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ABSTRACT
Storage devices have evolved to offer increasingly faster read/write
access, through flash-based and other solid-state storage technolo-
gies. When compared to classical rotating hard disk drives (HDDs),
modern solid-state drives (SSDs) have two key differences: (i) the
absence of mechanical parts, and (ii) an inherent difference between
the process of reading and writing. The former removes a key per-
formance bottleneck, enabling internal device parallelism, whereas
the latter manifests as a read/write performance asymmetry. In other
words, SSDs can serve multiple concurrent I/Os, and their writes
are generally slower than reads; none of which is true for HDDs.
Yet, the performance of storage-resident applications is typically
modeled by the number of disk accesses performed, inherently as-
suming symmetric read and write performance and the ability to
perform only one I/O at a time, failing to accurately capture the
performance of modern storage devices.

To address this mismatch, we propose a simple yet expressive
storage model, termed Parametric I/O Model (PIO) that captures
contemporary devices by parameterizing read/write asymmetry (α )
and access concurrency (k). PIO enables device-specific decisions
at algorithm design time, rather than as an optimization during
deployment and testing, thus ensuring optimal algorithm design
by taking into account the properties of each device. We present a
benchmarking of several storage devices that shows that α and k
vary significantly across devices. Further, we show that using care-
fully quantified values of α and k for each storage device, we can
fully exploit the performance it offers, and we lay the groundwork
for asymmetry/concurrency-aware storage-intensive algorithms. We
also highlight that the degree of the performance benefit due to
concurrent reads or writes depends on the asymmetry of the un-
derlying device. Finally, we summarize our findings as a set of
guidelines for designing storage-intensive algorithms and discuss
specific examples for better algorithm and system designs as well
as runtime tuning.

1 INTRODUCTION
The performance of data-intensive applications is typically bounded
by the time needed to transfer data through the storage andmemory
hierarchy. Hence, when data resides on slow media, disk I/O is the
primary bottleneck. As a result, measuring and modeling disk I/O
access is often used as a proxy to performance. The traditional I/O
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Figure 1: (A) Asymmetry (α ) and Concurrency (k) in recent
SSDs; most devices show high α and k . (B) Gain increases as
more concurrent I/Os are used, and α dictates the gain.

model (also termed EM model) [1] consists of a two-level memory
hierarchy with a fast internal memory of sizeM (which we simply
call memory) and a slow external memory (storage) of unbounded
size; both divided into fixed-size blocks. Any computation requires
the corresponding data blocks to be in memory, which is typically
orders of magnitude faster than storage. Therefore, the EM model
measures cost using only the storage I/O cost (number of storage
accesses). This modeling is accurate when two key assumptions
hold: (i) disk reads and writes have similar cost, and (ii) applications
can perform one I/O at a time – none of which is true for modern
storage devices. The mismatch between the EM model and contem-
porary devices stems from the fact that it was developed for hard
disk drives (HDDs), which have symmetric read-write performance
dominated by the disk’s mechanical movement. Furthermore, the
mechanical parts do not allow HDDs to serve multiple concurrent
requests; rather, disk accesses happen serially. In contrast, most
modern storage devices are composed of electronic components.
Modern Devices. The majority of today’s secondary storage de-
vices are solid-state drives (SSDs) while HDDs are increasingly
used as “archival” storage [48]. NAND flash-based SSDs eliminate
the mechanical overhead of HDDs, thus, providing low energy
consumption, high chip density, and high random read perfor-
mance [2, 27, 29, 40]. These benefits can be attributed to the internal
parallelism of SSDs, which can be exploited to optimize perfor-
mance [10]. However, due to the physics of NAND flash, writes
are generally slower than reads which leads to read/write asymme-
try [14]. Fig. 1A shows that most recent SSDs have an asymmetry
of more than two (α > 2). Typically, off-the-shelf SSDs use the
traditional SATA interface, while, various high-end latest devices
use the PCIe interface. There are multiple alternatives in terms of
underlying storage technology [8, 13, 22, 43, 45, 51], commonly
known as the emerging Non-Volatile Memory (NVM) class. Most
NVMs have similar properties (high asymmetry, concurrency, chip
density, and low energy consumption) like SSDs [4, 34]. The vision
for NVM is to offer a byte-addressable durable memory medium
with performance close to main memory’s. The most mature tech-
nology to date is 3D XPoint [22, 42], which is already on the market
via Intel’s Optane series [24]. Optane SSDs generally exhibit lower
read/write asymmetry and concurrency than flash-based SSDs [53],
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Periodic garbage collection reclaims the invalidated pages.

which is further corroborated by our experiments in Section 2. To
summarize, even though there are several variations in terms of
different technologies, modern storage devices (SATA/PCIe/Optane
SSDs and NVMs) share a few key properties: fast access, high chip
density, low energy consumption, and most importantly, read/write
asymmetry and internal parallelism.
Read/Write Asymmetry. Page updates in NAND-based SSDs fol-
low the erase-before-write approach. Logical page updates (at the
file system level) are always performed as out-of-place updates. In
order to physically update the contents of a flash page, the contain-
ing block has to be erased first, which means once a page is written,
it cannot be overwritten until that whole block is erased [2]. Fig. 2
highlights three cases for writing a flash page. When a new write
request comes in a free location, it can be performed directly which
is shown in Fig. 2A for pages A-F. However, once a page is written,
it cannot be overwritten until that whole block is erased. So, when
a page update arrives, the controller has to invalidate the old page
and write the updated page in a new location, as shown in Fig. 2B
for pages A′-C′. As a result, after a number of writes, the SSD may
contain several invalidated pages. To reclaim the invalidated space,
the flash controller periodically triggers garbage collection, which
copies the valid pages of a block, writes them in a new block and
then erases the previous block, as shown in Fig. 2C. The overhead
of maintaining periodic garbage collection along with the extra
writes results in higher amortized write cost [7, 14, 19, 35]. The
level of asymmetry depends on the specific device and the type
of access (sequential/random). Typically, writes can be up to one
order of magnitude slower than reads. For example, the advertised
random read and write performance of the Intel D5-P4320 SSD
is 427K IOPS and 36K IOPS respectively, resulting in an asymme-
try of 11.86×. Fig. 1A shows the advertised asymmetry of several
recent Intel SSDs. The random read/write asymmetry is plotted
along the y-axis, while the radius of the circle shows the sequential
read/write asymmetry. The light colored circles correspond to de-
vices that we used for benchmarking and experimentation. More
details about these devices are presented in Section 2. The highest
advertised random (sequential) asymmetry among those devices
is 15.4× (4.86×). Although some devices advertise low asymmetry
(e.g., Optane SSDs), in practice, most devices have an asymmetry
of 2× or more. In the rest of the paper, we use the generic term
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Figure 3: Internal architecture of an SSD.

read/write asymmetry (α ) or asymmetry to refer to both random
and sequential read/write asymmetry.
Concurrency. SSDs exhibit a high degree of internal parallelism
in their architecture [9, 10, 33]. Fig. 3 shows that multiple channels
are connected to the flash controller, and each channel consists
of a shared bus with multiple chips. Each chip contains multiple
dies, each die comprises multiple planes, and finally, each plane
constitutes multiple blocks where the pages reside [2]. Hence, to
fully utilize the bandwidth of an SSD, we need to submit multiple
concurrent I/Os. Ideally, these I/Os will target different parts of the
device, and they will be parallelized by the controller [33, 41, 49]. To
quantify the supported concurrency, we refer again to Fig. 1A that
shows on the x-axis the number of channels of each device. We use
this as a proxy to the supported concurrency which, in most cases,
is more than 8. Note that the observed concurrency might differ, as
it depends on the access patterns of the workload, how much of
the parallelism beyond the channels is exploited, and whether the
operations are reads, writes, or a mix of the two.

It is essential to know the concurrency (k) and read/write asym-
metry (α ) of a device to fully utilize and comprehend its benefit.
Fig. 1B shows the significance of k and α . We consider an appli-
cation that can exploit the write concurrency by batching writes.
We simulate the speedup of such an application on devices with
different α values. The figure shows that as we increase the num-
ber of concurrent I/Os, the gain of exploiting parallelism increases.
However, the gain closely depends on the device asymmetry – the
higher the asymmetry, the higher the gain.
Storage Modeling. Without capturing asymmetry and concur-
rency of a storage device, we cannot attain its full potential, nor
we can tailor the algorithms to the characteristics of the device,
resulting in subpar performance and suboptimal device utilization.
This raises the need for a new I/O model [38] that can incorporate
these device properties. Now, the question we set out to answer is:

How should the I/O model be adapted in light of read/write
asymmetry and concurrency?

Parametric I/O Model. We propose a simple yet expressive stor-
age model termed Parametric I/O Model (PIO) that considers asym-
metry (α ) and concurrency (k) as parameters. Using the device prop-
erties, this richer I/O model can accurately capture contemporary
devices. We benchmark different types of state-of-the-art storage
devices to quantify theirα andk . In addition, we perform an abstract
modeling of different types of applications based on our proposed
PIO model, and we showcase the impact of utilizing k and modeling
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α . Our experiments and analysis reveal that more informed storage
modeling leads to better overall application performance.
Contributions. Our contributions are as follows.

• We investigate the importance of the key characteristics of mod-
ern devices. We seek to answer the question: “how much are we
missing in terms of performance if we do not exploit concurrency
and read/write asymmetry?”

• We benchmark new storage devices (including Intel’s 3D XPoint)
to quantify k and α , and analyze the impact of the file system.

• We introduce the Parametric I/OModel (PIO) which considers
both α and k . We show the benefits of adding these properties
in our model with respect to device utilization and performance.

• We discuss when and how to exploit which type of concurrency.
We highlight that asymmetry is key to quantifying performance.

• We outline five guidelines that should be considered during
storage-intensive algorithm design.

2 QUANTIFYING α AND k
We now present a benchmarking methodology to quantify asymme-
try (α ) and concurrency (k) of modern storage devices. We experi-
ment on several off-the-shelf and high-end devices. We also analyze
the file system’s impact on α and k as well as on performance.
Benchmarking Setup. We use a machine with two Intel Xeon
Gold 6230 2.1GHz processors each having 20 cores with virtualiza-
tion enabled and with 27.5MB L3 cache, 384GB of RDIMM main
memory. Our experimental server has four storage devices: (i) a
375GB Optane P4800X SSD, (ii) a 1TB PCIe P4510 SSD, (iii) a 240GB
SATA S4610 SSD and (iv) a 2TB HDD. We refer to these devices as
Optane SSD, PCIe SSD, SATA SSD, and HDD, respectively. We also
experiment with a virtualized storage device from Amazon AWS
which is a 1.2TB Provisioned IOPS SSD allowing a maximum of
60000 IOPS. We use both Fio [18] and our custom benchmarking
tool to have fine-grained experimental control. Our tool supports
synchronous and asynchronous I/Os, and optionally, direct I/O,
multithreading, varying queue depth, and varying block size. Our
device-level benchmark uses a 29GB file on which we issue I/O
requests that differ in request type (read/write), access type (sequen-
tial/random), request granularity (4K/8K), and number of threads.
We enable direct I/O and use a queue depth of 32. For each exper-
iment, we report the average IOPS, bandwidth, and latency per
operation where the numbers are averaged over 10 minutes of exe-
cution. For every experiment, the standard deviation was less than
1%. The SSDs were pre-conditioned by writing 3 times prior to the
experiments ensuring that the devices have stable performance [17].
Without loss of generality, in the rest of the paper, we focus pri-
marily on random requests because (i) random accesses have lower
performance with higher asymmetry than sequential, and (ii) in
our experiments, we find that the overall trends and observations
for sequential accesses are similar to the ones for random accesses.
Computing α & k .We define concurrency as the number of con-
current I/Os needed to saturate the device bandwidth. Hence, in
these experiments, we increase the number of threads issuing con-
current I/Os for each device to identify the point when the device
reaches its maximum bandwidth. It is worth mentioning that for
most cases, the increase of the bandwidth is not linear. As a result,

Table 1: Performance comparison of the tested devices.

Device Latency (RR) Latency (RW)

Optane SSD 6.8 µs 7.6 µs
PCIe SSD 12.4 µs 19.6 µs
SATA SSD 100 µs 130 µs
Virtual SSD 180 µs 200 µs

HDD 7000 µs 7300 µs

we handpick a point where the device bandwidth is close to satu-
ration or where the rate of bandwidth increase drops significantly.
In this way, we quantify the concurrency of a device empirically
rather than using the specifics of the internal device architecture.
Note that most devices do not disclose all the design details as they
are proprietary. The interested reader can also find in Appendix A
the analytical approximation of the supported concurrency from a
device with a known number of channels. The read/write asymme-
try is calculated by taking the ratio of the maximum read vs. write
IOPS (bandwidth) obtained from these experiments.
Optane SSD and PCIe SSD. Fig. 4A and 4B show the read and
write throughput of our Optane SSD and PCIe SSD, respectively, as
we vary the number of threads issuing concurrent I/Os on the x-axis.
The dotted lines indicate the point where the device bandwidth
reaches (close to) the saturation point for the corresponding access
pattern. These figures highlight the significance of utilizing device
concurrency. For example, there is a 40× increase in the PCIe SSD’s
read bandwidth when using full concurrency compared to no con-
currency; for the Optane SSD, this increase is 4×. We also observe
a few key differences between the two devices: (i) the Optane SSD
is faster than the PCIe SSD, offering 3× higher write bandwidth, (ii)
the Optane SSD gets saturated quickly indicating that it has lower
concurrency (k ≈ 6), and (iii) the Optane SSD exhibits a very small
degree of asymmetry (α ≈ 1.1). Fig. 4C shows the latency profile
and the impact of concurrency for the Optane SSD. As we increase
the number of concurrent I/Os, initially there is almost no increase
in latency while the bandwidth increases. When the device band-
width gets saturated, that latency increases quickly. The supported
concurrency (k) of the device is the number of concurrent I/O issued
when we have this sudden latency increase. Fig. 4B shows that
asymmetry and concurrency also depend on the access granularity.
For instance, when using 4KB blocks, α ≈ 2.8, while for 8KB blocks,
α ≈ 1.9. In addition, the supported concurrency depends on both
the block size and the request type (read/write). For instance, the
PCIe SSD gets saturated when issuing 80 concurrent 4KB random
read I/Os (α ≈ 2.8, k ≈ 80) whereas for 8KB random writes k ≈ 7.
Finally, we observe that for a low number of concurrent I/Os, writes
are actually faster than reads. This is attributed to caching benefits
when the controller’s memory is enough to capture all the concur-
rent writes and flush them as a batch. As the number of concurrent
I/O increases, garbage collection comes into action, consequently
exhibiting somewhat slower, steady-state write performance.
Regular SSD. Fig. 4D presents the performance profile of our SATA
SSD which closely follows the trend of the PCIe SSD. This device
shows lower asymmetry and much lower concurrency compared to
the PCIe SSD, but higher than that of the Optane SSD. For example,
for 4KB random read requests, α ≈ 1.5 and k ≈ 25. The device
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Figure 4: All devices show different degree of k and α depending on the file system, access type, and block size. The benefit
of exploiting k can be as high as 40×. (A) The Optane SSD has lower k and α ≈ 1. (B) The PCIe SSD shows high k with α up
to 2.8. (C) Latency does not increase until saturation. (D) The SATA SSD shows lower k than the PCIe SSD with α up to 1.5.
(E) The Virtual SSD is software-controlled, exhibiting α ≈ 2 prior to saturation. (F) The extrapolated performance profile of
the Virtual SSD following the trends of other SSDs. (G, H) Bypassing the file system allows for 1.7× (1.4×) higher read (write)
throughput for PCIe SSD, while the values of both α and k are more stable across the experiments.

gets saturated quickly in the event of concurrent writing; for 8KB
random write, we find α ≈ 1.3 and k ≈ 5.
Virtual SSD. Fig. 4E benchmarks the Virtual SSD. For 4K random
read requests, there is a 16× throughput improvement when in-
creasing the number of concurrent I/Os from 1 to 11, at which point
the device gets saturated. Hence, for a small number of concurrent
I/Os, the device remains underutilized and the client does not re-
ceive the performance they paid for, resulting in monetary loss.
There are two more observations from this graph: (i) since this is a
virtual SSD, the device’s peak bandwidth is software-capped, yet,
by comparing the slope for the 4K read and write performance, we
observe that this device has α ≈ 2, and (ii) the graph is more stable
than the graphs of PCIe SSD and SATA SSD i.e., the increase in
IOPS is a perfect straight line and there is very little noise in the
graph, which can be attributed to the device being virtual, and its
performance being managed by the software. Fig. 4E shows that for
4KB access, the read (write) bandwidth reaches its maximum for
11 (19) concurrent I/Os. Note that these values are not the actual
concurrency of the device, rather, at this point the maximum allo-
cated IOPS (60K) is achieved and the software layer caps the device
bandwidth. We speculate that the actual concurrency of the device
is potentially much higher. Fig. 4F shows an extrapolated profile of
the underlying physical device of the Virtual SSD, assuming similar
performance patterns to the other tested devices and no software
limit in the attainable IOPS.

HDD. Our experiments show that the HDD has α = 1 and k = 1
which is expected. We omit the performance graphs for brevity.
Optane SSD is the Fastest. Our benchmarking shows that the
Optane SSD is the fastest, which is 1.8× faster than the PCIe SSD
and the access latency can be as low as 6.8µs . We also find that
the PCIe SSD is 8× faster than the SATA SSD and the SATA SSD is
70× faster than our HDD. Table 1 lists the access latency of all the
devices for 4KB random read/write requests.
Bypassing the File System for PCIe SSD. In our previous exper-
iments, we observe that the PCIe SSD has a maximum read and
write bandwidth of 1900 MB/s and 700 MB/s for 4KB block size,
while the read latency can be as low as 12µs. For such a fast device,
the software latency of the file system and the OS kernel can be
significant. This device offers raw access to the storage medium
by completely bypassing the file system through Intel’s Storage
Performance Development Kit (SPDK) [50]. SPDK provides a set of
libraries for writing high-performance, scalable, user-mode applica-
tions. To run an SPDK application (i) the device must not have an
active file system, (ii) hugepages must be allocated to facilitate its
driver (2GB by default), and (iii) the device must be bound to a Vir-
tual Function IO (VFIO) kernel driver rather than the native kernel
drivers to allow direct device access to userspace. Using SPDK and
its perf tool, we analyze how α and k change, and how performance
is affected when we perform raw access to this device. We issue
random I/O requests, varying the request type (read/write), the
request granularity (4K/8K) and the number of threads.
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The concurrency decreases for larger I/O size.

Fig. 4G presents the performance profile of the PCIe SSD with
raw access. The smoothness of the graph indicates that the device
has stable performance. The figure shows that the device has α = 3
for either access granularity. Similar to previous experiments, k de-
pends on the request type and access granularity. For example, for
4KB random requests α ≈ 3, and k ≈ 16 for reads. Although the con-
currency value is lower, there is a considerable gain in both the max-
imum read bandwidth (1.7×) and the maximum write bandwidth
(1.4×) as compared to Fig. 4B. Fig. 4H shows the latency/bandwidth
profile of the PCIe SSDwith and without the file system, clearly sup-
porting the thesis that for a high-performance device, the software
layer becomes a bottleneck. Traditionally, applications interact with
storage via the OS using an interrupt-based model. Although the
interrupt model has an overhead, historically this overhead was
negligible compared to disk latency. However, with the emergence
of high-performance storage devices that use faster protocols like
NVMe [25, 55] and technologies like 3D XPoint [22, 42], the file
system overhead is not negligible any more [28, 54], rather, the
storage bottleneck is shifting from hardware to software, which is
corroborated by our experiments.
Impact of Access Granularity. Our previous experiments hinted
that k and α depend on the access granularity. In this experiment,
we further vary the access granularity between 1KB and 16KB to
see this dependency in more detail. Fig. 5A and 5B shows how α and
k vary with respect to I/O size for three different devices. Fig. 5A
shows that for access size smaller than the native page size (4KB),
the asymmetry is very high for all the devices. For example, for 1KB
I/O size, the SATA SSD and PCIe SSD (with FS) show asymmetry
of 13 and 14.4 while for 4KB these values drop down to 1.5 and 2.8.
This is because even for a small write (i.e., 1KB or 2KB), the write
must be performed at page level. This results in a lot of updates
on the SSD block, which consequently trigger excessive garbage
collection that in turn significantly slows down the writes. Hence,
writes smaller than the native page size should be avoided. Fig. 5B
shows that as I/O size increases, the device bandwidth reaches
maximum with fewer I/Os. This is because larger I/O size causes
higher data transfer which quickly saturates the device bandwidth.
Characterizing a Storage Device. To create a succinct represen-
tation of each device, we now put together the findings from our
experiments with three metrics: asymmetry (α), read concurrency
(kr ), and write concurrency (kw ). Table 2 shows the values of these
metrics for all tested devices for 4KB and 8KB accesses. We note
that while for some cases, there is a positive correlation between
α and kr /kw , the two quantities are not equal. Specifically, we

Table 2: Empirical Asymmetry and Concurrency.

4KB 8KB

Device α kr kw α kr kw

Optane SSD 1.1 6 5 1.0 4 4
PCIe SSD (with FS) 2.8 80 8 1.9 40 7
PCIe SSD (w/o FS) 3.0 16 6 3.0 15 4
SATA SSD 1.5 25 9 1.3 21 5
Virtual SSD 2.0 11 19 1.9 6 10

define asymmetry as α = BWmax
r /BWmax

w where BWmax
r and

BWmax
w correspond to the maximum read and write bandwidth

respectively. Further, we can express BWmax
r and BWmax

w as a
function of the number of threads that saturate each operation as
follows: BWmax

r = fr (kr ) and BWmax
w = fw (kw ). Following our

definition for α , we get α = fr (kr )/fw (kw ). The functions fr (·) and
fw (·) quantify the attained bandwidth, however, fw (·) includes the
amortized cost of garbage collection. Hence, the two functions are
neither identical nor linear, and in general α , kr /kw .
Summary.We observe from Table 2 that all the NAND-based SSDs
(PCIe, SATA, and Virtual SSD) exhibit asymmetry and concurrency.
The value of α and k varies across devices depending on the internal
of the device, access granularity, access pattern and filesystem. By-
passing the file system can unlock higher performance and stabilize
the observed asymmetry and concurrency (Table 2 and Fig. 4G).
Optane SSDs generally exhibit low asymmetry and concurrency
because of their 3D Xpoint technology [53] and our experiments
corroborate this. We notice, however, that even exploiting the low
concurrency in Optane SSD leads to 4× higher throughput. While
the performance specifics vary significantly among different de-
vices [5, 56], the vast majority of modern storage devices exhibit
a non-trivial degree of both asymmetry and concurrency. Hence,
storage-intensive applications can benefit from a more faithful
modeling to fully exploit the underlying device and to predict the
expected performance benefits.

3 PARAMETRIC I/O MODEL
In this section, we present the Parametric I/OModel (PIO), a new,
simple yet expressive model that takes asymmetry and (read and
write) concurrency as parameters. PIO enables better algorithm
design and helps to accurately reason about the performance of
storage-intensive algorithms and data structures.

PIO(M,kr ,kw ,α ) assumes a fast main memory with capacity
M , and storage of unbounded capacity that has read/write
asymmetry α , and read (write) concurrency kr (kw ).

We consider that both memory and storage are divided into
fixed-size blocks. Since the model is device-specific, the values of
kr , kw , and α are either given by the device manufacturer, or by
a benchmarking process similar to the one used in Section 2. PIO
allows us to accurately describe a variety of devices, and reason for
their behavior at algorithm-design time. That way, we can make
storage-aware optimizations part of the design, as opposed to ap-
plying them as an additional ad hoc tuning step during deployment.
Next, we present how to use PIO to reason about the performance
benefits of several fundamental classes of applications.
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3.1 Performance Analysis
To analyze the performance of a storage-intensive application, we
focus on its interaction with the storage device, that is, on the
read and write requests it issues. We classify storage-intensive
applications into four classes.

• Unbatchable Reads, Unbatchable Writes. An application that can-
not batch reads nor writes. We include this class only for com-
pleteness and to highlight the impact of asymmetry.

• Unbatchable Reads, Batchable Writes. An application that batches
writes and utilizes the write concurrency of the device (example:
concurrent eviction of dirty pages from a bufferpool).

• Batchable Reads, Unbatchable Writes. An application that batches
reads and utilizes the read concurrency (example: concurrent
traversal of multiple paths in a graph or in a tree index).

• Batchable Reads and Writes. An application that batches both
reads and writes and utilizes both read and write concurrency
(example: LSM-tree compaction).

To maintain the generality of the approach, we quantify the perfor-
mance gain using the frequency of reads (fr ) and writes (fw ), for
which fr + fw = 1. We assume that read requests have unit cost (1)
and write requests have cost α , where α ≥ 1. A device with read
concurrency of kr and write concurrency of kw can concurrently
perform kr reads and kw writes.
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Figure 6: Higher asymmetry
leads to higher cost since the
more expensive write cost is not
amortized (through concurrency
or otherwise).

UnbatchableReads, Unbatch-
able Writes.We first consider
the class of applications that
cannot batch reads or writes
and performs them sequentially.
While this class seems to be of
no interest as it cannot exploit
any concurrency, we include it
for completeness and to high-
light the importance of asym-
metry. Since reads have unit
cost and writes have α cost, the
normalized cost per operation
for this type of application is
fr + fw · α . Fig. 6 shows this
cost as we vary the read/write ratio in the workload. For a device
with higher asymmetry, the cost increases as more writes are intro-
duced in the workload. This figure highlights that when there is
asymmetry, treating reads and writes equally leads to performance
degradation. Rather, the slower writes should ideally be masked
either algorithmically, or if possible, via batching.
Unbatchable Reads, Batchable Writes. This class of applica-
tions exploits the write concurrency of the device to batch write
requests. As an example, consider a modified DBMS bufferpool
manager that selects several dirty pages and writes them concur-
rently during an eviction. In this scenario, the application at hand
attempts to fully exploit the device’s write concurrency via concur-
rent flushing during a page eviction. To achieve this, it submits kw
concurrent writes. Since the device has α asymmetry, the cost of
a write following the standard approach of evicting one page at
a time, as indicated by the EM model would be CEM

W = α . On the
other hand, the amortized cost per write when we batch kw writes
following PIO is CP IO

W = α
kw

. Since reads are not batchable in this

application class, each read will have unit cost in both the EM and
PIO paradigm, hence, CEM

R = CP IO
R = 1. We can now calculate the

speedup SP IO of this application based on PIO:

SP IO =
fr ·CEM

R +fw ·CEM
W

fr ·CP IO
R +fw ·CP IO

W
=

fr+fw ·α
fr+fw · α

kw
=⇒

SP IO =
kw ·(fr+fw ·α )
kw ·fr+fw ·α = 1 + (kw−1)·fw ·α

kw ·fr+fw ·α

Since α ≥ 1 and kw ≥ 1, then SP IO ≥ 1 where the maximum value
of SP IO can be up to kw . Fig. 7 shows the speedup when following
PIO for different α and kw values as we change the read/write ratio
in the workload. We observe that the speedup increases as more
concurrent I/Os are employed, which is expected. Furthermore, we
note that the speedup depends on the asymmetry of the device. The
gain is higher for a device with higher asymmetry. For example,
for fr = 0.5 and when fully exploiting the concurrency of kw = 8
by issuing 8 concurrent I/Os, the speedup for a device with α = 8 is
4.5× whereas the speedup for a device with α = 1 is 1.78× (Fig. 7C).
Since the application batches writes, the gain is maximized for a
write-intensive workload (Fig. 7A), when the benefit from efficient
writing is more pronounced. For a workload that contains only
reads or only writes, the speedup from the PIO paradigm is the same
irrespective of α . The key observation is that for an application with
batchable writes, a higher asymmetry between expensive writes
and cheap reads leads to a higher speedup.
Batchable Reads, Unbatchable Writes. The second class of ap-
plications models scenarios where reads can be issued concurrently
to exploit read concurrency, but not writes. As an example, consider
a graph store that traverses multiple paths concurrently, thus can
accelerate various algorithms including graph search and shortest
path. Essentially, the algorithm can visit multiple nodes in parallel
instead of one node at a time, and offer faster search time with
the same worst-case guarantees. Another example is concurrent
traversal of tree indexes [44]. The application performs kr reads
concurrently, thus, CEM

R = 1 and CP IO
R = 1

kr
. The cost of a write

request is CEM
W = CP IO

W = α for both paradigms since the writes
are not batched. The speedup of this second class of applications is:

S ′P IO =
fr ·1+fw ·α
fr · 1

kr
+fw ·α

=
kr ·(fr+fw ·α )
fr+kr ·fw ·α = 1 + (kr−1)·fr

fr+kr ·fw ·α

Since α ≥ 1 and kr ≥ 1, then S ′P IO ≥ 1, and also S ′P IO ≤ kr .
Fig. 8 presents the speedup of such an application based on PIO.
Like before, the speedup increases as more concurrent I/Os are
used. However, this time the gain is higher for a device with lower
asymmetry. For instance, with fr = 0.5 and kr = 8, the speedup
for a device with α = 1 is 1.78× and it drops to 1.11× for α = 8
(Fig. 8C). Note that, the overall speedup is lower than the previous
application class because, while writes are still more expensive
than reads (for α > 1), this class of applications can only utilize
read concurrency. The speedup is maximized when the workload
is read-heavy (Fig. 8A), showing the benefit of batching reads.
Batchable Reads and Writes. The third class of applications can
batch both read and write requests. A notable example of such an
application that can concurrently issue many concurrent read and
write requests without any interdependency are LSM-trees, and
specifically their compaction routine. During a compaction, mul-
tiple read/write streams are involved since files from the selected
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Figure 7: Speedup of anUnbatchable Reads, BatchableWrites application. The speedup is highest forwrite-intensiveworkloads.
Furthermore, the speedup depends on the device asymmetry – the higher the asymmetry, the higher the speedup.
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Figure 8: Speedup of a Batchable Reads, Unbatchable Writes application. The speedup is highest for read-intensive workloads.
Speedup depends on the device asymmetry, however, the trend is reversed – the lower the asymmetry, the higher the speedup.
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Figure 9: Speedup of a Batchable Reads andWrites application. (A, B) For fewer reads, speedup increases withmore conc. write
I/Os irrespective of conc. read I/Os. (C, D, E) Read concurrency comes into action asmore reads are introduced in the workload.

levels are read, sort merged and written to the next level. Since
the whole process invokes numerous reads and writes, the com-
paction scheduler can use PIO to decide the degree of concurrency.
Specifically, it can start as many concurrent compactions as needed
to fully exploit the read concurrency and the write concurrency.
The cost of a classical read is CEM

R = 1, and of a classical write is
CEM
W = α . Since this class of applications can batch both reads and

writes, the amortized PIO costs are CP IO
R = 1

kr
and CP IO

W = α
kw

.
The speedup of the third class of applications is:

S ′′P IO =
fr ·1+fw ·α

fr · 1
kr
+fw · α

kw
=

kr ·kw ·(fr+fw ·α )
kw ·fr+kr ·fw ·α

The maximum value of S ′′P IO can be up to kr or kw depending on
the workload. For fewer reads (Fig. 9A, 9B), the speedup increases
as more concurrent write I/Os are issued irrespective of the number
of concurrent read I/Os. For workloads with more reads (Fig. 9C,
9D, 9E), the impact of concurrent read I/Os becomes more promi-
nent. Similarly to the previous class of applications, the speedup
depends on the device asymmetry. Overall, we observe that the
impact of utilizing write concurrency is higher than utilizing read
concurrency because of the asymmetry.
Impact of Asymmetry (α ). The above analysis reveals that the
speedup from exploiting concurrency depends on the asymmetry of
the device. For an Unbatchable Reads, Batchable Writes application,
the speedup is higher for a device with higher asymmetry because
the higher cost of writes is amortized through batching. On the

other hand, for a Batchable Reads, Unbatchable Writes application,
the speedup is higher for devices with lower asymmetry, because
batching actually further reduces the amortized cost of reads. In
other words, batching reads exacerbates the impact of read/write
asymmetry. To summarize, the degree of the performance gain/loss
depends on the asymmetry and the application type, whereas the
gain is achieved through exploiting concurrency.
Importance of using the Actual k . The speedup of an applica-
tion depends on carefully exploiting the actual device concurrency.
To demonstrate this, we implement a sample application with un-
batchable reads and batchable writes (a bufferpool that batcheswrites
of dirty pages and flushes them concurrently during eviction).
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Figure 10: Speedup increases as
more concurrent I/Os are used until
the device is saturated.

We run this concurrency-
aware application on our
PCIe SSD that exhibits kw =
8, and we vary the num-
ber of concurrently issued
write-backs during eviction.
Fig. 10 shows the speedup
when comparing with an ap-
plication that always evicts
a single page, for a workload
with fr = 0.5. As we in-
crease the number of concur-
rent evictions towards the device’s kw = 8, the speedup increases
as expected, however, after this point, the speedup drops. This is
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because (i) the device’s supported parallelism is 8, hence, there is
no benefit from issuing more concurrent writes, and (ii) for higher
number of concurrent I/Os, the software overhead of thread man-
agement also increases. Hence, the speedup drops after reaching
this threshold, indicating that we should refrain from increasing
the concurrent requests (especially writes) further than the concur-
rency supported by the device.

4 ALGORITHM DESIGN GUIDELINES
We now distill five guidelines from our previous discussion that
should drive the development of new storage-intensive algorithms.

Guideline 1. Know Thy Device

When a new device is used, we frequently focus on the raw perfor-
mance (throughput and latency), however, modern storage devices
are complex software-hardware systems that also exhibit read/write
asymmetry, as well as read and write concurrency. In §2 and §3, we
see that we need to know and appropriately use both these proper-
ties to get the best out of our devices. Hence, before deploying a
device it is crucial to benchmark it to quantify its PIO parameters:
asymmetry (α ), and read (kr ) and write (kw ) concurrency.

Guideline 2. Exploit Device Concurrency

When a storage-intensive application has readily available informa-
tion for multiple read and/or write operations, it should exploit the
available parallelism of the device. Themodeled concurrency is only
an approximation of the actual capabilities of the device (which
depend both on the internals of the device and the data access
patterns). However, operating at a rate close to the benchmarked
concurrency will yield the best device throughput. In addition, al-
gorithms that have been designed with the “one I/O at a time” or
“one stream of I/Os at a time” approach should be redesigned. For
example, a bufferpool can concurrently write-back multiple dirty
pages and concurrently prefetch multiple pages, a graph search can
visit multiple nodes in different paths concurrently and cover the
graph faster, and an LSM-tree can tune its compaction according to
how many concurrent streams can be supported.

Guideline 3. Use Device Concurrency With Care

In the effort to fully exploit the bandwidth of a device we might end
up pushing the device beyond its limits. In a simple benchmark, read
bandwidth simple plateaus for a high number of concurrent I/Os,
however, this is not the case for write-intensive or more complex
applications. For such scenarios, using the appropriate k , i.e., exactly
what the device supports, is key to achieve the optimal (advertised)
performance, while pushing for higher concurrency might have
adverse effects (Fig. 10). Further, real-life applications may have
other bottlenecks (locking, synchronization, logging, etc.) that can
further diminish the benefits of concurrent accesses.

Guideline 4. It is suboptimal to treat equally a page read and a
page write for a device with asymmetry

While it may seem natural to consider both a page read and a page
write equally in terms of performance because of howmainmemory
and hard disk behave, this is not the case for modern storage devices.
A page read and a page write follow a very different execution path,
and building algorithms and data structures that treat them equally

in terms of performance leads to suboptimal designs. To address
this, when operating on modern storage devices, page writes should
either be delayed (hoping that some will be avoided) or they should
be amortized through concurrent writing. Overall, performing one
write to facilitate one read or vice versa (e.g., when a bufferpool is
saturated) is a suboptimal design in the presence of asymmetry.

Guideline 5. Read/Write Asymmetry Controls Performance

For applications that have read and write requests, the device asym-
metry controls the magnitude of the performance benefits due to
utilizing concurrency (Fig. 7, 8, and 9). Consider the class of applica-
tions with batchable writes. Devices with higher asymmetry benefit
more from writing in parallel. On the other hand, for applications
with batchable reads, devices with higher asymmetry see smaller
benefits, because the asymmetrically high cost of writes cannot be
amortized. For example, a bufferpool that is saturated and has to
evict a dirty page will exchange a write for a read. If the device
exhibits asymmetry, this approach is not fair, because one write is
more expensive than one read. Hence storage-intensive algorithm
design should be both concurrency and asymmetry aware.

5 DISCUSSION
RedesigningAlgorithms&Operators.The Parametric I/Omodel
captures the behavior of modern storage devices, and can be used
to guide algorithm design for external storage. In this paper we
focus on a set of abstract workloads that represent different types
of applications, which can benefit from capturing read/write asym-
metry and concurrency. Following the same spirit, this premise can
be applied to various components of data systems. As PIO ensures
better storage utilization by considering the specific device proper-
ties, we envision better algorithm design for almost any component
of a system that interacts with storage.
Tree and Graph Traversal. In light of PIO, tree and graph traversal
algorithms can be redesigned to access multiple nodes concurrently,
thus, having a wider search space at the same time. Consider a vari-
ation of the depth-first search (DFS) algorithm that can offer DFS
guarantees, while at the same time covering a wider search-space
by loading concurrently sibling nodes to the degree the underlying
concurrency can support it. Conversely, one can construct an algo-
rithm with breadth-first-search (BFS) guarantees that follows a few
promising paths as deep as they might get.
Query Optimizer Cost Models. Consider a query optimizer that deter-
mines which join algorithm to employ using cost models [21].While
state-of-the-art optimizers differentiate between sequential random
accesses [21], typically, they do not differentiate between reads
and writes. For modern storage devices, however, this misses the
opportunity to account for the read/write asymmetry. By including
asymmetry in the cost-model, we can make more accurate query
optimizing decisions. Moreover, the join algorithms themselves can
be designed to leverage device concurrency when reading/writing
data blocks from/to storage.
Bufferpool. Another component of a database system that can bene-
fit from PIO is the bufferpool. In fact, several bufferpool implemen-
tations (e.g., InnoDB, DB2) already exploit write concurrency by
batching multiple writes and exploiting background flushing [16,
23]. Using PIO, we can carefully design a concurrency eviction
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policy that accounts both for the device write concurrency and the
device asymmetry to guarantee a balanced workload execution.
LSM-trees Compactions. Finally, a data-intensive operation that can
also benefit from PIO is the Log-structure merge (LSM) tree’s com-
paction process. LSM-trees are widely used as the storage layer
of many NoSQL key-value and other data stores [15, 32, 37, 46].
LSM-trees write on disk immutable sorted runs and once a level
reaches its threshold, a compaction is performed in order to reor-
ganize the data between the saturated level and the next level. An
LSM-tree typically initiates multiple compactions at the same time,
and each compaction merges a number of sequential streams to a
single output. Hence, using PIO, the compaction scheduler can de-
cide how many and which compactions to initiate to better exploit
the underlying device.

Overall, incorporating read/write asymmetry (α ) and concur-
rency (k) in algorithm design allows for customizability for different
devices which leads to more faithful storage modeling and, ulti-
mately, to better device utilization.
Automatic Tuning Using PIO. Further, the benchmarking pre-
sented in Section 2 shows that the characteristics of the devices are
more accurately captured through careful experimentation, rather
than using the advertised performance. Hence, we propose to use
our benchmarking methodology to characterize a storage device
with respect to their asymmetry (α ) and concurrency (kr and kw ).
This is a one-step analysis that allows to carefully tune PIO-aware
algorithms or data structures.

6 RELATED WORK
Existing Models. External storage has been traditionally modeled
as a simple collection of blocks following the simplicity of the de-
sign of a hard disk (EMModel [1]). Blelloch et al. [6, 7] proposed the
Asymmetric RAM (ARAM) model to analyze algorithms for asym-
metric read and write costs, targeting asymmetric non-volatile main
memory devices. There are two primary differences between ARAM
and PIO. First, ARAM targets main memory that has smaller access
granularity. Second, it does not take into account the parallelism of
modern storage devices which is central to PIO. The main goal of
ARAM is to develop write-efficient main memory algorithms. On
the contrary, the goal of PIO is to capture the inherent asymmetry
and concurrency of storage devices, and study how we can use these
in the design process of storage-intensive algorithms.
Addressing Read/Write Asymmetry and Concurrency. The
read/write asymmetry on storage has been identified as an opti-
mization goal for indexing [3, 11, 12, 30, 31, 52], flash-aware storage
engines [36], and other data management operations [20, 39]. In
the context of exploiting device parallelism, recent research builds
new I/O schedulers for SSDs [33, 41, 49], and designs new data
structures [9, 26, 44, 47]. Our work bridges these efforts on address-
ing asymmetry and concurrency under a unified approach, making
both α and k first-class citizens of storage device modeling. PIO lays
the groundwork for considering α and k at algorithm-design time,
rather than as an optimization during development or deployment.

7 CONCLUSION & FUTURE WORK
The classical I/O model which was developed considering tradi-
tional HDDs, cannot accurately model modern storage devices.
Contemporary storage devices are characterized by a read-write

asymmetry and an access concurrency, both of which are essential to
fully utilize the device. We present a benchmarking process on five
storage devices to quantify these properties, and we discuss their
implications in performance. We propose a simple yet expressive
parametric I/O model, termed PIO, that considers the asymmetry
(α ) between reads and writes, and concurrency (k) that different de-
vices may support to enable better algorithm design. By capturing
α and k , device-specific decisions can be tuned at both algorithm
design time and during deployment and testing. We illustrate the
impact of PIO on different classes of workloads and outline five
guidelines that should drive storage-intensive algorithm design.
We envision better algorithm design for any component of a sys-
tem that interacts with the storage. Specifically, we envision an
asymmetry/concurrency-aware bufferpool manager that prefetches
reads concurrently and batches dirty evictions to exploit the device
parallelism. Further, we envision that algorithms for tree and graph
traversal can be redesigned to access multiple nodes concurrently,
thus avoiding the classical paradigm of accessing one node at a
time, ensuring better device utilization.
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A EXPECTED PARALLELISM IN
MULTI-CHANNEL DEVICES

We approximate the expected parallelism of a multi-channel SSD
under uniform I/O distribution. Even if multiple I/O requests are
issued, it is not guaranteed that all of the device’s channels will be
used. It is possible that the I/O requests target blocks are located
in the same channel. It is also possible that the scheduler of the
I/O requests in the flash controller cannot always disperse the I/Os
across different channels. Hence, here, we approximate how many
of the channels will be occupied in response to multiple concurrent
random I/Os on average.

Consider a device that has n channels and a total ofm I/O re-
quests has been issued in these channels. For the sake of generality,
we assume a uniform distribution of the I/O requests across the
channels. We are interested in the total number of channels that
will be occupied with the I/O requests. To calculate that, we first
calculate using recursion, the expected number of channels that
will have no I/O request to serve. We first define Em .

Em = expected number of empty channels afterm I/Os

By definition, after assigning the first (m−1) I/Os to channels, there
will be Em−1 empty channels. Now, them-th I/O must be assigned
either to an empty channel or a non-empty channel. The probability
of assigning it to an empty channel is Em−1

n , because there are Em−1
empty channels out of the n channels. In other words, Em−1

n of the
time, there will be (Em−1 − 1) empty channels, while the rest of
the time (1 − Em−1

n ), there will be Em−1 empty channels. We now
express Em recursively in Eq. (1).
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Em =
Em−1
n

· (Em−1 − 1) +
(
1 −

Em−1
n

)
· Em−1 =

n − 1
n

· Em−1 (1)

Since, when we have received zero requests all channels are empty
(E0 = n), the recursion becomes Em = n · ((n − 1) /n)m . So, the
fraction of channels that will be empty is Em/n = ((n − 1) /n)m =
((1 − (1/n))n )

m
n which can be approximated by (1/e)

m
n .

If we allow a device to concurrently serve as many I/O requests
as the number of channels (m ≈ n), then the fraction of idle chan-
nels is (1/e) = 37%. As we issue more concurrent I/Os, the fraction
of idle channels reaches 0%. We consider an effective concurrency
of a device the number of I/Os needed for Em to approach zero,
or e−m/n → 0. We numerically calculate that whenm ≈ 3n, then
Em = e−m/n = e−3 ≈ 0.05. So, when the device controller allows
the number of concurrent I/Os to be 3× the number of channels, we
utilize (1−Em ) = 95% of the device’s channels. We use this analysis
as a guide to the level of concurrency that can be efficiently sup-
ported by modern storage devices, issuing concurrent I/Os between
1× and 3× the number of the device’s internal parallelism.
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