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Abstract

We present the first results from Citizen ASAS-SN, a citizen science project for the All-Sky Automated Survey for
Supernovae (ASAS-SN) hosted on the Zooniverse platform. Citizen ASAS-SN utilizes the newer, deeper, higher
cadence ASAS-SN g-band data and tasks volunteers to classify periodic variable star candidates based on their
phased light curves. We started from 40,640 new variable candidates from an input list of ∼7.4 million stars with
δ<−60° and the volunteers identified 10,420 new discoveries which they classified as 4234 pulsating variables,
3132 rotational variables, 2923 eclipsing binaries, and 131 variables flagged as Unknown. They classified known
variable stars with an accuracy of 89% for pulsating variables, 81% for eclipsing binaries, and 49% for rotational
variables. We examine user performance, agreement between users, and compare the citizen science classifications
with our machine learning classifier updated for the g-band light curves. In general, user activity correlates with
higher classification accuracy and higher user agreement. We used the user’s “Junk” classifications to develop an
effective machine learning classifier to separate real from false variables, and there is a clear path for using this
“Junk” training set to significantly improve our primary machine learning classifier. We also illustrate the value of
Citizen ASAS-SN for identifying unusual variables with several examples.

Unified Astronomy Thesaurus concepts: Variable stars (1761); Eclipsing binary stars (444); Stellar rotation (1629);
Light curves (918); Stellar classification (1589); Catalogs (205); Surveys (1671)

1. Introduction

Variable stars are some of the most useful astrophysical tools
as they are used to probe many aspects of stellar evolution and
galactic structure. Eclipsing binaries allow the derivation of
empirical calibrations for fundamental stellar parameters such
as mass and radii (Torres et al. 2009). The period–luminosity
relation of Cepheids is crucial to probing cosmological
distances (Leavitt 1908; Freedman et al. 2019; Riess et al.
2018). The short period δ Scuti variables allow us to study the
scaling relations between stellar parameters (effective temper-
ature, surface gravity, density, etc.) and astroseismology
(Hasanzadeh et al. 2021). For researchers to truly utilize these
systems, it is important that they be discovered and classified.

The search for new variable stars is now dominated by large
surveys. This includes surveys such as the All-Sky Automated
Survey (ASAS; Pojmanski 2002), the All-Sky Automated

Survey for SuperNovae (ASAS-SN; Shappee et al. 2014;
Kochanek et al. 2017; Jayasinghe et al. 2018, 2021), the
Asteroid Terrestrial-impact Last Alert System (ATLAS; Heinze
et al. 2018; Tonry et al. 2018), the Catalina Real-Time
Transient Survey (CRTS; Drake et al. 2009), EROS (Derue
et al. 2002), Gaia (Prusti et al. 2016; Brown et al. 2018),
MACHO Alcock et al. 2000, the Northern Sky Variability
Survey (NSVS; Woźniak et al. 2004), the Optical Gravitational
Lensing Experiment (OGLE; Udalski 2004), and the Zwicky
Transient Facility (ZTF; Bellm 2014).
ASAS-SN is a wide-field photometric survey that monitors

the entire night sky using 20 telescopes located in both the
Northern and Southern hemispheres (Shappee et al. 2014;
Kochanek et al. 2017; Jayasinghe et al. 2018). ASAS-SN
detects variables and other transients in the process of finding
bright supernovae (Holoien et al. 2016). For the initial
V -band catalog of variables, ∼60 million stars were classified
through machine learning techniques, resulting in a catalog of
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∼426,000 variables, of which ∼220,000 were new discov-
eries (Jayasinghe et al. 2020, 2021).

Using machine learning techniques to identify and classify
variable stars is particularly efficient for common variable
classes and other known phenomena. However, some object
classes are ambiguous and noise or systematic errors will
sometimes confuse the classifiers. We can address this problem
by using citizen science to classify variable star candidates in
ASAS-SN along with machine learning. Citizen science may
also more effectively identify rare phenomena compared to a
machine learning classifier due to their scarcity in the training
data (Alhammady & Ramamohanarao 2004). The ASAS-SN
citizen science project, Citizen ASAS-SN, is hosted on the
Zooniverse10 platform and aims to assist in the classification of
variable stars. The Zooniverse is the worlds largest hub for
citizen science; in recent years, it has hosted many successful
projects that often lead to serendipitous discoveries (Trouille
et al. 2019).

Here we analyze the first results of Citizen ASAS-SN. We
examine the classifications made by the citizen scientists and
their ability to correctly label variable stars from their light
curves. Through their classifications, we have discovered
10,420 new variable stars and flagged many interesting
variables for follow-up studies. We find that citizen scientists
can reliably separate “junk” sources from real variable stars and
distinguish between pulsating variables and eclipsing binaries.
We also outline our new g-band machine learning classifier and
discuss its performance compared to the citizen scientists. In
Section 2 we describe the ASAS-SN data used to generate light
curves. Section 3 discusses the new g-band machine learning
classifier. We outline the details of Citizen ASAS-SN in
Section 4, along with an analysis of the classifications made by
the citizen scientists. In Section 5 we compare the machine
learning and citizen science classifications. We highlight some
of the interesting variable stars our users encountered in
Section 6 and discuss the utility of citizen science in identifying
such systems. We present a summary of our work in Section 7.

2. The ASAS-SN g-band Catalog of Variable Stars

Starting in 2014, ASAS-SN began surveying the sky in the
V-band with a limiting magnitude of V 17 mag and a
∼2–3 day cadence using 8 telescopes on two mounts in Chile
and Hawaii. Each ASAS-SN camera takes 3 images with 90
second exposures for each epoch. The field of view of an
ASAS-SN camera is 4.5 deg2, the pixel scale is 8 0 and the
FWHM is typically ∼2 pixels. ASAS-SN uses image
subtraction (Alard & Lupton 1998; Alard 2000) for the
detection of transients and variable sources. Since 2018,
ASAS-SN has shifted to the g-band and expanded to 20
cameras on 5 mounts, adding new units in South Africa, Texas,

and Chile. All of the ASAS-SN telescopes are hosted by the
Las Cumbres Observatory (LCO; Brown et al. 2013). When
compared to the V-band data, the g-band data has an improved
depth (g 18.5 mag), cadence (24 hr in the g-band versus
∼2–3 days in the V-band), and reduced diurnal aliasing due to
the longitudinal spread of the ASAS-SN units.
As our input source catalog for this project, we used the

refcat2 catalog (Tonry et al. 2018). For this paper, we
selected all sources with declinations δ<−60°, g< 18 mag
and r1< 30 0, where the refcat2 metric r1 is the radius at
which the cumulative G flux in the aperture exceeds the flux of
the source being considered and is a measure of blending
around a star. After applying these selection criteria, we were
left with ∼7.4 million sources. We extracted their g-band light
curves as described in Jayasinghe et al. (2018) using image
subtraction (Alard & Lupton 1998; Alard 2000) and aperture
photometry on the subtracted images with a 2 pixel radius
aperture. We corrected the zero-point offsets between the
different cameras as described in Jayasinghe et al. (2018) and
calculated periodograms using the Generalized Lomb-Scargle
(GLS, Zechmeister & Kürster 2009; Scargle 1982) algorithm.
Candidate variable sources were identified using various cuts

in light curve (for e.g., median magnitude, root-mean-square
deviation, and string length statistics) and GLS periodogram
statistics (power and false alarm probability) as summarized in
Jayasinghe et al. (2019). The Citizen ASAS-SN workflow
presently focuses on the classification of periodic variable stars,
so we did not include non-periodic sources in this work. We
required that the false alarm probability for the period is better
than 10−7 for sources with median magnitudes fainter than
g= 16.5 mag. Figure 1 shows the distribution of variables by
their average g-band magnitude. Variable sources with
magnitudes of g� 11.5 were considered to be saturated. Note
the peak at the faint end of the distribution. It comes from
removing some candidate selection criteria used by Jayasinghe
et al. (2018) with consequences we did not fully appreciate at
the time (see Section 4.4).
The final product of this paper is the first installment of the

ASAS-SN g-band catalog of variable stars. This includes
classification data from our updated machine learning classifier
as well as the input from our citizen scientists. We also include
supplementary data from crossmatches to existing photometric
catalogs. The revised catalog is available at https://asas-sn.
osu.edu/variables.

3. g-Band Machine Learning Classifier

The machine learning classifier used for ASAS-SN’s V-band
variable catalogs is extensively described in Jayasinghe et al.
(2019a). It was based on a scikit-learn (Pedregosa et al.
2018) random forest model that was trained to distinguish
between broad variable types using features which included
light curve statistics, Gaia distances, and multi-band10 Zooniverse:https://www.zooniverse.org/.
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photometry. While this classifier was extremely accurate at
identifying common variable types, it often mislabeled rare
phenomena and light curves with systematic errors.

We retrained the random forest classifier described in
Jayasinghe et al. (2019a) using features from our new g-band
data. The training set for this updated classifier is the same as
that used previously. We included two additional features
based on the Lafler–Kinmann (Lafler & Kinman 1965;
Clarke 2002) string length statistic (LKSL). We calculated
the LKSL statistic T(t) on the temporal light curve using the
definition
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from Clarke (2002), where the mi are the time ordered
magnitudes and m is the mean magnitude. We also calculated
the LKSL statistic sorting the light curve based on phase for
both the best GLS period and twice the best GLS period, which
we will call T(f|P) and T(f|2P) respectively. For the two new
classification features, we used the difference in the Lafler–
Kinmann string length statistics ordered in phase using the best
period and ordered as time,
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The ML classification pipeline automatically corrects the
period as described in Jayasinghe et al. (2019b). The updated
RF classifier classifies sources into 7 broad classes (CEPH,
DSCT, ECL, LPV, RRAB, RRc/RRd, and ROT) which are
subsequently refined into sub-classes (see Jayasinghe et al.
2019a). The overall precision, recall and F1 parameters for the
updated RF classifier are 94.4%, 95.3% and 94.7% respec-
tively. An important feature of the ML classifier to keep in
mind is that it only provides a probability for the type of
variable. There is no equivalent of the ”Junk” class available to
the citizen scientists in large part because there was no training
set to define it.

4. Project Description and Results

Volunteers working on Citizen ASAS-SN are shown images
with light curves phased by both the best GLS period and twice
the best GLS period along with the observed light curve. Our
goal was to address several simple but common problems
distinguishing between variable types (such as RRc RR Lyrae
variables and EW eclipsing binaries). For eclipsing binaries,
the best period returned by the GLS periodogram is often 1/2
of the orbital period, which is why the light curve phased with

twice the best GLS period is shown. When phased with the
correct orbital period, the light curves of eclipsing binaries
show a distinct separation of the primary and secondary
eclipses allowing for their accurate classification; this behavior
is shown in the example light curve shown in Figure 2. The
observed light curve is useful for identifying long-period
variables such as Miras, and evolving variables like rotating
spotted stars.
We designed our project workflow to be easy to navigate and

accessible to a wide array of volunteers. Because we expect no
prior knowledge of variable star classification, we first present
users with a tutorial that details the classification process and
summarizes the science. Volunteers also have access to a field
guide that describes common variable stars and their light
curves. Our workflow tasks users to determine the correct basic
classification, selecting between three broad classes (Pulsating
Variables, Eclipsing Binaries, Rotational Variables), choosing
the option “Unknown Variable” for ambiguous cases, or
flagging the light curve as “Junk”. Figure 2 shows an example
of the workflow. As users get started, we present them with a
variety of “gold-standard” (GS) candidates that have been
classified by the science team. These GS variables provide the
user with feedback on their classifications to train them in the
process. As users make more classifications, GS variables

Figure 1. Number distribution of the mean g-band magnitudes for the
candidate variable sources with δ < −60°. Retrospectively, the peak at faint
magnitudes mainly consists of false positive candidates located near field edges
(see Section 4.4). In Jayasinghe et al. (2018) these were removed by several
candidate selection criteria that were relaxed when we selected variable
candidates for this project.
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become less frequent and the user begins to classify new light
curves.

We released Citizen ASAS-SN for public use on 2021
January 5th, and it has since accrued over 3000 volunteers and
∼800,000 classifications. We launched the project with a set of
40,640 variable candidates around the South celestial pole
(δ<−60°). In addition to the basic classification, our users
pointed out many interesting variables on the project’s Talk
forum. We designed the workflow so that a variable candidate
stops being shown to users once it has reached a retirement
limit of 10 votes. If the number of “Junk” votes reaches 5, then
the candidate is retired early. Once every subject was retired,
we tallied up the number of votes each candidate received in
each category. We then assigned each candidate a “most voted
label” which describes the most popular variable type chosen
by our volunteers. If a tie occurred for the most popular vote,
the most voted class was chosen randomly between the tied
options.

A breakdown of the most voted class for each retired variable
is shown in Table 1. Of the three main variability classes
(Pulsating Variables, Rotational Variables, and Eclipsing Vari-
ables), the Rotational Variable class was voted the least
common, making up only 12% of the total. Pulsating variables,
eclipsing binaries, and junk variable classifications were 28%,
29%, and 30%, with less than 1% classified as Unknown.

4.1. Cross-matches to External Catalogs

We cross-matched our initial subject set of 40,640
candidates with previously classified variables stars in the
AAVSO VSX (Watson et al. 2006), OGLE III (Poleski et al.
2012), and OGLE IV (Kozlowski et al. 2013) catalogs using a
matching radius of 16″ and found 16,750 matches in VSX,
1132 matches in OGLE III, and 2560 matches in OGLE IV.
The VSX catalog contains all the variables previously
identified by ASAS-SN (Jayasinghe et al. 2020). After
excluding the Junk classifications, our volunteers discovered
10,420 new variables. Known eclipsing binaries made up the
majority of the matches with VSX, while pulsating variables
appear to be the most common match in the OGLE catalogs. A
breakdown of the number of candidates accounted for by VSX,
OGLE III, and OGLE IV candidates is shown in Table 1 along
with the full candidate set. Table 1 also gives the average
probability defined as the ratio between the number of votes for
the most popular classification and the total number of votes
which we will refer to as the classification strength.
Our volunteers were able to recover 99%, 95%, and 99% of

the previously cataloged VSX, OGLE III, and OGLE IV
variables respectively. If we define the classifications in these
catalogs as the “true class” and the the most popular Citizen
ASAS-SN classification as the “voted class”, we find the
confusion matrix shown in Figure 3. Our users could reliably
distinguish between the three broad variability types, with
pulsating variables as the most identifiable. Overall we found
that our users correctly identified 81% of known eclipsing
binaries, 89% of known pulsating variables, and 49% of known
rotational variables. The poor performance on the rotational

Figure 2. Citizen ASAS-SN workflow for classifying periodic variables. (Left)
2 phased light curves and the observed light curve. (Right) Possible
classifications for users to select. This variable would best be classified as an
Eclipsing Binary.

Table 1
Breakdown of the Number of Most Voted Classifications for each Variable Type, Including those found the AAVSO VSX (Watson et al. 2006), OGLE III

(Poleski et al. 2012), and OGLE IV (Kozlowski et al. 2013) Catalogs

All Candidates Eclipsing Binaries Pulsating Variables Rotational Variables Unknown Junk

N Candidates 40,640 12,292 11,621 4529 161 12,037
In VSX 16,750 9018 6230 1320 29 153
In OGLE III 1132 214 819 43 1 55
In OGLE IV 2560 464 1989 75 0 32
Average Probability 0.72 0.77 0.72 0.53 0.40 0.75
New 10420 2923 4234 3132 131 0

Note. The variables listed as unknown are those with nonspecific classifications such as MISC or VAR.
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variables was expected because the morphology of their light
curves can vary widely, leading to inconsistent classifications
(e.g., Thiemann et al. 2021).

4.2. User Performance

For our first set of candidates, a total of 2298 volunteers
participated in Citizen ASAS-SN and they made 403,626
classifications. Of these, 370,277 were of the variable
candidates and 33,349 were of the gold-standard variables.
We found that 1594 users made classifications from accounts
registered with the Zooniverse platform, while 704 users made
classifications from unregistered accounts. The registered users
contributed to 95% of the total classifications, while unregis-
tered users contributed 5% of classifications.

The next metric we considered was how correlated our user’s
votes were with each other for each variable type. To do this,
we computed a “Classification Strength” P as the ratio between
the number of votes for the voted classification type and the
total number of votes. This metric would be P= 1.0 if all user
classifications agree for a particular variable candidate. There is
a lower bound of P= 0.2, where the 10 votes were evenly
divided over the five possible classifications. In Figure 4, we
show the distribution of classification strengths for each
variable class. The mean classification strength was highest
for eclipsing, pulsating, and junk variables with averages of
〈P〉= 0.78, 0.73 and 0.74 respectively. For candidates most
voted as Rotational Variable and Unknown Variable, there are
more disagreements between users with mean classification
strengths of 〈P〉= 0.53 and 0.37 respectively. The low
classification strength for rotating variables is in agreement
with the poor performance shown in Figure 3. Given the nature
of unknown variable types, a low classification strength is to be

Figure 3. The normalized confusion matrix between the citizen science voted
classifications on the horizontal axis and the true class classification based on
the AAVSO VSX, OGLE III, and OGLE IV catalogs.

Figure 4. Normalized distribution of classification strengths for each variable class.
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expected, as the class was designed to encapsulate difficult to
classify variables and anomalous light curves.

In Figure 5, we show the confusion matrix (see Figure 3) for
4 ranges of classification strength. As the classification
strengths increase, the performance of the citizen scientists
improves for the eclipsing, pulsating and junk categories. But
for rotational variables, a higher classification strength does not
translate into better performance. In fact, their performance was
worst in the higher classification strength bin, although this
could be a statistical fluke because few rotational variables had
such high classification strengths.

Light curves for variable candidates with high classification
probabilities (P= 1.0) are shown in Figures 6, 7, and 8. Our
users all agreed on their classifications of these candidates and
found them easy to classify. We show examples of candidates
that our users had difficulty classifying (i.e., with low
classification probabilities, P< 0.5) in Figure 9. Sources with

low classification probabilities typically displayed atypical
pulsation patterns or were near our detection limits.

4.3. Grading

The average user of Citizen ASAS-SN made ∼17 classifica-
tions, of which ∼3 were for Gold Standard (GS) targets and
∼14 were for our new candidates. The distribution of the total
number of new candidate classifications made by each
volunteer is shown in Figure 10. We graded each user based
on the number of times they agreed with the most popular
classification as a proxy for the correct classification. Users
with very few classification submissions produce the peaks at
0.0, 0.5, and 1.0. We divided our users into active and inactive
groups, where an active user was one who submitted more than
the median number of non-GS classifications (NClass > 14). The

Figure 5. Confusion matrices for known variable classes against voted classes binned by classification strength (P).
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Figure 6. Light curves for a random sample of pulsating variables, with classification probabilities of 1.0, meaning all classifiers agreed on the variable type. The
machine learning classification and its probability PML are given in the upper right corner.
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Figure 7. Light curves for a random sample of rotational variables, with classification probabilities of 1.0, meaning all classifiers agreed on the variable type. The
machine learning classification and its probability PML are given in the upper right corner.
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Figure 8. Light curves for a random sample of eclipsing binaries, with classification probabilities of 1.0, meaning all classifiers agreed on the variable type. The
machine learning classification and its probability PML are given in the upper right corner.
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Figure 9. Light curves for candidates with low probability classifications; classification probability < 0.5. Users found these light curves difficult to classify. The
machine learning classification and its probability PML are given in the upper right corner.
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distribution of the grades and total classification count for the
users is shown in Figure 10.
While 2298 users classified objects, only 1,982 classified

some of the new candidates and the remaining only looked at
GS targets. We only assigned grades to users who classified
non-GS light curves. Of these, 975 were active and 1007 were
inactive. Although inactive users were the majority, they
contributed a negligible number of classifications. Of the
370,277 candidate classifications, 365,652 (99%) were made
by active users. The median number of classifications made by
active users was 59 while inactive users had a median of 3.
Table 2 summarizes the user performance for all, active, and
inactive users. As shown in Figure 11, the active members of
the project outperformed the inactive group in terms of voter

Figure 10. Distribution of the users in their number of classifications and their grade defined by the fraction of time they joined the majority vote. Histograms show the
projected distribution of each quantity. The dashed lines show the division of the users into the inactive (NClass � 14 ), active (NClass > 14 ), and exceptional
(NClass > 14 and grade >0.5) groups.

Figure 11. Normalized grade distributions for active users and inactive users.
Active users are defined as users who made more than the median number of
classifications (N > 14). We excluded inactive users with less than 3
classifications to lessen the peaks at 0.0, 0.5, and 1.0.

Table 2
Breakdown of user Grades and Candidate Classification Counts for all, Active

(NClass > 14), and Inactive Users (NClass � 14).

NUsers Grade˜ NClass˜ Total NClass

All Users 1982 0.60 14 370277
Active Users 975 0.63 59 365652
Inactive Users 1007 0.50 3 4625
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agreement, with active users receiving a median grade of 63%
compared to 50% for inactive users.

In Figure 10, the grades of the active users appear to increase
with the number of classifications and there is less scatter.
There also appears to be a lower bound to this distribution
proportional to log (NClass). We defined the 766 active users
(NClass> 14) with grades greater than 0.5 as exceptional.
Figure 13 compares the confusion matrices for the exceptional
users to the inactive (NClass� 14) or poor active (NClass> 14
and grade �0.5) users. The highly graded active users were
much better at correctly classifying known variable stars
compared to inactive and low scoring users. The better
performance is presumably a combination of learning, interest,
and motivation.

4.4. New Discoveries

After fully classifying these new ASAS-SN variable
candidates in the southern sky, our users have helped us
discover over 10,000 new variable sources that are not present
in the existing VSX, OGLE III and OGLE IV variable star
catalogs. A breakdown of the number of new variables and
their most voted variable types are shown in Table 1.

When narrowing down our initial 40,640 candidates sources,
we first removed all candidates that were voted as ”Junk” by
our users. Figure 12 shows the sky distribution of our full
candidate set and the confirmed variables. The full candidate
set displays concentric rings of artifacts associated with the
lower signal to noise field edges created by the vignetting of the
telescopes. Retrospectively, we also found that they mostly had
periods of ∼1 day or ∼1 lunar month and g magnitudes near
our detection limits (see Figure 1). In the V-band catalog
(Jayasinghe et al. 2020), these were being automatically
rejected because sources very close to these periods were not
considered as candidates, but we had dropped this restriction
when selecting candidates for this study. We found that the
candidates producing the concentric ring pattern were system-
atically classified as Junk, and there are no patterns in the sky
maps once the Junk candidates are removed. This shows that
citizen science is an effective tool for cleaning data sets of false
positives. We have, however, added selection criteria so that
these false positives are now automatically removed (see
Section 5).

After removing the Junk candidates, we cross-matched our
sample with existing variable star catalogs to identify the
known variables. This resulted in a sample of 10,420 new
ASAS-SN discoveries. The positions of these new variable
stars on the sky are also shown in Figure 12, along with the
candidate, non-junk, and cross-matched sets. Of the new
variable sources, the biggest subset was pulsating variables
with 4234 found by our users. Rotational variables were the
next most common with 3132 sources, and eclipsing binaries
were the least common with 2923 sources. Our users also

classified 131 of the new variables sources as unknown
variables with difficult to classify light curves.

5. Machine Learning and Citizen Science

Using the updated RF classifier, we classified the candidate
set and and separated the outputs into Junk and non-Junk groups.
We compare the machine learning classifications of the ∼28,000
non-Junk candidates and the variables with known classifications
in Figure 14. The comparison between the machine learning
classifications and the most voted class by our users shows the
same pattern as in Figure 3. The g-band RF classifier agreed with
our users’ classifications 77%, 90%, and 55% of the time for
eclipsing, pulsating, and rotating variables respectively.
Figure 14 also shows a confusion matrix comparing the machine
learning classifications to the classifications for known variables.
Here the agreement is much stronger at 96%, 93%, and 82% for
eclipsing, pulsating, and rotating variables respectively. Com-
pared to our citizen scientists, the g-band classifier was much
more efficient at classifying known variable stars in our
candidate sample. We recognize that this is a bit circular as
some of the known variables were either used to train the ML
classifier or classified by the ASAS-SN V-band machine learning
classifier. Using the more refined classifications from the g-band
classifier, we show the MG versus GBP−GRP color–magnitude
diagram and the MG versus GBP−GRP period–luminosity
diagram for the non-junk candidates broken down by type in
Figure 15. The positions for each subclass of variables agrees
with the distribution of variable stars in the ASAS-SN V-band
catalog Jayasinghe et al. (2019a).
The ML classifier assigns a probability for each light curve

to be a particular type of variable, and we adopt the highest
probability classification and the frequencies of these classifi-
cations for the Junk and non-Junk sources are shown in
Figure 16. The type distributions of the Junk and non-Junk
sources are quite different, with many of the Junk sources
placed in the non-specific VAR class. As shown in Figure 17
the ML classification probabilities for the Junk and non-Junk
stars are also very different—the classification probabilities of
the non-Junk sources are strongly peaked near unity with a
median Pbest= 0.95, while the Junk sources had a median of
Pbest= 0.51. We investigated the Junk sources with high ML
probabilities and generally agreed with the citizen scientists,
although there were some real but low amplitude variables. The
treatment of the Junk sources by the ML classifier illustrates a
standard shortcoming of machine learning. As trained, it has to
classify every light curve as a variable, but for Junk sources it
”compensates” by having low classification probabilities and
by putting most of them into the least well-defined variable
type (generic VAR).
One approach to a solution would be to simply use the

mismatched distribution in classification probability to try to
automate the elimination of the Junk sources. Figure 17 (upper
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right panel) also shows the fraction of non-Junk sources as a
function of the classification probability. The variable sample
can be made very pure, but such a sample would also be quite
incomplete. For example, if we simply keep things with
classification probabilities greater than the median probability
for the Junk sources, we lose 10% of the real variables while
still have half of the junk sources.

A better ML solution is to use the availability of Junk and
non-Junk training sets to train a new random forest classifier to
distinguish them. We split the DR1 sample and used 40% of it
for training and 60% for testing. The resulting classifier had an
F1 score of 95.4% and precision/recall scores for non-Junk and
Junk sources of 98%/92% and 96%/96%, respectively. The
bottom panel of Figure 17 shows the distribution of the sources

Figure 12. Radial projection of variable candidates around the South equatorial pole (top, left), variable candidates not voted as Junk (top, right), cross-matches to
known VSX, OGLE III, and OGLE IV variables (bottom, left), and new variables (bottom, right). The concentric rings seen in the top left panel are due to spurious
variables along field edges.
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in the Junk classification probability. Keeping only sources
with a less than 50% Junk classification probability eliminates
roughly 97% of the Junk while losing only 3% of the variables.
The upper right panel of Figure 17 shows the sample purity as
function of the original variable classification probability for
various cuts on the Junk probability. Clearly the path forward is
to fully incorporate a Junk class into the g-band ML classifier.

6. Unusual Variables

When users encounter strange light curves or sources they
found difficult to classify, they can post a comment about the
source to the project’s Talk forum. Once posted, the
particularly interesting variables led to considerable discussion.
The Zooniverse platform allows any user to search for specific

tags, which makes the identification of weird variables
relatively easy. There were 330 instances of light curves
described as “interesting”, 364 described as “unusual” and 92
described as “weird”. We show several examples of such
variables in Figures 18, 19, and 20. Each of these variables was
extensively discussed in the Talk forum because of their bizarre
light curves. Table 4 shows the ML classification breakdown
for each variable shown in this section.
Many users flagged light curves that have recurrent outliers

which indicate the presence of competing sources of variability.
These systems are of interest because stars that exhibit multiple
pulsation behaviors can act as stellar laboratories, so their
identification for additional follow-up is important (Thiemann
et al. 2021). An example of such a system is ASASSN-V
J085305.34-824360.0 (see Figure 18). On the project, we

Figure 13. (Left) Confusion matrix for inactive and low graded users; users with a grade �0.5 or NClass � 14 classifications. (Right) Confusion matrix for high graded
active users; users with a grade >0.5 and NClass > 14 classifications.

Figure 14. (Left) Confusion matrix for machine learning classifications against the most voted class. (Right) for machine learning classifications against the
classification of known variable stars.
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displayed this candidate using the period P= 10.19 days. This
caught the attention of our users because the light curve
displayed a strong sinusoidal variation with recurring outliers at
each minima. The regular nature of these outliers indicated that
this system might be an eclipsing binary. Additionally, the
observed light curve shows distinct amplitude modulation,
likely due to spotting on the surface. This star was classified as
an eclipsing binary (EB type) in the V-band (ASASSN-V
J085305.74-824401.0) with a classification probability of

0.962 and period of 20.4 days. We found the correct period
to be 1/2 of this at P= 10.21 days. When phasing the observed
light curve with this period, the primary and secondary eclipses
become visible, while the rotational signature is blurred. This
period is very close to the best GLS period presented to our
users on Citizen ASAS-SN, which suggests that this system is a
nearly synchronized eclipsing binary with active spotting.
Other particularly interesting and rare systems are pulsating

variables in eclipsing binaries. These systems are powerful tools

Figure 15. The Gaia EDR3 MG vs. GBP − GRP color–magnitude diagram (Left) and the MG vs. P dayslog10( ) period–luminosity diagram (Right) for our set of non-
Junk variables using labels given by the g-band classifier.

Figure 16. A distribution of the classifications given to the Junk and non-Junk sources by the g-band classifier.
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Figure 17. (top, left and middle) Distribution of the best probabilities assigned by the g-band classifier to each source in the Junk and non-Junk samples. (top, right)
Distribution of the fraction of non-Junk sources viewed as real by the ML classifier as a function of classification probability. (bottom) Distribution of the cumulative
fraction of Junk and non-Junk variables as a function of their ML Junk probability.

Figure 18. (Left) Observed and phased (Middle and Right) light curves for ASASSN-V J085305.34-824360.0.
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because they allow researchers to derive the fundamental stellar
parameters and probe the internal structure of stars (Kahraman
Aliçavuş et al. 2017). The system ASASSN-V J090020.74-
644127.9 is an example where there is a pulsation period of 0.14
days (probably a HADS variable), and a 5.04 day period for the
eclipses (see Figure 19). We only presented users with the

phased light curves for the pulsation behavior but users pointed
out that there may be a hidden eclipse. We believe that the
identification of strange variables for additional followup is one
of the key strengths of citizen science. A more in-depth analysis
of the odd light curves (see Figure 20) and the hybrid systems
will be done in future papers.

Figure 19. (Left) Observed and phased (Middle and Right) light curves for ASASSN-V J090020.74-644127.9.

Table 3
ML Classification Breakdown of the Real Citizen ASAS-SN Variables

RF Classification Description Broad VSX Type Ntot Nnew NProb>0.9 NProb>0.5

CWA W Virginis type variables with P > 8 d Pulsating Variable 206 20 111 182
CWB W Virginis type variables with P < 8 d Pulsating Variable 996 15 90 613
DCEP δ Cephei-type/ classical Cepheid variables Pulsating Variable 194 35 87 164
DCEPS First overtone Chepheid variables Pulsating Variable 64 7 4 46
DSCT δ Scuti type variables Pulsating Variable 700 510 348 679
EA Detached Algol-type binaries Eclipsing Binary 3729 991 3151 3675
EB β Lyrae-type binaries Eclipsing Binary 3074 867 1936 2873
EW W Ursae Majoris type binaries Eclipsing Binary 8096 2315 5202 7601
GCAS Rapidly rotating early type stars Other 74 27 0 15
HADS High amplitude δ Scuti type variables Pulsating Variable 469 195 252 455
L Irregular Variables Other 556 155 475 538
M Mira variables Pulsating Variable 142 13 141 141
ROT Spotted Variables with rotational modulation Rotational Variable 4735 2964 1748 4140
RRAB Fundamental Mode RR Lyrae variables Pulsating Variable 3461 1292 2719 3335
RRC First Overtone RR Lyrae variables Pulsating Variable 1246 540 897 1185
RRD Double Mode RR Lyrae variables Pulsating Variable 103 63 84 100
RVA RV Tauri variables (Subtype A) Pulsating Variable 1 1 0 0
SR Semi-regular variables Pulsating Variable 172 58 129 164
SRD Semi-regular variables (Subtype D) Pulsating Variable 3 0 0 1
YSO Young Stellar Objects Other 31 13 4 19
VAR Variable star of unspecified type Other 551 339 24 229
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Figure 20. A sample of interesting light curves our users pointed out on the project’s Talk forum.
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7. Conclusions

We present the first results of Citizen ASAS-SN. This
includes the analysis of 403,626 classifications of 40,640
variable candidates at the south celestial pole (δ<−60°) from
2298 users. Classifications for these variables were made
between 2021 January 5th and March 27th. The final results are
available at the ASAS-SN Variable Star Database (https://
asas-sn.osu.edu/variables). The primary classification for each
variable comes from the machine learning classifier, but we
include the most popular citizen science classification and its
probability. Future updates will be released as we move up the
sky in decl.. Table 3 lists the number of sources of each
variable type in the catalog along with the number of new
discoveries in each category.

If we compare the user classifications to either published
(VSX, OGLE) or our ML classifications, we found that our
volunteers classified eclipsing binaries and pulsating variables
most consistently, while struggling to classify rotational
variables. We also found that it was exceedingly rare for
known variables to be misclassified as Junk, accounting for less
than ∼2% for each variable type. We calculated a probability
metric for each variable candidate that measures the agreement
between users. We found that our users were likely to agree on
the classifications for candidates that were most voted as
eclipsing binaries, pulsators, and Junk variables. Classifications
for variable candidates most voted as rotational and unknown
variables were more difficult for our users to agree upon.

User activity generally correlated with higher classification
accuracy and higher user agreement, showing that experience
improves performance. Our citizen scientists discovered 10,420
new variable sources including, as they defined them, 4234
pulsating variables, 3132 rotational variables and 2923 eclipsing
binaries with 131 candidates flagged as Unknown. In addition to
these new sources, many users have pointed out unusual or
extreme variable candidates on the Citizen ASAS-SN Talk
forum for additional follow-up. Moving forward, we plan to
release subsequent candidate moving North in decl.. We also
plan to extend our workflow to cover higher order classifications
including irregular variable stars.

We also built a new g-band machine learning classifier
trained on light curves features from variables in our g-band
catalog. We found that our classifier was more accurate at
classifying known variables than our users. However, the
citizen scientists out performed the classifier when it came to
identifying Junk light curves. The ML classifier does assign
them lower classification probabilities and classifies many of
the to the generic VAR class. As built, the ML classifier has to
assign all light curves to some type of variable because it has
no Junk output class. We now have a Junk training set, and a
simple ML classifier simply built to distinguish Junk and non-
Junk sources performed very well. We now use this initial Junk
classifier to purge these candidates before releasing new light
curves to Citizen ASAS-SN. Moving forward, we will
rebuild the overall ML variable classifier to include a Junk
classification. While it was not one of our initial goals, the
construction and continued expansion of a Junk training set
will be a very valuable contribution of Citizen ASAS-SN.
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Observatory and their staff for its continuing support of the
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Table 4
Breakdown of the Variable Stars shown in Figures 18, 19, and 20

ID (ASASSN-V) R.A. Decl. ClassCS PCS ClassML PML Period Other ID

J173255.51-621040.8 263.23129 −62.17799 Eclipsing 0.6 EA 0.725 8.215 ASASSN-V J173255.51-621040.7
J115419.17-613118.0 178.57988 −61.52166 Pulsating 0.5 DCEP 0.364 32.81 ASAS J115419-6131.3
J054112.57-692608.7 85.30236 −69.43574 Eclipsing 0.5 EW 0.431 8.582 OGLE-LMC-ECL-22442
J005436.05-702535.5 13.65020 −70.42652 Eclipsing 0.8 EW 0.553 0.365 WISE J005436.0-702535
J193359.68-680634.9 293.49868 −68.10970 Eclipsing 0.4 ROT 0.811 5.137 ASAS J193359-6806.6
J085305.34-824360.0 133.27224 −82.73333 Eclipsing 0.7 EB 0.658 20.39 ASAS J085305-8244.0
J090020.74-644127.9 135.08642 −64.69109 Pulsating 0.8 EW 0.566 0.289 N/A (New Discovery)
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