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Abstract
We study the spectrum of phase transitions with prescribed mean curvature in Riemannian
manifolds. These phase transitions are solutions to an inhomogeneous semilinear elliptic
PDE that give rise to diffuse objects (varifolds) that limit to hypersurfaces, possibly with sin-
gularities, whose mean curvature is determined by the “prescribed mean curvature” function
and the limiting multiplicity. We establish upper bounds for the eigenvalues of the diffuse
problem, as well as the more subtle lower bounds when the diffuse problem converges with
multiplicity one. For the latter, we also establish asymptotics that are sharp to order o(ε2)
and C2,α estimates on multiplicity-one phase transition layers.

1 Introduction

Let (Mn, g) be a Riemannian manifold. Consider the semilinear elliptic PDE

ε2�u = W ′(u) + εh (1)

for ε > 0, smooth u, h : M → R, and a smooth double-well potentialW : R → R satisfying:

• W (x) ≥ 0 and vanishes if and only if x = ±1,
• W ′(0) = 0, W ′′(0) �= 0, and xW ′(x) < 0 for x ∈ (0, 1),
• W ′′(x) ≥ κ > 0 for x ∈ R \ (−1 + β, 1 − β) for some β ∈ (0, 1), and
• W (x) = W (−x) for all x ;

a canonical choice is W (x) = 1
4 (1 − x2)2. This PDE describes the Gibbs–Thomson law,

and it also relates to the Van der Waals–Cahn–Hilliard theory of phase transitions ( [14,21]).
Solutions u of (1) are critical points (see Sect. 2) of the energy

Eε,h[u] :=
∫
M

( ε
2 |∇u|2 + ε−1W (u) + hu) dμg. (2)
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When M is not a closed (i.e., compact, no boundary) manifold, one simply works locally in
the interior of M . Since we are interested in variational applications to geometric problems,
wewill assume thatM is closed, except when otherwise stated. A solution (u, ε, h) of (1) with
finite Eε,h energy gives rise to a codimension-1 diffuse varifold on (M, g), whose induced
Radon measure is ε|∇u|2 dμg ( [14]). Under certain uniform bounds on our data (u, ε, h),
these diffuse varifolds subsequentially converge in M , as ε → 0, to a codimension-1 integral
varifold V , which we call a limiting varifold that bounds, in a certain sense, a Caccioppoli
set�, which we call a limiting enclosed domain ( [11,14,21]). In fact, u → 1M\�̄ −1� in the

L1 sense, {u = 0} → spt ‖V ‖ in the Hausdorff sense, and spt ‖V ‖ consists of two portions:

(A) the portion where the density �n−1(V , ·) is odd, which a.e. coincides with ∂∗�, and
(B) the portion where the density �n−1(V , ·) is even, which a.e. misses ∂∗�.

Here, ∂∗� denotes the reduced boundary of the Caccioppoli set�. The weak mean curvature
vector H of V depends on the density k = �n−1(V , ·). In fact,

(a) when k is odd: H = −2(ke0)−1hn a.e., with n being the unit vector pointing into the
+1 region, e0 being the squared L2 energy of the heteroclinic solution; while,

(b) when k is even: H = 0 a.e.

As a result, (V ;�) is a critical point (in the sense of ambient deformations—see Sect. 2) of
the prescribed mean curvature functional1

A2e−1
0 h[V ;�] := ‖V ‖(M) −

∫
�

2e−1
0 h. (3)

It has been shown that k �= 3, 5, . . . unless h = 0 ( [21]). Thus,

(a’) when k is odd and h �= 0: k = 1 and H = −2e−1
0 hn a.e.; while,

(b’) when k is even or h = 0: H = 0 a.e.

We focus on solutions (u, ε, h) that are produced by variational methods (usually min-max).
We are interested in understanding their Morse index and nullity. We briefly recall some
relevant results for h ≡ 0:

• For n ≥ 3, we know from [9–11,13,24] that solutions (u, ε) of (1) with uniformly
bounded Eε,0[u], and uniformly bounded Morse index must subsequentially collapse as
ε → 0, possibly with multiplicity, to a limiting varifold V that is smooth outside a set of
ambient codimension 8 and has Morse index (see Sect. 2)

ind(V ) ≤ lim
i
indEεi ,0

(ui ). (4)

In the reverse direction, we know from [7] that

ind(V ) + nul(V ) ≥ lim
i

(indEεi ,0
(ui ) + nulEεi ,0

(ui )) (5)

when V is smooth with multiplicity one (in any dimension, including n = 2).
• For n = 2, the situation is subtle. First, the singular set has at most ≤ limε indEε,0(u)

points ( [23]). A finer study of the pre-limit behavior of (u, ε) shows that solutions to (1)
with bounded Eε,0[u] and Morse index ≤ 1 must collapse as ε → 0 to either smoothly
embedded geodesics (possibly with multiplicity) or to smoothly immersed geodesics

1 If V is a smooth multiplicity-one hypersurface, then Ah[V ; �] measures the (n − 1)-dimensional area of
V minus the bulk integral of h in the region � enclosed by V . Smooth multiplicity-one critical points (V ; �)

of this functional will have mean curvature equal to 2e−1
0 h.
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with multiplicity one and a single non-embedded point that resembles an “X;” more
generally, the total density of singular points is bounded from above by a function of
limε indEε,0(u) ( [16]).

In this paper:

• We generalize (4) and (5) to all h.
• We also establish regularity theory needed to extend the n = 2 bullet point above to

nonzero h in future work.

We do the above via a sharp to order o(ε2) understanding of u.
Fix a background closed Riemannian manifold (Mn, g). Consider a sequence

{(ui , εi , hi )}i=1,2,... such that, for a fixed α ∈ (0, 1),

εi > 0, ui is a critical point of Eεi ,hi , lim
i

εi = 0, sup
i

Eεi ,h(ui ) + ‖hi‖C3,α(M) < ∞.

(6)

Recall that, after passing to a subsequence, the diffuse (n − 1)-varifolds associated with
(ui , εi ) converge (as i → ∞) to a limiting integral (n−1)-varifold, V , and a limiting enclosed
domain, �. After possibly passing to a further subsequence, hi converge in C3,α′

with α′ ∈
(0, 1) to h ∈ C3,α(M). In what follows, always assume that we pass to subsequences as
necessary:

Theorem 1 Suppose n ≥ 2, α ∈ (0, 1). Let {(ui , εi , hi )}i=1,2,... be as in (6). Let V , � be as
before, and h = limi hi .

(a) Suppose that supi indEεi ,hi
(ui ) < ∞. We may estimate the Morse index of (V ;�) by

indA
2e−1

0 h
(V ;�) ≤ lim

i
indEεi ,hi

(ui ). (7)

See Sect. 2 for notation and Theorem 4 for a stronger result with weaker (i.e., W 2,p

rather than C3,α) assumptions on hi .
(b) Suppose U ⊂ M is an open set such that Ū ∩ sing V = ∅, 
′ := spt ‖V ‖ ∩ U is an

embedded (n − 1)-manifold, 
̄′ \ 
′ is smooth, and �n−1(V , ·) ≡ 1 along 
′. Then,
for all τ ∈ (−1, 1), there exists an open set U ′ ⊂ M containing 
′ such that 
′ ∩ U ′
is the C2,α limit of 
′

i,τ := {ui = τ } ∩U ′ as i → ∞. The mean curvature Hi,τ of 
′
i,τ

satisfies

‖Hi,τ − 2e−1
0 hi‖C0(
′

i,τ ) + εα[Hi,τ − 2e−1
0 hi ]α,
′

i,τ
= O(ε). (8)

(c) If �n−1(V , ·) ≡ 1 everywhere on spt ‖V ‖, then we may estimate the Morse index and
nullity of (V ;�) by

indA
2e−1

0 hi
(V ;�) + nulA

2e−1
0 hi

(V ;�) ≥ lim
i

(indEεi ,hi
(ui ) + nulEεi ,hi

(ui )). (9)

See Sect. 2 for notation and Theorem 9 and Corollary 10 for more general results.

The regularity theory developed for Theorem 1 (b) and (c) is an adaptation to arbitrary h

of the Wang–Wei curvature estimates for transition layers when h ≡ 0 [26] (see also [7,27]).
We are not “generalizing” the Wang–Wei estimates to all h because we only need and only
prove estimates for so-called multiplicity-one solutions. The multiplicity-one estimates we
present here are quite direct versus the general curvature estimates of [7,26,27] that require
substantial work. We have opted for a presentation that is as simple and self-contained as
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possible, so some of our smoothness assumptions are more stringent than necessary.We hope
our streamlined exposition will help make the groundbreaking recent Wang–Wei regularity
theory accessible to a wider audience.

We list a number of interesting future directions and unresolved questions in Sect. 7. We
encourage the reader to refer to Remarks 5, 6, 11 for additional context on our results and
how they fit within the literature. This work has been partially influenced and motivated by
the enormous recent advances of Almgren–Pitts min-max theory, which the min-max theory
of (2) has been tracking in a somewhat parallel fashion. Since Almgren–Pitts theory is not so
relevant to this work, we will only list a small number of results that we deem most relevant:
[15,17,18,31–33].

2 Variations of Ah, E",h

2.1 The Ah functional

Suppose that �n−1 is a closed hypersurface in a closed Riemannian manifold (Mn, g). The
first variation formula gives the first order rate of change of the (n − 1)-dimensional area
A[·] of � if � is deformed in the direction given by an ambient vector field. Let X be a C1

vector field on M whose flow is given by 
t : M → M . The first variation of the area of �

along X is

δA[�]{X} := [ d
dt A[(
t )#�]]t=0 =

∫
�

div� X dμ�. (10)

The second order rate of change of area along a C2 vector field X with flow 
t : M → M
is given by the second variation:

δ2A[�]{X, X} :=
[
d2

dt2
A[(
t )#�]

]
t=0

=
∫

�

[
div� ∇X X + (div� X)2 + |∇⊥

� X|2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) −
n−1∑
i=1

Rm(X, τ i , τ i , X)
]
dμ�. (11)

In (11), (τ i )i=1,...,n−1 gives an orthonormal frame for T� at each point, Rm(X, τ i , τ i , X)

is the sectional curvature (suitably scaled) of (M, g) along X ∧ τ i , and ∇⊥
� X denotes the

orthogonal component of ∇�X . See [22] for a derivation of these identities in the Euclidean
setting; the Riemannian modifications are straightforward.

Note that δA[�]{X} depends only on X|� , while δ2A[�]{X, X} also depends on the
behavior of X off � (by virtue of the div� ∇X X term).

A hypersurface � is said to be a critical point of the area functional if the first order rate
of change δA[�]{X} is zero for all C1 vector fields X . Using the formula H = −(div� n)n
in (10), and integration by parts on the tangential component of X , shows that the criticality
condition is equivalent to H ≡ 0 on �. For critical points, the second variation reduces to:

123



Variational aspects of phase transitions Page 5 of 35    43 

δ2A[�]{X, X} =
∫

�

[
(div� X)2 + |∇⊥

� X|2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) −
n−1∑
i=1

Rm(X, τ i , τ i , X)
]
dμ�. (12)

Note how, when � is a critical point, δ2A[�]{X, X} only depends on X|� and makes sense
for C1 (rather than C2) vector fields X .

We now consider the more general h-area functional (or, the prescribed mean curvature
h functional), Ah[·], where h : M → R is a fixed ambient function. We also require that �
bounds a domain �. We set:

Ah[�;�] := A[�] −
∫

�

h dμg.

Then, for any vector field C1 vector field X with flow 
t : M → M , the first variation of
Ah[·] is easily derived from (10) and the divergence theorem to be:

δAh[�;�]{X} := [ d
dt Ah[(
t )#�; (
t )#�]]t=0 =

∫
�

div� X dμ� −
∫

�

hX · n dμ�,

(13)

where n is the unit normal to � that points outside of �. Despite presence of the bulk term
in the definition of Ah, we see that (13) also only depends on X|� , like in (10).

As before, we say that (�;�) is a critical point of Ah[·] if δAh[�;�]{X} = 0 for all
vector fields X . An integration by parts and the use of H = −(div� n)n in (13) shows that
criticality is now equivalent to the mean curvature vector of � satisfying H = −(h|�)n.

We state the second variation of Ah for critical points (�;�). If X denotes a C1 vector
field with X|� ⊥ � and flow 
t : M → M , then the second variation of Ah along X is:

δ2Ah[�;�]{X, X} :=
[
d2

dt2
Ah[(
t )#�; (
t )#�]

]
t=0

=
∫

�

[
(div� X)2 + |∇⊥

� X|2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) −
n−1∑
i=1

Rm(X, τ i , τ i , X)

− (∇Xh)(X · n) − h(X · n) div� X
]
dμ�. (14)

This follows from (11) and the derivative of the flux term (i.e., the h term) in (13). Note that
we are restricting to X that are normal to �, but this is done without loss of generality: the
tangential component of X only flows � by self-diffeomorphisms so it has no effect on the
area of � or on the bulk integral in the definition of Ah. It is also convenient to rewrite (14)
in scalar notation, where we write X = f n for some scalar valued function f : � → R:

δ2Ah[�;�]{ f n, f n} =
∫

�

[|∇� f |2 − (| II
 |2 + Ric(n, n) + ∂
∂nh) f

2] dμ�. (15)

Note that (15) is the bilinear form associated with an elliptic operator on�. Since� is closed,
this operator naturally comes with a spectrum, which can be recovered by the well-known
min-max characterization. Namely, for each � ∈ N, the �-th eigenvalue of δ2Ah[�;�] is
given by:
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λ�(δ
2Ah[�;�]) := inf

{
max

{δ2Ah[�;�]{X, X}∫
�

|X|2 dμ�

: X ∈ F \ {0}
}

: F is an �-dimensional subspace of C1(�; N�)
}
. (16)

Here, N� denotes the normal bundle of� in M . Given (16), one defines the Ah Morse index
and nullity of (�;�) as follows:

indAh(�;�) := #{� ∈ N : λ�(δ
2Ah[�;�]) < 0}, (17)

nulAh(�;�) := #{� ∈ N : λ�(δ
2Ah[�;�]) = 0}. (18)

When h ≡ 0, � is irrelevant, and we simply denote these quantities by ind(�), nul(�).
For the purposes of Sect. 3, we need to extend these notions to the nonsmooth setting of

[14,21]. Our hypersurface �n−1 will be replaced by an integral (n − 1)-varifold V (i.e., a
countably rectifiable set with a.e. integer density), and the domain � enclosed by � will get
replaced by a Caccioppoli set (i.e., a set of finite perimeter), still labeled �. We point the
reader to [22] for a discussion of these objects from geometric measure theory.

If V is an integral (n − 1)-varifold and � is a Caccioppoli set, we define Ah[V ;�] as:

Ah[V ;�] := ‖V ‖(M) −
∫

�

h dμg.

Then, the first variation of Ah[V ;�] by an ambientC1 vector field X with flow
t : M → M
is given by:

δAh[V ;�]{X} : = [ d
dt Ah[(
t )#V ; (
t )#�]]t=0

=
∫

divV X d‖V ‖ −
∫

hX · n d(Hn−1
g ∂∗�). (19)

A pair (V ;�) is said to be a critical point for Ah if δAh[V ;�]{X} = 0 for all C1 vector
fields X on M . The relevance of this definition to our work is that, by [14,21]:

limiting objects (V ;�) that come from solutions (ui , εi ) of (1) with εi → 0

and uniform bounds on Eεi ,h[ui ] are critical points of A2e−1
0 h[V ;�]. (20)

For critical points (V ;�) of Ah[·], and vector fields that are compactly supported away from
the singular part of V , the second variation along a C1 vector field X which is ⊥ to V and
has flow 
t : M → M is:

δ2Ah[V ;�]{X, X} :=
[
d2

dt2
Ah[(
t )#V ; (
t )#�]

]
t=0

=
∫ [

(divV X)2 + |∇⊥
V X|2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) −
n−1∑
i=1

Rm(X, τ i , τ i , X)
]
d‖V ‖

−
∫ [

(∇Xh)(X · n) + h(X · n) div� X
]
d(Hn−1

g ∂∗�). (21)

By analogy with (16), (17), (18) we define, for any open O ⊂ M \ sing V and � := reg V :
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λ�(δ
2Ah[V ;�];O) := inf

{
max

{δ2Ah[�;�]{X, X}∫ |X|2 d‖V ‖ : X ∈ F \ {0}
}

: F is an �-dimensional subspace of C1
c (� ∩ O; N (� ∩ O))

}
.

and

λ�(δ
2Ah[V ;�]) := inf

{
λ�(δ

2Ah[V ;�];O) : O ⊂ M \ sing V is open
}
, (22)

indAh(V ;�) := #{� ∈ N : λ�(δ
2Ah[V ;�]) < 0}, (23)

nulAh(V ;�) := #{� ∈ N : λ�(δ
2Ah[V ;�]) = 0}. (24)

Remark 2 This approach to measuring the linear stability of (V ;�) restricts to variations X
that fix the singular set of V . This is how one usually defines the index of non-smooth V .
Are we potentially underestimating the index by only allowing deformations that fit sing V ?
This depends on the “size” of sing V .

(1) When Hn−3
g (sing V ) < ∞, a cutoff argument of Federer–Ziemer ( [29, p. 89]) shows

that the stability of V is accurately captured by restricting to variations which are
compactly supported away from sing V .

(2) When the cutoff argument above fails (e.g., when Hn−3
g (sing V ) = ∞) we are legiti-

mately in danger of underestimating the index.

Here is what is known about whether we fall under (1) or (2) when V occurs as the limit of
(ui , εi , hi ):

(3) When n ≥ 3, hi ≡ 0 and we have uniform bounds on indEεi ,0
(ui ), sing V has ambient

codimension≥ 8 (and is empty for n = 3, . . . , 7) and we are thus in the situation of the
first bullet point. This was established in [11,13,24], crucially relying on the regularity
theory for stable integral varifolds of codimension-1 ( [30]).

(4) When n ≥ 3 and we have uniform bounds on indEεi ,hi
(ui ) and mild non-negativity on

hi , it was recently shown in [4] (crucially relying on regularity theory for stable CMC
integral varifolds of codimension-1 from [2,3]) that sing V consists of two portions:

• The excisable codimension ≥ 8 portion that was already present for h ≡ 0; and
• A portion that consists of “geometric” singularities where multiplicity-one sheets

of V touch other multiplicity-one sheets of V or other minimal (even-multiplicity)
sheets of V .

The latter portion is contained in a countable union of ambient codimension-2 subman-
ifolds, so it may or may not break the finiteness of Hn−3

g (sing V ). It is an interesting
problem to understand the finer structure of the geometric singular set.

(5) When n = 2, the limit V has a singular set that consists of isolated points (unless
indEεi ,hi

(ui ) is identically zero, in which case sing V is empty; see [23]). When sing V
is nonempty, the stability of reg V does not guarantee the stability of V . This is an
interesting situation that is to be addressed in separate work.

2.2 The E",h functional

Let (Mn, g) be a closed Riemannian manifold. It is easy to see that the first second variation
of the energy functional in (2) along a direction v ∈ C1(M) is

δEε,h[u]{v} := [ d
dt Eε,h[u + tv]]t=0 =

∫
M

[
ε(∇u · ∇v) + W ′(u)v + hv

]
dμg, (25)
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and, for critical points u of Eε,h, the second variation along a direction v ∈ C1(M) is

δ2Eε,h[u]{v, v} :=
[
d2

dt2
Eε,h[u + tv]

]
t=0

=
∫
M

[
ε|∇v|2 + W ′′(u)v2

]
dμg. (26)

By analogy with (16), (17), (18) we define:

λ�(δ
2Eε,h[u]) := inf

{
max

{δ2Eε,h[u]{v, v}∫
v2 dμg

: v ∈ F \ {0}
}

: F is an �-dimensional subspace of C1(M)
}
. (27)

and

indEε,h(u) := #{� ∈ N : λ�(δ
2Eε,h[u]) < 0}, (28)

nulEε,h(u) := #{� ∈ N : λ�(δ
2Eε,h[u]) = 0}. (29)

Remark 3 The objects defined in (16), (17), (18), (27), (28), (29) measure the variational
behavior of (�;�) and u when critical points are constructed holding h fixed. This is done,
for instance, when one tries to construct hypersurfaces with prescribed mean curvature; see
[32,33]. In this approach, we are not interested (and do not control) the volume enclosed by
�. Alternatively, one may wish to construct critical points by holding the enclosed volume
of � fixed, or

∫
M u dμg fixed, and instead giving up control on h. See Sect. 7.

3 Upper bounds for eigenvalues of ı2E",h as " → 0

Theorem 4 Let (Mn, g) be a closed manifold. Consider a sequence of critical points ui to
Eεi ,hi with εi → 0 and ‖hi‖W 2,p(M) + Eεi ,hi [ui ] ≤ E for all i , for p > n. Let V denote the
limiting varifold and � denote the limiting domain of (ui , εi ), and h denote the limiting hi
after passing to a subsequence εi ′ → 0. Then, for any vector field X on (Mn, g) supported
away from the singular part of (V ;�), we have

e−1
0 lim

i ′→∞
δ2Eεi ′ ,hi ′ [u]{∇u · X,∇u · X} = δ2A2e−1

0 h[V ;�]{X, X} +
∫

(∇nX · n)2 d‖V ‖.
(30)

Moverover, for every � ∈ N,

λ�(A2e−1
0 h[V ;�]) ≥ lim

i→∞ ε−1
i ′ λ�(Eεi ′ ,hi ′ [u]). (31)

Remark 5 Note:

(1) Theorem 4 and its corollary Theorem 1 (a) bound from above the index of the regular
set of the limiting (V ;�) in terms of the indices of (ui , εi , hi ). This generalizes what
was known for hi ≡ 0 ( [9]) to arbitrary hi .

(2) It is important to note that hi ≡ 0 has a decided advantage over hi �≡ 0 in that the
singular set of V is always (when n ≥ 3) of high-enough codimension in (Mn, g) and
thus does not contribute to the index of V ; see (3) in Remark 2. This makes the main
theorem of [9] applicable even across sing V (by (1) in Remark 2), which is not true
of Theorem 4 when hi �≡ 0 and there are large geometric singular sets in the sense of
(4) or (5) in Remark 2.

123



Variational aspects of phase transitions Page 9 of 35    43 

(3) In accordance with [28], one hopes generic background metrics g to have the property
that limiting (V ;�) have no geometric singular set in the sense of Remark 2. This will
make Theorem 4 generically applicable across sing V .

In order to prove our upper semicontinuity variational result for (ui , εi , hi ) as εi → 0, it
will be convenient to rederive the first and second variations of Eεi ,hi for a special class of
variations, called inner variations, which geometrically perturb the level sets of ui , rather
than analytically perturb ui as one does in full generality for (25), (26). This second method
was used in this setting with the same goal in mind in [9] assuming h ≡ 0. We follow that
same method in this proof. For simplicity of notation, we write u, h, ε in place of ui , hi , εi .

Proof of Theorem 4 Denote ut := u ◦ 
−t , where 
t : M → M , t ∈ R, denotes the flow of
X . By the change of variables formula,

Eε,h[ut ] =
∫
M

[ 1
2ε|∇ut |2 + ε−1W (ut ) + hut

]
dμg

=
∫
M

[ 1
2ε|(∇ut ) ◦ 
t |2 + ε−1W (u) + (h ◦ 
t )u

]|J
t | dμg. (32)

It will be convenient to introduce some auxiliary notation, following [9]:

SX (Y1,Y2) = ∇Y1X · ∇Y2X,

hX (Y1,Y2) = ∇Y1X · Y2 + Y1 · ∇Y2X = (LXg)(Y1,Y2).

As in [9]:
[

∂
∂t |J
t |]t=0 = div X, (33)[

∂2

∂t2
|J
t |

]
t=0

= div(∇X X) − Ric(X, X) + trg SX − 1
2 |hX |2 + (div X)2

= div(∇X X) − Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2, (34)

as well as:
[

∂
∂t |(∇ut ) ◦ 
t |2]t=0 = −2∇∇uX · ∇u, (35)[

∂2

∂t2
|(∇ut ) ◦ 
t |2

]
t=0

= 2Rm(X,∇u,∇u, X) − 2∇∇u∇X X · ∇u

+ 2|∇u · ∇•X|2 + 4(∇∇∇uX X · ∇u)2. (36)

We also clearly have:
[

∂
∂t (h ◦ 
t )

]
t=0 = ∇h · X, (37)[

∂2

∂t2
(h ◦ 
t )

]
t=0

= ∇X∇h · X . (38)

From (32), (33), (35), (37), we get:

[ d
dt Eε,h[ut ]]t=0 =

∫
M

[ − ε(∇∇uX · ∇u) + (∇h · X)u

+ ( 12ε|∇u|2 + ε−1W (u) + hu) div X
]
dμg, (39)

and from (32), (34), (36), (38), we find that
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[
d2

dt2
Eε,h[ut ]

]
t=0

=
∫
M

[
ε
(
Rm(X, ∇u, ∇u, X) − ∇∇u∇X X · ∇u

+ |∇u · ∇•X|2 + 2(∇∇∇uX X · ∇u)2
)

+ (∇X∇h · X)u + (∇Xh · ∇X X)u

+ 2
(

− ε(∇∇uX · ∇u) + (∇h · X)u
)
div X

+
(
1
2 ε|∇u|2 + ε−1W (u) + hu

)

·
(
div(∇X X) − Ric(X, X) + |∇X|2 − 1

2 |LXg|2 + (div X)2
)]

dμg .

(40)

Note how, for critical points, (40) reduces to:

[
d2

dt2
Eε,h[ut ]

]
t=0

=
∫
M

[
ε
(
Rm(X,∇u,∇u, X) + |∇u · ∇•X|2 + 2(∇∇∇uX X · ∇u)2

)

+ (∇X∇h · X)u + 2
(

− ε(∇∇uX · ∇u) + (∇h · X)u
)
div X

+ ( 1
2ε|∇u|2 + ε−1W (u) + hu

)
·
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)]
dμg. (41)

Letting ε → 0 in (41), invoking [14,21], passing to a subsequence accordingly (though
still denoting by ε → 0 for simplicity of notation), and denoting the subsequential limiting
varifold by V and the limiting enclosed domain (where u → −1) by � and its outward
pointing unit normal by n:

e−1
0 lim

ε→0

[
d2

dt2
Eε,h[ut ]

]
t=0

=
∫ [

|n · ∇•X|2 + 2(∇∇nX X · n)2 − 2(∇nX · n) div X

+ |∇X|2 − 1
2 |LXg|2 + (div X)2 − trV Rm(X, ·, ·, X)

]
d‖V ‖

− e−1
0

∫
�

[
h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

+ e−1
0

∫
M\�

h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg.

Note that

|n · ∇•X|2 = (∇nX · n)2 + |∇⊥
∂�X|2,

2(∇∇nX X · n)2 + |∇X|2 − 1
2 |LXg|2 = (∇nX · n)2 −

n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ),

where (τ i )i=1,...,n−1 is an orthonormal basis for the tangent space at a.e. point of V . Thus,
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e−1
0 lim

ε→0

[
d2

dt2
Eε,h[ut ]

]
t=0

=
∫ [

2(∇nX · n)2 + |∇⊥
V X|2 − 2(∇nX · n) div X

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) + (div X)2 − trV Rm(X, ·, ·, X)
]
d‖V ‖

− e−1
0

∫
�

[
h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

+ e−1
0

∫
M\�

h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

=
∫ [

(∇nX · n)2 + |∇⊥
V X|2 + (divV X)2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) − tr∂� Rm(X, ·, ·, X)
]
d‖V ‖

− e−1
0

∫
�

[
h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

+ e−1
0

∫
M\�

h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg.

We recognize, from (11),

∫ [
(∇nX · n)2 + |∇⊥

V X|2 + (divV X)2

−
n−1∑
i, j=1

(∇τ i X · τ j )(∇τ j X · τ i ) − tr∂� Rm(X, ·, ·, X)
]
d‖V ‖

=
[
d2

dt2
‖(
−t )#V ‖(M)

]
t=0

−
∫

divV ∇X X d‖V ‖ +
∫

(∇nX · n)2 d‖V ‖. (42)

We also recognize, from (34),

∫
�

[
h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

=
[
d2

dt2

∫

−t (�)

h dμg

]
t=0

−
∫

�

[∇h · ∇X X + h div(∇X X)
]
dμg (43)
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and, similarly,∫
M\�

[
h
(

− Ric(X, X) + |∇X|2 − 1
2 |LXg|2 + (div X)2

)

+ (∇X∇h · X) + 2(∇h · X) div X
]
dμg

=
[
d2

dt2

∫

−t (M\�)

h dμg

]
t=0

−
∫
M\�

[∇h · ∇X X + h div(∇X X)
]
dμg (44)

From (42), (43), (44), and integration by parts, we deduce that

e−1
0 lim

ε→0

[
d2

dt2
Eε,h[ut ]

]
t=0

=
[
d2

dt2

(
‖(
−t )#V ‖(M) − 2e−1

0

∫

−t (�)

h dμg

)]
t=0

−
∫

divV ∇X X d‖V ‖−
∫

�

[∇h · ∇X X + h div(∇X X)
]
dμg.

+
∫

(∇nX · n)2 d‖V ‖.

The first and second integrals of the right hand side cancel each other out since (V ;�) is a
critical point of A2e−1

0 h by [14,21]; (30) follows.
We proceed to the eigenvalue estimate in (31). Write � := reg V . Fix η > 0, and let

O ⊂ M \ sing V be such that

λ�(δ
2A2e−1

0 h[V ;�];O) ≤ λ�(δ
2A2e−1

0 h[V ;�]) + η. (45)

Let F be an �-dimensional subspace of C1
c (� ∩ O; N (� ∩ O)), chosen so that

δ2A2e−1
0 h[V ;�]{X, X}∫ |X|2 d‖V ‖ ≤ λ�(δ

2A2e−1
0 h[V ;�];O) + η, for all X ∈ F \ {0}. (46)

We can easily extend each of the vector fields X ∈ F to an ambient vector field supported
away from the singular set of (V ;�) and with ∇nX = 0 along � ∩ O. It is easy to see that
the linear mapping

F � X �→ (∇u · X) ∈ L2(M)

is injective for sufficiently small ε (see, e.g., [9, Section 4], for these details). It follows that

{(∇u · X) : X ∈ F} ⊂ L2(M)

is �-dimensional. From (30), (45), (46), and the convergence ε(X ·∇u)2 dμg⇀e0|X|2 d‖V ‖
as ε → 0 ( [14,21]), we have:

lim
ε→0

ε−1λ�(δ
2Eε,h[u]) ≤ λ�(δ

2A2e−1
0 h[V ;�]) + 2η.

The result follows since η > 0 is arbitrary. ��

4 Multiplicity-one asymptotics: ", "2, and o("2)

The analogous lower semicontinuity variational results for (u, ε, h) as ε → 0 are more
subtle than their upper semicontinuity counterparts from Sect. 3, where we only needed to
use the existence ( [14,21]) and regularity ( [4]) of the weak limit as ε → 0. For the lower
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semicontinuity, we need a sharp understanding of the regularity of u near {u = 0}, before
taking the limit ε → 0. It was shown in [14] that in the O(ε)-scale around “most” points of
{u = 0}, u looks approximately like the one-dimensional solution H : R → (−1, 1) of

H
′′ = W ′(H), H(0) = 0, (47)

even in the presence of higher multiplicity and/or of h. For our purposes, we need to find the
expansion of u up to order o(ε2):

u(y, z) = H(ε−1z) + ε
[ · · · ] + ε2

[ · · · ] + o(ε2), (48)

with y ∈ {u = 0} being the interface coordinate and z being the vertical coordinate off
the interface. This is the necessary order of approximation in order to obtain the lower
semicontinuity relations between (u, ε, h) and the ε → 0 limit (V ;�).

When h ≡ 0, the ε
[ · · · ]-term was determined and exploited for regularity purposes in

the foundational paper of [26], even allowing for many sheets in {u = 0} (i.e., in high
multiplicity). This was further refined in [7,27].

The next term in the asymptotic expansion of u encodes the interference between sheets
of {u = 0} and is ε2| log ε|[ · · · ], rather than ε2

[ · · · ], in the presence of high multiplicity;
see [8]. This obstructs one’s ability to relate the variational structure of (u, ε, h) to that of
(V ;�). However, this generally doesn’t occur unless the solutions (u, ε, h) are extremely
variationally unstable, in which case no lower semicontinuity result is to be expected of
(u, ε, h); see [7,27]. So, to get a proper lower semicontinuity result, one needs to restrict to
multiplicity-one, as we are doing here, where we can indeed verify that the next term in the
asymptotic expansion is ε2

[ · · · ]. When h ≡ 0, the O(ε2) behavior in multiplicity-one was
determined and exploited in [7].

In this section, we deduce both of the ε
[ · · · ] and ε2

[ · · · ] asymptotics without the extra
assumption of h ≡ 0, in the case of multiplicity-one convergence.

Remark 6 Besides extend to h �≡ 0, the results we present here simplify the corresponding
multiplicity-one results in [26,27] and [7]. We still follow the strategy of [26]. We do not,
however, pursue the higher multiplicity regularity question that was pursued in these papers.
For geometric applications, in accordance with [16,32,33], and (a’)-(b’) of the introduction,
one generally expects (and must verify!) multiplicity-one convergence. See also Sect. 7.

Throughout the section, we work in a Riemannian manifold (Mn, g), n ≥ 2. Our approxi-
mation results are purely local, so we need not assume (M, g) to be closed or even complete,
provided we take care to work away from its boundary.

In what follows,2 let us fix α ∈ (0, 1) and assume that we’re working inside a precompact
open set O ⊂ M where the ambient metric g is C5 close to Euclidean,

5∑
�=0

|∂�(gi j − δi j )| ≤ η0 on O, (49)

for some small η0 > 0. For the solution (u, ε, h) of (1), we assume that for some ε0, E0 > 0:

ε ≤ ε0, |u| ≤ E0 on O, (Eε,h O)[u] ≤ E0, ‖h‖C3,α(O) ≤ E0, (50)

and for some β0 ∈ (0, 1), c0 > 0:

ε|∇u| ≥ c−1
0 > 0 on O ∩ {|u| < 1 − β0}, (51)

2 These are all the same assumptions as in [7, Section 2.1], with slightly more regularity on the background
metric g to streamline the exposition, and of course the added single-sheeted assumption.
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which forces ∇u �= 0 and thus all level sets in O ∩ {|u| < 1 − β0} to be smooth, as well as
that A = ∇(∇u/|∇u|) satisfies:

|A| + ε|∇A| + ε2|∇2A| + ε3|∇3A| ≤ c0 on O ∩ {|u| < 1 − β0}; (52)

cf. [7, (2.3)–(2.7)] for estimates up to∇2A; the estimate on∇3A follows using the additional
regularity we are assuming on g in (49). We assume that


 := O ∩ {u = 0}
is a connected smooth submanifold and that (possibly after rescaling) we have well-defined
Fermi coordinates

(y, z) ∈ B

20 × (−2, 2) ⊂ O

off 
, where B

20 indicates a fixed geodesic ball within 
 that is diffeomorphic to a disk.

In these Fermi coordinates, gz denotes the metric induced on the constant-z hypersurfaces
parallel to 
, and IIz , Hz denote their second fundamental form 2-tensor and mean curvature
scalar with ∂z taken as the “outward” normal. With this convention,

IIz(X,Y) = ∇X∂z · Y for X,Y tangent to 
, Hz = trgz IIz, and

� = �gz + Hz∂z + ∂2z .

We will write ∇
 , �
 , II
 , H
 , n
 in place of ∇g0 , �g0 , II0, H0, ∂z |
 . Note that a geometric
consequence of (49), (51), (52) and the Riccati equation

L∂z IIz = II2z −Rmg(·, ∂z, ∂z, ·)
is the following C3

ε bound (i.e., C3 bound in the ε-scale) on the second fundamental forms
IIz , z ∈ (−2, 2):

| IIz | + ε|∇gz IIz | + ε2|∇2
gz IIz | + ε3|∇3

gz IIz | ≤ c1 (53)

for some c1 = c1(n, η0, c0). For any f : B

20 → R (independent of z) we have:

L∂z∇gz f = −2 IIz(∇gz f , ·),
L∂z∇2

gz f = −∇gz
∇gz f

IIz,

L∂z�gz f = −2〈IIz,∇2
gz f 〉gz − 〈∇gz Hz,∇gz f 〉gz ;

(54)

see [7, Appendix A]. Together, (53), (54) culminate in the ε-scale estimates:

�∑
k=0

εk‖(∇gz − ∇
) f ‖Ck (U ) ≤ c1|z|
�∑

k=0

εk‖∇
 f ‖Ck (U ), (55)

for � = 0, 1, 2, 3, any U ⊂ B

20, and a possibly larger c1 = c1(n, η0, c0).

Fix δ∗ ∈ (0, 1) throughout. We define the cut off heteroclinic H : R → (−1, 1) given
by:3

H(t) := χ(εδ∗ t)H(t) + (sign t)(1 − χ(εδ∗ t)), (56)

where χ indicates a smooth cutoff function such that

χ(t) = 1 for t ∈ (−1, 1), spt χ ⊂ (−2, 2). (57)

3 We use a wider cutoff than in [7,26]. One might also use the cutoff of [7,26] after analyzing the exponential
decay rate of the auxiliary function I defined in (72). We do not pursue this here.
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The exponential asymptotics of H (±1 ∓ A exp(−√
W ′′(±1)|t |) as t → ±∞) give:

|H′′ − W ′(H)|C3(R) = O(ε3). (58)

Throughout, all O(·)-notation and o(·)-notation will be used under the assumption that we’re
sending ε → 0.

Using the implicit function theorem and the multiplicity-one condition, as in [26, Propo-
sition 9.1], one can produce an auxiliary function h : B


20 → R such that

‖h‖C3,α
ε (B


19)
= o(ε) (59)

and
∫ 2

−2
(u(y, z) − H(ε−1(z − h(y))))H

′
(ε−1(z − h(y))) dz = 0 (60)

for all y ∈ B

19. Throughout the paper, C

�
ε and C�,α

ε denote the standard ε-scaled weighted
Banach spaces whose norms are:

‖ f ‖C�
ε

:=
�∑

k=0

εk‖ f ‖C� , ‖ f ‖C�,α
ε

:= ‖ f ‖C�
ε
+ ε�+α[∇� f ]α. (61)

Our goal is to get an expansion for u − H in terms of ε, ε2, and o(ε2). To that end, we
first compute the PDE satisfied by H(ε−1(z − h(y))) in Fermi coordinates (y, z) off 
; cf.
[7, (2.18)]. For simplicity, we write

Hε(y, z) := H(ε−1(z − h(y))),

H
′
ε(y, z) := H

′
(ε−1(z − h(y))),

H
′′
ε (y, z) := H

′′
(ε−1(z − h(y))),

H
′′′
ε (y, z) := H

′′′
(ε−1(z − h(y))),

and

Iε := (−3ε1−δ∗ , 3ε1−δ∗).

Note that, by (59), Hε(y, z) = ±1 for z /∈ Iε . On B

19 × (−1, 1):

ε2�Hε = ε2(�gz + Hz∂z + ∂2z )Hε

= (1 + |∇gz h|2)H′′
ε + ε(Hz − �gz h)H

′
ε

= W ′(Hε) + ε(H
 − �
h)H
′
ε

+ ε(Hz − H
)H
′
ε − ε(�gz h − �
h)H

′
ε + |∇gz h|2H′′

ε + (H
′′
ε − W ′(Hε)).

Taylor expanding in around z = 0 (i.e., around 
), using the Riccati equation, (53), (54),
(58), (59) we deduce that on B


19 × (−1, 1):

ε2�Hε = W ′(Hε) + ε(H
 − �
h)H
′
ε − ε(| II
 |2 + Ric(n
, n
))zH

′
ε

+ O1,0,α,ε(ε∇2

h,∇
h)zH

′
ε + (O1,0,α,ε(∇
h))2H

′′
ε + O1,0,α,ε(ε

3). (62)

Throughout, O1,0,α,ε({ f j } j ) denotes a term R that is bounded by
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|R| ≤ C
∑
j

| f j |, ‖R‖C0,α
ε

≤ C
∑
j

‖ f j‖C0,α
ε

, |ε∂yiR| ≤ C
∑
j

| f j | + |ε∂yi f j |

‖ε∂yiR‖C0,α
ε

≤ C
∑
j

‖ f j‖C0,α
ε

+ ‖ε f j‖C0,α
ε

(63)

in the domain in question, with C > 0 fixed as ε → 0. We emphasize that derivatives in
(63) are only taken along directions yi parallel to 
, i = 1, . . . , n − 1, (because we will
sometimes wish to differentiate along yi ) and that the Hölder seminorms are standard (ε-
weighted) Hölder seminorms in both y and z, as in (61) (because we will use Schauder
theory). In what follows, (53) gets used repeatedly though implicitly when obtaining O1,0,α,ε

bounds.
Throughout this work, we will frequently rely on the fact that

sup
z∈R

|z|k |H(�)(z)| < ∞ for all k, � ∈ N, � ≥ 1, (64)

to control terms such as zH
′
ε; this estimate follows from the exponential decay of H(�).

Following [7], we set

φ := u − Hε.

Together, (1) and (62) imply that, on B

19 × (−1, 1):

ε2�φ = εh + W ′(u) − W ′(Hε)

− ε(H
 − �
h)H
′
ε + ε(| II
 |2 + Ric(n
, n
))zH

′
ε

+ O1,0,α,ε(ε∇2

h,∇
h)H

′
ε + (O1,0,α,ε(∇
h))2H

′′
ε + O1,0,α,ε(ε

3)

= εh + W ′′(Hε)φ + 1
2W

′′′(Hε)φ
2 + (O1,0,α,ε(φ))3

− ε(H
 − �
h)H
′
ε + ε(| II
 |2 + Ric(n
, n
))zH

′
ε

+ O1,0,α,ε(ε∇2

h,∇
h)H

′
ε + (O1,0,α,ε(∇
h))2H

′′
ε + O1,0,α,ε(ε

3),

i.e.,

ε2�φ − W ′′(Hε)φ

= εh − ε(H
 − �
h)H
′
ε

+ ε(| II
 |2 + Ric(n
, n
))zH
′
ε + 1

2W
′′′(Hε)φ

2

+ (O1,0,α,ε(φ))3 + O1,0,α,ε(ε∇2

h,∇
h)zH

′
ε + (OC1,α

ε
(∇
h))2H

′′
ε + O1,0,α,ε(ε

3).

(65)

Remark 7 We split up the right hand side of (65) into three lines according to the order of
contribution of each term once sharp estimates have been derived. The first line is O(ε), the
second is O(ε2), and the third is o(ε2).

Following [26, (10.2)], we project (65) onto 
 by dotting with H
′
ε along the z coordinate

(see Appendix A). We get that, on B

19:

2h(·, 0) − (e0 + 〈φ,H
′′
ε 〉L2(R))(H
 − �
h)

= −2
[
(∂zh(·, 0)) + (| II
 |2 + Ric(n
, n
))

]
h
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+ O1,0,α,ε(ε
2∇2


φ, ε∇
φ) + ε−1(O1,0,α,ε(ε∇
φ))2 + ε−1(O1,0,α,ε(φ))3

+ ε · O1,0,α,ε(φ) + ε−1(O1,0,α,ε(φ))2 + O1,0,α,ε(ε
2). (66)

We will later refine the ε−1(O1,0,α,ε(φ))2 term. By (66) we have, on B

19:

ε(e0 + 〈φ,H
′′
ε 〉L2(R))(H
 − �
h) = 2εh(·, 0)

+O1,0,α,ε(ε
2) + (O1,0,α,ε(ε

2∇2

φ, ε∇
φ, φ))2, (67)

This form of (65), (67) is convenient (and powerfully exploited in [26]) in that one can

use the stability of the one-dimensional model operator d2

dt2
− W ′′(H) to estimate φ in terms

of the right hand side of ε2�φ − W ′′(Hε), while at the same time using (67) to estimate the
term ε(H
 − �
h)H

′
ε that appears in the right hand side of (65); see Appendix B for an

exposition in this multiplicity-one setting. By an iteration scheme we find that:

ε−1‖h‖C2,α
ε (B


18)
+ ‖φ‖C2,α

ε (B

18×(−1,1)) = O(ε). (68)

We may in turn plug this estimate into (66) to also find that:

‖H
 − �
h − 2e−1
0 h(·, 0)‖C0,α

ε (B

18)

= O(ε). (69)

While the εh term of (1) curtails the estimate one can get on φ in (68) (cf. [26, Section 15]),
one does still get the improved estimate on horizontal derivatives of φ as in [26, Section 13].
The point is that, when we take the tangential derivative of (65), the effect of the tangential
derivative of the term that was previously the bottleneck, εh, does not scale like O(ε−1) as
all the other terms do. Thus, as in [26, Section 13] (see Appendix B) one has:

‖∇
h‖C2,α
ε (B


17)
+ ‖ε∇
φ‖C2,α

ε (B

17×(−1,1)) = O(ε2). (70)

This in turn lets us refine (69) to (cf. [26, Section 15])4

H
 − 2e−1
0 h(·, 0) = OC1,α

ε
(ε). (71)

Remark 8 One can similarly estimate the mean curvature of {u = τ } for τ < 1
2β0 by working

with h + ετ in place of h in Fermi coordinates off 
τ := {u = τ }.
Now, in order to get the full ε-term in (48), we adapt (and simplify) the ansatz of [1]5 and

consider an auxiliary correction function: the unique bounded solution I : R → R of

I
′′(t) − W ′′(H(t))I(t) = 1 − 2e−1

0 H
′(t), I(0) = 0. (72)

This I converges exponentially to I(±∞) = −1/W ′′(±1) as |t | → ∞. For the existence and
exponential asymptotics of I we refer the reader to [1, Lemma B.1, Remark B.3]. Having an
exponential tail, as H does, I also satisfies:

sup
z∈R

|z|k |I(�)(z)| < ∞ for all k, � ∈ N, � ≥ 1, (73)

and, moreover, cutting off I as we did H in (56), we denote:

I(t) := χ(εδ∗ t)I(t) + I(±∞)(1 − χ(εδ∗ t)), (74)

4 We note that [26, Section 15] only states the C0,α
ε estimates. Higher order estimates were derived in [26,

Section 13] in the form ofW 1,p
ε estimates, and were allured to in [27, Section 7] in the form ofC1,α

ε estimates.
5 A key difference with [1] is that we are trying to understand an arbitrary solution, not a particular solution
with tailored asymptotics.
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so that

|I′′ − W ′′(H)I − 1 + 2e−1
0 H

′
(t)|C3(R) = O(ε3). (75)

We similarly denote:

Iε(y, z) := I(ε−1(z − h(y))),

I
′
ε(y, z);= I

′
(ε−1(z − h(y))),

I
′′
ε (y, z) := I

′′
(ε−1(z − h(y))).

As before, we compute, using (53), (54), (58), (64), (73), (75):

ε2�(εhIε) = ε3h�Iε + 2ε3∇h · ∇Iε + ε3(�h)Iε

= ε3h(�gz + Hz∂z + ∂2z )Iε + 2ε2(∂zh − ∇gzh · ∇gz h)I
′
ε + O1,0,α,ε(ε

3)

= εh(|∇gz h|2I′′ε − ε(�gz h)I
′
ε) + ε2hHzI

′
ε + εhI

′′
ε + 2ε2(∂zh)I

′
ε + O1,0,α,ε(ε

3)

= εh(W ′′(Hε)Iε + 1 − 2e−1
0 H

′
ε) + ε2hHzI

′
ε + 2ε2(∂zh)I

′
ε + O1,0,α,ε(ε

3)

= W ′′(Hε)εhIε + εh − 2εhe−1
0 H

′
ε + ε2hHzI

′
ε + 2ε2(∂zh)I

′
ε + O1,0,α,ε(ε

3)

= W ′′(Hε)εhIε + εh − 2ε(h(·, 0) + (∂zh)(·, 0)z + O1,0,α,ε(1)z
2)e−1

0 H
′
ε

+ ε2(h(·, 0) + O1,0,α,ε(1)z)(H
 + O1,0,α,ε(1)z)I
′
ε

+ 2ε2((∂zh)(·, 0) + O1,0,α,ε(1)z)I
′
ε + O1,0,α,ε(ε

3)

= W ′′(Hε)εhIε + εh − 2εe−1
0 h(·, 0)H′

ε

− 2εe−1
0 (∂zh)(·, 0)zH′

ε + ε2h(·, 0)H
I
′
ε + 2ε2(∂zh)(·, 0)I′ε + O1,0,α,ε(ε

3).

i.e.,

ε2�(εhIε) − W ′′(Hε)εhIε

= εh − 2εe−1
0 h(·, 0)H′

ε

− 2εe−1
0 (∂zh)(·, 0)zH′

ε + ε2
[
h(·, 0)H
 + 2(∂zh)(·, 0)

]
I
′
ε + O1,0,α,ε(ε

3). (76)

Plugging (76) into (65) gives an equation for

φ̂ := φ − εhIε (= u − Hε − εhIε),

which is:

ε2�φ̂ − W ′′(Hε)φ̂ − 1
2W

′′′(Hε)φ̂(φ̂ + 2εhIε)

= ε
[
2e−1

0 h(·, 0) − (H
 − �
h)
]
H

′
ε

+ ε
[
(| II
 |2 + Ric(n
, n
)) + 2e−1

0 (∂zh)(·, 0)
]
zH

′
ε

− ε2
[
h(·, 0)H
 + 2(∂zh)(·, 0)

]
I
′
ε

+ 1
2ε

2h2W ′′′(Hε)I
2
ε + O1,0,α,ε(ε

3). (77)

Notice that all terms on the right hand side are OC0,α
ε

(ε2), while the extra term on the left

hand side that is not part of the stability operator is oC2,α
ε

(1)φ̂. As before (see Appendix B),

‖φ̂‖C2,α
ε (B


16×(−1,1)) = O(ε2). (78)
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This in turn lets us further refine (71) (see Appendix A) to (cf. [7, Lemma 5.5])

‖H
 − �
h − 2e−1
0 h(·, 0)‖C0,α

ε (B

16)

= O(ε2). (79)

Finally, we compute the ε2-order terms in (48). To do so, we consider the unique bounded
ODE solutions of

J
′′(t) − W ′′(H(t))J(t) = tH′(t), J(0) = 0, (80)

K
′′(t) − W ′′(H(t))K(t) = I

′(t), K(0) = 0, (81)

L
′′(t) − W ′′(H(t))L(t) = W ′′′(H(t))I(t)2, L(0) = 0. (82)

Again,we defer to [1, LemmaB.1, RemarkB.3] for the existence and exponential asymptotics
of J, K, L. Similarly to before, denote

Jε(y, z) := J(ε−1(z − h(y))), Kε(y, z) := K(ε−1(z − h(y))),Lε(y, z) := L(ε−1(z − h(y))).

(We do not need to truncate these ODE solutions.) Denote:

φ̃ := φ̂ − ε2
[
(| II� |2 + Ric(n�, n�)) ◦ �� + 2e−1

0 (∂zh)(·, 0)
]
Jε

+ ε2
[
h(·, 0)(H� ◦ ��) + 2(∂zh)(·, 0)

]
Kε − 1

2ε
2h2Lε,

where� is theC2,α limit of
 as ε → 0, which has H� = 2e−1
0 h|� , and�� is the projection

onto �. Working as we did to get to (76), and using (68), (70), (79), (80), (81), (82), we find
that

ε2�φ̃ − W ′′(Hε)φ̃ = o(ε2), (83)

near 
 so, arguing as in [7, Proposition 5.6], we find that, near 
:

φ̃ = o(ε2). (84)

5 Lower bounds for eigenvalues of ı2E",h as " → 0

Theorem 9 Let (Mn, g) be a closed Riemannian manifold. Consider a sequence of critical
points ui to Eεi ,hi with εi → 0, ‖hi‖C3,α(M)+Eεi ,hi [ui ] ≤ E for all i , and a fixed α ∈ (0, 1).
Let V denote the limiting varifold and � denote the limiting domain of (ui , εi ), and h denote
the limiting hi after passing to a subsequence εi ′ → 0. Assume V is a multiplicity-one
varifold associated to a smooth hypersurface � ⊂ M. Fix λ0 ∈ R. For sufficiently small
ε > 0,

#{eigenvalues λ ≤ λ0 (with multiplicity) of δ2Ah[V ;�]}
≥ #{eigenvalues λ ≤ ελ0 (with multiplicity) of δ2Eε,h[u]}.

Note that Theorem 9 together with (31) also implies:

Corollary 10 For any � ∈ N, let λ�(Ah[�;�]) and λ�(Eε,h[u]) denote the �-th eigenvalues
of δ2Ah[�;�] and δ2Eε,h[u], respectively. Then

λ�(Ah[�;�]) = lim
ε→0

ε−1λ�(Eε,h[u]). (85)
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Remark 11 Theorem 9, Corollary 10, and their consequence in Theorem 1 (c), bound from
below the index-plus-nullity of a smooth, multiplicity-one limiting (V ;�) in terms of the
indices-plus-nullities of (ui , εi , hi ). This generalizes what was known for hi ≡ 0 from [7,
Theorem 5.11] (cf. [6]) to the setting of arbitrary hi .

Given the sharp approximations in Sect. 4, the argument for Theorem 9 can be modeled
after [7, Theorem 5.11]. Aspects of the original proof in [7] have been simplified. We also
encounter certain other difficulties coming from the h term that we resolve.

As before, we denote 
 := {u = 0}; it is a smooth closed hypersurface, and converges to
� in C2,α as ε → 0 by (68), (69). We introduce the notation:

Qu,ε(ζ, ξ) =
∫
M

[
ε∇ζ · ∇ξ + ε−1W ′′(u)ζ ξ

]
dμg, ζ, ξ ∈ C∞(M),

Q
(ζ, ξ) =
∫




[
(∇
ζ · ∇
ξ − (| II
 |2 + Ric(n
, n
) + 2e−1

0 (∂zh)(·, 0))ζ ξ
]

dμ
, ζ, ξ ∈ C∞(
).

These quadratic forms relate to the second variations of Eε,h[u] and A2e−1
0 h[
] in (26) and

(15)—though, keep in mind that 
 is not a critical point of Ah[·]), so Q
 isn’t its second
variation. It will be convenient to work locally within a fixed η > 0 tubular neighborhood
U ⊂ M of 
, and further denote:

QU
u,ε(ζ, ξ) =

∫
U

[
ε∇ζ · ∇ξ + ε−1W ′′(u)ζ ξ

]
dμg, ζ, ξ ∈ C∞(U).

Consider an arbitraryw ∈ C∞(U). Working in Fermi coordinates (y, z) ∈ 
× (−η, η) =
U over 
, we may decompose w as:

w(y, z) =: w‖(y)(H′
ε(y, z) + εhI

′
ε(y, z)) + w⊥(y, z), (86)

where ∫ η

−η

w⊥(y, z)(H
′
ε(y, z) + εhI

′
ε(y, z)) dz = 0 for every y ∈ 
. (87)

As in [7, Section 5], one has:∫
U

w2 dμg = ε(e0 + o(1))
∫




(w‖)2 dμ
 + (1 + o(1))
∫
U
(w⊥)2 dμg. (88)

We will need the following important lemmas regarding the behavior ofQU
u,ε with respect to

this decomposition. Their proofs are given at the end of the section.

Lemma 12 For ε > 0 sufficiently small, and all f , g ∈ C∞(
):

QU
u,ε( f (H

′
ε + εhI

′
ε), g(H

′
ε + εhI

′
ε))

= ε2e0Q
( f , g) + o(ε2)
∫




[|∇
 f |2 + |∇
g|2 + f 2 + g2
]
dμ
.

Lemma 13 For ε > 0 sufficiently small, all f ∈ C∞(
), and all ω ∈ C∞(U) satisfying
(87):

QU
u,ε( f (H

′
ε + εhI

′
ε), ω)

= o(ε2)
∫




[|∇
 f |2 + f 2
]
dμ
 + o(1)

∫
U

[
ε|∇ω|2 + ε−1ω2] dμg.
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Lemma 14 There is a constant γ1 > 0 so that for ε > 0 sufficiently small and allω ∈ C∞(U)

satisfying (87):

QU
u,ε(ω, ω) ≥ γ1

∫
U

[
ε|∇ω|2 + ε−1ω2] dμg.

These lemmas have a few straightforward but important implications. Together with (88),
they show that for all ε > 0 sufficiently small and all w ∈ C∞(U),

QU
u,ε(w,w) ≥ −εγ2

∫
U

w2 dμg (89)

for some fixed γ2 > 0. (See [7, Lemma 5.10].) Using also that W ′′(u) ≥ κ > 0 on M \ U
for ε > 0 small, we note that (89) implies that

Qu,ε(w,w) ≥ QU
u,ε(w,w) +

∫
M\U

ε−1W ′′(u)w2

dμg ≥ −εγ2

∫
U

w2 dμg + ε−1κ

∫
M\U

w2 dμg

and thus we get the strong L2 localization estimate∫
M\U

w2 dμg ≤ C(�)ε2
∫
U

w2 dμg, provided Qu,ε(w,w) ≤ ε�

∫
M

ω2 dμg. (90)

Let us now show how Theorem 9 follows from these facts.

Proof of Theorem 9 Denote

I� := #{eigenvalues λ ≤ λ0 (with multiplicity) of δ2Ah[V ;�]},
Iε := #{eigenvalues λ ≤ ελ0 (with multiplicity) of δ2Eε,h[u]}.

From the variational characterization of eigenvalues of δ2Ah[V ;�], the discrete nature of
the corresponding spectrum, and theC2 convergence of
 = {u = 0} to�, there exist γ3 > 0
and functions f1, . . . , f I� : 
 → R such that

Q
( f , f ) ≥ λ0

∫



f 2 dμ
 + γ3

∫



[|∇
 f |2 + f 2
]
dμ
 (91)

for all f ∈ C1(
) satisfying 〈 f , fi 〉L2(
) = 0 for every i = 1, . . . , I� . Consider the linear
map I
 : L2(
) → R I� given by

I
( f ) := (〈 f , f1〉L2(
), . . . , 〈 f, f I� 〉L2(
)).

Using (88), (91), and Lemmas 12, 13, 14, we find that for all w ∈ C∞(U) with w‖ ∈ ker I
 ,

QU
u,ε(w,w)

= QU
u,ε(w

‖(H′
ε + εhI

′
ε), w

‖(H′
ε + εhI

′
ε)) + QU

u,ε(w
⊥, w⊥) + 2QU

u,ε(w
‖(H′

ε + εhI
′
ε), w

⊥)

≥ ε2(e0 − o(1))Q
(w‖, w‖) + o(ε2)
∫




[|∇
w‖|2 + (w‖)2
]
dμ


+ γ1

∫
U

[
ε|∇w⊥|2 + ε−1(w⊥)2

]
dμg

+ o(ε2)
∫




[|∇
w‖|2 + (w‖)2
]
dμ
 + o(1)

∫
U

[
ε|∇w⊥|2 + ε−1(w⊥)2

]
dμg
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≥ ε2e0 · λ0

∫



(w‖)2 dμ
 + ε2e0 · 1
2γ3

∫



[|∇
w‖|2 + (w‖)2
]
dμ


+ 1
2γ1

∫
U

[
ε|∇w⊥|2 + ε−1(w⊥)2

]
dμg

≥ ε(λ0 + γ4)

∫
U

w2 dμg, (92)

for some γ4 > 0.
We now prove that I� ≥ Iε . Let w1, . . . , wIε ∈ C∞(M) denote an L2(M)-orthonormal

set of eigenfunctions of Qu,ε with eigenvalues ≤ λ0ε, and set:

W
 := span{w‖
1, . . . , w

‖
Iε
} ⊂ C∞(
).

If I� ≥ Iε failed, there would existw ∈ span{w1, . . . , wIε } \ {0}withw‖ ∈ ker I
 . By (92),

ελ0

∫
M

ω2 dμg ≥ Qu,ε(w,w) ≥ QU
u,ε(w,w) ≥ ε(λ0 + γ3)

∫
U

w2 dμg,

which implies that w ≡ 0 on M by (90), a contradiction. ��
Proof of Lemma 12 We have:

QU
u,ε( f (H

′
ε + εhI

′
ε), g(H

′
ε + εhI

′
ε))

=
∫ η

−η

∫



[
− ε f (H

′
ε + εhI

′
ε) · (�gz + Hz∂z + ∂2z )(g(H

′
ε + εhI

′
ε))

+ ε−1W ′′(u) f g(H
′
ε + εhIε)

2
]
dμgz dz

=
∫ η

−η

∫



[
ε∇gz ( f (H

′
ε + εhI

′
ε)) · ∇gz (g(H

′
ε + εhI

′
ε))

− Hz f g(H
′′
ε + εhI

′′
ε + ε2(∂zh)I

′
ε)(H

′
ε + εhI

′
ε)

+ ε−1 f g(W ′′(u)(H
′
ε + εhI

′
ε) − H

′′′
ε − εhI

′′′
ε − 2ε2(∂zh)I

′′
ε − ε3(∂2z h)I

′
ε)

· (H
′
ε + εhI

′
ε)

]
dμgz dz. (93)

We compute/estimate the terms in (93) one by one. We will repeatedly use Cauchy–Schwarz,
(56), (64), (70), (73), (74), dμgz = (1 + H
z − 1

2 (| II
 |2 + Ric(n
, n
)z2 + O(1)z3)dμ
 ,
and Hz = H
 − (| II
 |2 +Ric(n
, n
))z+ O(z2), which follows from the Riccati equation.
We thus have:∫ η

−η

∫



ε∇gz ( f (H
′
ε + εhI

′
ε)) · ∇gz (g(H

′
ε + εhI

′
ε)) dμgz dz

=
∫ η

−η

∫



ε
(
(∇
 f )(1 + O(1)z)(H

′
ε + εhI

′
ε)

− ε−1 f (H
′′
ε∇gz h + εhI

′′
ε∇gz h − ε2(∇gzh)I

′
ε)

)
· (

(∇
g)(1 + O(1)z)(H
′
ε + εhI

′
ε)

− ε−1g(H
′′
ε∇gz h + εhI

′′
ε∇gz h − ε2(∇gzh)I

′
ε)

)2
(1 + O(1)z)dμ
 dz

= ε2e0

∫



∇
 f · ∇
g dμ
 + o(ε2)
∫




[|∇
 f |2 + |∇
g|2 + f 2 + g2
]
dμ
. (94)
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Next, using (68), and the integral identities
∫
R
H

′′
H

′ dz = 0, and
∫
R
zH′′

H
′ dz = − 1

2

∫
R
(H′)2 dz = − 1

2 e0,

and (70), we have:

−
∫ η

−η

∫



Hz f gH
′′
εH

′
ε dμgz dz

= −
∫ η

−η

∫



(H
 − (| II
 |2 + Ric(n
, n
))z + O(1)z2) f g

H
′′
εH

′
ε (1 + H
z + O(1)z2) dμ
 dz

= −
∫




H
 f g
[ ∫ η

−η

H
′′
εH

′
ε dz

]

dμ
 +
∫




(| II
 |2 + Ric(n
, n
) − H2

) f g

[ ∫ η

−η

zH
′′
εH

′
ε dz

]
dμ


+ o(ε2)
∫




| f g| dμ


= − 1
2 e0ε

2
∫




(| II
 |2 + Ric(n
, n
) − H2

) f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (95)

Next, using (68), (69), (70):

−
∫ η

−η

∫



Hz f g · εhI
′′
ε · H′

ε dμgz dz

= −
∫ η

−η

∫



(H
 + O(1)z) f g · εhI
′′
ε · H′

ε (1 + O(1)z)dμ
 dz

= 1
2 e0ε

2
[ ∫

R
H

′′
I
′ dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
, (96)

and

−
∫ η

−η

∫



Hz f g · H′′
ε · εhI

′
ε dμgz dz

= −
∫ η

−η

∫



(H
 + O(1)z) f g · H′′
ε · εhI

′
ε (1 + O(1)z)dμ
 dz

= − 1
2 e0ε

2
[ ∫

R
H

′′
I
′ dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
, (97)

and

−
∫ η

−η

∫



Hz f g · [
εhI

′′
ε · εhI

′
ε + ε2(∂zh)I

′
ε · H′

ε + ε2(∂zh)I
′
ε · εhI

′
ε

]
dμgz dz

= o(ε2)
∫




f g dμ
. (98)

Next, using (68), (78), (84), the fact that

I
′′′ − W ′′(H)I′ = W ′′′(H)H′

I − 2e−1
0 H

′′,
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and the decomposition u = Hε + εhIε + ε2aJJε + ε2aKKε + ε2aLLε + φ̃, with

aJ = | II� |2 + Ric(n�, n�) + 2e−1
0 (∂zh)(·, 0),

aK = −h(·, 0)H� − 2(∂zh)(·, 0), aL = 1
2h

2,

we have:

∫ η

−η

∫



ε−1 f g
[
W ′′(u)(H

′
ε + εhI

′
ε) − H

′′′
ε − εhI

′′′
ε − 2ε2(∂zh)I

′′
ε − ε3(∂2z h)I

′
ε)

]
(H

′
ε

+ εhI
′
ε) dμgz dz

=
∫ η

−η

∫



ε−1 f g
[
W ′′(u)(H

′
ε + εhI

′
ε) − W ′′(Hε)(H

′
ε + εhI

′
ε) − W ′′′(Hε)H

′
ε · εhIε

+ 2εe−1
0 hH

′′
ε − 2ε2(∂zh)I

′′
ε )

]
(H

′
ε + εhI

′
ε) dμgz dz

+ o(ε2)
∫




[
f 2 + g2

]
dμ


= ε−1
∫ η

−η

∫



f g
[
W ′′(u) − W ′′(Hε) − W ′′′(Hε) · εhIε

]
(H

′
ε + εh′

ε)
2 dμgz dz

+
∫ η

−η

∫



f g
[
W ′′′(Hε) · εh2I

′
εIε + 2e−1

0 hH
′′
ε − 2ε(∂zh)I

′′
ε

]
(H

′
ε + εhI

′
ε) dμgz dz

+ o(ε2)
∫




[
f 2 + g2

]
dμ


= ε

∫ η

−η

∫



f gW ′′′(Hε)(aJJε + aKKε + aLLε)(H
′
ε + εhI

′
ε)

2 dμgz dz

+ 1
2ε

∫ η

−η

∫



f gW ′′′′(Hε)h
2
I
2
ε(H

′
ε + εhI

′
ε)

2 dμgz dz

+ ε

∫ η

−η

∫



f gW ′′′(Hε)h
2
I
′
εIε(H

′
ε + εhI

′
ε) dμgz dz

+ 2e−1
0

∫ η

−η

∫



f ghH
′′
ε (H

′
ε + εhI

′
ε) dμgz dz

− 2ε
∫ η

−η

∫



f g(∂zh)I
′′
ε (H

′
ε + εhI

′
ε) dμgz dz

+ o(ε2)
∫




[
f 2 + g2

]
dμ


= ε

∫ η

−η

∫



f gW ′′′(Hε)(aJJε + aKKε + aLLε)(H
′
ε)

2 dμgz dz

+ 1
2ε

∫ η

−η

∫



f gW ′′′′(Hε)h(·, 0)2I2ε(H′
ε)

2 dμgz dz

+ ε

∫ η

−η

∫



f gW ′′′(Hε)h(·, 0)2I′εIεH′
ε dμgz dz

+ 2e−1
0

∫ η

−η

∫



f ghH
′′
ε (H

′
ε + εhI

′
ε) dμgz dz
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− 2ε
∫ η

−η

∫



f g(∂zh)(·, 0)I′′εH′
ε dμgz dz

+ o(ε2)
∫




[
f 2 + g2

]
dμ
. (99)

We estimate the terms of (99) individually, leaving the highest order term for last. We repeat-
edly use the fact that polynomially growing functions u : R → R satisfy

∫
R
W ′′′(H) · u · (H′)2 dz =

∫
R
H

′′ · (u′′ − W ′′(H)u) dz,

which is easily checked by integration by parts. Thus, we have
∫
R
W ′′′(H) · J · (H′)2 dz = − 1

2 e0,

which implies, together with 
 → � in C2 and dμgz = (1 + O(1)z)dμ
 , that

ε

∫ η

−η

∫



f gW ′′′(Hε)aJJε(H
′
ε)

2 dμgz dz

= − 1
2 e0ε

2
∫




(| II
 |2 + Ric(n
, n
) + 2e−1
0 (∂zh)(·, 0)) f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (100)

Next, we have:
∫
R
W ′′′(H) · K · (H′)2 dz =

∫
R
H

′′
I
′,

which implies, together with (69) and dμgz = (1 + O(1)z)dμ
 , that

ε

∫ η

−η

∫



f gW ′′′(Hε)aKKε(H
′
ε)
2 dμgz dz

= − 1
2 e0ε

2
[ ∫

R
H

′′
I
′ dz

] ∫


(H2


 + 4e−1
0 (∂zh)(·, 0)) f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
.

(101)

Next, we have
∫
R
W ′′′(H) · L · (H′)2 dz =

∫
R
H

′′W ′′′(H)I2 dz,

which implies, together with (69), dμgz = (1 + O(1)z)dμ
 , and 
 → � in C2, that

ε

∫ η

−η

∫



f gW ′′′(Hε)aLLε(H
′
ε)

2 dμgz dz

= 1
8 e

2
0ε

2
[ ∫

R
W ′′′(H)I2H′′ dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (102)

Next, we have by (69) and dμgz = (1 + O(1)z)dμ
 :
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1
2ε

∫ η

−η

∫



f gW ′′′′(Hε)h(·, 0)2I2ε(H′
ε)

2 dμgz dz

= 1
8 e

2
0ε

2
[ ∫

R
W ′′′′(H)I2(H′)2 dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (103)

Next, we have by (69) and dμgz = (1 + O(1)z)dμ
 :

ε

∫ η

−η

∫



f gW ′′′(Hε)h(·, 0)2I′εIεH′
ε dμgz dz

= 1
4 e

2
0ε

2
[ ∫

R
W ′′′(H)I′IH′ dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (104)

Next, we have by dμgz = (1 + O(1)z)dμ
 :

− 2ε
∫ η

−η

∫



f g(∂zh)(·, 0)I′′εH′
ε dμgz dz

= 2ε2
[ ∫

R
H

′′
I
′ dz

] ∫



(∂zh)(·, 0) f g dμ
 + o(ε2)
∫




[
f 2 + g2

]
dμ
. (105)

Finally, using
∫
R
H

′′
H

′ dz = 0,
∫
R
zH′′

H
′ dz = − 1

2 e0,

and (69), and dμgz = (1 + H
z + O(z2))dμ
 , we have

2e−1
0

∫ η

−η

∫



f ghH
′′
ε (H

′
ε + εhI

′
ε) dμgz dz

= 2e−1
0

∫ η

−η

∫



f g(h(·, 0) + (∂zh)(·, 0)z+O(1)z2)H
′′
εH

′
ε(1 + H
z + O(1)z2) dμ
 dz

+ 2e−1
0 ε

∫ η

−η

∫



f gh(·, 0)2H′′
ε I

′
ε dμgz dz

= −ε2
∫




(h(·, 0)H
 + (∂zh)(·, 0)) f g dμ


+ 2e−1
0 ε2

[ ∫
R
H

′′
I
′ dz

] ∫



f gh(·, 0)2 dμ
 + o(ε2)
∫




[
f 2 + g2

]
dμ


= − 1
2 e0ε

2
∫




(H2

 + 2e−1

0 (∂zh)(·, 0)) f g dμ


+ 1
2 e0ε

2
[ ∫

R
H

′′
I
′ dz

] ∫



H2

 f g dμ
 + o(ε2)

∫



[
f 2 + g2

]
dμ
. (106)

We now collect terms. Up to error terms, the integrands that show up are:

∇
 f · ∇
g, (| II
 |2 + Ric(n
, n
)) f g, (∂zh)(·, 0)2 f g, and H2

 f g.

Among them, ∇
 f · ∇
g only appears in (94) with a coefficient of e0, contributing

e0ε
2
∫




∇
 f · ∇
g dμ
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to (93). Next, (| II
 |2 + Ric(n
, n
)) f g only appears in (95), (100), with a total coefficient
of − 1

2 e0 − 1
2 e0 = −e0, contributing

−e0

∫



(| II
 |2 + Ric(n
, n
)) f g dμ


to (93). Next, (∂zh)(·, 0) f g only appears in (100), (101), (105), (106), with a total coefficient
of −1 − 2

[ ∫
R H

′′
I
′ dz

]
+ 2

[ ∫
R H

′′
I dz

]
− 1 = −2, contributing

−2
∫




(∂zh)(·, 0) f g dμ


to (93). Finally, H2

 f g only appears in (95), (96), (97), (101), (102), (103), (104), (106), with

a total coefficient of

1
2 e0 + 1

2 e0

[ ∫
R
H

′′
I
′ dz

]
− 1

2 e0

[ ∫
R
H

′′
I
′ dz

]
− 1

2 e0

[ ∫
R
H

′′
I
′ dz

]

+ 1
8 e

2
0

[ ∫
R
W ′′′(H)I2H′′ dz

]
+ 1

8 e
2
0

[ ∫
R
W ′′′′(H)I2(H′)2 dz

]
+ 1

4 e
2
0

∫
R
W ′′′(H)I′IH′ dz

]

− 1
2 e0 + 1

2 e0

[ ∫
R
H

′′
I
′ dz

]

= 1
8 e

2
0

∫
R

[
W ′′′(H)I2H′]′ dz = 0,

thus not contributing to (93). The lemma follows. ��
Proof of Lemma 13 We have:

QU
u,ε( f (H

′
ε + εhI

′
ε), ω)

=
∫ η

−η

∫



[
− εω · (�gz + Hz∂z + ∂2z )( f (H

′
ε + εhI

′
ε))

+ ε−1W ′′(u)ω f (H
′
ε + εhI

′
ε)

]
dμgz dz

=
∫ η

−η

∫



[
ε∇gzω · ∇gz ( f (H

′
ε + εhI

′
ε)) − Hzω f (H

′′
ε + εhI

′′
ε + ε(∂zh)I

′
ε)

+ ε−1ω f
(
W ′′(u)(H

′
ε + εhI

′
ε) − H

′′′
ε − εhI

′′′
ε − 2ε2(∂zh)I

′′
ε − ε3(∂2z h)I

′
ε)

)]
dμgz dz.

(107)

We estimate the terms in (107) one by one. We have, by (70):∫ η

−η

∫



ε∇gzω · ∇gz ( f (H
′
ε + εhI

′
ε)) dμgz

=
∫ η

−η

∫



ε(1 + O(1)z)∇
ω · [
(1 + O(1)z)(∇
 f )(H

′
ε + εhI

′
ε)

− ε−1 f (H
′′
ε∇gz h + εhI

′′
ε∇gz h − ε2(∇gzh)I

′
ε)

]
(1 + O(1)z)dμ
 dz

=
∫ η

−η

∫



ε(∇
ω · ∇
 f )H
′
ε dμ
 dz

+ o(ε2)
∫




[|∇
 f |2 + f 2
]
dμ
 + o(1)

∫
U

[
ε|∇ω|2 + ε−1ω2] dμg. (108)
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In the last step, we used Cauchy–Schwarz. Note that ∇
w⊥ · ∇
w‖ = gi j
 ∂yi w
‖∂y j w⊥,

whose two first factors are independent of z, and that, since ω satisfies (87) for all y:

∫ η

−η

(∂yi ω)H
′
ε dz = ε−1

∫ η

−η

(∂yi h)ωH
′′
ε dz.

Using this to estimate the first term in (108) via (70) and Cauchy–Schwarz, we deduce:

∫ η

−η

∫



ε∇gzω · ∇gz ( f (H
′
ε + εhI

′
ε)) dμgz

= o(ε2)
∫




[|∇
 f |2 + f 2
]
dμ
 + o(1)

∫
U

[
ε|∇ω|2 + ε−1ω2] dμg. (109)

By Cauchy–Schwarz again, the boundedness of Hz , and exponential decay of I
′
ε, I

′′
ε :

∫ η

−η

∫



Hzω f (εhI
′′
ε + ε(∂zh)I

′
ε) dμgz dz

= o(ε2)
∫




f 2 dμ
 + o(1)
∫
U

ε−1ω2 dμg. (110)

Likewise:
∫ η

−η

∫



ε−1ω f (2ε2(∂zh)I
′′
ε + ε3(∂2z h)I

′
ε) dμgz dz

= o(ε2)
∫




f 2 dμ
 + o(1)
∫
U

ε−1ω2 dμg. (111)

We are left trying to estimate

∫ η

−η

∫



ε−1ω f
[

− εHzH
′′
ε + W ′′(u)(H

′
ε + εhI

′
ε) − H

′′′
ε − εhI

′′′
ε

]
dμgz dz

=
∫ η

−η

∫



ε−1ω f
[

− εHzH
′′
ε + W ′′(Hε)(H

′
ε + εhI

′
ε) + W ′′′(Hε)(εhIε + φ̂)H

′
ε

− W ′′(Hε)H
′
ε − εhW ′′(Hε)I

′
ε − εhW ′′′(Hε)H

′
εIε + 2e−1

0 εhH
′′
ε

+ O(ε2)(H
′
ε + |I′ε|) + O(ε3)

]
dμgz dz

=
∫ η

−η

∫



[
O(ε)(H

′
ε + |I′ε|) + O(ε2)

]
ω f dμgz dz

= o(ε2)
∫




f 2 dμ
 + o(1)
∫
U

ε−1ω2 dμg. (112)

Above, we used u = Hε + εhIε + φ̂ to expand W ′′(u), (78) to estimate φ̂; we expanded
Hz = H
 + O(1)z and used (79) to bound H
 − 2e−1

0 h; and, in the last step we used
Cauchy–Schwarz. The lemma follows by combining (107), (108), (109), (110), (111), (112).

��

Proof of Lemma 14 This is the same as in [7, Lemma 5.8]. It is a consequence of the strict
stability of − d

dt2
+ W ′′(H) once we work orthogonally to its kernel using (87). ��
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6 Proof of Theorem 1

Proof of (a) This is a consequence of Theorem 4. ��

Proof of (b) If Sect. 4 applies, then the C2,α convergence follows from (69), Remark 8, and
Schauder theory. To that end, it suffices to arrange (50), (51), (52). This is done as in [7,
Theorem 3.4], provided we can arrange for (51) (this is where n = 3 and stability were used
in [7]). If (51) failed for ε → 0, we could take a sequence of counterexamples (ui , εi , hi )
satisfying (50), with εi → 0 and εi |∇ui (pi )| → 0 for some pi ∈ {|ui | < 1 − β0}. Passing
to a subsequence, ui (εi (· − pi )) would converge to a solution of �u = W ′(u) on Rn

with ∇u(0) = 0. This solution would also have to have density 1 at infinity, by virtue of
monotonicity. Thus, by [25], it would have to be a rotation of the heteroclinic solution, which
has a nonzero gradient, a contradiction. ��

Proof of (c) If �(V , ·) ≡ 1 on spt ‖V ‖, then spt ‖V ‖ is smooth by [14] and Allard’s theorem
[22]. Therefore, Sect. 5 applies and the result follows by Theorem 9. ��

7 Open questions

Some interesting directions in the variational study of multiplicity-one solutions of (1) that
merit further investigation:

(1) Self-tangencies. What can be said about the index of V without treating self-tangencies
along smooth pieces as parts of the “fixed” singular set? Can one devise settings in
which self-tangencies do not occur? (cf. [28].)

(2) Isoperimetric variational problem. The index and nullities considered in this paper
are the variational quantities that one can control through a min-max construction of
critical points that fixes h. See Remark 3. However, one may instead wish to fix the
enclosed volumes, thus giving up exact control of h. See [5,20]. This alternative setting
can be referred to as the isoperimetric (i.e., fixed volume) setting. The regularity and
asymptotics from Sect. 4 can apply to the isoperimetric setting too. However, one
needs to modify Theorems 4, 9 to fit into the isoperimetric setting. Modifications of
both theorems include subtle points.

(3) Uniqueness. When h ≡ 0, it was shown in [12] that multiplicity-one critical points
(u, ε, 0) near nondegenerate minimal surfaces coincide with those constructed by
Pacard [19] and, a posteriori, must also coincide with those in the earlier work of
Pacard–Ritore [20]. The proof used the sharp asymptotics derived by Wang–Wei (
[26]). Given the sharp asymptotics for the general h setting now obtained in Sect. 4,
one should be able to prove a corresponding uniqueness theorem.

Acknowledgements The author would like to acknowledge Constante Bellettini, Otis Chodosh, and Xin Zhou
for helpful conversations on constant mean curvature hypersurfaces. The author was supported in part by NSG
Grant No. DMS-1905165/2050120/2147521.

ADerivation of (66) and (79)

In what follows, (53) gets used repeatedly though implicitly when obtaining O1,0,α,ε bounds.
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We project (65) onto 
 by fixing y ∈ B

19, dotting with H

′
ε(y, z) and integrating over z.

We start with the left hand side. We differentiate φ ⊥ H
′
ε along y and use (54) to get:

∫
R

ε2(�gzφ)H
′
ε dz =

∫
R

ε2(�
φ)H
′
ε dz +

∫
R

ε2(�gzφ − �
φ)H
′
ε dz

= −
∫
R

ε2φ(�
H
′
ε) dz −

∫
R

ε2(∇
φ) · (∇
H
′
ε) dz

+
∫
R

ε2(�gzφ − �
φ)H
′
ε dz

=
∫
R

φ(ε(�
h)H
′′
ε − |∇
h|2H′′′

ε ) dz +
∫
R

ε(∇
φ) · (∇
h)H
′′
ε dz

+
∫
R

ε2(�gzφ − �
φ)H
′
ε dz

= ε(�
h)

∫
R

φH
′′
ε dz + ε · O1,0,α,ε(φ)(O1,0,α,ε(∇
h))2

+ ε · O1,0,α,ε(ε∇
φ) · O1,0,α,ε(∇
h)

+ ε2 · O1,0,α,ε(ε
2∇2


φ, ε∇
φ). (113)

Next, integrating by parts yields and using φ ⊥ H
′
ε again:∫

R
ε2Hz(∂zφ)H

′
ε dz = −

∫
R

εHzφH
′′
ε dz −

∫
R

ε2(∂z Hz)φH
′
ε dz

= −
∫
R

ε(H
φ + O(1)z)H
′′
ε dz −

∫
R

ε2(∂z Hz)φH
′
ε dz

= −εH


∫
R

φH
′′
ε dz + ε3 · O1,0,α,ε(φ). (114)

Next, integrating by parts twice yields:
∫
R

[
ε2(∂2z φ) − W ′′(Hε)φ

]
H

′
ε dz = ε3 · O1,0,α,ε(φ). (115)

We move on to the right hand side of (65). We have:
∫
R

εhH
′
ε dz =

∫
R

ε(h(·, 0) + (∂zh)(·, 0)z + OC1,α
ε

(1)z2)H
′
ε dz

= 2ε2h(·, 0) + 2ε2(∂zh(·, 0))h + O1,0,α,ε(ε
4). (116)

Next: ∫
R

ε(H
 − �
h)(H
′
ε)

2 dz = ε2e0(H
 − �
h). (117)

Next: ∫
R

ε(| II
 |2 + Ric(n
, n
))zH
′
ε dz = 2ε2(| II
 |2 + Ric(n
, n
))h. (118)

For now, we estimate: ∫
R

1
2W

′′′(Hε)φ
2
H

′
ε dz = ε · (O1,0,α,ε(φ))2, (119)
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though we will refine this estimate later once we get a more precise form of φ. Finally:∫
R

[
(O1,0,α,ε(φ))3 + O1,0,α,ε(ε∇2


h,∇
h)zH
′
ε + (O1,0,α,ε(∇
h))2H

′′
ε + O1,0,α,ε(ε

3)
]
H

′
ε dz

= ε · (O1,0,α,ε(φ))3 + ε2 · O1,0,α,ε(ε∇2

h,∇
h) + ε · (O1,0,α,ε(∇
h))|2 + O1,0,α,ε(ε

4).

(120)

At this point, (66) follows from combining (113), (114), (115), (116), (117), (118), (119),
(120), and finally estimating h by φ as in [26, Lemma 9.6].

Finally, let us assume we have a more refined ansatz for φ, namely:

φ = φ̂ + εhIε

where φ̂ = O1,0,α,ε(ε
2). Then, we can replace (119) by∫

R

1
2W

′′′(Hε)φ
2
H

′
ε dz

= ε2
∫
R

1
2W

′′′(Hε)h
2
I
2
εH

′
ε dz + O1,0,α,ε(ε

4)

= ε2
∫
R

1
2W

′′′(Hε)(h(·, 0) + O1,0,α,ε(1)z)
2
I
2
εH

′
ε dz + OC0,α

ε
(ε4)

= ε2h(·, 0)2
∫
R

1
2W

′′′(Hε)I
2
εH

′
ε dz + O1,0,α,ε(ε

4) = O1,0,α,ε(ε
4), (121)

where in the last step we’ve used (68) and the fact that, by parity,∫
R
W ′′′(H)I2H′ dz = 0.

Now, (79) follows from the same equations, with (121) replacing (119).

B Derivation of (68), (70), (78)

This section is meant to simplify and condense the exposition in [26, Sections 11-13] by
exploiting the multiplicity-one setting. It is borrowed from collaborative notes written with
O. Chodosh. In this appendix we will assume, without loss of generality, that W ′′(±1) = 2.

Lemma 15 Considerw ∈ C2(Rn) and f ∈ C0(Rn−1) so that, for (y, z) ∈ Rn−1×R = Rn,

�Rn−1w(y, z) + ∂2z w(y, z) − W ′′(H(z))w(y, z) = f (y)H′(z).

Then, there is some c ∈ C2(Rn−1) so that w = c(y)H′(z).

Proof We mimic [19, Lemma 3.7]. Write

w(y, z) = c(y)H′(z) + w̄(y, z)

where
∫ ∞
−∞ w(z, y)H′(z)dz = 0 for all y ∈ R

n−1. We thus find that

H
′(z)�Rn−1c(y) + (∂2z w̄(y, z) − W ′′(H(z))w̄(y, z) + �Rn−1w̄(y, z)) = f (y)H′(z).

Multiplying by H′(z) and integrating, we find that �Rn−1c(y) = f (y), and so

∂2z w̄(y, z) − W ′′(H(z))w̄(y, z) + �Rn−1w̄(y, z) = 0.

At this point, the proof that w̄ = 0 is identical to [19, Lemma 3.7]. ��
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Lemma 16 Fix σ ∈ (0, 1). Then, we can choose L > 0 and C > 0 depending on σ , and
K > 0 sufficiently large depending only on W with the following property. Suppose that

ε2(�
ψ + ∂2z ψ) − W ′′(Hε)ψ = ε f1(y)H
′
ε(y, z) + f2(y, z) + εDi f

(i)
3 (y, z) (122)

on B

r+2Lε × Iε . Then, for ε > 0 sufficiently small, either

‖ψ‖C0(B

r ×Iε) ≤ 2H′(0)e−1

0 sup
y∈B


r+2Lε

∣∣∣∣
∫ εK

−εK
ψ(y, z)H

′
ε(z − h(y)) dz

∣∣∣∣
or

‖ψ‖C0(B

r ×Iε) ≤ σ

(
‖ψ‖C1

ε (B

r+2Lε×Iε) + ‖ f1‖C0,α

ε (B

r+2Lε)

)

+ C
(
‖ f2‖C0(B


r+2Lε×Iε) + ‖f3‖C0,α
ε (B


r+2Lε×Iε)
+ ‖ψ‖C0(B


r ×Jε,L )

)
,

where Jε,L denotes the points of Iε that are within εL of ∂Iε.

Proof First, choose χ̃ : B

r+2Lε → [0, 1] a cutoff function that is 1 on B


r and has support
in B


r+Lε . We can arrange so that εL|∇
χ̃ | + ε2L2|∇2

χ̃ |2 = O(1). Now, by replacing ψ by

χ̃ψ and absorbing the resulting error terms into f2, it is clear that it suffices to prove that

‖ψ‖C0(B

r ×Iε) ≤ σ‖ f1‖C0,α

ε (B

r+2Lε×Iε)

+ C
(
‖ f2‖C0(B


r+2Lε×Iε) + ‖f3‖C0,α
ε (B


r+2Lε×Iε)
+ ‖ψ‖C0(B


r ×Jε,L )

)
(123)

assuming that ψ is supported in B


r+ 1
2 Lε

× Iε and satisfies (122) and

sup
y∈B


r+2Lε

∣∣∣∣
∫ εK

−εK
ψ(y, z)H

′
ε(z − h(y)) dz

∣∣∣∣ <
1

2
H

′(0)−1e0‖ψ‖C0(B

r ×Iε). (124)

Assume, for contradiction, that (123) fails. Then, there are C, L → ∞ as ε → 0 so that

‖ψ‖C0(B

r ×Iε) ≥ σ‖ f1‖C0,α

ε (B

r+2Lε×Iε)

+ C
(
‖ f2‖C0(B


r+2Lε×Iε) + ‖f3‖C0,α
ε (B


r+2Lε×Iε)
+ ‖ψ‖C0(B


r ×Jε,L )

)
.

Choose x̄ = (ȳ, z̄) ∈ B

r × Iε attaining ‖ψ‖C0(B


r ×Iε). Set z̃ = ε−1 z̄. We first assume
that z̃ → ẑ as ε → 0. The case that z̃ is unbounded as ε → 0 follows from a similar,
but simpler argument, as we describe below. Dividing the equation by ±‖ψ‖C0(B


r ×Iε) and

rescaling around x̄ to scale ε (labeling rescaled quantities with a tilde), we find that ψ̃(0) = 1,
‖ψ̃‖C0(BL ) = 1,

�
̃ψ̃ + ∂2z ψ̃ − W ′′(H̃)ψ̃ = f̃1(y)H̃
′
(z − z̃ − ε−1h̃(y)) + f̃2(y, z) + Di f̃

(i)
3 (y, z),

on BL , and finally

‖ f̃1‖C0,α(BL ) ≤ σ−1, and ‖ f̃2‖C0(BL ) + ‖ f̃3‖C0,α
ε (BL )

= o(1).

Hence, f̃2 → 0 inC0(BL) and f̃ (i)
3 → 0 inC0,α(BL). Moreover, f̃1 is bounded inC0,α(BL).

We can thus find f̂1 ∈ C0,α(Rn−1) so that f̃1 → f̂1 in C
0,α′
loc (Rn−1) for α′ < α.
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Similarly, by C1,α-Schauder estimates we see that ψ̃ is uniformly bounded in C1,α on
compact subsets ofRn . Thus, there is ψ̂ ∈ C1,α

loc (Rn)∩L∞(Rn) so that ψ̃ → ψ̂ inC1,α′
loc (Rn).

Integrating by parts against a test function, we see that ψ̂ weakly solves

�Rn−1 ψ̂ + ∂2z ψ̂ − W ′′(H(z − z̃))ψ̂ = f̂1(y)H
′(z − z̃).

Schauder theory implies that ψ̂ ∈ C2,α(Rn). By Lemma 15, we have that ψ̂ = c(y)H′(z− ẑ).
Because ψ̂(0) = 1 = ‖ψ̂‖L∞(Rn), we see that ẑ = 0 and c(0) = H

′(0)−1. Thus, we see that
∫ K

−K
ψ̂(0, z)H′(z)dz = H

′(0)−1e0 + O(e−√
2K )

Returning to ψ , we thus find that

sup
y∈B


r+2Lε

∣∣∣∣
∫ εK

−εK
ψ(y, z)H

′
ε(z − h(y))dz

∣∣∣∣ ≥
(
H

′(0)−1e0 + O(e−√
2K ) + o(1)

)
‖ψ‖C0(B


r ×Iε)

as ε → 0. Taking K sufficiently large this contradicts (124) for ε sufficiently small.
Finally, if the case that z̃ → ∞, then repeating the same rescaling as above (but using

H(t) → ±1 as t → ±∞), we find ψ̂ ∈ C2,α
loc (Rn) ∩ L∞(Rn), with ψ̂(0) = 1 and so that

�Rn ψ̂ − W ′′(±1)ψ̂ = 0.

Because ψ̂ attains its maximum at 0, we see that ψ̂ ≡ 0, a contradiction. ��
We note how the first alternative of Lemma 16 can never apply to φ, provided K is chosen

sufficiently large. Indeed, it follows from (60) that∣∣∣∣∣
∫ εK

−εK
φ(y, z)H

′
ε(y, z) dz

∣∣∣∣∣ =
∣∣∣∣
∫
Iε\[−εK ,εK ]

φ(y, z)H
′
ε(y, z) dz

∣∣∣∣ ≤ Ce−
√
2K ‖φ(y, ·)‖C0(Iε).

(125)

Therefore, for sufficiently large (but fixed) choices of K , the second alternative of Lemma
16 must always hold when ψ = φ.

Let us use this fact to prove (68). We first note that (65) and (64) imply

ε2�φ − W ′′(Hε)φ = −ε(H
 − �
h)H
′
ε + O1,0,α,ε(εh, ε

2) + (O1,0,α,ε(φ))2

+ (O1,0,α,ε(ε∇2

h,∇
h))2

= −ε(H
 − �
h)H
′
ε + O1,0,α,ε(ε) + (O1,0,α,ε(ε

2∇2

φ, ε∇
φ, φ))2,

(126)

where the second equation follows from the first from our bounds on the prescribed function
h our ability to control the height adjustment h in terms of φ ( [26, Lemma 9.6]).

Fix σ ∈ (0, 1). We apply Lemma 16 in B

19 × Iε to get a C0 estimate on φ in B


19−2εL × Iε
(using (55) to treat ε2(� − �
 − ∂2z )φ as a right hand side term), which can be enlarged to
a C0 estimate on B


19−2εL × (−1, 1) with at most an O(ε) error using the decay of φ off 
.
Then use Schauder theory on (65), (66) and again [26, Lemma 9.6], and absorbing the terms
that are quadratic in φ we get:

‖φ‖C2,α
ε (B


19−4εL×(−1,1)) + ‖H
 − �
h‖C0,α
ε (B


19−4εL )

≤ σ(‖φ‖C2,α
ε (B


19×(−1,1)) + ‖H
 − �
h‖C0,α
ε (B


19)
) + C ′ε, (127)
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for a fixedC ′ > 0. Iterating this procedure on B

19−4kεL × Iε for k = 1, . . . , M | log ε|, where

M depends on σ ∈ (0, 1) but not ε, yields the φ estimate in (68) and thus also (69).
We move on to verifying (70). Differentiating (65) in the directions parallel to 
 (i.e., in

yi in Fermi coordinates) we see similarly to (126) that:

ε2�(ε∂yi φ) − W ′′(Hε)(ε∂yi φ) = −ε(ε∂yi (H
 − �
h))H
′
ε + R (128)

where the error term can be estimated (using (68)) by:

‖R‖C0,α
ε

≤ Cε2 + C(ε2‖∇2

ε∂yi φ‖C0,α

ε
+ ε‖∇
ε∂yi φ‖C0,α

ε
+ ‖ε∂yi φ‖C0,α

ε
)2

Next, one differentiates (60) in the horizontal directions to show, similarly as in (125) but
also estimating the error term 〈φ, ∂yiH

′
ε〉L2 , that

∣∣∣∣
∫ εK

−εK
ε(∂yi φ)(y, z)H

′
ε(y, z) dz

∣∣∣∣ ≤ Ce−√
2K ‖ε(∂yi φ)(y, ·)‖C0(Iε) + Cε3. (129)

Lemma 16’s first alternative can only hold for ψ = ε∂yi φ, then, in case ‖ε∂yi φ‖ = O(ε3)

(which is smaller than the worse upper bound we wish to prove, and thus does not break the
applicability of our previous strategy). Arguing as above, using (128) instead of (126) yields
(70).

Finally, we establish (78). Recall that, by (69) and (77), φ̂ = φ − εhI satisfies:

ε2�φ̂ − W ′′(Hε)φ̂ = OC0,α
ε

(ε2), (130)

The function φ̂ satisfies an estimate similar to (129), namely:∣∣∣∣
∫ εK

−εK
φ̂(y, z)H

′
ε(y, z) dz

∣∣∣∣ ≤ Ce−√
2K ‖φ̂(y, ·)‖C0(Iε) + Cε3. (131)

Thus, as before, Lemma 16’s first alternative can only hold for ψ = φ̂, then, in case ‖φ̂‖ =
O(ε3) (which is smaller than the worse upper bound we wish to prove, and thus does not
break the applicability of our previous strategy). The rest of the argument goes through as
before, applying (130) and (131) instead of (128) and (129).
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