a function of the
discretized global displacement vector 𝐯. A typical unit cell (𝑞 = 1, 𝐿𝑑 = 𝐿𝑐) has 550 elements. For the largest domain discretized

18

(𝑞 = 4, 𝐿𝑑 = 4𝐿𝑐) we have 2,200 elements. All the simulation codes are written using deal.ii (Alzetta et al., 2018), a C++ finite
element library.

From the group-theoretic considerations in Section 2.4 – recalling that 𝑞 = 4 – the solutions on the primary and the secondary
bifurcation orbits have 𝐶𝑟𝑣 symmetry where 𝑟 = 1, 2, 4. Calculations are performed in the corresponding fixed point spaces 𝑆𝐶𝑟𝑣 ,
respectively on domains 𝛺⋆

𝑑
= [0, 𝑟𝐿𝑐∕2] × [0,𝐻], where the following kinematic boundary conditions, dictated by the invariance of

the solution to transformations 𝑇𝜎𝑣 , 𝑇𝑐(2𝜋∕𝑟) are used

𝑢1(0, 𝑋2) = 0 , 𝑢1(𝑟𝐿𝑐∕2, 𝑋2) = 0 . (3.1)

17 According to (2.8) 𝜀𝑦 is related to 𝛾𝑦 by (𝛾𝑦)
2 = (𝜆1(𝜀𝑦))

2 + (𝜆2(𝜀𝑦))
2 − 2 − 2 ln[𝜆1(𝜀𝑦)𝜆2(𝜀𝑦)].

18 Additional calculations with a more refined mesh of 8,800 elements for the largest domain were also performed, but resulted in no appreciable change in
the calculated orbits. See also C.
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Due to the symmetry restrictions (3.1), we anticipate that the deformed configuration evolves into a highly localized surface
region at 𝑋1 = 0 on at least some of the bifurcated equilibrium paths. To avoid interpenetration of the material points, we include
a repulsive self-contact force19 through an in-plane potential at the free surface in the finite element model. The implementation of
this penalty-type method is described as follows. From the displacement degrees of freedom, we identify 𝑢𝑠𝑖

1
the components of the

displacement in the 𝑋1-direction of the ‘𝑖’th surface node. From (2.1), the 𝑋1 component of position of the ‘𝑖’th surface node in the
deformed configuration 𝐱𝑠𝑖 is then given by

0 ≤ 𝑥
𝑠𝑖
1
= 𝑢

𝑠𝑖
1
+𝑋

𝑠𝑖
1
𝜆1(𝜀). (3.2)

Denote by 𝐯𝑠 the vector of all20 surface degrees of freedom 𝑢𝑠
1
in 𝛺∗

𝑑
. To avoid interpenetration – which from symmetry with

respect to the 𝑋1 = 0 would imply 𝑥𝑠𝑖
1
< 0 – we define a self-contact penalty energy 𝑠𝑐 as

𝑠𝑐(𝐯𝑠; 𝜀) =
∑
𝑖=1

1

2

𝜅

(𝑥
𝑠𝑖
1
)2
, (3.3)

where  ∈ N is the total number of surface nodes and 𝜅 ≪ 1 is the penalty constant; a typical value of 𝜅 = 10−12 is used in the
calculations. Note that 𝑠𝑐 increases rapidly and blows up as a surface node approaches the 𝑋1 = 0 axis, i.e. as 𝑥𝑠𝑖

1
→ 0+. The

discretized total energy 𝑡𝑜𝑡(𝐯; 𝜀) of the system is thus the sum of the discretized version of the energy in (2.1) plus the penalty term
𝑠𝑐 (𝐯𝑠; 𝜀),

𝑡𝑜𝑡(𝐯; 𝜀) = (𝐯; 𝜀) + 𝑠𝑐 (𝐯𝑠; 𝜀) . (3.4)

The discrete set of nonlinear equilibrium equations 𝜕𝑡𝑜𝑡(𝐯; 𝜀)∕𝜕𝐯 = 𝟎 are solved using a standard incremental Newton–Raphson
method combined with pseudo arc-length continuation (see Keller, 1987; Allgower and Georg, 2003), where the control parameter
is the applied strain 𝜀. Adaptive step-sizes are implemented to handle convergence during self-contact of surface nodes.

The stability of each equilibrium orbit is evaluated according to the Bloch wave method described in Section 2.2. Unlike the
equilibrium path calculations that are performed in the half-domains 𝛺∗

𝑑
, the stability calculations are based on the full domain.21

𝛺𝑑 using the coupling condition in (2.5) for the 𝑋1 = ±𝐿𝑑∕2 boundary degrees of freedom,

𝐯(𝐿𝑑∕2, 𝑋2) = exp(𝑖2𝜋𝑘)𝐯(−𝐿𝑑∕2, 𝑋2) ; 𝑘 ∈ [0, 1) . (3.5)

In practice, to avoid using complex numbers in the numerical calculations, we use the method proposed by Aberg and
Gudmundson (1997) that separates out real and complex parts. The method leads to the simultaneous solution of two systems
of equations, one for real and another for complex parts, with a real stiffness matrix of almost twice the size of the unconstrained
stiffness matrix resulting by the FEM discretization of ,𝐮𝐮. An equilibrium solution is stable if its minimum eigenvalue is 𝛽𝑚𝑖𝑛 ≥ 0.
Note that the translational mode is included in 𝑘 = 0, giving always a zero eigenvalue (see discussion in Section 4.2 preceding (4.5)).

4. Results

This section presents the primary and secondary bifurcation equilibrium orbits and discusses their stability for the graded and
layered models considered, all with a reference configuration thickness 𝐻 = 1.0. For the functionally graded layer 𝜇(0) = 𝜇 = 1

while for all bilayers 𝜇𝑠 = 𝜇 = 1. Consequently the energy reported in all subsequent calculations is the dimensionless energy ∕𝐻𝜇,
with  defined in (2.1). Since the numerical values of ∕𝐻𝜇 and  are identical, for notational simplicity the same symbol  will
be used to denote the dimensionless energy ∕𝐻𝜇.

For the functionally graded Neo-Hookean structure, the shear modulus exponent in (2.7) used in the calculations is 𝛼 = 3. For
the bi-layered structure – Neo-Hookean or power-law – the film-to-layer thickness ratio is 𝐻𝑓∕𝐻 = 0.1 and the film-to-substrate
stiffness ratio 𝜇𝑓∕𝜇𝑠 = 2. For the power-law material model with 𝑝 ≥ 1 (i.e. strain hardening 𝑝 = 1.25 and Neo-Hookean 𝑝 = 1 cases)
a Poisson’s ratio of 𝜈 = 0.8182 is adopted while for 𝑝 < 1 (i.e. strain softening case 𝑝 = 0.75) we use 𝜈 = 0.3333 in view of its softer
response as seen in Fig. 2.

4.1. Principal solution and its stability

As discussed in Section 2, the solution of the equilibrium Eq. (2.2) in the model’s fixed-point space is
0
𝐮(𝐗; 𝜀) = 𝟎 ∈ 𝐶∞𝑣 (see

Appendix A). To determine its stability we must find, according to Section 2.2, the minimum eigenvalue 𝛽𝑚𝑖𝑛(𝜀), with respect to all

19 Here we are interested in exploring the onset of evolution of bifurcated equilibrium paths up to the initiation of self contact. Thus, we use a simple
discrete numerical penalty model for this purpose. Of course, to study the fine details of fully evolved creased and/or folded equilibrium configurations, a more
sophisticated contact model, such as those used by Diab et al. (2013) and co-workers, must be used.
20 With the exception of 𝑢𝑠

1
at 𝑋1 = 0.

21 To avoid introducing new notation, the solution whose stability is under investigation has period 𝐿 = 𝐿𝑑 while the perturbations considered are defined
over a much larger domain, thus explaining 𝑘 ∈ [0, 1) – see footnote associated to (2.5)
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functions 𝛥𝐮 (the unit norm requirement ‖𝛥𝐮‖ = 1 replacing the inner product ⟨𝛥𝐮, 𝛥𝐮⟩ in the Rayleigh quotient definition of 𝛽)
according to.22 (2.4)

𝛽𝑚𝑖𝑛(𝜀) = min‖𝛥𝐮‖=1
1

𝐿𝑑 ∫𝛺𝑑 [(∇𝛥𝐮) ∶
0

𝐋(𝑋2; 𝜀) ∶ (∇𝛥𝐮)] 𝑑𝐴 ; ∀𝛥𝐮(𝐗) = exp(𝑖2𝜋𝑘𝑋1∕𝐿𝑑 ) 𝛿𝐮(𝑋2) ,

𝛿𝐮(𝑋2) ∶ [0,𝐻] ⟶ R2 , 𝑘 ∈ [0, 1) ;
0

𝐋 ≡ 𝜕2𝑊 (𝐅;𝑋2)

𝜕𝐅𝜕𝐅

|||0𝐅(𝜀).
(4.1)

Consequently, by substituting (2.5) into 0
,𝐮𝐮
, one obtains the minimum eigenvalue of this operator

𝛽𝑚𝑖𝑛(𝑘; 𝜀) = min‖𝛥𝐮‖=1(𝛿𝐮, 𝑘; 𝜀) , 𝑘 ∈ [0, 1) ;  ≡ ∫
𝐻

0

[(∇𝛥𝐮) ∶
0

𝐋(𝑋2; 𝜀) ∶ (∇𝛥𝐮)] 𝑑𝑋2 , (4.2)

where an overline 𝑓 denotes complex conjugation of a quantity 𝑓 and where  is a quadratic function of 𝛿𝐮 that depends also on
the wavenumber 𝑘 as well as on the load parameter 𝜀 (with 𝛿𝐮(𝑋2; 𝜀) ≡ (𝛿𝐮𝑐 (𝑋2; 𝜀) cos(2𝜋𝑘𝑋1∕𝐿𝑑 )+ 𝑖 𝛿𝐮

𝑠(𝑋2; 𝜀) sin(2𝜋𝑘𝑋1∕𝐿𝑑 ))). One

can see that the unstressed configuration 𝜀 = 0,
0

𝐅(0) = 𝐈 is stable. Indeed the corresponding second derivative of the energy gives

the elastic moduli tensor of isotropic linear elasticity
0

𝐋(𝑋2; 0) = 𝐋𝑒 which is convex (positive energy) with respect to small strain
(symmetric part of (∇𝛿𝐮)) and consequently from (4.2) the quadratic form  is positive for each nontrivial admissible field (∇𝛿𝐮).

Of interest is the strain 𝜀𝑐 at the onset of the first bifurcation encountered on the principal solution and the associated eigenmode
wavelength 𝐿𝑐 , different from the arbitrarily chosen 𝐿𝑑 . To this end we proceed as follows: We notice that  depends on the
dimensionless wavenumber 𝜔 ≡ 2𝜋𝑘𝐻∕𝐿𝑑 (and hence the corresponding minimum eigenvalue 𝛽𝑚𝑖𝑛 has to be calculated

23 for
𝜔 ∈ [0,∞). We thus determine from (4.2) the minimum eigenvalue 𝛽𝑚𝑖𝑛(𝜔; 𝜀) of the stability operator (𝛿𝐮, 𝜔; 𝜀) for a given pair
(𝜔; 𝜀). We subsequently find 𝜀𝑚𝑖𝑛(𝜔), the lowest nontrivial 𝜀 root of 𝛽𝑚𝑖𝑛 for each fixed 𝜔,

𝛽𝑚𝑖𝑛(𝜔; 𝜀𝑚𝑖𝑛(𝜔)) = 0 ; 𝛽𝑚𝑖𝑛(𝜔; 𝜀) > 0 , 0 ≤ 𝜀 < 𝜀𝑚𝑖𝑛(𝜔) , 𝜔 ∈ R+ . (4.3)

It can be shown that, since 𝛽𝑚𝑖𝑛(𝜔; 𝜀𝑚𝑖𝑛(𝜔)) = 0, a bifurcated solution emerges from the principal one at each 𝜀𝑚𝑖𝑛(𝜔) and that from
symmetry the corresponding eigenmodes are symmetric, 𝛥𝐮𝑠(𝐗) = [cos(𝜔𝑋1∕𝐻)𝛿𝑢1(𝑋2), sin(𝜔𝑋1∕𝐻)𝛿𝑢2(𝑋2)]

T, and asymmetric,
𝛥𝐮𝑎(𝐗) = [− sin(𝜔𝑋1∕𝐻)𝛿𝑢1(𝑋2), cos(𝜔𝑋1∕𝐻)𝛿𝑢2(𝑋2)]

T.
Finally, the sought critical (i.e. lowest) bifurcation load 𝜀𝑐 is the infimum of 𝜀𝑚𝑖𝑛(𝜔) with respect to 𝜔, attained at some

24 𝜔𝑐 ,
which also determines the wavelength of the corresponding eigenmode 𝐿𝑐

𝜀𝑐 ≡ inf
𝜔∈R+

𝜀𝑚𝑖𝑛(𝜔) = 𝜀𝑚𝑖𝑛(𝜔𝑐 ) ; 𝐿𝑐 = 2𝜋𝐻∕𝜔𝑐 . (4.4)

For the derivations leading to the analytical calculation of 𝜀𝑚𝑖𝑛(𝜔), the interested reader in referred to Akerson and Elliott (2021).
The reader is also reminded of the discussion in Section 2.4, that larger domains 𝛺𝑑 = [−𝐿𝑑∕2, 𝐿𝑑∕2] × [0,𝐻] are also considered
where 𝐿𝑑 = 𝑞𝐿𝑐 , 𝑞 ∈ N in which case the bifurcation of the principal solution also takes place at 𝜀𝑐 which occurs for
𝜔 = 2𝜋𝑞𝐻∕𝐿𝑑 = 2𝜋𝐻∕𝐿𝑐 = 𝜔𝑐 .

Fig. 3 shows the dependence of 𝜀𝑚𝑖𝑛, the lowest strain corresponding to the first instability of the principal solution – defined in
(4.3) – as a function of the dimensionless wavenumber 𝜔 for the different structures considered: functionally graded Neo-Hookean
in Fig. 3(a), and bi-layer in Fig. 3(b) (𝐻𝑓∕𝐻 = 0.1, 𝜇𝑓∕𝜇𝑠 = 2) for three different power-law exponents (𝑝 = 1.25, 1.00, 0.75) and
two different compressibilities (𝜈 = 0.8182, 0.3333). According to the results in Fig. 3(a), as the grading exponent 𝛼 increases, i.e. as
the material is progressively stiffening near the free surface, the critical strain 𝜀𝑐 decreases. This confirms the results of Akerson and
Elliott (2021). For the bi-layer structures, the results of Fig. 3(b) show that the critical strain 𝜀𝑐 decreases with the decreasing stiffness
of the material, i.e. as its power-law 𝑝 exponent decreases. For a given power-law exponent, the critical strain is higher for the more
compressible material, as seen in Fig. 3(b) by comparing the 𝜀𝑚𝑖𝑛(𝜔) curves for the layered structures with 𝑝 = 0.75, 𝜈 = 0.8182 and
𝑝 = 0.75, 𝜈 = 0.3333.

For the functionally graded layer, the corresponding critical wavenumber 𝜔𝑐 ≈ 2, is rather insensitive to the grading exponent
and the Poisson ratio. In contrast, for the bi-layer case the critical wavenumber 𝜔𝑐 shows a stronger dependence on the constitutive
law, ranging approximately in the interval 6 ≤ 𝜔𝑐 ≤ 8. The lower value of the critical wavenumber for the graded layer – compared
to the bi-layers – can be explained by the fact that the instability phenomena are occurring within a thin zone near the free surface.
Note that in all cases examined in Fig. 3, the critical strain reaches an asymptote for large values of 𝜔, as the corresponding instability
mode is Biot’s exponentially decaying surface mode of an infinite halfspace with the same properties as the surface (film) layer.
The consequence of this observation, which explains the mesh-dependence of the numerical results at localized deformations, is
discussed in Appendix C.

22 For the stability of the principal solution, the 𝐿𝑑 -periodic function 𝐩(𝐗) in (2.5) depends solely on 𝑋2, i.e. 𝐩(𝐗) = 𝛿𝐮(𝑋2). Also, here we consider the case
where 𝐿𝑑 → ∞ and thus take 𝑘 ∈ [0, 1). See further, Footnote
23 From the self-adjointness of ,𝐮𝐮 – also easily checked from (4.1) – one deduces 𝛽𝑚𝑖𝑛(𝜔; 𝜀) = 𝛽𝑚𝑖𝑛(−𝜔; 𝜀).
24 The use of infimum in the definition of 𝜀𝑐 is due to a possible singularity at 𝜔⟶ 0, in which case 𝐿𝑐 ⟶ ∞.
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Fig. 3. Graph of 𝜀𝑚𝑖𝑛, the lowest strain corresponding to the first instability on the principal solution, as a function of the dimensionless wavenumber 𝜔 for
the different structures considered: in (a) functionally graded Neo-Hookean layer (𝛼 = 1, 2, 3), and in (b) power-law bi-layer (𝐻𝑓 ∕𝐻 = 0.1, 𝜇𝑓 ∕𝜇𝑠 = 2) for three
different power-law exponents (𝑝 = 1.25, 1.00, 0.75) and two different compressibilities (𝜈 = 0.8182, 0.3333).

4.2. Primary bifurcation orbit and its stability

We focus next on the primary bifurcation orbits, i.e. the initially uniformly wrinkled periodic configuration solutions of the layered
system. These paths emerge from the lowest critical load 𝜀𝑐 , where a double, pitchfork bifurcation occurs. At this point a continuous
orbit of bifurcated equilibrium paths can be constructed starting from any linear combination of the eigenmodes: 𝑎𝛥𝐮𝑠(𝐗)+𝑏𝛥𝐮𝑎(𝐗).
A representative element of this orbit that also belongs to the fixed-point space 𝐶𝑟𝑣 (see Appendix A), is the 𝐿𝑐 -periodic solution
1
𝐮(𝐗; 𝜀), plotted in Fig. 4, and parameterized using the bifurcation amplitude 𝜉, defined as the absolute value of the 𝑋2-displacement
of the free surface at 𝑋1 = 0: 𝜉 ≡ |𝑢2(0,𝐻)|. The reason for this choice25 is that the applied axial strain 𝜀(𝜉) is not a monotonic
function of 𝜉.

Fig. 4. Deformed (current) configuration (𝐱(𝐗; 𝜀(𝜉)) =
0

𝐅(𝜀) ⋅𝐗 +
1
𝐮) corresponding to the primary bifurcated equilibrium path

1
𝐮(𝐗; 𝜉) is an 𝑙𝑐 ≡ (1 − 𝜀𝑐 )𝐿𝑐 -periodic

function, where the bifurcation amplitude parameter 𝜉, is defined as the absolute value of the 𝑋2-displacement of the free surface at 𝑋1 = 0. The unit cell solution
is calculated on half of the diagonally hatched domain and completed by symmetry over the super-cell domain in the current configuration. The Neo-Hookean
bi-layer model (𝜇𝑓 ∕𝜇𝑠 = 2, 𝐻𝑓 ∕𝐻 = 0.1) result shown here is a representative of the continuous orbit of the 𝐶𝑟𝑣-symmetric bifurcated paths emerging at 𝜀𝑐 given
in Fig. 3. The FEM mesh is indicated on one full 𝓁𝑐 period.

Taking advantage of symmetry, as discussed in Section 3, the resulting deformed configuration is obtained by solving the
equilibrium equations in (2.2) over half its unit cell domain 𝛺∗

𝑐
= [0, 𝐿𝑐∕2] × [0, 𝐻]. A typical deformed configuration – here

for a Neo-Hookean bi-layer model with 𝜇𝑓∕𝜇𝑠 = 2, 𝐻𝑓∕𝐻 = 0.1 – is plotted in Fig. 4. The unit cell solution is calculated on half of
the shown meshed region and completed by symmetry over the super-cell domain in the current configuration [(𝑙𝑑 = 𝜆1(𝜀)𝐿𝑑 )× (ℎ =

𝜆2(𝜀)𝐻)], with 𝐿𝑑 = 4𝐿𝑐 ; the dashed line gives the surface location of the principal solution. The same figure depicts the typical FEM
mesh used in the numerical calculations and shows the mesh refinement used near the free surface, due to the expected localization
of the deformation pattern in that region.

25 In fact, even the employed parameterization is problematic, since it is restricted to 𝜉 ≥ 0, and is therefore unable to distinguish between the two ‘‘halves’’
of the bifurcated path.
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Fig. 5. Plots showing the emergence of the primary bifurcation orbit
1
𝐮(𝐗; 𝜀) from the principal solution (

0
𝐮(𝐗; 𝜀) = 𝟎) for the different types of structures

considered: graded Neo-Hookean (𝛼 = 3, left column), and bi-layered (𝐻𝑓 ∕𝐻 = 0.1, 𝜇𝑓 ∕𝜇𝑠 = 2 for three different power-law models, right column). Bifurcation
diagrams show: in top row (a) and (b) amplitude 𝜉 vs. strain 𝜀, in middle row (c) and (d) energy change ( − 0) vs. strain 𝜀 and in bottom row (e) and (f)
lateral force change ( −0),𝜀 vs. its work-conjugate strain 𝜀. Solid and dot-dashed lines correspond, respectively, to the stable and unstable parts of the primary
bifurcation orbit, based on Bloch-wave analysis of a 𝐿𝑐 unit cell.

The primary bifurcation orbits
1
𝐮(𝐗; 𝜀) emerging from the principal solution (

0
𝐮(𝐗; 𝜀) = 𝟎) for four – one graded and three different

bi-layered – of the structures studied in Fig. 3 are plotted in Fig. 5, where the left and right columns show respectively results for the
functionally graded and bi-layer structures. Figs. 5(a), 5(b) show the amplitude 𝜉 vs. strain 𝜀, Figs. 5(c), 5(d) show energy change
( − 0) vs. strain 𝜀, and Figs. 5(e), 5(f) show axial force change ( − 0),𝜀 vs. strain 𝜀. The stability of the primary bifurcation
orbits, based on Bloch wave calculations of a 𝐿𝑐 unit cell – as described in Section 2.2 – is also recorded using solid and dot-dashed
lines, respectively, for the stable and unstable parts of these orbits. The computation along each path is terminated (indicated by
a black ‘‘x’’ in the figures) somewhat before self contact occurs to avoid presentation of misleading results. (Beyond these points
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the accuracy of the employed contact model becomes less reliable, and there are mesh-dependence concerns since the computed
creased configuration is of the same length-scale as the FEM mesh.)

Material property grading plays an important role in the nature of the primary bifurcation orbit, as discussed by Akerson and
Elliott (2021). As seen in Fig. 5(a) the bifurcation orbits for the graded Neo-Hookean structure are ‘‘supercritical’’, i.e. they start
with an initial positive curvature at 𝜀𝑐 ≈ 0.2. According to the general theory for elastic systems (e.g. see Triantafyllidis and Peek
(1992)), the supercritical orbit is initially stable. The bifurcation amplitude increases under increasing strain up until a maximum
strain 𝜀 ≈ 0.32 is reached. Just before the maximum strain the solution becomes unstable and, following a maximum amplitude,
experiences a sharp snap-back and quickly regains its stability.

A creased (strongly localized deformation) pattern is associated with this snap-back part of the 𝜀(𝜉) curve and the term is used
hereinafter for the part of the equilibrium orbits beyond their turning points. Typical localized deformed configurations associated
with these orbits are illustrated in Figs. 11(c) and 12(c). According to Figs. 5(c), 5(d) the primary bifurcation orbits have initially a
lower energy than the corresponding principal solution at the same applied strain 𝜀. The applied lateral force drops, relative to the
flat configuration, when one moves away from the bifurcation point, as seen by Figs. 5(e), 5(f). Also notice that for a given strain 𝜀
the bifurcation amplitude of the snap-back part and the energy are higher while the lateral force is lower than in the corresponding
part of the path emerging from 𝜀𝑐 .

The initial post-bifurcation behavior for the selected material property (shear modulus) grading exponent (𝛼 = 3) is in agreement
with the asymptotic analysis in Akerson and Elliott (2021). It is noteworthy that the functionally graded Neo-Hookean layer exhibits
a primary bifurcation orbit with a maximum axial strain significantly higher than 𝜀𝑐 . The stable, snap-back solution exists for
strains lower than 𝜀𝑐 and exhibits a localized deformation pattern, but this does not occur in a neighborhood of 𝜀𝑐 as seen from the
bifurcation diagrams of Fig. 5.

Fig. 6. Dispersion relations – minimum eigenvalue of the stability operator 𝛽𝑚𝑖𝑛(𝑘) vs. wavenumber 𝑘 – at different bifurcation amplitudes 𝜉 for the primary
bifurcation paths of the four different structures: (a) functionally graded Neo-Hookean (𝛼 = 3), b) bi-layer with Neo-Hookean material 𝑝 = 1.00, 𝜈 = 0.8182,
(c) bilayer with strain softening material 𝑝 = 0.75, 𝜈 = 0.3333 and (d) bi-layer with strain hardening material 𝑝 = 1.25, 𝜈 = 0.8182.

For the bi-layer structure, the choice of constitutive law has a significant impact on the nature of the primary bifurcation orbits.
The strain softening bi-layer (𝑝 < 1) has a supercritical bifurcation, while the strain hardening bi-layered structure (𝑝 = 1.25) has
a subcritical orbit, i.e. the strain is reduced as the bifurcation amplitude increases. The Neo-Hookean bi-layer (𝑝 = 1) primary
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bifurcation orbit emerges as subcritical and hence unstable at the onset of bifurcation, as seen in Akerson and Elliott (2021), who
investigated a Neo-Hookean bi-layer structure as a function of the film/substrate stiffness ratio 𝜇𝑓∕𝜇𝑠.

With the exception of a small neighborhood near 𝜀𝑐 for the strain softening bi-layer, all bifurcated orbits are unstable and remain
so well beyond all their turning points, until the stable branch of the snap-back is reached. Notice nevertheless the somewhat counter-
intuitive result that the strain softening bi-layer exhibits a primary bifurcation orbit with a maximum axial strain higher than 𝜀𝑐 ,
while its strain stiffening counterpart has a post-bifurcated orbit with an applied strain monotonically decreasing away from 𝜀𝑐 .
Once again from Fig. 5, the stable, snap-back solutions with a localized deformation pattern exist for strains lower than 𝜀𝑐 but well
away from a neighborhood of 𝜀𝑐 .

Based on the numerical procedure described in Section 3, a more detailed picture of the stability of the primary bifurcation orbit
1
𝐮(𝐗; 𝜀) is provided by a plot of the minimum eigenvalue 𝛽𝑚𝑖𝑛(𝑘) as a function of the wavenumber 𝑘; such plots are commonly referred
to as a ‘‘dispersion relation’’.26 Here, on a single plot, we present multiple dispersion relations at different values of the bifurcation
amplitude 𝜉 along the primary bifurcated equilibrium path. In Fig. 6(a) are presented the dispersion curves for the functionally
graded Neo-Hookean (𝛼 = 3) layer and Figs. 6(b)–6(d), respectively, show the corresponding dispersion curves for the bi-layer with
the three different power-law materials: 𝑝 = 1.00, 𝜈 = 0.8182, 𝑝 = 0.75, 𝜈 = 0.3333, and 𝑝 = 1.25, 𝜈 = 0.8182.

Since the stability operator ,𝐮𝐮 is self-adjoint, the eigenvalues of the corresponding discretized Hermitian stiffness matrix are
real and symmetric with respect to 𝑘 = 0, i.e. 𝛽𝑚𝑖𝑛(𝑘) = 𝛽𝑚𝑖𝑛(−𝑘). This property, combined with the periodicity of the eigenvalue,
i.e. 𝛽𝑚𝑖𝑛(𝑘 + 1) = 𝛽𝑚𝑖𝑛(𝑘), following from (3.5), results in the mirror symmetry of the graphs in Fig. 6 with respect to 𝑘 = 1∕2. Their
intersection with the 𝛽𝑚𝑖𝑛 = 0 line indicates bifurcation points.

A curve lying entirely above the 𝑘-axis means that the orbit in question, identified by its bifurcation amplitude, is stable. As
expected from the results in Figs. 5(a), 5(b), where the post bifurcation behavior for the functionally graded structure and the strain
softening bi-layer are supercritical, for small values of the bifurcation amplitude 𝜉 the corresponding dispersion curves lie entirely
above the 𝑘-axis, as seen in Figs. 6(a) and 6(c). As the bifurcation amplitude increases, the orbits in each structure become unstable
and the corresponding dispersion curves dive below the 𝑘-axis, as all orbits become unstable until a significant crease is formed and
they regain their stability.27

Finally a remark is in order about the existence of 𝛽𝑚𝑖𝑛(0) = 0 in the above dispersion curves. At 𝑘 = 0, as seen in Fig. 6 graphs
𝛽𝑚𝑖𝑛 = 0 for the principal solution (𝜉 = 0), while 𝛽 = 0 is an eigenvalue for the primary bifurcation orbits (𝜉 > 0), but not necessarily
the minimum one. The reason stems from the fact that the stability operator ,𝐮𝐮 evaluated on any solution of the equilibrium
equations which is 𝐿𝑑 -periodic – and hence corresponding to 𝑘 = 0 according to (3.5) – can be shown to have a zero eigenvalue.
Indeed differentiating the equilibrium equations for an equilibrium solution (,𝐮(𝐮(𝑋1+𝑐,𝑋2); 𝜀), 𝛿𝐮) = 0 with respect to an arbitrary
phase-shift 𝑐(𝜃) (see (2.10)) we obtain

𝑑

𝑑𝑐
(,𝐮(𝐮(𝑋1 + 𝑐,𝑋2); 𝜀), 𝛿𝐮) = 0 ⟹ ((,𝐮𝐮, [ 𝜕𝐮

𝜕𝑋1

(𝑋1, 𝑋2; 𝜀)]), 𝛿𝐮) = 0 , (4.5)

indicating that zero is an eigenvalue of the stability operator ,𝐮𝐮 with corresponding eigenmode 𝜕𝐮∕𝜕𝑋1.

4.3. Secondary bifurcation orbits

We are interested next in the secondary bifurcation orbits emerging from the primary ones presented above. Once again, due to
symmetry, as discussed in Section 3 equilibrium solutions are computed on the domain 𝛺∗

𝑑
= [0, 𝐿𝑑∕2] × [0,𝐻], while the stability

analysis of the resulting orbits is based on the domain 𝛺𝑑 = [−𝐿𝑑∕2, 𝐿𝑑∕2]×[0,𝐻], where 𝐿𝑑 = 4𝐿𝑐 . The results for all the structures
analyzed – and whose primary orbits appear in Fig. 5 – are now presented in Figs. 7 to 10. More specifically, the secondary orbit
graphs presented in Fig. 7 show the amplitude 𝜉 vs. strain 𝜀, in Fig. 8 the energy change ( − 0) vs. strain 𝜀 and in Fig. 9 the force
change ( −0),𝜀 vs. amplitude 𝜉. All bifurcation points are indicated by a small circle, while solid and dot-dashed lines correspond,
respectively, to the stable and unstable parts of these equilibrium paths. In Fig. 10 deformed configurations are plotted at selected
points, indicated in Figs. 7 to 9. Colors show the absolute value of the Lagrangian strain’s shear component |𝐸12|, chosen as a measure
of the localized deformation in view of the absence of shear in the principal solution (

0

𝐅(𝜀) = diag[𝜆1(𝜀), 𝜆2(𝜀)] ⟹

0

𝐸12 = 0).
As seen from Fig. 7(a), the secondary bifurcation orbits for the exponentially graded material (𝛼 = 3) emerge near 𝜀 = 0.316,

just prior to the primary path reaching its turning point, a significantly higher value than the critical strain 𝜀𝑐 = 0.205. In contrast,
the secondary bifurcation orbits of the bi-layers emerge at strains near the corresponding critical ones, as seen from Figs. 7(b)–7(d).
A common feature in all cases is that the orbit corresponding to 𝑘 = 1∕4 (period-quadrupling) mode emerges first and leads to an
initially unstable secondary bifurcated orbit with 𝐶1𝑣 symmetry, followed by another initially unstable secondary orbit with 𝐶2𝑣

symmetry corresponding to the 𝑘 = 1∕2 (period-doubling) mode.
Both of these secondary bifurcated orbits evolve to a solution with a highly localized deformation pattern at the surface as

the overall strain 𝜀 decreases and the bifurcation amplitude 𝜉 keeps increasing along these paths, until a maximum amplitude is
reached. As with the primary bifurcation orbits presented in Fig. 5, the counter-intuitive decrease in the bifurcation amplitude in
the secondary bifurcation orbits, is due to the decrease in the overall lateral expansion of the layer (recall ℎ = 𝜆2(𝜀)𝐻) caused by
the decreasing strain 𝜀. In all cases of Fig. 7, for a given strain 𝜀 the longer wavelength orbit (𝑘 = 1∕4) has initially – and until close
to its turning point – a lower amplitude 𝜉 than its shorter wavelength counterpart (𝑘 = 1∕2).

26 However, this is really an abuse of the term which originates in the theory of waves and properly describes the temporal frequency versus wavenumber
curve.
27 Dispersion curves for adequately large amplitudes, corresponding to restabilized orbits, are not depicted in Fig. 6.
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Fig. 7. Amplitude 𝜉 vs. applied strain 𝜀 graphs of the secondary bifurcation orbits for the: (a) functionally graded Neo-Hookean layer (𝛼 = 3), (b) Neo-Hookean
(𝑝 = 1.00, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑓 ∕𝜇𝑠 = 2), (c) strain softening material (𝑝 = 0.75, 𝜈 = 0.3333) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2) and (d) strain
hardening material (𝑝 = 1.25, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2).

The energy change  − 0 vs. strain 𝜀 results are shown in Fig. 8. A common feature shared by all cases studied is that the
secondary bifurcation orbit corresponding to 𝑘 = 1∕4 (which has a 𝐶1𝑣 symmetry) has a lower energy than the 𝐶2𝑣 symmetry
orbit corresponding to 𝑘 = 1∕2. As one follows these orbits away from their emergence on the primary orbit, the applied strain 𝜀
decreases but the difference between the energies of the principal and secondary orbits continue to increase, with the 𝐶1𝑣 symmetry
orbit having the lowest energy among all identified bifurcated solutions.

The lateral force change ( − 0),𝜀 results are plotted in Fig. 9. An analogous observation can be made with the results of Fig. 8
showing the energy difference ( − 0) versus bifurcation amplitude 𝜉: the secondary bifurcation orbit corresponding to 𝑘 = 1∕4

(which has a 𝐶1𝑣 symmetry) has a lower lateral force than the 𝐶2𝑣 symmetry orbit corresponding to 𝑘 = 1∕2. As one follows these
orbits away from their emergence on the primary orbit, the applied strain 𝜀 decreases but the difference between the lateral forces
of the principal and secondary orbits continue to increase, with the 𝐶1𝑣 symmetry orbit having the lowest lateral force change.
Deformed configurations with contours for the absolute value of the Lagrangian strain shear component |𝐸12| are presented for
selected points along the secondary bifurcation orbit with 𝐶1𝑣-symmetry (corresponding to the 𝑘 = 1∕4 bifurcation mode) for: (a)
the functionally graded layer (𝛼 = 3) at point P, (b) the Neo-Hookean (𝑝 = 1.00, 𝜈 = 0.8182) bi-layer at point Q, (c) the strain
softening material (𝑝 = 0.75, 𝜈 = 0.3333) bi-layer at point 𝑇 and (d) stiffer material (𝑝 = 1.25, 𝜈 = 0.8182) bi-layer at point U
(see Figs. 7, 8, 9). Moreover, similarly to the primary bifurcation orbits in Fig. 5, the stable secondary bifurcation orbits exhibit a
localized deformation pattern and can be found at strains lower than 𝜀𝑐 . However, as seen in Figs. 7, 8, 9, this happens far from
the neighborhood of 𝜀𝑐 , thus repudiating the idea that these are ‘‘local bifurcations’’.

Some interesting comparisons can be made at this point with the structural model (beam on a nonlinear elastic foundation)
of Pandurangi et al. (2020) which served as an analytically tractable alternative to the bi-layer continuum model considered here.
Although significant differences exist (linearly elastic beam for the film, nonlinear spring model for the substrate), interesting
analogies can be found with the onset of the different bifurcation orbits as the symmetry group of the bi-layer model presented
here is a proper subgroup of the structural model’s counterpart. Moreover, in both cases highly localized stable deformations are
found far away from and well below the initial critical load. Both models share a (finite wavelength) periodic primary bifurcation
orbit, from which subsequently emerge lower symmetry orbits (secondary, tertiary, etc.).



Journal of the Mechanics and Physics of Solids 160 (2022) 104749

15

S.S. Pandurangi et al.

Fig. 8. Energy change  − 0 vs. applied strain 𝜀 graphs of the secondary bifurcation orbits for the: (a) functionally graded Neo-Hookean layer (𝛼 = 3), (b)
Neo-Hookean (𝑝 = 1.00, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑓 ∕𝜇𝑠 = 2), (c) strain softening material (𝑝 = 0.75, 𝜈 = 0.3333) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2) and
(d) strain hardening material (𝑝 = 1.25, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2).

One interesting difference is that in the structural model the softening(stiffening) foundation results in a unstable(stable),
subcritical(supercritical) bifurcation while the opposite is true for the continuum bilayer. As in the structural model, the secondary
bifurcation orbit that appears first corresponds to the longest wavelength eigenmode. As for the structural model, for the structure
with the subcritical primary orbit, the secondary one will emerge as close to the critical load as the size 𝑞 of the supercell domain
considered increases (𝐿𝑑 = 𝑞𝐿𝑐). In the neighborhood of the first primary bifurcation point our results are in agreement with the
structural model of Pandurangi et al. (2020).

More broadly, it is interesting to note that, for the current problem all the bifurcated solutions have higher energy than the
principal flat solution. Further, the paths all evolve into highly localized configurations that have very shallow penetration of
the free surface into the depth of the strip. Accordingly, once the solution fully localizes the equilibrium corresponds to a mostly
homogeneous one with a shallow ‘‘crease’’ or ‘‘fold’’. The energy of such configurations will be that of the flat uniform principal
solution plus a relatively small additional energy due to the surface perturbations. As such, there is little reason to argue that
the flat principal configuration would spontaneously transition to the higher-energy shallow localized configurations found in this
work. This does not mean that the imperfection-free path-following methods used here are not capable of discovering the deeply
penetrating crease and fold configurations of interest. This issue is explored next.

4.4. Development of creases and folds – influence of material properties

For the constitutive parameters studied in the previous subsections, the path-following bifurcation method – which does not use
imperfections – does not lead to the deeply penetrating creases and folds that have been of considerable interest in the literature,
such as those studied by Diab et al. (2013) and coworkers. However, here we show that the details of the evolution of a bifurcated
equilibrium path emerging from the principal (flat) configuration into a crease or fold depend strongly on the constitutive properties
of the structure (film-to-substrate stiffness ratio 𝜇𝑓∕𝜇𝑠 and Poisson’s ratio 𝜈). In particular, we find that deep creases and folds
are, indeed, found via imperfection-free path-following for certain material parameters. Although the first dependence (𝜇𝑓∕𝜇𝑠)
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Fig. 9. Force change ( − 0),𝜀 vs. applied strain 𝜀 graphs of the secondary bifurcation orbits for the: (a) functionally graded Neo-Hookean layer (𝛼 = 3), (b)
Neo-Hookean (𝑝 = 1.00, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑓 ∕𝜇𝑠 = 2), (c) strain softening material (𝑝 = 0.75, 𝜈 = 0.3333) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2) and
(d) strain hardening material (𝑝 = 1.25, 𝜈 = 0.8182) bi-layer (𝐻𝑓 ∕𝐻 = 0.10, 𝜇𝑠∕𝜇𝑓 = 2).

Fig. 10. Deformed configuration with contours for the absolute value of the Lagrangian strain shear component |𝐸12| of the secondary bifurcation orbit with
𝐶1𝑣-symmetry, corresponding to the 𝑘 = 1∕4 bifurcation mode for: (a) the functionally graded layer (𝛼 = 3) at point P, (b) the Neo-Hookean (𝑝 = 1.00, 𝜈 = 0.8182)
bi-layer at point Q, (c) the strain softening material (𝑝 = 0.75, 𝜈 = 0.3333) bi-layer at point 𝑇 and (d) strain hardening material (𝑝 = 1.25, 𝜈 = 0.8182) bi-layer at
point U (see Figs. 7–9, respectively).
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is discussed in the literature, the latter (𝜈) has not been the object of attention since most of the work in this area pertains to
incompressible materials.

As discussed in Appendix C, for large values of the bifurcation amplitude 𝜉, the bifurcation orbits and the details of the localization
patterns are mesh-sensitive. Having established that for a large enough sample (𝐿𝑑 = 𝑞𝐿𝑐 , 𝑞 > 1) the localized deformation with the
lowest energy is obtained from the secondary bifurcation orbit that emerges first from the primary one, in the interest of reducing
computation time, we study the constitutive influence on the development of creases and folds using the lowest size domain (one
cell, 𝐿𝑑 = 𝐿𝑐 , 𝑞 = 1) but with the densest mesh reported in Appendix C.

Fig. 11. Influence of Poisson’s ratio 𝜈 on the evolution of the localized deformation pattern. In (a) primary bifurcation orbit, plotted in 𝜀 vs. 𝜉, for a Neo-Hookean
bilayer (𝐻𝑓 ∕𝐻 = 0.1, 𝜇𝑓 ∕𝜇𝑠 = 2) for two different compressibility values: 𝜈 = 0.8182 (see also Fig. 5(b)) and 𝜈 = 0.9608. In (b) the localized deformation pattern
(fold) for the nearly incompressible 𝜈 = 0.9608 case plotted at point 𝐴. In (c) the localized deformation pattern for the compressible (crease) 𝜈 = 0.8182 case
plotted at point 𝐵. Deformed configurations also show contours for the absolute value of the Lagrangian strain shear component |𝐸12|.

The influence of Poisson’s ratio 𝜈 on the evolution of the localized deformation pattern is presented in Fig. 11. In Fig. 11(a)
we plot,28 the primary bifurcation orbit in 𝜀 vs. 𝜉, for a Neo-Hookean bilayer (𝐻𝑓∕𝐻 = 0.1, 𝜇𝑓∕𝜇𝑠 = 2) for two different Poisson’s
ratio values: 𝜈 = 0.8182 (see also Fig. 5(b)) and 𝜈 = 0.9608. Notice that as incompressibility is approached, the maximum bifurcation
amplitude 𝜉 reached before snap-back shows a significant increase. Moreover, one can also observe in Fig. 11(b) that the localized
deformation pattern for the nearly incompressible 𝜈 = 0.9608 case, plotted at point 𝐴 – maximum bifurcation amplitude – is a
small fold while in Fig. 11(c) the localized deformation pattern for the slightly compressible 𝜈 = 0.8182 case, plotted at point 𝐵,
corresponds to a very small crease.

Fig. 12. Influence of film-to-substrate stiffness ratio 𝜇𝑓 ∕𝜇𝑠 on the evolution of the localized deformation pattern. In (a) primary bifurcation orbit, plotted in 𝜀
vs. 𝜉, for a nearly incompressible Neo-Hookean bilayer (𝐻𝑓 ∕𝐻 = 0.1, 𝜈 = 0.9608) for three different values of the stiffness ratio: 𝜇𝑓 ∕𝜇𝑠 = 2 (see also Fig. 5(b))
and 𝜇𝑓 ∕𝜇𝑠 = 5, 10. In (b) the localized deformation pattern (fold) for the 𝜇𝑓 ∕𝜇𝑠 = 10 case plotted at point 𝐶. In (c) the localized deformation pattern (fold) for
the 𝜇𝑓 ∕𝜇𝑠 = 5 case plotted at point 𝐷. Deformed configurations also show contours for the absolute value of the Lagrangian strain shear component |𝐸12|.

28 The results in Figs. 11 and 12 use solid lines for the bifurcated paths but this should not be interpreted to indicate stability information.
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The transition from crease to fold is made more clear in Fig. 12 that pertains to the influence of film-to-substrate stiffness ratio
𝜇𝑓∕𝜇𝑠 on the evolution of the localized deformation pattern. In Fig. 12(a) we plot 𝜀 vs. 𝜉 the primary bifurcation orbit for a nearly
incompressible Neo-Hookean bilayer (𝐻𝑓∕𝐻 = 0.1, 𝜈 = 0.9608) for three different values of the stiffness ratio: 𝜇𝑓∕𝜇𝑠 = 2 (see also
Fig. 11(a)) and 𝜇𝑓∕𝜇𝑠 = 5, 10. Notice that as the stiffness ratio 𝜇𝑓∕𝜇𝑠 increases, the maximum bifurcation amplitude 𝜉 reached
before snap-back shows a significant increase, while the critical strain 𝜀𝑐 decreases. In addition, we observe in Fig. 12(b) that the
localized deformation pattern for the 𝜇𝑓∕𝜇𝑠 = 10 case, plotted at maximum bifurcation amplitude 𝜉 and maximum applied strain 𝜀
in point 𝐶, is a very well-developed, deep fold. In Fig. 12(c) we also find that the localized deformation pattern for the 𝜇𝑓∕𝜇𝑠 = 5

case, plotted again at maximum bifurcation amplitude 𝜉 and maximum applied strain 𝜀 in point 𝐷, is also a fold, although less
pronounced than for the 𝜇𝑓∕𝜇𝑠 = 10 case, in agreement with existing literature (see Diab et al. (2013)).

We have thus established that the highly localized deformation solutions of creases and folds found in the literature, can be
obtained using the path-following bifurcation technique used here, guided by group theory in view of the large symmetry group of
the problem at hand, without the use of imperfections.

4.5. Equilibria of the infinite perfect homogeneous layer via control parameter switching

Although our primary focus has been on layered and graded inhomogeneous elastic systems, understanding the solution set of the
homogeneous problem is of equal importance in establishing the nature (local bifurcation or not) of creasing and folding solutions in
free-surface instability mechanics problems. Researchers having only experience with relatively simple nonlinear buckling problems
can easily underestimate the severe difficulties involved in finding bifurcated solutions to the homogeneous Biot problem. The
Biot singularity occurs simultaneously at all wavelengths and this massive degeneracy effectively thwarts trial-and-error (including
imperfection) methods for selecting an initial guess for use in Newton–Raphson based iterative solvers. In this subsection we employ
the innovative imperfection-free systematic parameter-switching scheme of Healey and Miller (2007) to discover solutions to the
homogeneous Biot problem.

Thus far the results presented in Figs. 7 to 9 were obtained by using compressive strain 𝜀 as a control parameter while fixing
the film-to-substrate shear modulus ratio (𝜇𝑓∕𝜇𝑠 = 2). We now proceed to discuss the evolution of deformation of the body as
the continuation parameter is switched to 𝜇𝑓∕𝜇𝑠 with 𝜀 fixed. By switching the control parameter to 𝜇𝑓∕𝜇𝑠 for a fixed 𝜀 one can
obtain bifurcated equilibrium orbits for the homogeneous halfspace (𝜇𝑓 = 𝜇𝑠) without the need to introduce an imperfection in a
structure whose exponentially decaying bifurcation eigenmode (corresponding to Biot’s surface instability) has a vanishingly small
wavelength.

Fig. 13. An efficient way to obtain creased, bifurcated solutions for the homogeneous halfspace problem by switching the control parameter of an equilibrium
orbit from strain 𝜀 to shear moduli ratio 𝜇𝑓 ∕𝜇𝑠 in a Neo-Hookean bi-layer. The axonometric projections show: (a) Amplitude 𝜉 as a function of strain 𝜀 and
moduli ratio 𝜇𝑓 ∕𝜇𝑠. (b) Energy change ( − 0) as a function of strain 𝜀 and shear moduli ratio 𝜇𝑓 ∕𝜇𝑠. Equilibrium solutions for the homogeneous Neo-Hookean
halfspace are found for 𝜇𝑓 ∕𝜇𝑠 = 1. Solid and dot-dashed lines correspond, respectively, to the stable and unstable parts of these equilibrium paths, based on
Bloch-wave analysis of a 𝑞 = 4, (𝐿𝑑 = 4𝐿𝑐 ) supercell.

We work with the bilayer structure and a domain of length 𝐿𝑑 = 4𝐿𝑐 . Bifurcation diagrams for this case are shown in Fig. 13. As
before, we begin by loading a bi-layer of 𝜇𝑓∕𝜇𝑠 = 2 with increasing strain 𝜀 on the principal path and locate the primary bifurcation
point. The segment of the primary orbit for 𝜇𝑓∕𝜇𝑠 = 2.0 and 𝜀 as the continuation parameter is plotted in black dashed line (unstable
𝐶4𝑣 orbit, identical to the primary path in Fig. 7). On this (primary bifurcation) orbit of the bi-layer with 𝜇𝑓∕𝜇𝑠 = 2, we switch
the continuation parameter from 𝜀 to 𝜇𝑓∕𝜇𝑠 at point R as seen in Fig. 13. The primary path where 𝜇𝑓∕𝜇𝑠 is the control parameter
evolves along the blue curve, corresponding to a 𝐶4𝑣 orbit with a fixed 𝜀 = 0.3228. In the neighborhood of point R the 𝐶4𝑣 orbit
bifurcates into a lower symmetry 𝐶1𝑣 orbit corresponding to 𝑘 = 1∕4, plotted in red dashed line (unstable). As seen in Fig. 13(a), the
amplitude of deformation initially increases and subsequently decreases as 𝜇𝑓∕𝜇𝑠 ⟶ 1 leading to a stable solution at 𝜇𝑓∕𝜇𝑠 = 1.0,
i.e. for the homogeneous body. As expected, the deformed configuration at point S exhibits a localized surface deformation. For
a fixed 𝜀 = 0.3228, at a given 𝜇𝑓∕𝜇𝑠 the energy of the system on the 𝐶4𝑣 orbit is higher than the corresponding one for its lower
symmetry bifurcated counterpart 𝐶1𝑣 as seen in Fig. 13(b). With this approach, we have found without the need of introducing an
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imperfection, a bifurcated equilibrium solution of the perfect homogeneous layer, whose lowest strain instability is a surface one
with a vanishing wavelength, i.e. has a critical wavenumber 𝜔𝑐 ⟶ ∞ (see Biot, 1963).

5. Conclusion

It is well-known that a linearized stability analysis of a compressed halfspace with a flat free surface predicts wrinkles (see Biot,
1963) and hence precludes a perfect halfspace model from locally bifurcating from the flat state to a creased/folded one. The
nucleation of this localization phenomenon is a poorly understood (see Yang et al., 2021) issue in hyperelastic solids. While the
methods employed in the existing literature avoid this inconvenient fact by introducing an ‘‘a priori’’ imperfection (geometric or
surface force) which biases the system toward the desired configuration, the choice of imperfection introduces an uncontrolled
perturbation to the exploration of the transition from the flat state to localized creases and/or folds. It is exactly this transition issue
which we have eliminated in this work. Using the imperfection-free local bifurcation and global solution branch following method
introduced in Pandurangi et al. (2020), we employ a group-theoretic approach for perfect structures.

To demonstrate the methodology, we select a stable (polyconvex) material model and consider two plane-strain boundary value
problems: a functionally graded layer whose shear modulus varies exponentially with distance from the free surface, and a thin-
film on a substrate layer. Application of the imperfection-free local bifurcation and global solution branch following method shows
that highly localized (creased) stable equilibrium solutions evolve ‘‘far ’’ from the initial smooth and oscillatory bifurcation near
the flat trivial solution. Furthermore, we find that isolated stable creases (i.e., a single crease surrounded by long flat regions)
evolve, along the long wavelength secondary bifurcating paths, ‘‘far ’’ from the flat trivial solution, as seen in the bifurcation diagrams
of Figs. 7–9. These secondary paths bifurcate in a cascading fashion from the short wavelength, wrinkled, primary bifurcation
paths. These primary paths in turn emerge from the system’s symmetry-breaking bifurcation points along its flat configuration path.
These qualitative results are robust to parameter variation in the material model ranging over strain-softening to Neo-Hookean to
strain-hardening materials.

Taking the method one step further, we employ a multiparameter approach akin to that of Healey and Miller (2007), Healey and
Sipos (2013), Healey et al. (2013), and switch continuation parameters in the bilayer problem. Here we use the film-to-substrate
shear moduli ratio for continuation to obtain isolated crease solutions for the perfect homogeneous halfspace without using an
imperfection, while avoiding analysis near the highly degenerate homogeneous state at the Biot instability.

With the present work we eliminate the uncontrolled effects of ‘‘a-priori’’ imperfections on the study of creasing and folding in
compressed hyperelastic halfspaces and demonstrate that ‘‘creases and folds are not local bifurcations’’ contrary to what is frequently
reported in the literature.
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Appendix A. Group-theoretic considerations

The fundamental concept used to study the bifurcated equilibrium paths and their stability in any conservative elastic system
is the existence of a group 𝐺 of transformations that leave its energy – e.g. (𝐮; 𝜀) defined in (2.1) for the problem at hand –
unchanged, i.e., invariant under the action of all transformations 𝑔 ∈ 𝐺. More specifically, to each element 𝑔 ∈ 𝐺 we associate a
unitary transformation 𝑇𝑔 (termed ‘‘representation" of 𝑔) acting on 𝐮(𝐗) ∈ 𝑈 with image 𝑇𝑔[𝐮] ∈ 𝑈 that satisfies

(𝑇𝑔[𝐮]; 𝜀) = (𝐮; 𝜀) ; ∀𝜀 ≥ 0 , ∀𝐮 ∈ 𝑈 , ∀𝑔 ∈ 𝐺 , (A.1)

where 𝜀 is the scalar load parameter (assumed positive) and 𝑈 the space of admissible functions 𝐮.
It follows from (A.1) that the variation of  with respect to its argument 𝐮 (first order functional derivative ,𝐮) possess the

property of ‘‘equivariance’’

(𝑇𝑔[,𝐮(𝐮; 𝜀)], 𝛿𝐮) = (,𝐮(𝑇𝑔[𝐮]; 𝜀), 𝛿𝐮) ; ∀𝜀 ≥ 0 , ∀𝐮, 𝛿𝐮 ∈ 𝑈 , ∀𝑔 ∈ 𝐺 . (A.2)

http://www.msi.umn.edu
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According to (2.2), the system’s equilibrium solutions 𝐮(𝐗; 𝜀) are found by extremizing its energy; consequently all solutions
of the system (,𝐮(𝐮; 𝜀), 𝛿𝐮) must satisfy (A.2). It is more appropriate to talk about ‘‘orbits’’ of equilibrium paths since, in view of
the equivariance described in (A.2), applying to an equilibrium solution 𝐮 the transformation 𝑇𝑔 automatically generates another
equilibrium solution 𝑇𝑔[𝐮].

A subset of these equilibrium solutions, termed ‘‘principal solutions’’ and denoted by
0
𝐮(𝐗; 𝜀), are invariant under all transformations

𝑇𝑔 . These solutions belong to an invariant subspace of 𝑈 , denoted by 𝐺 and called the ‘‘fixed-point space’’ of the group 𝐺
(,𝐮(0𝐮(𝐗; 𝜀); 𝜀), 𝛿𝐮) = 0 , ∀𝜀 ≥ 0 ;

0
𝐮 ∈ 𝐺 ∶= {𝐮 ∈ 𝑈 ∣ 𝑇𝑔[𝐮] = 𝐮 , ∀𝑔 ∈ 𝐺} . (A.3)

The benefit of finding the fixed point space of the group is that to determine the principal solution
0
𝐮(𝐗; 𝜀) one no longer needs to

search in the full space 𝑈 but only its subspace 𝐺 ⊂ 𝑈 . This is a significant advantage, especially in numerical calculations, since
the dimension of the fixed point space is considerably lower than the corresponding one of the full space.

To determine the stability of the principal solution, one has to check the positive definiteness of the self-adjoint bilinear operator

0
,𝐮𝐮
, evaluated on the principal path

0
𝐮(𝐗; 𝜀), by finding its eigenvalues 𝛽(𝜀)

((0
,𝐮𝐮
, 𝛥𝐮), 𝛿𝐮) = 𝛽(𝜀)⟨𝛥𝐮, 𝛿𝐮⟩ ; ∀𝛿𝐮 ∈ 𝑈 ; 0

,𝐮𝐮
∶= ,𝐮𝐮(0𝐮(𝐗; 𝜀); 𝜀) , (A.4)

where 𝛥𝐮 is the corresponding eigenmode and ⟨⋅ , ⋅⟩ denotes an inner product in 𝑈 . A stable solution corresponds to a positive
minimum eigenvalue.29 𝛽 and the Bloch-wave representation may be used, as described in Section 2.2. For a well-posed problem,
its stress-free (unloaded) configuration at 𝜀 = 0 is stable; as the load increases stability will be lost at the first bifurcation point
encountered along the loading path at some 𝜀𝑐 .

It can be shown, e.g. see Golubitsky et al. (1988), McWeeny (2002), that the existence of the group 𝐺 implies the existence
of a symmetry basis with respect to which (i) the operator 0

,𝐮𝐮
defined in (A.4) can be block-diagonalized and (ii) the space of

admissible functions 𝑈 = ⊕ℎ
𝜇=1

𝑉 𝜇 can be uniquely decomposed into a direct sum of mutually orthogonal invariant subspaces 𝑉 𝜇

(with ℎ being the number of equivalence, or conjugacy, classes for 𝐺). Each subspace 𝑉 𝜇 is associated with an 𝑛𝜇-dimensional
irreducible representation 𝜏𝜇 of 𝐺, also termed ‘‘irrep’’ from which an appropriate projection operator can be constructed giving the
𝑉 𝜇 component of any function in 𝑈 . With each irrep 𝜏𝜇 , we can associate its ‘‘kernel’’ 𝐺𝜇 ⊆ 𝐺 where 𝐺𝜇 = {𝑔 ∈ 𝐺 ∣ 𝜏

𝜇
𝑔 = 𝐼}, with 𝐼

the 𝑛𝜇-dimensional identity matrix.
Bifurcated equilibrium paths, termed ‘‘primary ’’, can emerge from the principal path at a generic 𝜇-type symmetry-breaking

bifurcation point corresponding to irrep 𝜏𝜇 at load 𝜀𝑐 having 𝑛𝜇 zero eigenvalues of 𝑐,𝐮𝐮. That is, 𝛽(𝜀𝑐 ) = 0 so that

((𝑐
,𝐮𝐮
,
𝑖
𝐮), 𝛿𝐮) = 0 ,

𝑖
𝐮 ∈ 𝜇 , ⟨

𝑖
𝐮,

𝑗
𝐮⟩ = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1,… , 𝑛𝜇 ; ∀𝛿𝐮 ∈ 𝑈 ; 𝑐

,𝐮𝐮
∶= ,𝐮𝐮(0𝐮(𝐗; 𝜀𝑐 ); 𝜀𝑐 ) , (A.5)

where the eigenmodes
𝑖
𝐮 span the 𝑛𝜇-dimensional null space 𝜇 ⊆ 𝑉 𝜇 . Moreover, these eigenmodes are invariant under all

transformations belonging to 𝐺𝜇 . Some additional conditions, termed ‘‘transversality conditions’’ must also hold to ensure that 𝜀𝑐
is a bifurcation and not a limit point:

det

[
((
[
𝑑0

,𝐮𝐮
∕𝑑𝜀

]
𝑐
,
𝑖
𝐮),

𝑗
𝐮)

]
≠ 0 . (A.6)

The (primary) bifurcated orbits
𝑏
𝐮(𝐗; 𝜀) emerging from

0
𝐮(𝐗; 𝜀) at 𝜀𝑐 , can be computed efficiently by using their own isotropy

subgroup 𝐻 ⊇ 𝐺𝜇 , i.e., the elements of the subgroup of 𝐺 satisfying 𝑇𝑔[
𝑏
𝐮] =

𝑏
𝐮, thus finding the bifurcated orbits in the corresponding

fixed-point space30  . Along this path there may occur (secondary) bifurcation points. In such cases, the above procedure begins
once again with

𝑏
𝐮(𝐗; 𝜀) as the new principal path from which — secondary with respect to

0
𝐮(𝐗; 𝜀) — bifurcated orbits will emerge.

Group theory also allows us to determine if the corresponding bifurcation point is ‘‘transverse’’ (asymmetric) or ‘‘pitchfork’’
(symmetric). To this end once has to first find the normalizer 𝑁𝐺(𝐻) of the isotropy subgroup 𝐻 , defined by 𝑁𝐺(𝐻) = {𝑔 ∈

𝐺 ∣ 𝑔𝐻𝑔−1 = 𝐻}. A bifurcation is transverse if 𝑁𝐺(𝐻) = 𝐻 and pitchfork if 𝐻 ⊂ 𝑁𝐺(𝐻).
To reiterate, the strategy followed in this work is to sequentially apply the above-described procedure to follow the bifurcating

equilibrium orbits of the system by identifying, each time, their symmetry group and their corresponding fixed-point space. As we
proceed from the principal solution to the primary bifurcations emerging from it, then to the secondary bifurcations emerging from
the primary ones, the corresponding symmetry groups and fixed-point spaces change accordingly. Knowledge of the symmetries of
a path allows for an efficient calculation of a unique solution in its own fixed-point space. The method adopted here follows the
procedures introduced by Healey (1988), Gatermann and Hohmann (1991). Moreover, following (Gatermann and Hohmann, 1991;
Chossat and Lauterbach, 2000; Pandurangi et al., 2020), knowledge of the lattice of isotropy subgroups of the initial symmetry
group guides the search for the bifurcated equilibrium paths in a systematic way and explains our findings.

29 See Footnote
30 Principal as well as primary bifurcated solutions belong to 𝐻 ; each bifurcated orbit can be found separately by using the equivariant branching lemma

(see Vanderbauwhede (1982)).
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A.1. Principal solution, irreps, and bifurcations – group 𝐺 = 𝐶∞𝑣

As described in Subsection. 2.4, the fixed-point space of 𝐶∞𝑣 for the layered system consists of only the trivial principal solution
0
𝐮(𝐗; 𝜀) = 𝟎. According to group theory (e.g., Ikeda and Murota (2010)) 𝐶∞𝑣 has two 1-dimensional irreps (one being the trivial
identity irrep). These provide the possibility of simple bifurcations to paths with symmetry groups of 𝐶∞. There are also an infinity
of 2-dimensional irreps, providing the possibility of double bifurcations. These correspond to bifurcating paths with symmetry groups
𝐶𝑛𝑣, where 𝑛 ∈ N, as shown in Table A.1.

Table A.1
Table of irreps and bifurcated orbit symmetries for 𝐺 = 𝐶∞𝑣. The first column gives the dimension 𝑛𝜇 of the
corresponding irrep; the second column gives a standard label/name for the irrep; the third and fourth columns
provide the corresponding irrep matrix for the generators 𝜏𝜇

𝑐(𝜙)
and 𝜏

𝜇
𝜎𝑣
, respectively; the fifth column gives the

kernel of 𝜏𝜇 (i.e., 𝐺𝜇 = {𝑔 ∈ 𝐺 ∣ 𝜏
𝜇
𝑔 = 𝐼}, where 𝐼 is the 𝑛𝜇 -dimensional identity matrix.); the sixth column gives

the symmetry group of the corresponding bifurcating equilibrium path(s).

𝑛𝜇 Irrep 𝜇 𝜏
𝜇

𝑐(𝜙)
𝜏
𝜇
𝜎𝑣

𝐺𝜇 Bifurc. Orbit Sym.

1 𝐴 1 1 𝐶∞𝑣 No Bif.
1 𝐵 1 −1 𝐶∞ 𝐶∞

2 𝐸𝑛

[
cos(𝑛𝜙) − sin(𝑛𝜙)

sin(𝑛𝜙) cos(𝑛𝜙)

] [
1 0

0 −1

]
𝐶𝑛 𝐶𝑛𝑣

𝑛 = 1, 2, 3⋯

The possibility of 𝐶𝑛𝑣 bifurcated equilibrium orbits for the 𝐶∞𝑣 group, corresponding to the two-dimensional 𝐸𝑛 irreps, comes
from the fact that the system has an energy and thus its stability operator ,𝐮𝐮 is self-adjoint.

A.2. Primary bifurcation orbit at 𝜀𝑐 , irreps, and bifurcations – group 𝐺 = 𝐶𝑞𝑣

In Section 4.1 we find only double bifurcations at each 𝜀 (since each 𝜀 can be interpreted as the 𝜀𝑚𝑖𝑛 of (4.3)) with corresponding
eigenmodes cos(2𝜋𝑋1∕𝐿𝑐 )𝛿𝐮

𝑐 (𝑋2) and sin(2𝜋𝑋1∕𝐿𝑐 )𝛿𝐮
𝑠(𝑋2) — as expected from the 2-dimensional irreps of 𝐶∞𝑣 of Table A.1. No

simple bifurcations are found, in spite of the existence of 1-dimensional irreps of this group. From the infinity of primary bifurcation
paths that can be constructed at each 𝜀, we follow next the bifurcation orbit emerging from the lowest load 𝜀𝑐 . Every linear
combination of the two eigenmodes is left invariant by the elements of the group 𝐶𝑞 , the critical point corresponds to the 𝜇 = 𝐸𝑞
irrep, and according to the general theory (see Table A.1) the symmetry group of the bifurcating orbit is 𝐶𝑞𝑣. This symmetry group
is finite and has the following two generators: 𝑐(2𝜋∕𝑞) and 𝜎𝑣. Recall also that 𝑞 ∈ N is determined by the size of the domain
𝛺𝑑 = [−𝐿𝑑∕2, 𝐿𝑑∕2] × [0,𝐻] considered (𝐿𝑑 = 𝑞𝐿𝑐). Calculations for the primary bifurcation orbit of symmetry 𝐶𝑞𝑣 are done in
the corresponding fixed point space 𝑆𝐶𝑞𝑣 using the domain [0, 𝐿𝑐∕2] × [0,𝐻] by imposing 𝑢1(0, 𝑋2) = 0 in addition to the remaining
admissibility conditions for the displacement field.

As indicated in Table A.2, this group has four 1-dimensional irreps (one being the trivial identity irrep). For even values of 𝑞 lower
symmetry (𝐶(𝑞∕2)𝑣) simple bifurcation orbits are possible. There are also ⌊(𝑞 − 1)∕2⌋ 2-dimensional irreps, providing the possibility
of double bifurcations where the correspond to bifurcating orbits have smaller symmetry groups 𝐶𝑟𝑣, where 𝑟 ∶= gcd(𝑗, 𝑞), with
𝑗 = 1,… , ⌊(𝑞 − 1)∕2⌋.

Table A.2
Table of irreps and bifurcated orbit symmetries for 𝐺 = 𝐶𝑞𝑣. The first column gives the dimension 𝑛𝜇 of the corresponding irrep;
the second column gives a standard label/name for the irrep; the third and fourth columns provide the corresponding irrep
matrix for the generators 𝜏𝜇

𝑐(2𝜋∕𝑞)
and 𝜏𝜇𝜎𝑣 , respectively; the fifth column gives the kernel of 𝜏

𝜇 (i.e., 𝐺𝜇 = {𝑔 ∈ 𝐺 ∣ 𝜏
𝜇
𝑔 = 𝐼}, where 𝐼

is the 𝑛𝜇 -dimensional identity matrix.); the sixth column gives the symmetry group of the corresponding bifurcating equilibrium
path(s). The function gcd(𝑎, 𝑏) is the greatest common divisor of 𝑎 and 𝑏, while the notation ⌊𝑎⌋ denotes the lowest integer closest
to 𝑎.

𝑛𝜇 Irrep 𝜇 𝜏
𝜇

𝑐(2𝜋∕𝑞)
𝜏
𝜇
𝜎𝑣

𝐺𝜇 Bifurc. Orbit(s) Sym.

1 𝐴1 1 1 𝐶𝑞𝑣 No Bif.
1 𝐴2 1 −1 𝐶𝑞 𝐶𝑞

1 𝐵1 - 1 1 𝐶(𝑞∕2)𝑣 𝐶(𝑞∕2)𝑣

1 𝐵2 - 1 −1 𝐶(𝑞∕2)𝑣 𝐶(𝑞∕2)𝑣

(q: even)

2 𝐸𝑗

[
cos(2𝜋𝑗∕𝑞) − sin(2𝜋𝑗∕𝑞)

sin(2𝜋𝑗∕𝑞) cos(2𝜋𝑗∕𝑞)

] [
1 0

0 −1

]
𝐶𝑟 𝐶𝑟𝑣

1 ≤ 𝑗 ≤ ⌊(𝑞 − 1)∕2⌋ 𝑟 ∶= gcd(𝑗, 𝑞)

A.3. Secondary bifurcation orbits and their symmetry

In this work, to avoid lengthy numerical calculations we choose 𝑞 = 4. From Table A.1 the primary bifurcation orbit has 𝐶4𝑣

symmetry. Consequently, from Table A.2 and recalling the general form of the eigenmode at (2.5), the secondary bifurcation orbit
of the two-dimensional irrep 𝑗 = 1 corresponds to 𝑘 = 1∕4 (and 𝑘 = 3∕4 by symmetry) has 𝐶1𝑣 symmetry and is unique, although
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it emerges from a double bifurcation point.31 The secondary bifurcated orbit of the one-dimensional irrep corresponds to 𝑘 = 1∕2

and has 𝐶2𝑣 symmetry and is again unique since it corresponds to a simple bifurcation. To decide the nature of these orbits –
transverse or pitchfork – we must find the normalizers of their symmetry groups, 𝐶1𝑣 and 𝐶2𝑣. For the double bifurcation points:
𝑁𝐶4𝑣

(𝐶1𝑣) = 𝐶2𝑣 ⊃ 𝐶1𝑣 and for the simple bifurcation point: 𝑁𝐶4𝑣
(𝐶2𝑣) = 𝐶4𝑣 ⊃ 𝐶2𝑣. Consequently, according to the general theory

discussed at the first part of A, all secondary orbits have a global pitchfork type bifurcation.

Appendix B. Material (local) stability and principal solution analytical calculations

To avoid distraction in the main body of this paper, a number of important calculations are presented here; proof of the
polyconvexity for the constitutive law of Section 2.3 in B.1, components of the first Piola–Kirchhoff stress and tangent moduli
of the principal solution in B.2.

B.1. Local stability of the constitutive law

The energy density function 𝑊 (𝐅;𝑋2) cannot be strictly convex with respect to 𝐅 as it violates the property of material frame
indifference and would imply the existence of a unique minimizer of (𝐮) in (2.1), thus precluding the expected non-uniqueness
of equilibrium solutions due to buckling phenomena. Although global stability is impossible due to buckling, local stability in the
sense of Hadamard (see Truesdell and Noll, 1965) makes sense since even for finite strains most elastomeric materials do not exhibit
solutions with strain discontinuity. In mathematical terms this property requires ‘‘rank one convexity ’’ of𝑊 (𝐅;𝑋2) i.e. convexity only
with respect to rank one deformation gradient tensors 𝐅 = 𝐚⊗ 𝐧, where 𝐚,𝐧 are arbitrary unit vectors.

Showing that a particular constitutive law is rank one convex, even in the simplest case of an isotropic material in 2D, is an
algebraically tedious exercise that is often impossible to prove analytically (see Knowles and Sternberg (1976)). Fortunately, the
stronger restriction of ‘‘polyconvexity ’’ introduced by Ball (1976) is easier to verify and sufficient to ensure the sought rank one
convexity. In this section, we first show that the material models (2.6) and (2.8) satisfy the conditions of polyconvexity for 𝑝 > 0.5.

To prove polyconvexity for an isotropic hyperelastic material in plane strain, one has to express its stain energy 𝑊 (𝐅)

(homogeneous material considered here with no loss of generality) as a function of 𝜆1, 𝜆2, 𝛿, where 𝜆1, 𝜆2, are the principal stretch
ratios of 𝐅 and 𝛿 ≡ 𝜆1𝜆2, and show convexity of this function with respect to its three arguments considered as independent. To this
end the energy density (2.8) is written as

𝑊 (𝐅) = 𝜓(𝜆1, 𝜆2, 𝛿) ≡ 𝜇

[
𝑐

2
[𝑓 (𝜆1, 𝜆2) + 2𝑔(𝛿)]𝑝 +

𝜈

1 − 𝜈
(𝛿 − 1)2

]
,

𝑓 (𝜆1, 𝜆2) ≡ (𝜆1 − 𝜆2)
2 ≥ 0 ; 𝑔(𝛿) ≡ 𝛿 − 1 − ln 𝛿 ≥ 0 ,

(B.1)

where the functions 𝑓 and 𝑔 are minimized respectively at 𝜆1 = 𝜆2 and 𝛿 = 1 making 𝜓 = 0 the global minimum at these values.
Following (Rosakis, 1997), the necessary and sufficient conditions for polyconvexity of𝑊 (𝐅) in (B.1) requires the following three

conditions to ensure the convexity of the symmetric in 𝜆1, 𝜆2 function 𝜓(𝜆1, 𝜆2, 𝛿)

(𝐴) 𝜓(𝜆1, 𝜆2, 𝛿) = 𝜓(𝜆2, 𝜆1, 𝛿) ,

(𝐵) 𝜓(𝜆1 + 𝛽, 𝜆2 + 𝛽, 𝛿) ≥ 𝜓(𝜆1, 𝜆2, 𝛿), ∀𝛽 ≥ 0 ,

(𝐶) 𝐇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝜓

𝜕𝜆1𝜕𝜆1

𝜕2𝜓

𝜕𝜆1𝜕𝜆2

𝜕2𝜓

𝜕𝜆1𝜕𝛿

𝜕2𝜓

𝜕𝜆2𝜕𝜆2

𝜕2𝜓

𝜕𝜆2𝜕𝛿

Sym.
𝜕2𝜓

𝜕𝛿2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

 − 
 −

Sym. 
⎤
⎥⎥⎦

be positive semidef inite ,

 ≡ 𝜇𝑐𝑝(𝑓 + 2 𝑔)(𝑝−2)((2𝑝 − 1)𝑓 + 2 𝑔) ,  ≡ 2𝜇𝑐𝑝(𝑝 − 1)(𝑓 + 2 𝑔)(𝑝−2)
√
𝑓

(
𝛿 − 1

𝛿

)
,

 ≡ 𝜇

[
𝑐𝑝

(𝑓 + 2 𝑔)(𝑝−2)

𝛿2

(
(2𝑝 − 2)(𝛿 − 1)2 + (𝑓 + 2 𝑔)

)
+

2𝜈

1 − 𝜈

]
.

(B.2)

As det𝐇 = 0, positive semi-definiteness relies on the non-negativity of the nontrivial first ( ≥ 0,  ≥ 0) and second (−2) ≥ 0

order principal minors of 𝐇, which can be shown to hold for 𝑝 ≥ 0.5 and 1 > 𝜈 > 0.05, thus establishing the sought polyconvexity
and hence rank one convexity of the power-law constitutive model.

31 The two eigenmodes of this point are symmetry related and hence all bifurcated paths belong to the same orbit.
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B.2. First Piola–Kirchhoff stress and incremental moduli tensors

The nonzero components of the first Piola–Kirchhoff stress
0

𝑆𝑖𝑗 and the incremental moduli
0

𝐿𝑖𝑗𝑘𝑙, based on the energy in (2.8)

and evaluated on the principal solution
0

𝐅 = diag[𝜆1, 𝜆2] are given by

0

𝑆11∕𝜇 = exp(𝛼𝑋2)

[
𝜂(𝜆1 −

1

𝜆1
) +

2𝜈

1 − 𝜈
(𝜆1𝜆2 − 1)𝜆2

]
,

0

𝑆22∕𝜇 = exp(𝛼𝑋2)

[
𝜂(𝜆2 −

1

𝜆2
) +

2𝜈

1 − 𝜈
(𝜆1𝜆2 − 1)𝜆1

]
,

0

𝐿1111∕𝜇 = exp(𝛼𝑋2)

⎡⎢⎢⎣
𝜁

(
𝜆2
1
− 1

𝜆1

)2

+ 𝜂

(
𝜆2
1
+ 1

𝜆2
1

)
+

2𝜈

1 − 𝜈
𝜆2
2

⎤⎥⎥⎦
,

0

𝐿2222∕𝜇 = exp(𝛼𝑋2)

⎡⎢⎢⎣
𝜁

(
𝜆2
2
− 1

𝜆2

)2

+ 𝜂

(
𝜆2
2
+ 1

𝜆2
2

)
+

2𝜈

1 − 𝜈
𝜆2
1

⎤⎥⎥⎦
,

0

𝐿1212∕𝜇 =
0

𝐿2121∕𝜇 = 𝜂 exp(𝛼𝑋2) ,

0

𝐿2112∕𝜇 =
0

𝐿1221∕𝜇 = exp(𝛼𝑋2)

[
𝜂

(
1

𝜆1𝜆2

)
+

2𝜈

1 − 𝜈

(
1 − 𝜆1𝜆2

)]
,

0

𝐿1122∕𝜇 =
0

𝐿2211∕𝜇 = exp(𝛼𝑋2)

[
𝜁

(
𝜆2
1
− 1

𝜆1

)(
𝜆2
2
− 1

𝜆2

)
+

2𝜈

1 − 𝜈

(
2𝜆1𝜆2 − 1

)]
.

𝜁 = 2𝑝(𝑝 − 1)𝑐(𝜆2
1
+ 𝜆2

2
− 2 − 2 ln 𝜆1𝜆2)

𝑝−2, 𝜂 = 𝑝𝑐(𝜆2
1
+ 𝜆2

2
− 2 − 2 ln 𝜆1𝜆2)

𝑝−1.

(B.3)

Note that for the Neo-Hookean material, i.e when 𝑝 = 1, we have 𝜁 = 0, 𝜂 = 1. For the graded material 𝛼 > 0 , 𝜇 = 𝜇0 while for the
bilayer 𝛼 = 0 with 𝜇 = 𝜇𝑓 for the film and 𝜇 = 𝜇𝑠 for the substrate.

Appendix C. Mesh-dependence of numerical calculations

The localized deformation patterns of creases and folds that appear in Figs. 11 and 12 are mesh-sensitive. This is because the
creasing/folding behavior observed is related to the Biot halfspace instability whose eigenmodes span all wavelengths. Consequently,
equilibrium paths are sensitive to the underlying numerical discretization.

To explore the effects of mesh dependence, we study a Neo-Hookean bi-layer with layer thickness 𝐻𝑓∕𝐻 = 0.1, 𝜇𝑓∕𝜇𝑠 = 2 and
𝜈 = 0.8182 using progressively refined meshes of (i) 4, (ii) 8 and (iii) 12 elements through the film thickness. The discretized domain
considered is 𝛺𝑑 = [−𝐿𝑑∕2, 𝐿𝑑∕2] × [0,𝐻] (𝑞 = 1) with periodic end conditions, as to capture the primary bifurcation orbit and the
corresponding secondary bifurcation points. The primary bifurcation orbits are plotted in Fig. C.1 with (i) 550 elements and 4,400
degrees of freedom (blue curve), (ii) 2,200 elements and 17,600 degrees of freedom (red curve), and (iii) 4,950 elements and 39,600
degrees of freedom (yellow curve). Local mesh refinement is used near the point (0,𝐻) where localization develops. The bifurcation
point corresponding to the first secondary orbit is also calculated and denoted by an open circle. Also note that stability results
were not calculated for the finer meshes, thus the solid lines used in Fig. C.1 do not contain stability information.

Fig. C.1. Influence of mesh refinement for a Neo-Hookean bilayer with layer thickness 𝐻𝑓 ∕𝐻 = 0.1, 𝜇𝑓 ∕𝜇𝑠 = 2 and 𝜈 = 0.8182 showing the 𝜀 vs. 𝜉 the primary
bifurcation orbit for progressively refined meshes using 4, 8 and 12 elements through the thickness of the film. The bifurcation amplitude corresponding to the
onset of the first secondary orbit (marked by an open circle) is insensitive to mesh refinement.

The initial part of the primary bifurcation orbit is rather insensitive to the mesh used (results are practically indistinguishable
up to 𝜉 ≈ 0.05 for the two finer meshes) as is the bifurcation point of the secondary orbit 𝐶1𝑣. As the deformation localizes, it is
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expected that the orbits will become more mesh-dependent although their overall shape remains very similar: a maximum amplitude
𝜉 is reached, followed by a drastic snap-back under decreasing applied strain 𝜀. Mesh dependence is also expected for the secondary
orbits, see Fig. 7(b), although the meshing effects on these paths were not systematically explored. The results here indicate that our
main results, presented in Section 4, are accurate and independent of the mesh in a sizable neighborhood surrounding the initial
primary bifurcation point including the period-extending secondary bifurcations and emerging paths. However, as all bifurcating
paths evolve away from this neighborhood the results become mesh dependent.
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