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Abstract

We study the spectrum of phase transitions with prescribed mean curvature in Riemannian
manifolds. These phase transitions are solutions to an inhomogeneous semilinear elliptic
PDE that give rise to diffuse objects (varifolds) that limit to hypersurfaces, possibly with sin-
gularities, whose mean curvature is determined by the “prescribed mean curvature” function
and the limiting multiplicity. We establish upper bounds for the eigenvalues of the diffuse
problem, as well as the more subtle lower bounds when the diffuse problem converges with
multiplicity one. For the latter, we also establish asymptotics that are sharp to order o(s?)
and C%¢ estimates on multiplicity-one phase transition layers.

1 Introduction

Let (M", g) be a Riemannian manifold. Consider the semilinear elliptic PDE
e2Au = W' (u) + ¢b 1)
fore > 0,smoothu, ) : M — R, and a smooth double-well potential W : R — R satisfying:

W (x) > 0 and vanishes if and only if x = %1,

W’ (0) =0, W' (0) #0,and xW(x) < 0 forx € (0, 1),

W’ (x) >k >0forx e R\ (—1+ 8,1 — B) for some B € (0, 1), and
W(x) = W(—x) for all x;

a canonical choice is W(x) = %(1 — x2)2. This PDE describes the Gibbs—Thomson law,
and it also relates to the Van der Waals—Cahn—Hilliard theory of phase transitions ( [14,21]).
Solutions u of (1) are critical points (see Sect. 2) of the energy

Eeplul := /M(%IVW + &7 W(u) + bu) dpg. )
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When M is not a closed (i.e., compact, no boundary) manifold, one simply works locally in
the interior of M. Since we are interested in variational applications to geometric problems,
we will assume that M is closed, except when otherwise stated. A solution (i, €, ) of (1) with
finite E; , energy gives rise to a codimension-1 diffuse varifold on (M, g), whose induced
Radon measure is |Vu|? d g ([14]). Under certain uniform bounds on our data (u, ¢, h),
these diffuse varifolds subsequentially converge in M, as ¢ — 0, to a codimension-1 integral
varifold V, which we call a limiting varifold that bounds, in a certain sense, a Caccioppoli
set 2, which we call a limiting enclosed domain ([11,14,21]). In fact, u — 1M\§2 —1g inthe

L' sense, {u = 0} — spt || V|| in the Hausdorff sense, and spt || V|| consists of two portions:

(A) the portion where the density ©"~1(V, ) is odd, which a.e. coincides with 9*§2, and
(B) the portion where the density @1 (V, -) is even, which a.e. misses *.

Here, 9*Q2 denotes the reduced boundary of the Caccioppoli set 2. The weak mean curvature
vector H of V depends on the density k = e (v, ). In fact,

(a) when k is odd: H = —2(keg)'bn a.e., with n being the unit vector pointing into the
+1 region, eo being the squared L? energy of the heteroclinic solution; while,
(b) when k iseven: H = 0 a.e.

As aresult, (V; Q) is a critical point (in the sense of ambient deformations—see Sect. 2) of
the prescribed mean curvature functional®

AgetplVi Q1= [VII(M) —/QZealh- €)

It has been shown that k # 3, 5, ... unless h = 0 ( [21]). Thus,

(@’) whenkisoddand h #0: k =1and H = —2ealbn a.e.; while,
(b’) whenkisevenorh=0: H =0ae.

We focus on solutions (u, &, b) that are produced by variational methods (usually min-max).
We are interested in understanding their Morse index and nullity. We briefly recall some
relevant results for h = O:

e For n > 3, we know from [9-11,13,24] that solutions (u, &) of (1) with uniformly
bounded E o[u], and uniformly bounded Morse index must subsequentially collapse as
& — 0, possibly with multiplicity, to a limiting varifold V that is smooth outside a set of
ambient codimension 8 and has Morse index (see Sect. 2)

ind(V) < limindg, ,(u;). )
i v

In the reverse direction, we know from [7] that

ind(V) 4+ nul(V) > lim(indESi.0 (u;) + HUIEEi,o(ui)) 5)

when V is smooth with multiplicity one (in any dimension, including n = 2).

e For n = 2, the situation is subtle. First, the singular set has at most < lim, indg, ,(«)
points ( [23]). A finer study of the pre-limit behavior of (u, &) shows that solutions to (1)
with bounded E; o[u] and Morse index < 1 must collapse as ¢ — 0 to either smoothly
embedded geodesics (possibly with multiplicity) or to smoothly immersed geodesics

LIf V is a smooth multiplicity-one hypersurface, then Ay [V; €] measures the (n — 1)-dimensional area of
V minus the bulk integral of f in the region 2 enclosed by V. Smooth multiplicity-one critical points (V; )
of this functional will have mean curvature equal to 2e; ! h.
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with multiplicity one and a single non-embedded point that resembles an “X;” more
generally, the total density of singular points is bounded from above by a function of
lim, indg, o (u) ([16]).

In this paper:

e We generalize (4) and (5) to all b.
e We also establish regularity theory needed to extend the n = 2 bullet point above to
nonzero b in future work.

We do the above via a sharp to order o(g2) understanding of u.
Fix a background closed Riemannian manifold (M", g). Consider a sequence
{(ui, &, bi)}i=1.2.... such that, for a fixed « € (0, 1),

& >0, u; is a critical point of Ee, p;, lime; =0, sup E¢; (@) + [1hill 3.y < 0.
i i

(©)

Recall that, after passing to a subsequence, the diffuse (n — 1)-varifolds associated with
(uj, €;) converge (asi — oo) to alimiting integral (n — 1)-varifold, V, and a limiting enclosed
domain, Q2. After possibly passing to a further subsequence, h; converge in C 3.0 with o' €
O, Htoh e C 3. (). In what follows, always assume that we pass to subsequences as
necessary:

Theorem 1 Supposen > 2, o € (0, 1). Let {(u;, &, h;)}i=1,2... be as in (6). Let V, Q be as
before, and fh = lim; b;.

(a) Suppose that sup; indEs,nhi (u;i) < oo. We may estimate the Morse index of (V; Q) by
indy ,lb(V; Q) <limindg, . (u;). @)
eo i 1

See Sect. 2 for notation and Theorem 4 for a stronger result with weaker (i.e., WP
rather than C3*) assumptions on b;.

(b) Suppose U C M is an open set such that Un singV =@, I :==spt|V|NU is an
embedded (n — 1)-manifold, T/ \ T is smooth, and ©"~Y(V,-) = 1 along T". Then,
forall T € (—1, 1), there exists an open set U' C M containing T’ such that T’ N U’
is the C* limit ofl"lf’r :={u; =t} NU asi — oo. The mean curvature H; ; ofFlf’r
satisfies

I Hi e — 265 billcory ) + % Hi e — 265 bl r = OC). ®
(c) IfO"~Y(V,.) = 1 everywhere on spt |V ||, then we may estimate the Morse index and
nullity of (V; Q) by
indg, L (ViQ)bmula, (Vi) 2 lim(ind, ) + mulg, @) ©)
See Sect. 2 for notation and Theorem 9 and Corollary 10 for more general results.

The regularity theory developed for Theorem 1 (b) and (c) is an adaptation to arbitrary b
of the Wang—Wei curvature estimates for transition layers when f) = 0 [26] (see also [7,27]).
We are not “generalizing” the Wang—Wei estimates to all h because we only need and only
prove estimates for so-called multiplicity-one solutions. The multiplicity-one estimates we
present here are quite direct versus the general curvature estimates of [7,26,27] that require
substantial work. We have opted for a presentation that is as simple and self-contained as
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possible, so some of our smoothness assumptions are more stringent than necessary. We hope
our streamlined exposition will help make the groundbreaking recent Wang—Wei regularity
theory accessible to a wider audience.

We list a number of interesting future directions and unresolved questions in Sect. 7. We
encourage the reader to refer to Remarks 5, 6, 11 for additional context on our results and
how they fit within the literature. This work has been partially influenced and motivated by
the enormous recent advances of Almgren—Pitts min-max theory, which the min-max theory
of (2) has been tracking in a somewhat parallel fashion. Since Almgren—Pitts theory is not so
relevant to this work, we will only list a small number of results that we deem most relevant:
[15,17,18,31-33].

2 Variations of Ay, E¢ |,
2.1 The A; functional

Suppose that £~ ! is a closed hypersurface in a closed Riemannian manifold (M", g). The
first variation formula gives the first order rate of change of the (n — 1)-dimensional area
A[-] of 2 if ¥ is deformed in the direction given by an ambient vector field. Let X be a C'!
vector field on M whose flow is given by ®' : M — M. The first variation of the area of &
along X is

SA[ZX) = [%A[(CDt)#Z]]t:O =/Edivz Xdus. (10)

The second order rate of change of area along a C2 vector field X with flow & : M — M
is given by the second variation:

SAISIX, X) 1= | £ AL 5]]

=0
= / [divs VxX + (divs X)? + |[VE X|?
)

n—1 n—1

= 2 Ve X 1)V, X T = ) Rm(X. 7. 7. X)]dus. (1)
i,j=1 i=1

In (11), (Ti)i=1,...n—1 gives an orthonormal frame for 7 ¥ at each point, Rm(X, 7;, 7;, X)
is the sectional curvature (suitably scaled) of (M, g) along X A t;, and V%‘X denotes the
orthogonal component of Vx X. See [22] for a derivation of these identities in the Euclidean
setting; the Riemannian modifications are straightforward.

Note that A[X]{X} depends only on X|x, while S2A[Z{X, X} also depends on the
behavior of X off ¥ (by virtue of the divy Vx X term).

A hypersurface X is said to be a critical point of the area functional if the first order rate
of change §A[X]{X} is zero for all C I vector fields X. Using the formula H = —(divy n)n
in (10), and integration by parts on the tangential component of X, shows that the criticality
condition is equivalent to H = 0 on X. For critical points, the second variation reduces to:
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STA[ZIX, X) :f [divs X)? + V5 X|?
z

n—1 n—1

=Y (Ve X T)(Ve, X 1) = Y Rm(X, 7i, 7, X)]dps. (12)
i,j=1 i=1

Note how, when X is a critical point, S2A[Z1{X, X} only depends on X |y and makes sense
for C! (rather than C2) vector fields X.

We now consider the more general h-area functional (or, the prescribed mean curvature
b functional), Ay[-], where h : M — R is a fixed ambient function. We also require that X
bounds a domain 2. We set:

AylZ; Q] = A[X] - /Q bhdug.

Then, for any vector field C! vector field X with flow ®' : M — M, the first variation of
Apy[-]is easily derived from (10) and the divergence theorem to be:

SAG[E; QI(X) := [%Ab[(q)’)#fi;(q)’)#Q]],:O:/EdinXduz —/EhX-nduz,
(13)

where n is the unit normal to X that points outside of €2. Despite presence of the bulk term
in the definition of Ay, we see that (13) also only depends on X5, like in (10).

As before, we say that (X; ) is a critical point of Ay[-] if §A[X; Q{X} = 0 for all
vector fields X. An integration by parts and the use of H = —(divy n)n in (13) shows that
criticality is now equivalent to the mean curvature vector of X satistying H = —(h|x)n.

We state the second variation of Ay, for critical points (X; €2). If X denotes a C! vector
field with X |5, L ¥ and flow &' : M — M, then the second variation of Ay along X is:

8245 [%: QUX, X) = [ £ Ap[(@)45: (@422

t=0
:/ [divs X)? + |V X|?
)}

n—1 n—1

= > (Ve X TV, X 1) = Y Rm(X, 7, 77, X)
ij=1 i=1

— (Vxh)(X -n) = (X - n)divs X]dps. (14)

This follows from (11) and the derivative of the flux term (i.e., the §h term) in (13). Note that
we are restricting to X that are normal to X, but this is done without loss of generality: the
tangential component of X only flows ¥ by self-diffeomorphisms so it has no effect on the
area of X or on the bulk integral in the definition of Ay. It is also convenient to rewrite (14)
in scalar notation, where we write X = fn for some scalar valued function f : ¥ — R:

8% Ag|Z: QU fn, fn) = f [IVs /1> = (1T [ +Ricr, n) + :0) f*]dus.  (15)

by
Note that (15) is the bilinear form associated with an elliptic operator on X. Since X is closed,
this operator naturally comes with a spectrum, which can be recovered by the well-known

min-max characterization. Namely, for each £ € N, the ¢-th eigenvalue of (SZA;,[E; Q] is
given by:
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43 Page 6 of 35 C. Mantoulidis

82Ap[Z; QUX, X}
Jx 1X1Pdus
: F is an £-dimensional subspace of c! (z; NZ)]. (16)

30 (82 Ap[3: Q1) = inf { maxi ‘X eF\ {0}]

Here, NZ denotes the normal bundle of % in M. Given (16), one defines the Ay, Morse index
and nullity of (X; 2) as follows:
inda, (Z;Q) :=#{¢eN: Ag((SQAh[E; Q] < 0}, (17)
nuly, (2; Q) :=#{{ e N: A[(BZA;][E; Q] = 0}. (18)
When h = 0, Q is irrelevant, and we simply denote these quantities by ind(X), nul(X).

For the purposes of Sect. 3, we need to extend these notions to the nonsmooth setting of
[14,21]. Our hypersurface "~ will be replaced by an integral (n — 1)-varifold V (i.e., a
countably rectifiable set with a.e. integer density), and the domain €2 enclosed by X will get
replaced by a Caccioppoli set (i.e., a set of finite perimeter), still labeled 2. We point the

reader to [22] for a discussion of these objects from geometric measure theory.
If V is an integral (n — 1)-varifold and €2 is a Caccioppoli set, we define Ay[V; 2] as:

ALV 20 = VIO ~ [
Then, the first variation of Ay[V; ] by an ambient C! vectorfield X withflow @' : M — M
is given by:
SAp[V: QUX}: = [£Ag[(@)4V: (@)4Q]],_,
= /divv Xd|V]| - / hX - nd(H;ﬁ_1 Lo"Q). (19)
A pair (V; ) is said to be a critical point for Ay if §Ay[V; QI{X} = O for all C! vector
fields X on M. The relevance of this definition to our work is that, by [14,21]:

limiting objects (V; ) that come from solutions (u;, ;) of (1) with g; — 0

and uniform bounds on E¢; p[u;] are critical points of A, e [V; Q] (20)

For critical points (V; ©2) of Ay[-], and vector fields that are compactly supported away from
the singular part of V, the second variation along a C! vector field X which is L to V and
has flow @' : M — M is:

8 Ap1V: QUX. X) = [ £ Ap[( @)V (9421

=
= [ [divy X)? + |V X|?

n—1 n—1

— Y (Ve X T)(Ve, X 1) = Y Rm(X, 7i. 7, X)]d| V|
i,j=1 i=1

- / [(VxB)(X -n) + b(X - n)divs X| d(Hg—l La*Q). (1)
By analogy with (16), (17), (18) we define, for any open O C M \ singV and X :=reg V:
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82Ap[Z; QUX, X}
X e F\{0
FixEaw] X< FAo)

: F is an £-dimensional subspace of Ccl,(E NO; N(ZN (’)))}.

(8% Ag[V; Q] O) := inf [ max [

and
(8% Ay [V; Q) = inf {kg(BzAh[V; Q:0): O C M\singV is open}, (22)
inda, (V; Q) := #{€ € N : 1 (62 Ap[V; Q) < 0}, (23)
nuly, (Vi Q) :=#{£ € N: 2 (8°Ap[V: Q]) = 0}. (24)

Remark 2 This approach to measuring the linear stability of (V; 2) restricts to variations X
that fix the singular set of V. This is how one usually defines the index of non-smooth V.
Are we potentially underestimating the index by only allowing deformations that fit sing V ?
This depends on the “size” of sing V.

(1) When H;_3(sing V) < 00, a cutoff argument of Federer—Ziemer ( [29, p. 89]) shows
that the stability of V is accurately captured by restricting to variations which are
compactly supported away from sing V.

(2) When the cutoff argument above fails (e.g., when Hg_3 (sing V) = o0) we are legiti-
mately in danger of underestimating the index.

Here is what is known about whether we fall under (1) or (2) when V occurs as the limit of
(i, &, hi):

(3) Whenn > 3, h; =0 and we have uniform bounds on indg, ,(u;), sing V has ambient
codimension > 8 (and is empty forn = 3, ..., 7) and we are thus in the situation of the
first bullet point. This was established in [11,13,24], crucially relying on the regularity
theory for stable integral varifolds of codimension-1 ( [30]).

(4) When n > 3 and we have uniform bounds on ind Eqp,; (#;) and mild non-negativity on
hi, it was recently shown in [4] (crucially relying on regularity theory for stable CMC
integral varifolds of codimension-1 from [2,3]) that sing V consists of two portions:

e The excisable codimension > 8 portion that was already present for ) = 0; and

e A portion that consists of “geometric” singularities where multiplicity-one sheets
of V touch other multiplicity-one sheets of V or other minimal (even-multiplicity)
sheets of V.

The latter portion is contained in a countable union of ambient codimension-2 subman-
ifolds, so it may or may not break the finiteness of HZ,’3 (sing V). It is an interesting
problem to understand the finer structure of the geometric singular set.

(5) When n = 2, the limit V has a singular set that consists of isolated points (unless
ind E ., (u;) is identically zero, in which case sing V is empty; see [23]). When sing V
is nonempty, the stability of reg V does not guarantee the stability of V. This is an
interesting situation that is to be addressed in separate work.

2.2 The E, j, functional

Let (M", g) be a closed Riemannian manifold. It is easy to see that the first second variation
of the energy functional in (2) along a direction v € C' (M) is

8Eeplul{v} = [4Ecplu+ wl],_, = /M [e(Vu - Vv) + W (wv + bv]dug, (25)
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43 Page 8 of 35 C. Mantoulidis

and, for critical points u of E; y, the second variation along a direction v € cl(M)is

§82E, y[ul{v, v} = [%E&b[u + “’]Lo - /M (190 + W] dpg. 26)

By analogy with (16), (17), (18) we define:

Je(82Eoplul) = inf[max [W ‘veF\ {0}]
. F is an £-dimensional subspace of C! (M) } 27)
and
indg, , (u) :=#{€ € N : Ae(87 E¢ y[u]) < 0}, (28)
nulg, , () = #{€ € N : (8, plul) = 0}. (29)

Remark 3 The objects defined in (16), (17), (18), (27), (28), (29) measure the variational
behavior of (¥; ©2) and u when critical points are constructed holding b fixed. This is done,
for instance, when one tries to construct hypersurfaces with prescribed mean curvature; see
[32,33]. In this approach, we are not interested (and do not control) the volume enclosed by
Q. Alternatively, one may wish to construct critical points by holding the enclosed volume
of Q fixed, or [}, u dug fixed, and instead giving up control on h. See Sect. 7.

3 Upper bounds for eigenvalues of 62E£,h ase—> 0

Theorem 4 Let (M™, g) be a closed manifold. Consider a sequence of critical points u; to
Ee; n; withe; — 0 and ||billw2p ) + Ee; 0 (il < E foralli, for p > n. Let V denote the
limiting varifold and 2 denote the limiting domain of (u;, €;), and b denote the limiting h;
after passing to a subsequence ¢;; — 0. Then, for any vector field X on (M", g) supported
away from the singular part of (V; 2), we have

¢! lim 8%E., g (ul{Vu-X,Vu- X} = 52A2661h[v; QUX, X} + /(V,,X n)2d||V].
i'— 00 e
(30)
Moverover, for every £ € N,

Ae(Ay 1, [V Q] > lim & A (Ee, 1, [u]). 31
280 h i—00 14 l’bt

Remark 5 Note:

(1) Theorem 4 and its corollary Theorem 1 (a) bound from above the index of the regular
set of the limiting (V'; €2) in terms of the indices of (u;, ¢;, b;). This generalizes what
was known for h; = 0 ([9]) to arbitrary b;.

(2) It is important to note that h; = 0 has a decided advantage over h; # 0O in that the
singular set of V is always (when n > 3) of high-enough codimension in (M", g) and
thus does not contribute to the index of V; see (3) in Remark 2. This makes the main
theorem of [9] applicable even across sing V (by (1) in Remark 2), which is not true
of Theorem 4 when h; # 0 and there are large geometric singular sets in the sense of
(4) or (5) in Remark 2.
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(3) Inaccordance with [28], one hopes generic background metrics g to have the property
that limiting (V'; £2) have no geometric singular set in the sense of Remark 2. This will
make Theorem 4 generically applicable across sing V.

In order to prove our upper semicontinuity variational result for (u;, &;, ;) as &; — 0, it
will be convenient to rederive the first and second variations of E¢, y, for a special class of
variations, called inner variations, which geometrically perturb the level sets of u;, rather
than analytically perturb u; as one does in full generality for (25), (26). This second method
was used in this setting with the same goal in mind in [9] assuming h = 0. We follow that
same method in this proof. For simplicity of notation, we write u, ), & in place of u;, b;, &;.

Proof of Theorem 4 Denote u' := u o @', where ®' : M — M, t € R, denotes the flow of
X. By the change of variables formula,

E.plu'l = / [%g|w’|2 +e ' W) + bu']dp,
M
= / [Lel(Vu') o @' F + e 7' W(u) + (h o @ )u]|J D' | dpsg. (32)
M

It will be convenient to introduce some auxiliary notation, following [9]:

Sx(Y1,Y2) =Vy, X - Vy, X,
hx(Y1,Y2))=Vy, X - Y2 +Y; -Vy,X = (Lxg)X1,Y2).
Asin [9]:
[1J@'[],_, =divX, (33)
[Z170")] _ = div(VxX) = Rie(X. X) +tre Sx — 3lhx [’ + (div X)?

= div(VxX) — Ric(X, X) + |[VX|* — }|Lxg|* + (div X)?, (34)

as well as:
[Z1(Vu') o ®'*],_, = —2VvuX - Vu, (35)
[%Kw’) ° <1>’|2] | = 2Rm(X, Vi, Vi, X) =2V, Vx X - Vu
=
+2|Vu - Vo X > 4 4(Vyg, x X - Vu)>. (36)
We also clearly have:
d t _
[5:(ho®)],_,y=Vh-X, 37)
52
[;7(5 ° q>’)] — VxVh- X. (38)
=0

From (32), (33), (35), (37), we get:

[%Ee.h[u’]],zo = /M[—e(vwx -Vu) +(Vh - X)u
+ GelVul? + e W) + bhu) div X] dpg, (39)

and from (32), (34), (36), (38), we find that
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43 Page 10 of 35 C. Mantoulidis

[%E&h[ut]][:o - /M [e(an(X, Vi, Vi, X) — Vg, Vx X - Vu
+ Vit - VoX |2 +2(Vyg, x X - W)Z)
+ (VxVh- X)u+ (Vxh - VyX)u
+ 2( — &(Vy, X - Vi) + (Vh - X)u) div X
+ (%gwmz relww + f)u)
: (div(VXX) —Ric(X, X) + VX2 = 1Ly g + (div X)Z)] dit,g.
(40)

Note how, for critical points, (40) reduces to:

[%Ee,h[u’]] 0=/;W[8<Rm(X,Vu,Vu,X)—|—|Vu~V.X|2+2(VVWXX‘VM)2>

1=
(VY- X)u + 2( — &(VyuX - Vi) + (V- X)u) div X
+ (%S|W|2 +e7! W(u) + hu)
: ( —Ric(X, X) + VX2 — L1Lxgl? + (div X)Z)] ditg. (41)

Letting ¢ — 0 in (41), invoking [14,21], passing to a subsequence accordingly (though
still denoting by ¢ — 0 for simplicity of notation), and denoting the subsequential limiting
varifold by V and the limiting enclosed domain (where u — —1) by Q and its outward
pointing unit normal by n:

1. d* t:l
‘o0 g]—%[dﬂ Eeplu] =0
- / [In Vo X+ 2(Vy, x X -1)? — 2(VaX - n)div X
+ VX[ = }|Lxg + (divX)? —try Rm(X, -, X) |d|[V |
—eg! / [b( — Ric(X, X) + [VX 2 — LLxgl + (divX)z)
Q
+ (VxVh - X) +2(Vh - X) div X] diig
+ ey / h( —Ric(X, X) + |[VX|* = }Lxgl* + (div X)2)
M\
+ (VxVh- X) +2(Vh - X)div X] ditg.
Note that

In-VoX > = (VaX -1)* + Vi X%,
n—1
2V, xX -n)* + |[VX]* = 1Lxgl = (VaX -n)* = ) (Ve, X - 7,)(Ve, X - T0),
i,j=1

where (7;);—1,..n—1 is an orthonormal basis for the tangent space at a.e. point of V. Thus,

.....
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—1 - 2
‘o 8111}) I:‘??Eg’b[ut]]tzo

= / [Z(V,,X )2+ |VEX? = 2(VuX - n)div X

n—1
= 3 (Ve X T)(Ve, X 7))+ (div X)? — try Rm(X, -, X) | d
i,j=1

—eg! / [6( = RicX, X) + VX = §1£xgl + (div X)?)
Q

+ (VxVh-X) +2(Vh - X) div X] ditg

e / b( —Ric(X, X) + |VX|* = Y Lxgl* + (div X)2>
M\Q

+ (VxVh - X) +2(Vh - X) div X] ditg

= / [(V,,X m)? + [VEX ) + (divy X)>

n—1
= 2 (Ve X T)(Ve, X 1) — g Rm(X, -, X0 |d |V
ij=1

— ¢! / [6( = RicX, )+ VX = J1£xgl + (div X)?)
Q

+ (VxVh-X) +2(Vh - X) div X] ditg

+eg! / b( = Rie(X, X) + [VX? = }|Lxgl? + (div X)?)
M\Q

+ (VxVh-X) +2(Vh - X) div X] ditg.
We recognize, from (11),

/ [(V,,X )%+ [VEX 2 + (divy X)2

n—1
— Y (Ve X )V X )~ e Rm(X. - X) |V
ij=1
2 _ .
= [Frewian] - [aw vxxavi+ [@axmay)

t=

We also recognize, from (34),

/Q [h( —Ric(X, X) + |[VX|* — $|Lxg|* + (div X)2)

4 (VxVh - X) +2(Vh - X) div X] diig

= [:11722/ bd“g] _f [Vh - VxX + bdiv(Vx X)] dpg
>1(Q) =0 Jo

Vi

. (42)

(43)
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and, similarly,
/ [h( —Ric(X, X) + [VX2 — L|£xg + (div X)l)
M\Q
+ (VxVh - X) +2(Vh - X) div X] ditg

=% f hdug| ~ f [Vh - VxX +hdiv(VxX)]duy  (44)
1 (M\Q) =0 M\Q

From (42), (43), (44), and integration by parts, we deduce that
-1 1 d? t _ |2 —t -1
! im [ Eetel] Ly = [ (1o wvion 2" [ wan)]
— / divy Vx X d||V||—/ [Vh -VxX +bdiv(VXX)]dug.
Q

+/(an~n)2d||V||.

The first and second integrals of the right hand side cancel each other out since (V; Q) is a
critical point of A, e by [14,21]; (30) follows.

We proceed to the eigenvalue estimate in (31). Write £ := reg V. Fix n > 0, and let
O C M \ sing V be such that

W82 Ayt [V Q1 0) < hp(82Agec1 [V QD) + 1. 45)
Let F be an ¢£-dimensional subspace of C Cl (ZNO; N(2NQO)), chosen so that

52A2ealh[v; QIX, X)
[1X2d|V]

< AZ(SZAzealh[V; QL O)+17, forall X € F\{0}. (46)

We can easily extend each of the vector fields X € F to an ambient vector field supported
away from the singular set of (V; ©2) and with V,X = 0 along £ N O. It is easy to see that
the linear mapping

F>X— (Vu-X)e LX(M)
is injective for sufficiently small ¢ (see, e.g., [9, Section 4], for these details). It follows that
{(Vu-X): X € F} C L*(M)

is £-dimensional. From (30), (45), (46), and the convergence (X - Vu)? dpLg—\e()|X|2 d||V|
as ¢ — 0([14,21]), we have:

lim e~ ' A¢ (82 E, plul) < A¢(82A,,1,[V: Q1)) + 21
e—=0 ’ ¢ b

The result follows since n > 0 is arbitrary. O

4 Multiplicity-one asymptotics: &, £2, and o(&?)
The analogous lower semicontinuity variational results for (u, €, h) as & — 0 are more

subtle than their upper semicontinuity counterparts from Sect. 3, where we only needed to
use the existence ( [14,21]) and regularity ( [4]) of the weak limit as ¢ — 0. For the lower
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semicontinuity, we need a sharp understanding of the regularity of u near {u = 0}, before
taking the limit ¢ — 0. It was shown in [14] that in the O (¢)-scale around “most” points of
{u = 0}, u looks approximately like the one-dimensional solution H : R — (—1, 1) of

H” = W/(H), H() =0, 47

even in the presence of higher multiplicity and/or of f. For our purposes, we need to find the
expansion of u up to order o(g?):

u(y,z2) =H(e ') +e[ -]+ &[] +o(e?), (48)

with y € {u = 0} being the interface coordinate and z being the vertical coordinate off
the interface. This is the necessary order of approximation in order to obtain the lower
semicontinuity relations between (u, ¢, §)) and the ¢ — 0 limit (V; Q).

When h = 0, the 8[ - -]-term was determined and exploited for regularity purposes in
the foundational paper of [26], even allowing for many sheets in {u = 0} (i.e., in high
multiplicity). This was further refined in [7,27].

The next term in the asymptotic expansion of u encodes the interference between sheets
of {u = 0} and is &?|loge|[ - - - |, rather than &*[ - - - ], in the presence of high multiplicity;
see [8]. This obstructs one’s ability to relate the variational structure of (u, ¢, ) to that of
(V; 2). However, this generally doesn’t occur unless the solutions (u, €, ) are extremely
variationally unstable, in which case no lower semicontinuity result is to be expected of
(u, &, b); see [7,27]. So, to get a proper lower semicontinuity result, one needs to restrict to
multiplicity-one, as we are doing here, where we can indeed verify that the next term in the
asymptotic expansion is 82[ . ] When §) = 0, the O (g?) behavior in multiplicity-one was
determined and exploited in [7].

In this section, we deduce both of the 8[ e ] and 82[ e ] asymptotics without the extra
assumption of h = 0, in the case of multiplicity-one convergence.

Remark 6 Besides extend to h # 0, the results we present here simplify the corresponding
multiplicity-one results in [26,27] and [7]. We still follow the strategy of [26]. We do not,
however, pursue the higher multiplicity regularity question that was pursued in these papers.
For geometric applications, in accordance with [16,32,33], and (a’)-(b’) of the introduction,
one generally expects (and must verify!) multiplicity-one convergence. See also Sect. 7.

Throughout the section, we work in a Riemannian manifold (M", g), n > 2. Our approxi-
mation results are purely local, so we need not assume (M, g) to be closed or even complete,
provided we take care to work away from its boundary.

In what follows,? let us fix o € (0, 1) and assume that we’re working inside a precompact
open set O C M where the ambient metric g is C 5 close to Euclidean,

5

> " 10%(gij — 8ij)l < noon O, (49)
=0

for some small 9 > 0. For the solution (u, ¢, §) of (1), we assume that for some &g, Eg > 0:
e < e, lu| < EgponO, (EgpL O)ul < Eo, [Ihllcseo) < Eo, (50)
and for some By € (0, 1), ¢o > 0:

e|Vu| > cg' > 00n ON{Jul <1 - o}, (51)

2 These are all the same assumptions as in [7, Section 2.1], with slightly more regularity on the background
metric g to streamline the exposition, and of course the added single-sheeted assumption.
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which forces Vu £ 0 and thus all level sets in O N {|u] < 1 — Bo} to be smooth, as well as
that A = V(Vu/|Vu|) satisfies:

|A| + &|VA| + e2|V2A| + &3V Al <coon O N {lu] < 1 — Bo); (52)

cf. [7,(2.3)—(2.7)] for estimates up to V2 A; the estimate on V3 A follows using the additional
regularity we are assuming on g in (49). We assume that

':=0nN{u=0}

is a connected smooth submanifold and that (possibly after rescaling) we have well-defined
Fermi coordinates

(y,2) € By x (=2,2) C O

off I, where B{O indicates a fixed geodesic ball within I" that is diffeomorphic to a disk.
In these Fermi coordinates, g, denotes the metric induced on the constant-z hypersurfaces
parallel to I', and II,, H, denote their second fundamental form 2-tensor and mean curvature
scalar with 9, taken as the “outward” normal. With this convention,

I,(X,Y)=Vx0, Y for X, Y tangent to I', H, = tr, I, and
A=Ay + H9, + 2.

We will write Vr, Ar, Iy, Hr, rr in place of Vg, Ag,, g, Hy, 9;|r. Note that a geometric
consequence of (49), (51), (52) and the Riccati equation

Ly, T, = T2 —Rmy(-, ;, d;, )

is the following c3 bound (i.e., C3 bound in the ¢-scale) on the second fundamental forms
I,z (-2,2):

|0 |+ & Ve, I | + &2 Vo I |+ 2|V, T | <) (53)
for some ¢; = c¢1(n, no, cp). For any f : B{O — R (independent of z) we have:

‘Cazvng = _2HZ(ngf’ )

Ly Vi f = -V§ L, (54)

Ly Ag, [=—2(I, V(if)gz — (Vg Hz, Vg, fg.:

see [7, Appendix A]. Together, (53), (54) culminate in the e-scale estimates:

[ ¢
> e NI(Ve, = VD) fllckwy < crlzl Y eIV Fllerw)- (55)
k=0 k=0
for{ =0,1,2,3,any U C B{O, and a possibly larger ¢; = c1(n, ng, co)-

Fix 8, € (0, 1) throughout. We define the cut off heteroclinic H:R > (-1,1 given
by:3

H@) = x (™ 0H() + (sign)(1 — x (™1)), (56)
where x indicates a smooth cutoff function such that
x (@) =1fort e (—1,1), sptx C (=2,2). (57)

3 We use a wider cutoff than in [7,26]. One might also use the cutoff of [7,26] after analyzing the exponential
decay rate of the auxiliary function I defined in (72). We do not pursue this here.
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The exponential asymptotics of H (1 F A exp(—+/ W"(£1)|¢]) as t — Fo00) give:
H = W ®lcsw) = 0 (58)

Throughout, all O (-)-notation and o(-)-notation will be used under the assumption that we’re
sending ¢ — 0.

Using the implicit function theorem and the multiplicity-one condition, as in [26, Propo-
sition 9.1], one can produce an auxiliary function / : B{O — R such that

1l e gy = 0(©) (59)

and
2 = —
f 2(u(y, 2) —He '@ = h))H (67 (z — () dz = 0 (60)

forall y € Bfg. Throughout the paper, C¢ and C5% denote the standard e-scaled weighted
Banach spaces whose norms are:

4
1Fllce =Y e I fllces N lgea := 1 fllce + &IV fla (61)

k=0

Our goal is to get an expansion for u — H in terms of &, €2, and o(g?). To that end, we
first compute the PDE satisfied by Hs'(z — h(y))) in Fermi coordinates (y, z) off I'; cf.
[7, (2.18)]. For simplicity, we write

e (y, 2) := H(e ™' (z = h(»))),
H,(y.2) :=H (¢~ (2 — h(y))).
H,(y.2) :==H (¢~ (c — h(y))).
H, (y.2) =H"(e"" (e = h(y))).
and
I = (—3e!7% 3¢17%),
Note that, by (59), H,(y, z) = &1 forz ¢ L. On Bly x (—1, 1):
e? AH, = e*(Ag, + H, 0, + 87)H,
= (1 + |V hHH, 4+ e(H, — Ay h)H,
= W'(H,) + e(Hr — Arh)H,
+&(H, — HP)H, — £(Ag.h — Arh)H, + |V hPH, + (H, — W' (Hy)).

Taylor expanding in around z = O (i.e., around I'), using the Riccati equation, (53), (54),
(58), (59) we deduce that on Blr9 x (=1, 1):

e2AH, = W'(H,) + e(Hr — Arh)H, — e(|Ir |* + Ric(nr, nr))zH,
+ 010,06 (VER, Ve ZH, + (01,04, (Vrh) H, + O1 0.  (62)

Throughout, O1,0,4,:({ f;};) denotes a term R that is bounded by
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IRI < CY Il IRlcow < CY N fillcows l6dyRI < C Y 1fj]+ledy, f]
4 - .

J J

ledyRllcoe < € Y 1 llcoe + llefil oo (63)
J

in the domain in question, with C > 0 fixed as ¢ — 0. We emphasize that derivatives in
(63) are only taken along directions y; parallel to I', i = 1,...,n — 1, (because we will
sometimes wish to differentiate along y;) and that the Holder seminorms are standard (e-
weighted) Holder seminorms in both y and z, as in (61) (because we will use Schauder
theory). In what follows, (53) gets used repeatedly though implicitly when obtaining O1,0,¢.¢
bounds.

Throughout this work, we will frequently rely on the fact that

sup |z/¥|H@ (2)| < oo forallk, £ €N, € > 1, (64)
zeR

to control terms such as zﬁ;; this estimate follows from the exponential decay of H(®).
Following [7], we set

¢ =u—H,.
Together, (1) and (62) imply that, on Bfg x (—1,1):
2Ap =¢eh+ W () — W (H,)
— e(Hr — Ar)H, 4 (/I [* + Ric(nr, nr))zH,
+ 01.0,0.6(EVER, VERH, + (010,60, (V) H, + 01,0.0.6(6%)
=eh+ W' H)p + 3 W H)¢> + (01,0.0.6(9))’
— e(Hr — ArH, + (| I [* + Ric(nr, nr))zH,
+ 01,0,0.6(€VER, VERH, + (01,0,0.6 (Ve H, + 010,06 (6%),
ie.,
e2Ap — W' (H)¢
=¢eh — e(Hr — Arh)H,
+&(| I |* + Ric(nr, nr))ZH, + W (He)e?
+(01,0.0,6@)* + 010,06 VPR, VeM)ZH, + (0010 (Vem) H, + 01 .06 (%),
(65)

Remark7 We split up the right hand side of (65) into three lines according to the order of
contribution of each term once sharp estimates have been derived. The first line is O (¢), the
second is O (¢2), and the third is o(&2).

Following [26, (10.2)], we project (65) onto I" by dotting with ﬁ; along the z coordinate
(see Appendix A). We get that, on Blrgz

26(-,0) — @0 + (¢, H) 2r) (Hr — Arh)
= —2[(3:H(-, 0)) + (| I |* + Ric(nr, nr))|h
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+ 01.0.0.6(E2VED, eVrd) + &7 (01.0,0.6(eVr ) 4+ 67 (01.0.0.6(#))°
+ & 0100:@) +e 1010060 + 01,0,4,:(62). (66)

We will later refine the &~ (Ol,o,o,,g(qb))2 term. By (66) we have, on B};:

£ + (¢ H) 2 r) (Hr — Arh) = 2eh(-, 0)
+01,0,0,6(E%) + (010,06 (e*VED, eVr e, ¢))%, (67)

This form of (65), (67) is convenient (and powerfully exploited in [26]) in that one can
use the stability of the one-dimensional model operator j—; — W”(H) to estimate ¢ in terms
of the right hand side of 82A¢ — W”(H,), while at the same time using (67) to estimate the

term e(Hr — Arh)ﬁ/E that appears in the right hand side of (65); see Appendix B for an
exposition in this multiplicity-one setting. By an iteration scheme we find that:

—1 o
& ”h”C}a(BFs) + ||¢”C52.0((B{‘8><(71’1)) - 0(8) (68)
We may in turn plug this estimate into (66) to also find that:
I1Hp = Arh =265 "0, )| v gr ) = Oe). (69)

While the eh term of (1) curtails the estimate one can get on ¢ in (68) (cf. [26, Section 15]),
one does still get the improved estimate on horizontal derivatives of ¢ as in [26, Section 13].
The point is that, when we take the tangential derivative of (65), the effect of the tangential
derivative of the term that was previously the bottleneck, £h, does not scale like O (¢~') as
all the other terms do. Thus, as in [26, Section 13] (see Appendix B) one has:

_ 2
”Vrh|lcgzv“(31[‘7) + ||8vr¢”c£2~°‘(3}"7x(71,1)) = 0(8 ) (70)
This in turn lets us refine (69) to (cf. [26, Section 15])*
Hr —2¢5'9(-, 0) = Octa(e). (71)

Remark 8 One can similarly estimate the mean curvature of {u = 7} fort < % Bo by working
with i + €7 in place of / in Fermi coordinates off I'; := {u = 1}.

Now, in order to get the full e-term in (48), we adapt (and simplify) the ansatz of [1]° and
consider an auxiliary correction function: the unique bounded solution I : R — R of

() — W/ (H(0))I(t) = 1 — 2e5 "H/ (), 1(0) = 0. (72)

This I converges exponentially to I(o00) = —1/W”(£1) as |t| — oo. For the existence and
exponential asymptotics of I we refer the reader to [1, Lemma B.1, Remark B.3]. Having an
exponential tail, as H does, I also satisfies:

sup z|F[I® ()| < co forallk, £ €N, £ > 1, (73)
zeR

and, moreover, cutting off I as we did H in (56), we denote:

I(t) := x (*DI(t) 4+ I(xoo) (1 — x (e%1)), (74)

4 We note that [26, Section 15] only states the C?‘a estimates. Higher order estimates were derived in [26,
Section 13] in the form of Ws1 P estimates, and were allured to in [27, Section 7] in the form of Csl’a estimates.

5A key difference with [1] is that we are trying to understand an arbitrary solution, not a particular solution
with tailored asymptotics.
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so that
I — W' EI 1+ 265" H O3 ) = ). (75)
We similarly denote:
Te(y, 2) =T~z — h(»)),
Ly.2:=TE" @ ho.
L(y.o)=1"C-hm.
As before, we compute, using (53), (54), (58), (64), (73), (75):
e2A(ebl,) = 3p AL, +263Vh - VI + 3 (AR,
= 3 (Ag, + H,d, 4+ 02 +262(0.h — V.- Vo WL + 01 0,06(e%)
= eh(|Ve.hPT, — e(Ag. ML) + 29 H.I. + &bl + 2620, + 010,06 (%)
= eh(W' ([ )T + 1 — 2¢5'H,) + 20 H,I, 4 26230, + O1,0.0.6(c>)
= W' (Hp)ehLe + eb — 2ehey ' H, + 20 H I, + 26200, + 010,06 (%)
= W (H)eble + eh — 2e(h(-, 0) + (3:0) (. 0)z + 01,0,0.c(1)z2)eg 'H,
+ €20, 0) + 01,006 (D2) (Hr + 010,06 (DDI;
+262((3:0) (-, 0) + 01,0.0.e (DD, + 010,06 (%)
= W (H,)ebl, + £h — 2ee5 (-, )T,
—2e¢5 " (@:0)(-, 0)zH, + €2, 0 Hr I, + 262(3:5) (-, O)T, + 01,006 (e”).
ie.,
e2 A(ebl,) — W (H,)ebl,
= eb — 2e¢, ' B(-, 0)H,
— 2¢e¢5 1 (0.0) (-, 0)H, + 2[H(, O Hr +23:0) ¢, O]L + O1.00.c(6%).  (76)
Plugging (76) into (65) gives an equation for
é:=¢ — &bl (= u — Hy — ebl,),
which is:
20§ — W' (Ho)$ — 3 W (He)d(d + 2¢D])
= ¢[2¢5'0(-,0) — (Hr — Arh)]H,
+e[(|Tr > + Ric@rr, nr)) + 2¢5 ' (0:5) (-, 0)]<H,
— &[0, 0 Hr +2(3:h)(-, 0)]L,
+ 22 W FT + 01,006 (8). (77)
Notice that all terms on the right hand side are ch,a (¢2), while the extra term on the left

hand side that is not part of the stability operator is 0.2.« (1)¢3. As before (see Appendix B),
i _ 2
”d)”Cg’a(B}“ﬁX(—l,l)) - 0(8 ) (78)
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This in turn lets us further refine (71) (see Appendix A) to (cf. [7, Lemma 5.5])

| Hr = Arh = 26500, 0l cou g, = O(eD). (79)

r
(Big

Finally, we compute the g2-order terms in (48). To do so, we consider the unique bounded
ODE solutions of

I (t) — W' (@) I(t) = tH'(¢), J(0) =0, (80)
K"(1) = W/ H@)K () = I'(r), K(0) =0, 81)
L (1) — W' (HO)L@) = W HE)IE)*, LO) = 0. (82)

Again, we deferto[1, Lemma B.1, Remark B.3] for the existence and exponential asymptotics
of J, K, L. Similarly to before, denote

Je(v,2) = Iz = h(»)), Ke(y,2) =K~z = h(»)), Le (3, 2) = L~ (2 = h(»))).

(We do not need to truncate these ODE solutions.) Denote:
¢ = — &’[(| Tz |” + Ric(ns, nx)) o My + 2¢; ' (3:H)(-, 0)]J;
+ &2 [, 0)(Hs o Tx) + 2(3:h) (-, 0)]Ke — 36°h7Le,

where ¥ is the C%® limit of " as ¢ — 0, which has Hy, = 2851 hlx, and Iy is the projection
onto X. Working as we did to get to (76), and using (68), (70), (79), (80), (81), (82), we find
that

2 Ag — W' (He)p = o(e?), (83)
near I" so, arguing as in [7, Proposition 5.6], we find that, near I':

é = o(c?). (84)

5 Lower bounds for eigenvalues of 62E; ; as € — 0

Theorem 9 Let (M", g) be a closed Riemannian manifold. Consider a sequence of critical
points u; to Eg; v, withe; — 0, ||hi||c3~°f(M)+E8i,hi[”i] < Eforalli, anda fixeda € (0, 1).
Let V denote the limiting varifold and 2 denote the limiting domain of (u;, €;), and b denote
the limiting §; after passing to a subsequence ¢y — 0. Assume V is a multiplicity-one
varifold associated to a smooth hypersurface ¥ C M. Fix Ao € R. For sufficiently small
e>0,

#{eigenvalues L < Ao (with multiplicity) ofSQAg,[V; Ql}

> #{eigenvalues . < kg (with multiplicity) ofSZES,h[u]}.
Note that Theorem 9 together with (31) also implies:

Corollary 10 For any € € N, let 1¢(Ay[X; Q]) and A¢(E y[u]) denote the £-th eigenvalues
ofézAb[Z; Q] and 52E57h[u], respectively. Then

Ae(Ap[E; Q]) = lim e he(Eg p[ul). (85)
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Remark 11 Theorem 9, Corollary 10, and their consequence in Theorem 1 (c), bound from
below the index-plus-nullity of a smooth, multiplicity-one limiting (V; €2) in terms of the
indices-plus-nullities of (u;, &;, ;). This generalizes what was known for h; = 0 from [7,
Theorem 5.11] (cf. [6]) to the setting of arbitrary b;.

Given the sharp approximations in Sect. 4, the argument for Theorem 9 can be modeled
after [7, Theorem 5.11]. Aspects of the original proof in [7] have been simplified. We also
encounter certain other difficulties coming from the h term that we resolve.

As before, we denote I' := {# = 0}; it is a smooth closed hypersurface, and converges to
SinC*%ase — 0 by (68), (69). We introduce the notation:

Que(t,8) = fM [6VC - VE + & W/ W)eE] dpsg. £.E € C(M),

Qr(¢,%) = /r [(Vr¢ - Vré — (T > + Ric(ur, nr) 4 265" (3:h)(-, 0))¢€]

dur, ¢, € C™().

These quadratic forms relate to the second variations of E [u] and AQ?JI b [T']in (26) and

(15)—though, keep in mind that I" is not a critical point of Ay[-]), so Qr isn’t its second

variation. It will be convenient to work locally within a fixed n > 0 tubular neighborhood
U C M of T, and further denote:

Qﬁ’,g(;,a=/M[6V;~V$+e‘1W”(u>cs]dug, ¢, E e C®WU).

Consider an arbitrary w € C*(U). Working in Fermi coordinates (y, z) € I' X (—n, n) =
U over I', we may decompose w as:

w(y. z) = wl )EL(y. 2) + b (. 2)) + w(y. 2), (86)

where
/n wh(y, z)(ﬁ;(y, 2) + shﬁ;(y, 72)dz =0foreveryy e T. (87)
-
As in [7, Section 5], one has:
fu w”dpg = &(eo + o(1) /r W dur + (1+ o(1)) /M (W) dpg. (88)

We will need the following important lemmas regarding the behavior of Q%s with respect to
this decomposition. Their proofs are given at the end of the section.

Lemma 12 For ¢ > O sufficiently small, and all f, g € C*°(T'):
Qo (f (H, + ebl,), g(H, +ebl,))
= &% Qr(f, g) +o(sz>/ (Ve fP?+IVrgl* + f2+ g*]dur.
r

Lemma 13 For ¢ > O sufficiently small, all f € C°°(I"), and all v € C*U) satisfying
(87):

QU (f (H, + sbl,), w)

=06 [ 1V 1P + 2] dur +001) [ [e1Vol +70 dis.
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Lemma 14 There is a constant y, > 0 so that for ¢ > O sufficiently small and all w € C*°U)
satisfying (87):

Qﬁ{g(w, w) >y /u [5|Va)|2 +5_]a)2] dug.

These lemmas have a few straightforward but important implications. Together with (88),
they show that for all ¢ > 0 sufficiently small and all w € C*° (),

Ql,f’g(w, w) > —8]/2/ w? dug (89)
u

for some fixed y» > 0. (See [7, Lemma 5.10].) Using also that W”(u) > « > Oon M \ U
for ¢ > 0 small, we note that (89) implies that

Qu e (w, w) > Qﬁg(w,ww/ e IW (wyw?
MU

dpg > —8)/2/ w?dpig +871K/ w?dug
u MU

and thus we get the strong L? localization estimate
/ w?dpg < C(A)azf w?dpg, provided Qy (w, w) < 8A/ w?dig. (90)
M\U u M

Let us now show how Theorem 9 follows from these facts.
Proof of Theorem 9 Denote

Iy, := #{eigenvalues A < Ao (with multiplicity) of 62A;J [V; ]},
I, := #{eigenvalues . < gA¢ (with multiplicity) of (SzEg,h [u]}.

From the variational characterization of eigenvalues of 82Ah [V; ], the discrete nature of
the corresponding spectrum, and the C2 convergence of I' = {u = 0} to %, there exist y3 > 0
and functions fi, ..., fry : I' = R such that

or(f. f) zkofrfzdur+V3/F[|Vrf|2+.f2]dur 1)

for all f € C(I') satisfying (f, Sidr2qry = Oforeveryi = 1,..., Is. Consider the linear
map Zr : L>(I') — R!Z given by

Ir(f) =S, ey - S er))-
Using (88), (91), and Lemmas 12, 13, 14, we find that for all w € C*° () with wl € ker Ir,

Ol (w, w)

= QY (! (H, + ehL,), w! @, + ehL)) + QY, (wt, wh) +20Y, (w! H, + ebI,), wh)

> e%(eo —o(l))Qr(w”,w”)+o(e2>f [IVrw! > + wh?] dpr
r
+71/ [elVw™ P + 67 (wh)?] dug
u

o) [ (190wl P+ @l P dur -+ o) [ [Vt e 2 dig
r u
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> 8220-)»0/(10”)2 dur +&%e - %73/ [IVrw! > + wh?]dpr
r r
+%y1f [elVwh? + e~ (wh)?] dpg
u
> cGa-+ ) [ wldu, 92)
u

for some y4 > 0.

We now prove that I, > I.. Let wy, ..., w;, € C°°(M) denote an L?(M)-orthonormal
set of eigenfunctions of Q,, . with eigenvalues < X¢¢, and set:

Wr = span{w‘]‘, A wus} c Cc®).
If Iz > I failed, there would exist w € span{wy, ..., w,}\ {0} with w! € ker Zr. By (92),
sko/ wrdpg > Que(w, w) = Y (w, w) > e(ro + y3)f w? dpg,
M u
which implies that w = 0 on M by (90), a contradiction. O
Proof of Lemma 12 We have:
— =/ — =/
QY (f (H, + bl,). g(H, + £bl,))
n . _ _ -
= 1 [~ er@ el a + Het + 92, +eTL)
—nJI
+ 7 W) fo T, + ebll)? | dpsg, dz
n — - — =/
— [ [ [V @+ b Vi (o EL + b))
—n 1"
—/ =/ 2 =/ — =/
- Hng(Hg + 8{)]18 + & (azh)ﬂg)(Hg + Shﬂg)
e fo(W" () (HL, + ehl,) — H, — &b, — 2623 h)I, — &3(32H)L.)
- (L, + ebl) ] dpg, dz. 93)

We compute/estimate the terms in (93) one by one. We will repeatedly use Cauchy—Schwarz,
(56), (64), (70), (73), (74), dig, = (1 + Hrz — $(|Ir |> + Ric(nr, nr)z® + O(D)z)dur,
and H, = Hr — (| Ir |2 +Ric(nr, nr))z 4+ O(z%), which follows from the Riccati equation.
We thus have:

n — - — -
[ [F 6V, (F(F. + ehT.)) - V. (g(FL + ebT)) dug, dz
-n

1 — =
= f /Fs((Vrf)(l + O()z)(H, + bl,)
-n

— e FHL V. h + &b, Ve h — 62 (Ve D))
((Vre)(1 + 0()2)(H, + ebl,)
— e g Vo h + &bl V. h — 2 (V. )LL) (1 + O(2)dpr dz

=ezeo/vrf~vrgdur+o<sz>/ (Ve /P + Vgl + £2 + ¢]dpr.  (94)
I I
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Next, using (68), and the integral identities
/ H”H/ dZ = 07 and / ZHHH/dZ = —% / (]H[/)z dz — _%307
R R R
and (70), we have:
n /==
— g H, feH H, dug dz
-1
]
= [ [ e = Q10 P Rictnr mez + 002 g
—nJT
H,H, (1 + Hrz + O()z}) dpr dz
/ Hr fg / H/H, dz
2 . 2 " ===/
dur + [ (1r P + Rictr.np) — # fo[ [ EE, dz]apr

+o(?) /F \feldur

= —Leoe? / (I * + Ric(nr, nr) — HE) fg dur + o(e?) / [£% +¢*]dur.
r r

Next, using (68), (69), (70):
- /n / H.fg - ebl, - H, dug, dz
—nJT
n = —
= —/ /(Hr +0M)z2)fg-ebl, -H, 1+ O0(M)z)durdz

/H”]I’dz /Hrfgdur+0(8 )/[f +¢°]dur,

i
and
N ==/ =/
—/ AHng-H€~ebH£dugzdz
-0
n _ -
= —/ /I:(Hr +0)z)fg- H;/ : 8[311; (I'+0Mz2durdz
-1
= —%eoaz[/ H”H/dz]/ H? fgdur +0(82)/ [f%+¢*]dur,
R r r
and

—/" / H.fg-[ebI, - ebl, + 2@ D)L, - H, + e2(@.h)L, - ehl, | dpug. dz
—n JT
=0(82)/Ff8d,ur-

Next, using (68), (78), (84), the fact that

I[/// _ W”(H)H/ — WW(H)H/H _ 2261H//’

95)

(96)

CD)

(98)
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and the decomposition u = H, + ehL, + EQGJJg + 2agK, + e2ar L, + ¢~>, with

ay = |Ig |> + Ric(ny, ns) + 2361(3zb)("0),
ag = —h(, 0 Hs —2(9:H)(-, 0), aL = %hZ,

we have:
[ [ et B - o6t 2620, - @i |,
+ebI,) dug, dz
=/'7 /Fe—‘fg[w”(u)(ﬁ;Jrshﬁ;)—W”(m)(ﬁ;+ebﬁ;)—w”’(ﬁ£)ﬁg.ehﬁs
-
+ 2e¢5 O, — 262(2.b)I, )] (. + ebI) dpu,. dz
+oe) [ [+ dur
=e! /W /rfg[W”(u) — W/ H,) — W (H,) - 8hﬁg](ﬁ; +ehl)? dug, dz
-1

+f : /F fe[ W (o) - et 1,1 +2¢5 0L, — 20 @)L, |, + ebIL) dg, d
+oe) [ [+ ¢ dur

[ 1 [ 7¢W Eo sl + sl + au L) E, + ebL,? du, dz
+1e /" /rfgw””(ﬁs)hzﬁ(ﬁ;+shﬁ;)2du& dz

-n
+s/1/rfgw”’(H£)h2H;H8(H;+sm1;)dugz dz
+2€61/n frfghﬁg(ﬁ’sﬂhﬁ;)du& dz
-

2 | : [ 7T, + et .z
+o(82)/r[f2+g2] dur

—s / ! /F FeW” (He)(agde + axKe + aLLe)(H,)? dpg. dz

-1
de [0 [ rew @one. 0P du. a:
-

+e [ 1 fr feW" ([ He)b (-, 0 LI, dpu, dz

n oy —_
+2eg‘/ /fgh]I-]IZ(H;—i—sh]I;)dugZ dz
—JT
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n ==
_2e f / Fo@:0)(, OTH, dug, dz
—nJr

+o(?) / [£2 + ¢*] dpr. (99)
r

We estimate the terms of (99) individually, leaving the highest order term for last. We repeat-
edly use the fact that polynomially growing functions u : R — R satisfy

f W (H) - u - (H)?dz = / H' - (" — W (Hyu) dz,
R R
which is easily checked by integration by parts. Thus, we have
/ W (H) - J- (H)? dz = —1Le,
R
which implies, together with ' — X in C? and dug, = (1 4+ O(1)z)dur, that
7 " T \2
8/ / FeW  (He)ayde (H,)" dpg, dz
—nJr
= —3e08’ / (1Ir [ + Ric(nr, nr) + 2¢5 ' (9:h) (. 0)) fg dpur + o(e?)
r
/[fz_i_gz]dm_' (100)
r
Next, we have:
/ WW(H) K- (H/)Z dz = / HNH/,
R R
which implies, together with (69) and dug, = (1 + O(1)z)dur, that
K " T \2
8/ / FeW " (He)agKe (Hy)" dpg, dz

——booe?| [ B0 de] [ 17+ 455" ety 00 Fediar + 06 [ [+ 6] dr.
(101)

Next, we have
/ W (M) - L. (H)?dz = / H'W" (H)I? dz,
R R
which implies, together with (69), djug. = (1 + O(1)z)dur,and I' — X in C2, that
n _ _
e[ [ rew @oal @R du az
—JT

= gegSZ[ / W’”(H)HZH”dz] / HEfgdur + o(e?) / [f*+g*]dur. (102)
R r r
Next, we have by (69) and dug, = (1 + O(1)z)dur:
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n _ .
le / / FeW"" (He)b(-, 012 (H,)? djug, dz
—nJT
= %e%ez[/l; W””(H)HZ(H’)Zdz] /r HZfgdur +0(82)/1: [f*+g*]dur. (103)
Next, we have by (69) and du,, = (1 + O(1)z)dpur:

n _ —— —
£ / f feW" @ )b (-, 0)° LI, dyeg. dz
- r

Bl

= legez[ / W (H)I'TH' dz] / H2 fgdur + o(e?) / [f2+¢*]dur.  (104)
R r r
Next, we have by dug. = (1 + O(1)z)dur:
n ==/
—28/ /rfg(azh)(uO)HSHg dpg, dz
-n
=22[ [ wraz] [ @0 fedur +o@ [ [+ dur. (109
R r r
Finally, using
/ H'H dz = 0, / H'H dz = — e,
R

R

and (69), and dje, = (1 + Hrz + O(z%)dur, we have
2" [ 1 | 7L, T i,
=2¢' f_ 1 fr £2(5(,0) + ()¢, 0z+0 (N EH, (1 + Hrz + 0(12?) dur dz
+2e5‘s/" /ngh(.,ofﬁﬁ;du& dz
-
==& [ (.0 + )0 fgdur
w2 [0 ac] [ fene 07 dur+ o [ [+ anr
= —lege? /F (HE +2¢5 0:0)(, 0) fe dur
+ %eogz[AH”H’dz]/rHﬁfgdur +0(82)/F [£2+ g2 dpr. (106)

We now collect terms. Up to error terms, the integrands that show up are:

Vrf-Vrg, (Ir|* +Ric(nr, nr)) fg, (:6)(,0)*fg, and HE fg.

Among them, Vr f - Vrg only appears in (94) with a coefficient of ¢q, contributing
2082/ Vrf-Vrgdur
r
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to (93). Next, (| I |* + Ric(nr, nr)) fg only appears in (95), (100), with a total coefficient
of —%eo — %eo = —eq, contributing

—ep / (IIr |? + Ric(nr, nr)) fg dur
T

to (93). Next, (3;H)(-, 0) fg only appears in (100), (101), (105), (106), with a total coefficient
of —1 — Z[fR H'T dz] + Z[fR H”}Idz] — 1 = =2, contributing

- /F 3:5)(. 0) fg dur

to (93). Finally, Hl%fg only appears in (95), (96), (97), (101), (102), (103), (104), (106), with
a total coefficient of

Leg+ %eo[/ T dz] - %eo[/ H'T dz] - %eo[/ H'T de
R
+§e3[ / W”’(H)HZH”dz + i / W (H)I* () dz + 1e5 / W”’(]I-]I)}I/]I]I-]I’dz]
R
- %eo + %eo[/ H'T dz]
R
= 1¢f f [W”(EIPH] dz = 0,
R
thus not contributing to (93). The lemma follows. O

Proof of Lemma 13 We have:
QY (f (, + &bl,), )
= /':/F [ —ew - (Ag, + H,0, + 02)(f(H, + ¢bl,))
+ e W e f (L + shﬁ;)] dyig, dz
= f 1 /F 6V, Ve (P +eb)) — Heoo f (L +eb], +6(0:0)L,)

o f (W (u)(H, + ehl,) — H, —ebl, —262(3,h)I, — 83(335)1))] dpug, dz.
(107)

We estimate the terms in (107) one by one. We have, by (70):
n _ _
/ / Vg0 Vo, (f(H, + b)) dpu,,
—nJI

n — —/
= / / e(1+0()2)Vrw - [(1 + 0(1)z)(Vrf)(]HI£ + sb]lg)
—nJT
— e F LV h + b Ve h — 2 (Ve DI ] (1 + O(D2)dur dz

n —
= / f e(Vro - Vr HH, dur dz
-1 N

+o(52)/ [IVrf12+ f2]dur +0(1)/ [elVol* + e w?]du,.  (108)
r u
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In the last step, we used Cauchy—Schwarz. Note that Vrw' - Vrw! = g{f ayl.w” aij{
whose two first factors are independent of z, and that, since w satisfies (87) for all y:

N el —1 n —//
Oy, H, dz =¢ 3y, h)wH, dz.
-1 -n
Using this to estimate the first term in (108) via (70) and Cauchy—Schwarz, we deduce:
n — =
Vg @ Vg (f(H, +ehly)) dpig,
—nJT
= o(e?) / (Ve £+ f*]dur +o(1) / [elVol* + &7 o] dp,. (109)
r u
By Cauchy—Schwarz again, the boundedness of H,, and exponential decay of ﬁ;, ﬁg:
K =1 =/
H.of (ebl, +&(3;h)L,) du,, dz
—nJI
:0(82)/ frdur —I—o(l)/ e w? dpug. (110)
r u
Likewise:
n _ -
/ /F e o f 2200, + 3(2N)T,) dung. dz
-1
:0(82)/ frdur +0(1)/ e ' dug. (111)
r u

We are left trying to estimate

7

/_: /r 5_1wf[ — eHH, + W ) (H, + b)) — H, sf)ﬁ;”] diig. dz
= /'7 /F g*lwf[ — eH.H, + W"(H,)(H, + ebL,) + W" (H,) (ebl, + $)H,
-n
— W@, — sh W)L, - bW EIE,L +2¢5 o0,
+ OEO M, + [I.) + 0" dpg, dz
= /1 /F (0@, + L)+ 0) |of duy, dz

=o(82)/rfzdw+a(1)/ue*1w2dug. (112)

Above, we used u = H, + ¢hl, + </3 to expand W (u), (78) to estimate ¢3; we expanded
H, = Hr + O(1)z and used (79) to bound Hr — 2ealh; and, in the last step we used
Cauchy—-Schwarz. The lemma follows by combining (107), (108), (109), (110), (111), (112).

O

Proof of Lemma 14 This is the same as in [7, Lemma 5.8]. It is a consequence of the strict
stability of — % + W’ (H) once we work orthogonally to its kernel using (87). O
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6 Proof of Theorem 1
Proofof (a) This is a consequence of Theorem 4. O

Proofof (b) If Sect. 4 applies, then the C*>% convergence follows from (69), Remark 8, and
Schauder theory. To that end, it suffices to arrange (50), (51), (52). This is done as in [7,
Theorem 3.4], provided we can arrange for (51) (this is where n = 3 and stability were used
in [7]). If (51) failed for ¢ — 0, we could take a sequence of counterexamples (u;, &;, b;)
satisfying (50), with &; — 0 and &;|Vu;(p;)| — 0 for some p; € {|u;| < 1 — By}. Passing
to a subsequence, u;(g; (- — p;)) would converge to a solution of Au = W/(u) on R”
with Vu(0) = 0. This solution would also have to have density 1 at infinity, by virtue of
monotonicity. Thus, by [25], it would have to be a rotation of the heteroclinic solution, which
has a nonzero gradient, a contradiction. O

Proofof(c) If ©®(V,-) = 1 onspt || V||, then spt || V|| is smooth by [14] and Allard’s theorem
[22]. Therefore, Sect. 5 applies and the result follows by Theorem 9. O

7 Open questions

Some interesting directions in the variational study of multiplicity-one solutions of (1) that
merit further investigation:

(1) Self-tangencies. What can be said about the index of V without treating self-tangencies
along smooth pieces as parts of the “fixed” singular set? Can one devise settings in
which self-tangencies do not occur? (cf. [28].)

(2) Isoperimetric variational problem. The index and nullities considered in this paper
are the variational quantities that one can control through a min-max construction of
critical points that fixes . See Remark 3. However, one may instead wish to fix the
enclosed volumes, thus giving up exact control of h. See [5,20]. This alternative setting
can be referred to as the isoperimetric (i.e., fixed volume) setting. The regularity and
asymptotics from Sect. 4 can apply to the isoperimetric setting too. However, one
needs to modify Theorems 4, 9 to fit into the isoperimetric setting. Modifications of
both theorems include subtle points.

(3) Uniqueness. When ) = 0, it was shown in [12] that multiplicity-one critical points
(u, €, 0) near nondegenerate minimal surfaces coincide with those constructed by
Pacard [19] and, a posteriori, must also coincide with those in the earlier work of
Pacard—Ritore [20]. The proof used the sharp asymptotics derived by Wang—Wei (
[26]). Given the sharp asymptotics for the general b setting now obtained in Sect. 4,
one should be able to prove a corresponding uniqueness theorem.

Acknowledgements The author would like to acknowledge Constante Bellettini, Otis Chodosh, and Xin Zhou
for helpful conversations on constant mean curvature hypersurfaces. The author was supported in part by NSG
Grant No. DMS-1905165/2050120/2147521.

A Derivation of (66) and (79)

In what follows, (53) gets used repeatedly though implicitly when obtaining O ¢, «,s bounds.
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We project (65) onto I' by fixing y € Bfg, dotting with ﬁ; (y, z) and integrating over z.

We start with the left hand side. We differentiate ¢ L ﬁ/g along y and use (54) to get:

/ez(Angb)ﬁ; dz=/52(Ar¢)ﬁ;dz+/ 2 (Mg — Ard)H. dz
R R R
= —/ 82¢(Arﬁ£)dz—/ e2(Vro) - (Vrﬁ;)dz
R R

+/ £2(Ag.d — Ard)H, dz
R

:f¢(8(Arh)ﬁ;’—|Vrh|2ﬁ;”)dz+/ e(Vre) - (Vrh)H, dz
R R

+/ e2(Ag. ¢ — Arp)H, dz
R

= S(Arh)/ ¢ﬁg dz+¢- 01,0,a,8(¢)(01,0,a,£(vf‘h))z
R

+e-01,0,0,:(EVre) - 01,0,0,6(Vrh)
+62. 01,o,a,e(82V1%¢, evre).

Next, integrating by parts yields and using ¢ L ﬁ; again:

/ &2 H. (9. ¢)H, dz = — / e H T, dz — / e2(0. Hy)pH, dz
R R R

= —/ e(Hro + 0(1)z)ﬁ;’dz—/ 2 (0. H.)¢H, dz
R R

= —¢Hr /beﬁg dz 48 - 01.0.4.6(0).
Next, integrating by parts twice yields:
/R [67(02¢) — W' (H)G]H, dz = &> - 01,06 ().
We move on to the right hand side of (65). We have:
/R ebH, dz = /R £(B(-0) + (:0)(, 0)z + O 1o (N H, dz

=262h(-, 0) + 26*(3;H(-, 0)h + 010,06 (e).

Next:
/RE(HF — Arh)(H,)? dz = eeo(Hr — Arh).
Next:
/1;80 Ir |2 + Ric(nr, nr))zﬁ; dz = 282(| Ir |2 + Ric(nr, nr))h.
For now, we estimate:

/R %W’”(ﬁe)qﬁzﬁ; dz =¢-(01,0.4.:@)%,
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though we will refine this estimate later once we get a more precise form of ¢. Finally:
f [(01.0.0.6 (@) + O1.0.0,6 (€VER, Vrh)ZH, + (010,06 (Vi) H, + 01,0,0.6(e¥)]H, dz
R

=& (01,0,0,6(0)° + 8% 01,006 (eVER, Vrh) + & - (01,0,0,6 (VF))I* + 010,06 (6.
(120)

At this point, (66) follows from combining (113), (114), (115), (116), (117), (118), (119),
(120), and finally estimating & by ¢ as in [26, Lemma 9.6].
Finally, let us assume we have a more refined ansatz for ¢, namely:

¢ = (Z) + 8[719
where qAS = 0],0,%5(82). Then, we can replace (119) by
f SW (H,) ¢ H, dz
R
PR 727
— e / Ly @) 2H, dz + 010,00 (%)
R
_ ,27
=g’ / LW (H) (B, 0) + 010,06 (DL H, dz + O o (e?)
R &

—_ ,27
= &°h(-, 0)° / W ENLH, dz + 010.0.6(*) = 01006(%), (121)
R
where in the last step we’ve used (68) and the fact that, by parity,
/ W (H)I*H dz = 0.
R

Now, (79) follows from the same equations, with (121) replacing (119).

B Derivation of (68), (70), (78)

This section is meant to simplify and condense the exposition in [26, Sections 11-13] by
exploiting the multiplicity-one setting. It is borrowed from collaborative notes written with
O. Chodosh. In this appendix we will assume, without loss of generality, that W”(+1) = 2.

Lemma 15 Consider w € C>(R") and f € CO(R"™V) so that, for (v, z) € R* ' xR = R",
Agi-1w(y, 2) + 2w (y, 2) — W/ HE@)w(y, 2) = fO)H (2).
Then, there is some ¢ € CZ(R*™1) so that w = c(y)H'(2).
Proof We mimic [19, Lemma 3.7]. Write
w(y,z) = c(H (z) + w(y, 2)
where (% w(z, y)H'(z)dz = 0 for all y € R"~!. We thus find that
H'(2) Aga-1¢(y) + (320 (y, 2) — W/ HE@)D(Y, 2) + Age-10(y, 2)) = FO)H (2).
Multiplying by H'(z) and integrating, we find that Ag.-1c(y) = f (), and so
2Zw(y, 2) — W HE@)W(Y, 2) + Agu1(y, 2) = 0.

At this point, the proof that w = 0 is identical to [19, Lemma 3.7]. O
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Lemma 16 Fix o € (0, 1). Then, we can choose L > 0 and C > 0 depending on o, and
K > 0 sufficiently large depending only on W with the following property. Suppose that

e2(Ary + 029) — W/ (H) Y =& i, (v, 2) + fo(y, 2) + D £ (v, ) (122)

on BrFHL‘E X I;. Then, for ¢ > 0 sufficiently small, either
| eK _,
¥ lcogsr ) < 2E'(O)ey" sup / ¥ (v, DEL(z — h(y)) dz
YEB 5y, 1Y EK
or

r+

W llcoasy s = 0 (W llesar,,, ) + 1 Aillcoegr )

+C (12lcogar, i + sl cesr . ay + 1Wlcorsnn )
where J¢ 1. denotes the points of 1, that are within L of d1,.

Proof First, choose x : BT

++2re —> [0, 1] a cutoff function that is 1 on BrF and has support
in BVFJFLE. We can arrange so that e L|Vr x| + 82L2|V12~)~( |2 = O(1). Now, by replacing ¥ by

X ¥ and absorbing the resulting error terms into f>, it is clear that it suffices to prove that

||‘ﬁ||c0(3’!‘><18) <olfi ||Cg'a(3rr+ngXIs)

+€ (12lcogar i + sl cposr . ay + 1Wlcosrsn )
(123)

assuming that v is supported in Brr+ 1. X I, and satisfies (122) and
2

sup

r
yEBr+2Ls

eK _, 1 , B
/ B Y (v, DH, (z — h(y)) dz| < EH ) eoll¥llcogpr1,)- (124)

Assume, for contradiction, that (123) fails. Then, there are C, L — oo as ¢ — 0 so that

>
W llcosrxay = ol fill coagpr ,

r+2Le

+C <||f2||c0(BF xI) T ||f3||cg,a(3’{*+2L€X1£) + ”w”CO(B,FxJS’L)) .

Choose x = (y,z) € BI x I, attaining I¥llcocsr«r,)- Set Z = e~17. We first assume
that 7 — Z as € — 0. The case that Z is unbounded as ¢ — 0 follows from a similar,
but simpler argument, as we describe below. Dividing the equation by =£||v/ || co Bl xI,) and

regcaling around x to scale ¢ (labeling rescaled quantities with a tilde), we find that 1/~/ ) =1,
v ”CO(BL) =1,

~ ~ =~ . ~ =~/ - ~ ~rs
Ap + 029 — W)Y = fIH 2 — 2 — e 'h(y) + A, 2+ DifiP (v, 2),
on By, and finally
1 filcoaqs,) < o'y and || Allcos,) + I f3llcowg,, = o).

Hence, fz — 0in C%(By) and f;i) — 0in C%*(B;). Moreover, fl is bounded in C%%(By).
We can thus find fl e COoR" 1) 50 that fl — fl in Co’a/(R"_l) fora’ < a.

loc
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Similarly, by C'-%-Schauder estimates we see that v/ is uniformly bounded in C'* on
compact subsets of R”. Thus, there is i € Cllo’g (R")NL%(R") so thatyy — 1 in Clté" (R™).
Integrating by parts against a test function, we see that 1} weakly solves

Apn1 Y + 029 — W/(HGz — 2)¥ = ()H (z — 2).

Schauder theory implies that ¥ € C2%(R"). By Lemma 15, we have that = c(y)H'(z—2).
Because ¥(0) = 1 = ||/ || o(rn), we see that Z = 0 and ¢(0) = H'(0)~!. Thus, we see that

K ~
/ 70, M (2)dz = H'(0) 'eg + O(eV2K)
—-K

Returning to v, we thus find that

eK

o DHL(z — h(y))dz

sup

r
YEB, e

= (B¢ + 0™ ) + o) ¥ llcoar s,

as ¢ — 0. Taking K sufficiently large this contradicts (124) for ¢ sufficiently small.
Finally, if the case that Z — oo, then repeating the same rescaling as above (but using
H(t) —> £1 ast — £o0), we find ¥ € Clzo’g(R”) N L*°(R™), with ¥ (0) = 1 and so that
Arn ¥ — W (£1)§r = 0.
Because 1/A/ attains its maximum at 0, we see that 1/Af = 0, a contradiction. O
We note how the first alternative of Lemma 16 can never apply to ¢, provided K is chosen
sufficiently large. Indeed, it follows from (60) that

eK —
K¢>(y,z)Hg(y,z) dz

= V (v DHEL (7.2 dz| < Ce VK (v. )l o, -
I \[-¢K.,eK]

(125)

—&

Therefore, for sufficiently large (but fixed) choices of K, the second alternative of Lemma
16 must always hold when ¢ = ¢.
Let us use this fact to prove (68). We first note that (65) and (64) imply

e2A¢p — W' (He)p = —e(Hr — Arh)H, + 01 0.0.6(€D. £2) + (01,006 ($))?
+ (01,0,0,6 (eVER, Vrh))?

= —e(Hr — ArH, + 01,0,4.6(6) + (01,00 (€ VE, £Vrd, $))2,
(126)

where the second equation follows from the first from our bounds on the prescribed function
b our ability to control the height adjustment / in terms of ¢ ( [26, Lemma 9.6]).

Fix o € (0, 1). We apply Lemma 16 in Blr9 x I, togeta CY estimate on ¢ in B{Q_%L x I
(using (55) to treat e2(A — Ar — 83)(1) as a right hand side term), which can be enlarged to
a CY estimate on Bf‘)fzaL x (—1, 1) with at most an O (¢) error using the decay of ¢ off I'.
Then use Schauder theory on (65), (66) and again [26, Lemma 9.6], and absorbing the terms
that are quadratic in ¢ we get:

ol c2epr, w11y T IHT = Arhll o pr

19—4eL

= O—(”¢HC3’D[(BIF9><(—1,1)) + |Hr — Arh”Cgv“(B};)) + Clgv (127)
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for a fixed C” > 0. Iterating this procedure on 3{974,6% xIgfork =1,..., M|loge|, where
M depends on o € (0, 1) but not ¢, yields the ¢ estimate in (68) and thus also (69).

We move on to verifying (70). Differentiating (65) in the directions parallel to I (i.e., in
y; in Fermi coordinates) we see similarly to (126) that:

2 A(edy,¢) — W (H,)(edy, ¢) = —e(edy, (Hr — Arh)H, + R (128)
where the error term can be estimated (using (68)) by:
||R||Cg.a < Ce? + C(52||V1§eay,.d>||cg,a + e||Vr88y,.¢|ICg<a + ||eay,.¢>||cga)z

Next, one differentiates (60) in the horizontal directions to show, similarly as in (125) but
also estimating the error term (¢, ayﬂ;m, that

eK .
‘ f TS DHL(y, ) dz| < Ce VK [y, ) (3, Mo, + Ce>. (129)

Lemma 16’s first alternative can only hold for ¢ = €9y, ¢, then, in case ||€dy,¢|| = 0%
(which is smaller than the worse upper bound we wish to prove, and thus does not break the
applicability of our previous strategy). Arguing as above, using (128) instead of (126) yields
(70).

Finally, we establish (78). Recall that, by (69) and (77), ¢ = ¢ — ehl satisfies:

2 A¢ — W' (Ho)p = Ooa(e?), (130)
The function é satisfies an estimate similar to (129), namely:
eK R _, 3Ky 2 ;
‘ d(y, DH (v, 2)dz| < Ce™ V" @(y, Ilcoq,y + Ce”. (131)
—e¢K

Thus, as before, Lemma 16’s first alternative can only hold for ¢ = 43 then, in case ||<1A§|| =
O () (which is smaller than the worse upper bound we wish to prove, and thus does not
break the applicability of our previous strategy). The rest of the argument goes through as
before, applying (130) and (131) instead of (128) and (129).
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