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ABSTRACT
Bloom filters (BFs) accelerate point lookups in Log-Structured
Merge (LSM) trees by reducing unnecessary storage accesses to
levels that do not contain the desired key. BFs are particularly ben-
eficial when there is a significant performance difference between
querying a BF (hashing and accessing memory) and accessing data
(on secondary storage). This gap, however, is decreasing as modern
storage devices (SSDs and NVMs) have increasingly lower latency,
to the point that the cost of accessing data can be comparable to
that of filter probing and hashing, especially for large key sizes that
exhibit high hashing cost. In an LSM-tree, BFs are employed when
querying each level of the tree, thus, exacerbating the CPU cost
as the data size – and thus, the tree height – grows. To address
the increasing CPU cost of BFs in LSM-trees, we propose to re-use
hash calculations aggressively within and across BFs, as well as
between different levels, and we show both analytically and experi-
mentally that we can maintain a close-to-ideal false positive rate
while significantly reducing the runtime. The reduced CPU cost
for queries using the proposed hash sharing leads to 10% higher
lookup performance in an LSM-tree with 22GB of data (5 levels)
stored in a state-of-the-art PCIe SSD. The benefit further increases
for faster underlying storage. Specifically, we show that for faster
NVM devices, hash sharing leads to performance gains up to 40%.

1 INTRODUCTION
LSM-Trees are Everywhere. Log-Structured Merge-trees (LSM-
trees) [29] are the core data structure of several state-of-the-art
key-value engines like RocksDB [14] at Facebook, LevelDB [17]
and BigTable [7] at Google, HBase [18] and Cassandra [3] at Apache,
WiredTiger [44] at MongoDB, X-Engine [19] at Alibaba, and Dy-
namoDB [12] at Amazon. LSM-trees are widely adopted because
they offer high ingestion rate and support fast reads. In addition to
the systems that are mentioned above, in the past few years, various
LSM-tree optimizations on compaction, membership filtering, and
memory management have been proposed [1, 2, 5, 8, 10, 11, 20, 24,
25, 27, 28, 36, 41, 45–47].
The Structure of LSM-Trees. LSM-trees maintain sorted runs
across multiple levels with exponentially increasing capacity, which
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Figure 1: The fraction of the time spent on hashing (vs. prob-
ing the BF, accessing data blocks, and other operations) in an
LSM-tree increases as the empty point lookup ratio (α ) in-
creases, and as the underlying storage becomes faster. Hash-
ing is becoming a key performance bottleneck for LSM-trees
on fast storage devices.

have potentially overlapping key ranges. The performance of LSM-
trees is determined by many tuning knobs, including compaction
policy, size ratio between levels, and metadata used to accelerate
read queries. In particular, LSM-trees employ fence pointers and
Bloom filters (BFs) [4] to reduce unnecessary storage accesses [26].

Bloom Filters in LSM-Trees. Since key-value pairs are spread
across multiple levels, a point query might need to probe every
level of a tree, thereby, requiring multiple I/Os for a single lookup.
To avoid unnecessary accesses, LSM-trees typically employ BFs [4]
to identify whether the target key belongs to a given level. A BF is
associated with each level on the secondary storage (or a file that
belongs to a given level, in case of partitioned LSM-trees [13]), and
is often prefetched in main memory, to be readily available during
a point query, before accessing slow storage. The cost of querying
a BF is two-fold: (a) hashing and (b) probing of the filter’s bits.
On the other hand, accessing data on secondary storage, e.g., hard
disk drives (HDD) or solid-state drives (SSD), is several orders of
magnitude more expensive than probing the filter in memory. This
performance gap always renders it worthwhile to consult BFs be-
fore accessing data. Overall, BFs reduce the number of disk accesses
and the overall query latency at the price of additional memory
footprint and CPU computation.
What About Faster Storage? Contrary to common perception,
however, BFs are not always beneficial [39]. The rationale behind
the ubiquitous use of BFs in LSM-trees is that there is a considerable
cost difference between accessing a BF (in memory) and accessing data
(on disk). As the gap in access latency between BFs and data narrows,
the advantages of using BFs weaken. If the data is already cached in
main memory, BFs are detrimental. Further, as new storage devices
like SSDs and non-volatile memories (NVMs) [35] emerge, the
latency gap between memory and storage narrows. Typically, a
BF query requires an expensive hash calculation and one or more
memory accesses for a total cost in the order of 1µs for 1KB keys.
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Meanwhile, a potentially unnecessary disk access is 2ms and 100µs
for our in-house HDDs and SSDs, respectively. As a result, for each
query within a level, an additional 1µs can help to avoid an I/O,
and thus, to significantly reduce the query latency, especially for
empty lookups [8]. The benefit from using BFs (and thus, hashing),
however, reduces for as the data access cost reduces. Overall, even
for workloads with only empty queries, as storage devices become
faster, the across-the-board benefit of using BFs is challenged.
Bloom Filters IncurHigh CPUOverhead. Ideally, a BF that sup-
ports a probabilistic membership test requires multiple independent
hash functions in order to achieve the minimal error rate. In prac-
tice, however, the different BF indexes are often computed using
a single hash function, followed by much cheaper bitwise opera-
tions (rotations and modulo) to generate the remaining indexes
to be probed1. Taking into account that current SSD devices have
several orders of magnitude lower access latency than disk, and
that future SSDs and NVMs are bound to be faster, hashing latency
is on its way to becoming comparable with data access latency. For
example, accessing a 4KB data page on our off-the-shelf SSD needs
113µs, while the cost of hashing a 1KB-key using MurmurHash64
(which is used in production systems [14]) is 235ns, making storage
about 480× more expensive than hashing. However, accessing a
data page of our PCIe SSD device takes 10µs [31] (7µs when bypass-
ing the file system using Intel’s SPDK [42]), reducing this gap to
42× (30× without file system). In addition, future NVM devices are
expected to offer access latency as low as ∼250ns, being only 1.6×
slower than DRAM [32], hence, making storage access comparable
to hashing. Note that when data is cached in main memory, our
experiments show that a single hash function calculation is ∼1.47×
more expensive than accessing a memory page, thereby, making
the use of a BF detrimental. The LSM hashing overhead is further
exacerbated as multiple BFs are queried per lookup (at least one per
level), and repeated hash calculations turn querying over fast stor-
age (or cached data) into a CPU-intensive operation. Fig. 1 shows
the execution time breakdown of point queries in a state-of-the-art
LSM-tree with size ratio 10 that has 5 levels, for a total of 22GB
of data. We focus on the time spent on hashing and time spent on
other parts of the code including waiting for I/O completion. We
vary the fraction of empty queries between 0% (α = 0) and 100%
(α = 1), and we compare five different devices as base data storage
(an SSD, a PCIe SSD, a fast PCIe SSD, an emulated NVM, and main
memory), while BFs are always in memory. For a fast PCIe SSD
that has an access latency of 10µs, for all non-empty queries (α = 0)
about 15% of the query time is spent on hashing. The fraction of
time spent hashing increases to more than 75% for empty queries
(α = 1). For faster devices this will further increase as we observe
with the emulated NVM, which reaches almost 100%. While hash-
ing for α = 1 helps to avoid unnecessary I/Os, it takes the majority
of query execution. As a result, our goal is to maintain its benefits
(avoiding unnecessary I/Os), while reducing its cost. In addition,
recent designs like ElasticBF [22] and Rosetta [28] employ a higher
number of smaller BFs. Both approaches introduce four or more
additional BFs per SST (Sorted-String Table) file, thus increasing
the hashing overhead.

1E.g., https://github.com/rockset/rocksdb-cloud/blob/master/util/bloom_impl.h.

Hash Sharing. To reduce the CPU overhead, we propose to ag-
gressively re-use hash computations within a BF and across different
BFs residing in different levels. We reproduce state-of-the-art results
for BFs that use only one hash calculation and perform cheaper
computations (termed pseudo-hashing) for the remaining positions
of the BF’s bit-vector (a technique already employed by practical
implementations of BFs in LSM systems like RocksDB). We take
this a step further by (i) showing how to share hash computations
across multiple LSM levels, and (ii) across the series of smaller BFs
that forms a single logical BF, in the case of ElasticBF [22].

The aggregate cost of hashing in state-of-the-art LSM-trees de-
pends on the height of the tree (which, in turn, depends on the
data size and the system tuning), because for each point query, a
BF per level is typically accessed. The proposed approach of hash
sharing across levels decouples the aggregate hashing cost from data
size, since, regardless of the number of LSM-tree levels, the amount
of hashing remains constant. Similarly, hash sharing for ElasticBF
allows us to decouple its CPU cost from its design, by internally
using pseudo-hashing.
Contributions. Our work offers the following contributions.
• We identify that BFs dominate the LSM query latency for fast
storage and high hashing cost.

• We decouple the amount of hashing from the data size (height
of an LSM-tree) by hash-sharing across different levels.

• We decouple the amount of hashing from the design complexity
of ElasticBF, an approach that can be used by other BF variants.

• We show through analytical and experimental results that hash
sharing improves LSM query performance by 10% on PCIe SSD
and 40% on emulated NVM devices.

2 BACKGROUND
LSM-Tree Basics.Many modern key-value stores adopt LSM-trees
as their storage layer in order to handle write-intensive workloads,
because LSM-trees are designed for fast ingestion [3, 7, 12, 14, 17–
19, 29, 44]. To support fast writes, LSM-trees buffer all inserts (in-
cluding the ones updating or deleting existing entries) in a memory
buffer, typically referred to as level 0. When the buffer reaches a pre-
determined capacity, it is flushed to secondary storage in the form
of a sorted run, consisting of multiple files stored as immutable SST
files. All runs in the secondary storage are organized in a tree-like
structure where each level has exponentially larger capacity accord-
ing to a pre-defined size ratio T . The number of LSM-tree levels L
depends on the total data size, the size of the memory buffer, and the
size ratio [28]. Shallower levels store more recent updates and have
a smaller capacity. Similar to buffer flushing, whenever a level fills
up, a sort-merge operation is triggered between sorted runs from
this newly-saturated level and the next one, and obsolete entries
are removed during this process. This sort-merge operation oper-
ation, termed compaction, can be done either eagerly to optimize
for future reads (leveling) or lazily to increase the write throughput
(tiering) [26]. Hybrid compaction strategies that mix leveling and
tiering in different levels have also been proposed [6, 10, 11, 38].
Leveling restricts the number of runs to 1 in each level, while tiering
allows the number of runs be as large as T − 1.
Point Queries in LSM-Trees. As mentioned above, updating or
deleting an entry is essentially a new insertion (for delete, we insert
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Operation Latency Normalized

4KB I/O on HDD 4.6 ms 28750×
4KB I/O on SDD 113 µs 706×
4KB I/O on PCIe SSD 10 µs 62.5×
4KB I/O on PCIe SSD (using SPDK) 7 µs 43.75×
4KB I/O on emulated NVM 250 ns 1.56×
4KB access on Memory 160 ns 1×
CITY of 1KB-key 176 ns 1.1×
Murmur Hash 64 (MM64) of 1KB-key 235 ns 1.47×
CRC of 1KB-key 323 ns 2×
XXHash (XX) of 1KB-key 874 ns 5.46×
MD5 of 1KB-key 2.85 µs 17.81×
SHA-256 of 1KB-key 5.17 µs 32.31×

Table 1: The decreasing access latency of new storage devices
makes the hashing cost of a 1KB-key comparable with ac-
cessing a page in NVM (within one order of magnitude).

a tombstone). As such, multiple entries with the same key may
exist in the tree. However, point lookups can terminate safely after
finding the first entry with a matching key, because any matching
keys in older levels are guaranteed to be obsolete. Therefore, a point
query first consults the in-memory buffer and then traverses the
tree from the shallowest to the deepest level until it finds the first
match. In the case of tiering, which has multiple overlapping runs
per level, searching within a level goes from the youngest to the
oldest run and terminates if there is a match.
Auxiliary In-Memory Data Structures. To boost query perfor-
mance, LSM-trees maintain two in-memory auxiliary data struc-
tures for each SST file: fence pointers and Bloom filters.

Fence Pointers: Since entries within a disk-resident run are sorted
by key, the min-max range of each page does not overlap with any
other page. Fence pointers are the min-max ranges for each disk
page, along with their aggregation at the level of each SST file and
each level. They ensure that at most one I/O occurs when searching
for a target key within a single run.

Bloom Filters: Each SST file is also equipped with a BF to avoid
unnecessary I/Os. A BF is a membership test data structure that
uses anm-bit vector and originally k independent hash functions to
store and query the membership of n elements [4, 43]. All negative
responses to membership queries are always correct, however, pos-
itive responses might either be true positives, or false positives with
a small probability which is a function of k ,m, and n. The expected
false positive rate (fp ) and the optimal number of hash functions
to use are shown in Eq. (1).

fp ≈

(
1 − e−k ·n/m

)k
and kopt =

⌈m
n

· ln 2
⌉

(1)

Overall, the impact of false positives in LSM-trees can be calculated
by considering the disk accesses due to false positives across all
levels [9]. All LSM-based key-value stores employ BFs [28] or other
variations like ElasticBF [22] and Rosetta [28].
Storage Access vs. Hashing. Next, we put into context, the com-
parison between storage access and hashing latency. Table 1 shows
the access latency for a 4KB page in various devices (HDD, SSD,
PCIe SSD, NVM, and memory) as well as the hashing latency of a
1KB key using six representative hash functions: MurmurHash64
(MM64), XXHash (XX), MD5, SHA-256, CRC, and CITY64 (CITY).
We use the RocksDB [14] implementation of MM64, XX, and CRC,

and Google’s implementation of CITY [16]. As MD5 [37] and SHA-
256 [40] are more than one order of magnitude expensive than
other hash functions they are rarely used for practical BF imple-
mentations. Overall, we observe that the hashing vs. data access
latency gap reduces for newer storage devices (e.g., PCIe SSD), and
that even the most efficient hash functions are comparable with
the expected access latency of NVM devices.

3 THE CPU COST OF BLOOM FILTERS
We now analyze the point query cost in an LSM-tree focusing on
the amount of time spent on hashing for the BFs. We consider both
the leveling and the tiering compaction policies.

Leveling. A point query in an LSM-tree can be classified as either
empty or non-empty. The latter will have to do at least one disk
access as it targets existing keys [9]. We first analyze the cost of
querying a single LSM level. The cost of querying level i , T(i),
is modeled using (a) the fraction of empty queries over all point
queries αi , (b) the BF query cost (CPU cost of hashing and memory
cost of probing the BF indexes) TBF , and (c) the data page access
costTD . T(i) is the sum of the cost of querying the BF and accessing
the data for non-empty queries, (1 − αi ) · (TBF + TD ), and of the
cost of querying the BF and accessing the data due to false positive
for the empty queries, αi · fp · TD , where fp is the false positive
rate):

T(i) = (1 − αi ) · (TBF +TD ) + αi · (TBF + fp ·TD )

= TBF + (1 − αi ) ·TD + αi · fp ·TD (2)

The BF cost, TBF , consists of two components: (a) the hash calcu-
lation TH , and (b) the BF probing TP . TP depends on where the
BFs are stored. Since BFs are usually cached in main memory, TP
is often negligible compared to the I/Os. In fact, the hot BFs of an
LSM-tree reside higher in the cache hierarchy, makingTP negligible
even compared to TH . For generality, we assume that the BFs are
in main memory and that TP is small, but not negligible. On the
other hand, the TH depends on the CPU power and the key size.
Putting everything together, the cost for a read workload T(i) on
level i with αi fraction of empty queries is shown in Eq. (3).

T(i) = TH +TP + (1 − αi ) ·TD + αi · fp ·TD (3)

Using Eq. (3), we can now understand what the main bottleneck
is for point lookups. When αi << 1, the time spent to retrieve
data dominates the overall LSM-tree lookup cost, because TD cor-
responds to expensive accesses on the slow storage. Even when αi
is close to 1, fp contributes to a number of slow storage accesses,
making them the bottleneck for highTD . However, as novel storage
devices have dramatically reduced access latency, even for low αi ,
the impact of hashing is pronounced, asTD andTH are comparable.
Full LSM-Tree Query Cost.We now synthesize the overall query
cost using the cost per level. Note that while we use αi to denote the
empty queries per level; the workload is oblivious to the structure
of the tree, so it has an overall fraction of empty queries denoted
as α . To compute αi , we need the total number of queries reaching
level i and the number of negative results in that level. Thus, we
introduce a new parameter, βi quantifying the probability that a
level i has matching elements for the workload. The overall fraction
of non-empty queries is 1−α . Further,

∑L
i=1 βi quantifies the queries
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Figure 2: The amount of time spent on hashing for tiered
LSM-trees is higher than that of leveled LSM-trees (Fig. 1).

that found an element in any of the L levels, hence,
∑L
i=1 βi =

1 − α . Assuming that the keys in the LSM-tree with size ratio T are
uniformly distributed, we have βi = T i−1 · β1 because every level
is T times larger than the previous one. Using the size of the first
level relatively to the remaining of the tree we get β1 = 1−α∑L

j=1 T i−1 .
Hence, the probability that a query terminates in level i is βi , and
the fraction of queries that reach level i is 1 −

∑i−1
j=1 βj , and we can

now calculate αi = 1 − βi
1−

∑i−1
j=1 βj

, with α1 = 1 − β1. Overall, the
cost of a lookup in the entire LSM-tree is shown in Eq. (4).

cost = T(1) +
∑L

i=2

(
1 −

∑i−1
j=1

βj
)
· T(i) (4)

≈

(
L −

1 − α
T − 1

)
· (TH +TP ) + (1 − α ) · TD +

(
L −

1 − α
T − 1 − 1 + α

)
·
(
fp · TD

)
The interested reader can find in the Appendix the derivation of
Eq. (4). Note that the storage access cost due to true positives stays
constant, while the BF related costs increase with L. This implies
that as we have more data (in faster storage devices), the fraction
of the time spent hashing will keep increasing.
Tiering.We now proceed to present the query cost with an LSM-
tree that uses tiering. The difference from the more classical leveled
LSM-tree is that each level containsT runs which may overlap with
one another. Therefore, an empty point lookup has to query all T
runs in each level, while a non-empty lookup should search runs
from the oldest to the newest until the key is found. Assuming the
keys are uniformly distributed across all runs, the cost of querying
a level i in tiering, T(i), is modeled as shown in Eq. (5).

T(i) = (1 − αi ) ·
T + 1
2 · (TH +TP ) + (1 − αi ) ·TD

+ αi ·T ·
(
TH +TP + fp ·TD

) (5)

The total cost of a lookup with tiering is shown in Eq. (6).

cost = T(1) +
∑L

i=2

(
1 −

∑i−1
j=1 βj

)
· T (i)

≈
T + 1
2 · (1 − α) · (TH +TP ) + (1 − α) ·TD

+ (T · L − (1 − α) · (T + 1)) ·
(
TH +TP + fp ·TD

) (6)

Fig. 2 shows the fraction of hashing cost for a tiered LSM-tree with
5 levels and 10 runs per level, while varying α . A lookup in tiering
needs to search more runs, hence, the hashing cost amounts to a
higher fraction when compared to leveling (shown in Fig. 1).

Hash Function FPR (%)

MurmurHash (MM) 0.850%
MurmurHash64 (MM64) 0.853%
XXHash (XX) 0.794%
MD5 0.921%

Hash Function FPR (%)

SHA-256 0.868%
CRC 0.819%
CITY 0.850%
All k 0.899%

Table 2: Using a single hash digest and bit-rotation does not
negatively impact the experimentally measured FPR when
compared with a BF with k different hash functions.

4 SHARING BLOOM FILTER HASHING
We now discuss the benefits of hash sharing (a) in a single BF, (b)
across the series of smaller BFs that forms a single logical BF, and
(c) across multiple BFs residing in different levels of an LSM-tree.

4.1 Hash Sharing in a Single BF
Classical BFs [4] rely on k independent hash functions to generate
k indexes, which results in high CPU overhead. Practical BF imple-
mentations share a single hash calculation for their k indexes [14].
For example, RocksDB uses a single hash digest and multiple in-
dexes by rotating the hash digest. Specifically, given a hash function
h(x), δ = h(x) << 17 | h(x) >> 15, and the ith (0 ≤ i ≤ k − 1)
hash function дi (x) is calculated using дi (x) = h(x) + i · δ . Such an
optimization reduces TH by a factor of k , since it computes only a
single hash digest and the bit rotation cost is negligible.

To showcase the impact of this optimization on performance and
the false positive rate (FPR), we conduct a micro-benchmark on a
single BF. We use seven popular hash functions shown in Table 2,
and we vary the key size between 8B and 512B. We populate the
BF with 10K keys, with 10 bits per key, and thus, the optimal k = 7
hash functions. We execute 100K empty point queries and measure
both FPR and query performance.

The first experiment measures the impact of hash sharing via
bit-rotation on FPR. We fix the key size to 512B and report the
measured FPR in Table 2. We compare a BF that uses all seven
hash functions to guarantee that we have independent hash digests,
indicated with “All k”, along with BF implementations that use
a single hash function and calculate the remaining indexes with
bit-rotations. We observe that the bit-rotation optimization does
not affect the FPR, rather, BFs with bit-rotation achieve close-to-
ideal FPR. Note that the theoretical optimal FPR for 10 bits per
element is e−10·(ln(2))2 ≈ 0.819%. To further validate the efficacy of
bit-rotation, we conduct another experiment for which we vary the
bits per key between 1 and 13 (requiring accordingly 1 to 9 hash
indexes, as shown in Eq. (1)). Fig. 3 shows that for any number
of hash functions using one hash function and bit-rotation also
leads to an empirical false positive that is close to the theoretical
expectation.

Next, we compare the lookup latency with and without bit-
rotation as we vary the key size in Fig. 4. We compare the lookup
latency of a BF that uses all seven hash functions (black bars), a
BF that uses MD5 and bit-rotation (red bars), and a BF that uses
MM64 and bit-rotation (blue bars). As expected, the lookup cost
increases as the key size grows, and it is dominated by the hashing
cost for all seven hash functions. Using only MD5 reduces the cost
significantly, but when using the more efficient MM64, the average

4
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single hash and bit-rotation
Hash Function FPR (%)

MM64 0.829%
XX 0.897%
CRC 0.841%
CITY 0.834%

double hashing
Hash Function FPR (%)

XX + MM64 0.761%
CRC + MM64 0.808%
CITY + MM64 0.842%

Table 3: ElasticBF normally achieves almost the same false
positive rate as a normal Bloom filter

lookup cost is drastically reduced. For the remainder of the pa-
per, we focus on hash functions that can be computed fast (MM64,
XXHash, CRC, and CITY) discarding the slow hash functions (MD5,
SHA-256). We use MM64 as our primary hash function because
of its efficient execution, low FPR, and wide usage in production,
notably by RocksDB.

4.2 Hash Sharing in ElasticBF
In addition to the classical BFs, several BF variants have been pro-
posed for LSM-trees that increase the hashing overhead to address
more complex workloads like short-range queries [28, 46], and data
skew for point queries [22]. As our target workload is point queries,
we focus on ElasticBF [22] which consists of multiple small filter
units per BF (essentially small BFs) to address access skew. By de-
fault, each unit uses a unique hash function to ensure that they are
all independent, thus substantially increasing the hashing overhead.
As a result, the hashing cost of ElasticBF increases with both the
number of filter units and the number of levels in the LSM-tree.

We first address the increased hashing cost due to the number
of units. The bit-rotation optimization is directly applicable to Elas-
ticBF. In addition, we use the double hashing scheme [21] that en-
sures that each unit will get a provably independent hash function.
The double hashing scheme bounds the expected FPR compared to
the standard BF by O(1/n) where n is the number of inserted ele-
ments. Formally, according to the double hashing scheme, given two
independent hash functions h1(x) and h2(x), the ith (0 ≤ i ≤ k − 1)
hash function дi (x) is defined as дi (x) = h1(x) + i · h2(x).

To investigate how much hash sharing can affect the FPR and
the CPU overhead, we emulate ElasticBF and conduct a micro-
benchmark that compares the bit-rotation and the double-hashing
schemes. The benchmark is similar to the previous. We populate the
ElasticBF with 10K keys and then issue 100K empty point queries.
Note that the bits per key is 10, the number of filter units is 7
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Figure 7: Hash sharing across BFs of different levels.

and each filter unit uses a single index. For the double hashing
scheme, we use MM64 as the primary and XX, CRC, and CITY as
secondary hash functions. Table 3 shows that the FPR is similar
(with double hashing being marginally better), while Fig. 5 shows
that bit-rotation leads to lower query latency, up to 3×.

4.3 Hash Sharing Across Multiple LSM Levels
We now apply hash sharing across multiple LSM levels, a design
that can benefit any BF variant employed in an LSM-tree. The
key observation is that for a specific query, the same hash digest
calculation is repeated across levels. The BFs are different across
levels (they have indexed different elements). However, calculating
the hash digest is repeated for every queried level until finding the
matching key or the tree is entirely searched. Thus, to mitigate
this overhead, we share the hash digest calculation across levels
by re-engineering the BF implementation and allowing the BFs
residing in different levels to work in concert during the course of
a single query (Fig. 7). As a result, the hashing cost stays constant
regardless of the number of levels, shaving off a factor of L from the
hashing cost in Eq. (4). The new cost is shown in Eq. (7). Note that
the hash sharing technique can also be used across separate runs
in tiering, leading to no increase in hashing for tiering compared
to leveling even though we are probing T× more runs.

costsh = TH +

(
L −

1 − α

T − 1

)
·TP + (1 − α) ·TD

+

(
L −

1 − α

T − 1 − 1 + α
)
·
(
fp ·TD

)
(7)

Performance Implications and Discussion. Hash sharing de-
couples the amount of time spent on hashing from the number of
LSM levels, and as a result, from the data size. In our experiments,
we have seen that there is no difference in the empirical FPR across
different levels of the LSM-tree between the state-of-the-art design
and hash sharing, while the hashing cost of an empty query drops
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Figure 8:Hash sharing reduces hashing overhead. The reduc-
tion is more pronounced for larger keys and taller trees.

by a factor of L. We further define the “Gain” from hash sharing to
quantify the performance improvement as shown in Eq. (8).

Gain =
cost − cost sh

cost
× 100% (8)

=

(
L − 1 − 1−α

T−1
)
· TH(

L − 1−α
T−1

)
· (TH +TP ) + (1 − α ) · TD +

(
L − 1−α

T−1 − 1 + α
)
· fp · TD

× 100%

=
L − 1 − 1−α

T−1(
L − 1−α

T−1
)
·

(
1 + TP

TH

)
+ (1 − α ) · TDTH +

(
L − 1−α

T−1 − 1 + α
)
· fp ·

TD
TH

× 100%

Eq. (8) shows that the performance gain is affected by many factors
including TH ,TD ,α and L. The gain for tiering can similarly be
derived from Eq. (6). To quantify the theoretical gain, we use the
latency numbers from Table 1 and plot the expected performance
gain from hash sharing as we are moving to faster storage devices
for storing our data. Fig. 6 shows the theoretical gain for both
leveled and tiered LSM-trees for different fractions of empty vs.
non-empty queries. We observe that while the gain is negligible for
HDDs and small for SSDs, it is expected to grow rapidly to more
than 40%, as we are moving towards faster storage devices. Further,
the gain is higher for tiered LSM-trees.

Note that the same benefit applies when ElasticBFs are used in
an LSM-tree. In addition to that, hash sharing allows ElasticBFs to
benefit from a further reduction in hashing overhead by a factor
equal to the number of filter units, without harming the empirically
measured FPR. Finally, any BF variant that is employed in a hierar-
chical manner, like in an LSM-tree, can benefit from hash sharing
as long as the same hash digest calculation offers the desires results.
Hence, filters like Rosetta [28], Cuckoo filters [15], and Counting
filters [30] can also benefit. In the following section, we experimen-
tally show the benefits of hash sharing in an LSM-tree that employs
BFs with bit-rotation.

5 EXPERIMENTAL EVALUATION
We now present the benefits of hash sharing across BFs in different
levels in LSM-trees. In our experimentation, we vary the key size,
the height of the LSM-tree, the bits per key allocated in the BFs,
and the workload characteristics.
Hardware Environment.We run our experiments in our in-house
server, which is equipped with two sockets, each with an Intel Xeon
Gold 6230 2.1GHz processor with 20 hardware threads (40 threads
with virtualization). The size of the main memory and the L3 cache
in our machine is 384GB and 27.5MB. The server is equipped with
two 7200RPM hard drives, one off-the-shelf SSD (240GB S4610),
and two state-of-the-art PCIe SSD devices, 1TB PCIe P4510 SSD
and Optane 375GB P4800X SSD, which can offer 600K and 1M IOPS
accordingly, and 10µs access latency for 4KB page accesses. Unless
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Figure 9: The benefit dimin-
ishes for smaller key sizes.
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Figure 10: The gain is higher
for a Zipfian workload.

otherwise specified, we use the 1TB PCIe P4510 SSD with direct
I/O enabled in our experimentation.
Experimental Platform,Workloads, andMetrics.We build an
in-house LSM-tree prototype system2 based on the architecture
of RocksDB [14], which uses RocksDB’s fast local Bloom filter
(format_version = 5, only supports 64-bit hash digest).We stress-test
our system by varying workloads and the execution environment.
Since our design optimizes read performance, we focus on read-
only workloads. We bulk load our LSM-tree with 22GB of key-value
pairs. The default size of a key-value entry is 1KB with 512B for the
key. In our experimentation, we vary the key size and the height of
the tree. With respect to tuning the LSM-tree, we set the file size
to 2MB, the size ratio of the LSM-tree to 10, and the bits per key
for the BFs to 10. For each experiment, we measure 1 million point
queries and report the average lookup latency along with a detailed
breakdown of the time spent on hashing, accessing data, or other
parts of the code. Each reported measurement is the average of five
executions, with negligible standard deviation.
Hash Sharing Scales Better with Key Size. In order to highlight
the impact of key size on hashing overhead, we conduct an experi-
ment varying the key size from 8B to 1024B. For this experiment,
we increase the key-value entry size to 2KB (in order to accom-
modate key sizes up to 1KB), with the resulting tree having five
levels. Fig. 8a shows the lookup latency (y-axis) of empty queries
for variable key sizes (x-axis). Here, we compare the state-of-the-art
with a system that employs hash sharing. As expected, the hashing
cost increases for both approaches as the key size grows, however,
hash sharing has a performance gain of up to 23% (blue line). The
time breakdown shows where this benefit is coming from. The time
spent in BFs (both hashing and probing) is drastically reduced for
the hash sharing approach, while the cost for accessing data, as well
as the other costs (e.g., binary search in fence pointers), virtually
remains the same. In addition, larger keys have higher hashing
overhead, hence, hash sharing is more beneficial for larger key
sizes. This observation is inline with Eq. (8); as TH increases, both
TD/TH and TP /TH will decrease. For 1KB keys, the total hashing
cost is reduced to less than half. Fig. 9 shows the benefits from
hash sharing for smaller keys. In this experiment we set the entry
size equal to 512B and each SST file can now hold more keys. We
observe that the benefit diminishes since hashing small keys only
constitutes a negligible portion of the whole query.
Hash Sharing Benefit is Higher for Skewed Queries. We fur-
ther evaluate the effect of a skewed query workload that follows
Zipfian. As shown in Fig. 10, the gain steeply increases for 1KB
keys to more than 60%. Note that the data access time becomes
unstable since a Zipfian workload can be “stuck” requesting keys
2Our codebase can be found at https://github.com/BU-DiSC/BF-Shared-Hashing.

6

https://github.com/BU-DiSC/BF-Shared-Hashing


Reducing Bloom Filter CPU Overhead in LSM-Trees on Modern Storage Devices DAMON’21, June 20–25, 2021, Virtual Event, China

SSD(D)PCIe SSD(D) RAM SSD PCIe SSD

Storage device

0

2

4

6

8

L
at

en
cy

/l
oo

ku
p

(µ
s) BF(hash+probe) data other

state-of-art Hash Sharing

0%

10%

20%

30%

40%

50%

G
ai

n
Figure 11: For faster storage,
the benefit of hash sharing is
pronounced.
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Figure 12: For fewer data ac-
cesses (lower FPR), the bene-
fit of hash sharing is larger.

that cause false positives. Overall, the observed false positive was
lower than for the uniform workload (0.08% instead of 0.8%), hence,
the workload has fewer data accesses due to false positives. As a
result, hashing is the main bottleneck for skewed lookups, and hash
sharing helps to aggressively reduce it.
Hash Sharing Scales Better with Data Size. We now vary the
data size, resulting in LSM-trees that have between 8 and 14 levels
(with size ratio 2). As shown in Fig. 8b, the difference in the cost
of hashing (solid bars) increases for larger data size (more levels),
showing that hash sharing scales with data size. The state-of-the-
art system RocksDB performs one hash calculation per level, thus
the hashing cost accumulates with the number of levels. On the
contrary, using hash sharing, every query performs only one hash
calculation, thereby decoupling the hashing cost from the height of
the tree. In hash sharing, the increase in the total BF cost is a result
of the unavoidable (yet much cheaper than hashing) filter probing.
We further observe a small improvement in terms of gain, which is
consistent with our gain definition. To explain this, we reformulate
Eq. (8) as Eq. (9).

Gain = TH

(TH +TP + fp · TD ) +
TH +TP +(1−α )·TD+α ·fp ·TD

L−1− 1−α
T−1

× 100% (9)

According to Eq. (9), as the number of levels increases, the de-
nominator is dominated by the constantTH + fp ·TD . Even though
the performance gain increases for higher number of levels, it even-
tually approaches a constant value.
Hash Sharing hasHigher Impact for Faster Devices. For faster
storage devices, the fraction of time spent on hashing increases
to the point that it dominates the point query latency. In this ex-
periment, we vary the underlying storage device (SSD, PCIe SSD,
and RAM-disk). We use RAM-disk to emulate the behavior of a
future non-volatile memory with performance close to DRAM. We
also experiment with our SSD and PCIe SSD with direct I/O both
enabled and disabled. In Fig. 11, SSD(D) and PCI SSD(D) indicate
that direct I/O is enabled, while for SSD and PCI SSD it is disabled.
We observe that as the storage latency reduces, hashing dominates
query time, and the benefit of hash sharing increases from 10%
for the off-the-shelf SSD to more than 40% for an emulated NVM.
Note that this is consistent with Eq. (8). Specifically, the smaller
the value of TD/TH , the higher the gain, and for fixed TH , the gain
monotonically increases for faster storage devices (smaller TD ).
Hash Sharing has Higher Impact for Lower FPR. Using more
bits per key leads to lower false positive rate, thus, it reduces the
number of data accesses due to false positives, further highlighting
the benefit of hash sharing. In Fig. 12, we vary the bits per key from
8 to 14, and we report the performance gain for different storage
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Figure 13: Hash sharing ben-
efits on SSD increase up to
20%, as the fraction of empty
queries (α ) increases.
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Figure 14: The gain on a
RAM disk increases up to
40%, following a similar pat-
tern as in the case of the SSD.

devices. We observe that the benefit of hash sharing increases for
more bits per key (lower false positive rate). The observation is
consistent with Eq. (8), in which fp is in the denominator with
a positive coefficient and thus, lower fp will result in a higher
performance gain.When the bits per key is set to 10 (a typical setting
in state-of-the-art LSM-trees), the performance is improved bymore
than 10% on PCIe SSD and by more than 40% on an emulated NVM.
Hash Sharing has Higher Impact for Empty Queries. The pre-
vious experiments focus on empty point queries, for which hash
sharing is most effective. We now examine the benefit of hash shar-
ing as we vary the fraction of empty queries, α . Note that empty
queries will (mostly) avoid doing any I/Os because of BFs, while
positive queries will have to read data at least once. Fig. 13 and
Fig. 14 show the latency breakdowns of the state-of-the-art and
hash sharing when using an SSD and a RAM disk as data storage
accordingly. We observe that the fraction of time spent on hashing
reduces as the fraction of empty queries (α ) increases. The elapsed
time spent hashing is constant, however, the time spent retrieving
data increases as we have more empty queries. The benefit when
using an SSD for data storage is negligible for α = 0 and increases to
17% for α = 1. In the case of a RAM disk (used to emulate NVM), we
observe that the gain starts from 10% for α = 0, and grows to more
than 40% for α = 1. These findings are consistent with Eq. (9). We
note the relationship between the term TH+TP+(1−α )·TD+α ·fp ·TD

T−1− 1−α
T−1

andα . Asα increases, the numerator decreases and the denominator
increases, hence, the term overall is monotonically decreasing. This
means that for more empty queries (higher α ) the performance gain
is expected to increase, which is corroborated by our experiments.

6 RELATEDWORK
The textbook implementation of a BF requires k independent hash
functions, however, their cost is prohibitively high. To mitigate this
cost, Less Hashing Bloom Filters (LHBF) [21] and One-Hashing
Bloom filters (OHBF) [23] aim to achieve the same false positive
rate with reduced hashing cost. LHBF divides the filter into k par-
titions of identical size, and calculates the index for a partition i
using two hash functions h1(x) and h2(x), дi (x) = h1(x) + i · h2(x).
Similarly, OHBF divides the filter into k partitions of uneven sizes
and calculates the index for partition i using a single hash func-
tion, дi (x) = h(x)%mi . The OHBF is implemented using one hash
function and a few modulo operations.

Orthogonal to the hashing cost, there have been efforts to reduce
the probing cost focusing on the locality of bit-vector accesses
[33, 34]. Blocked Bloom filters (BBF) [33] split the filter into a
sequence of blocks to reducememory probing for different locations
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generated by the k hash functions. BBFs partitions have a small
fixed size of one (or a few) cache lines, and unlike classical BFs, the
first hash calculation points to a specific block, and all subsequent
probes are performed in the same cache line (or group of cache
lines). Bloom-1 [34] filter maps k bits in a single word, instead of
mapping to an entire filter, in order to reduce the probing cost.
Thus, Bloom-1 can achieve membership identification with only
one memory access. While BBFs and Bloom-1 are a great match for
in-memory workloads, their locality does not benefit disk-resident
workloads where the benefit from being cache-efficient is masked
by the latency to retrieve data from the disk.

The aforementioned approaches aim to optimize a single BF,
while our work aims to optimize a collection of multiple BFs, by
sharing hashing not only within a BF, but also across different BFs.
Hence, our design can be combined with any technique that reduces
the hashing cost of a single BF.

7 CONCLUSIONS
In this paper, we observe that as we move to faster storage devices,
hashing for BFs in LSM-trees becomes a key performance bottle-
neck. We address this by decoupling the hashing overhead from
the number of distinct levels in the tree (and, as a result, the data
size), by sharing a single hash digest across different levels. Our
technique reduces the fraction of time spent on hashing during
lookups and leads to performance benefits varying from 10% for
our PCIe SSD to more than 40% for an emulated NVM.
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A COST MODEL DERIVATIONS
In this section we provide more details about the derivations of the
cost model in Section 3. The total query cost from Eq. (4) can be
expanded to Eq. (10) using Eq. (3).

cost = TH +TP + (1 − α1) ·TD + α1 · fp ·TD (10)

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

[
TH +TP + (1 − αi ) ·TD + αi · fp ·TD

]
Since αi = 1 − βi

1−
∑i−1
k=1 βk

and α1 = 1 − β1, Eq. (10) can be reformu-
lated as follows, leading to Eq. (11).

cost = TH +TP + β1 ·TD + (1 − β1) · fp ·TD

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

[
TH +TP +

βi ·TD

1 −
∑i−1
k=1 βk

+

(
1 − βi

1 −
∑i−1
k=1 βk

)
· fp ·TD

]
⇒

cost =
©­«L −

L∑
i=2

i−1∑
j=1

βj
ª®¬ · (TH +TP ) +

L∑
i=1

βi ·TD

+
©­«L −

L∑
i=2

i−1∑
j=1

βj −
L∑
i=1

βi
ª®¬ · fp ·TD

(11)

Since
∑L
i=1 βi = 1 − α , Eq. (11) becomes Eq. (12).

cost =
©­«L −

L∑
i=2

i−1∑
j=1

βj
ª®¬ · (TH +TP ) + (1 − α) ·TD

+
©­«L −

L∑
i=2

i−1∑
j=1

βj − 1 + αª®¬ · fp ·TD

(12)

If we assume that keys in the LSM-tree are perfectly uniform, then,
βi depends on α and the size of level i , i.e., βi = T i−1 · β1, while
β1 = 1−α∑L

j=1 T i−1 . Thus,
∑L
i=2

∑i−1
j=1 βj can be approximated as follows.

L∑
i=2

i−1∑
j=1

βj =
L∑
i=2

i−1∑
j=1

T j−1 · β1

= β1 ·
L∑
i=2

T i−1 − 1
T − 1

=
β1

T − 1 ·

( L∑
i=2

(
T i−1

)
− (L − 1)

)
=

β1
T − 1 ·

( L∑
i=1

(
T i−1

)
− 1 − (L − 1)

)
=

β1
T − 1 ·

( L∑
i=1

(
T i−1

)
− L

)
=

1 − α∑L
k=1T

k−1
·

1
T − 1 ·

( L∑
i=1

(
T i−1

)
− L

)
=

1 − α

T − 1 ·

(
1 − L∑L

k=1T
k−1

)
=

1 − α

T − 1 ·

(
1 − L

T L−1
T−1

)
=

1 − α

T − 1 ·

(
1 − L · (T − 1)

T L − 1

)
≈

1 − α

T − 1
(for T > 3 or L > 3)

(13)

Therefore, the cost of full LSM-tree lookup can be simplified as in
Eq. (4). The analysis discussed above concerns the query cost for a
leveled LSM-Tree. When considering tiering, every level contains
T runs which may overlap with each other. As such, a point lookup
has to query all the runs from the oldest to the newest unless a
key is found. Assuming the keys are uniformly distributed across
all runs, the number of BF queries for empty lookup is T , while a
non-empty lookup needs to lookup on average T+1

2 (the average
of 1 and T ). Thus, the cost of querying level i in tiering, T(i), is
modeled as Eq. (5), and the cost of a lookup in tiered LSM-tree is
shown in Eq. (14).
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cost = T(1) +
L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ · T (i)

= (1 − α1) ·
T + 1
2 (TH +TP )

+ (1 − α1) ·TD + α1 ·T · (TH +TP + fp ·TD )

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

(
(1 − αi ) ·

T + 1
2 (TH +TP )

)
+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ · ((1 − αi ) ·TD )

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

(
αi ·T · (TH +TP + fp ·TD )

)

(14)

Since αi = 1 − βi
1−

∑i−1
j=1 βj

and α1 = 1 − β1, Eq. (14) becomes Eq. (15).

cost = β1 ·
T + 1
2 · (TH +TP )

+ β1 ·TD + (1 − β1) ·T · (TH +TP + fp ·TD )

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

(
βi

1 −
∑i−1
j=1 βj

· (TH +TP )

)

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬ ·

(
βi

1 −
∑i−1
j=1 βj

·TD

)

+

L∑
i=2

©­«1 −
i−1∑
j=1

βj
ª®¬

·

((
1 − βi

1 −
∑i−1
j=1 βj

)
·T · (TH +TP + fp ·TD )

)
=

L∑
i=1

(
βi ·

T + 1
2 · (TH +TP )

)
+

L∑
i=1

(βi ·TD )

+
©­«L −

L∑
i=2

i−1∑
j=1

βj −
L∑
i=1

βi
ª®¬ ·T ·

(
TH +TP + fp ·TD

)

(15)

Using Eq. (13) and
∑L
i=1 βi = 1 − α , Eq. (15) is simplified to Eq. (6).
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