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ABSTRACT

Log-structured merge (LSM) trees offer efficient ingestion by ap-
pending incoming data, and thus, are widely used as the storage
layer of production NoSQL data stores. To enable competitive read
performance, LSM-trees periodically re-organize data to form a
tree with levels of exponentially increasing capacity, through iter-
ative compactions. Compactions fundamentally influence the per-
formance of an LSM-engine in terms of write amplification, write
throughput, point and range lookup performance, space amplifi-
cation, and delete performance. Hence, choosing the appropriate
compaction strategy is crucial and, at the same time, hard as the LSM-
compaction design space is vast, largely unexplored, and has not
been formally defined in the literature. As a result, most LSM-based
engines use a fixed compaction strategy, typically hand-picked by
an engineer, which decides how and when to compact data.

In this paper, we present the design space of LSM-compactions,
and evaluate state-of-the-art compaction strategies with respect to
key performance metrics. Toward this goal, our first contribution is
to introduce a set of four design primitives that can formally define
any compaction strategy: (i) the compaction trigger, (ii) the data
layout, (iii) the compaction granularity, and (iv) the data movement
policy. Together, these primitives can synthesize both existing and
completely new compaction strategies. Our second contribution
is to experimentally analyze 10 compaction strategies. We present
12 observations and 7 high-level takeaway messages, which show
how LSM systems can navigate the compaction design space.
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1 INTRODUCTION

LSM-based Key-Value Stores. Log-structured merge (LSM) trees
are widely used today as the storage layer of modern NoSQL key-
value stores [36, 42, 45]. LSM-trees employ the out-of-place para-
digm to achieve fast ingestion. Incoming key-value pairs are buffered
in main memory, and are periodically flushed to persistent storage
as sorted immutable runs. As more runs accumulate on disk, they are
sort-merged to construct fewer yet longer sorted runs. This process
is known as compaction [30, 42]. To facilitate fast point lookups, LSM-
trees use auxiliary in-memory data structures (Bloom filters and
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Fig. 1: (a) The different compaction strategies adopted in
state-of-the-art LSM-engines lead to the diverse perfor-
mances offered by the engines; (b) The taxonomy of LSM
compactions in terms of the design primitives.

fence pointers) that help to reduce the average number of disk I/Os
performed per lookup [21, 22]. Because of these advantages, LSM-
trees are adopted by several production key-value stores including
LevelDB [32] and BigTable [17] at Google, RocksDB [30] at Face-
book, X-Engine [34] at Alibaba, WiredTiger at MongoDB [62], Cock-
roachDB at Cockroach Labs [18], Voldemort [40] at LinkedIn, Dy-
namoDB [25] at Amazon, AsterixDB [3], Cassandra [8], HBase [7],
Accumulo [6] at Apache, and bLSM [56] and cLSM [31] at Ya-
hoo. Academic systems based on LSM-trees include Monkey [21],
SlimDB [47], Dostoevsky [22, 23], LSM-Bush [24], Lethe [51], Silk [11,
12], LSbM-tree [58], SifrDB [44], and Leaper [63].

Compactions in LSM-Trees. Compactions in LSM-trees are em-
ployed periodically to reduce read and space amplification at the cost
of write amplification while ensuring data consistency and query
correctness [9, 10]. A compaction merges two or more sorted runs,
between one or multiple levels to ensure that the LSM-tree main-
tains levels with exponentially increasing sizes [45]. Compactions
are typically invoked when a level reaches its capacity, at which
point, the compaction routine moves data from the saturated level
to the next one, that has an exponentially larger capacity. Any
duplicate entries (resulting from updates) and invalidated entries
(resulting from deletes) are removed during a compaction, retain-
ing only the logically correct (latest valid) version [28, 51]. Com-
pactions dictate how and when disk-resident data is re-organized,
and thereby, influence the physical data layout on the disk. Fig. 1(a)
presents qualitatively the performance implications of the various
compaction strategies adopted in state-of-the-art LSM-engines.
The Challenge: Hand-Picking Compaction Strategies. Despite
compactions being critical to the performance of LSM-engines, the
process of choosing an appropriate compaction strategy requires a
human in the loop. In practice, decisions on “how to (re-)organize
data on disk”, and thereby, “which compaction strategies to imple-
ment or use” in a production LSM-based data store are often subject
to the expertise of the engineers or the database administrators
(DBAS). This is largely due to two reasons. First, the process of com-
paction in LSM-trees is often treated as a black-box and is rarely


https://doi.org/10.14778/3476249.3476274
https://disc.bu.edu/lsm-compaction
https://doi.org/10.14778/3476249.3476274

exposed as a tunable knob [61]. While the LSM-compaction design
space is vast, the lack of a formal template for compactions leads to
heavily relying on individual expertise, leaving a large part of the
design space unexplored. Second, there is a lack of analytical and
experimental data on how compactions influence the performance
of an LSM-engine subject to the underlying design of the storage
engine and the workload characteristics. Hence, it is difficult, even
for experts, to answer design questions such as:

(i) My LSM-engine is offering lower write performance than ex-
pected: Would a change in the compaction strategy help? If yes,
which strategies should be used?

(if) The workload we used to process has changed: How does this
affect the read throughput of my system? Is there a compaction
strategy that can improve the read throughput?

(iii) We are due to design a new LSM-engine for processing a spe-
cific workload: How should I compact my data for best overall
performance? Is there a compaction strategy that I must avoid?

Relying on human expertise to hand-pick the appropriate com-
paction strategies for each application does not scale, especially for
large-scale system deployments.

Contributions. To this end, in this work, we formalize the design
space of compactions in LSM-based storage engines. Further, we
experimentally explore this space, and based on this, we present 7
high-level takeaway messages, and 12 observations that serve as a
comprehensive set of guidelines for LSM-compactions, and lay the
groundwork for compaction tuning and automation.

Conceptual Contribution: Constructing the Compaction De-
sign Space. We identify the defining characteristics of a compaction,
or compaction primitives: (i) the trigger (i.e., when to compact), (ii)
the data layout (i.e., how to organize the data after compaction),
(iii) the granularity (i.e., how much data to compact at a time), and
(iv) the data movement policy (i.e., which data to compact). To-
gether, the four primitives define when and how to compact data in
an LSM-tree. Fig. 1(b) presents the taxonomy of LSM-compactions
along with the various options for each of the design primitives.
Experimental Contribution 1: Unifying the Experimental In-
frastructure of Multiple Compaction Strategies. To establish
a consistent experimental platform, we integrate several state-of-
the-art compaction strategies into a unified codebase, based on
the widely adopted open-source RocksDB [30] LSM-engine. This
integration bridges wild variations of implementation and config-
uration knobs of different compaction strategies across different
LSM-engines. Further, we implement each compaction strategy
through the prism of the aforementioned four primitives on top of
the same data store to ensure an apples-to-apples comparison. We
implement ten state-of-the-art compaction strategies that are popular
among production and academic systems, and are key to the under-
standing of the LSM-compaction design space. We implement these
strategies through significant modifications to the latest RocksDB
codebase [30], and expose more than a hundred design knobs to
enable custom configuration and to ensure a fair evaluation.
Experimental Contribution 2: Analyzing the Compaction De-
sign Space. We provide a comprehensive experimental analysis of
the LSM-compaction design space, which quantifies the impact of
each of the design primitives on a number of performance metrics.
This experimental analysis also serves as a roadmap for selecting
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a compaction strategy subject to the workload characteristics and
performance goals. We perform more than 2000 experiments with
10 compaction strategies to take a deep dive on the following.

o Performance Implications. We quantify the impact of compactions
on LSM performance in terms of ingestion throughput, query
latency, space and write amplification, and delete efficacy in §5.1.

o Workload Influence on Compactions. While the composition and
(ingestion and access) distribution of the workload influence the
compaction performance, deciding which compaction strategy to
employ is workload-agnostic in existing systems. To analyze the
workload’s impact on compactions performance, we experiment
with a number of representative workloads by varying (i) the
size of ingested data, (ii) the proportion of ingestion and lookups,
(iii) the proportion of empty and non-empty point lookups, (iv)
the selectivity of range queries, (v) the fraction of updates and
(vi) deletes, (vii) the key-value size, as well as (viii) the workload
distribution (uniform, normal, and Zipfian) in §5.2.

Tuning Influence on Compactions. LSM tuning typically focuses
on knobs like memory buffer size, page size, and size ratio which
are not believed to be connected with compaction performance.
We experiment with these knobs to uncover when compactions
are affected (and when not) by these knobs in §5.3.

o Answering Design Questions. Finally, throughout §5 we present
various observations and key insights of our experimental evalu-
ation, and in §6 we discuss a roadmap for designing and choosing
compaction in LSM-engines.

This work defines the LSM compaction design space and presents a
thorough account of how the different primitives affect the overall
performance of a storage engine.

Key Takeaways. Finally, the high-level key takeaways from our
analysis are the following.

A. There is no perfect compaction strategy. When it comes to selecting
a compaction strategy for an LSM-engine, there is no single best.
Thus, a compaction strategy needs to be custom-tailored to specific
combinations of workload, LSM tuning, and performance goals.
B. It is important to look into the compaction “black-box”. To under-
stand the performance implications of LSM compactions, it is crucial
to “open the black-box”, and treat them as a set of design primi-
tives. Following this approach, we reason about the performance
implications of each design primitive independently. We identify
common pitfalls given a workload and a target performance.

C. The right compaction strategy can significantly boost performance.
Switching between compaction strategies as the workload and/or
the performance goals shift can boost the performance of an LSM-
engine significantly. Understanding the behavior and performance
implications of the compaction primitives allows for modifications
to existing codebases to invoke the appropriate compaction strategy.

2 BACKGROUND

We now present the necessary background of LSM-trees. A more
detailed survey on LSM-basics can be found in the literature [21, 42].
LSM-Basics. To support fast data ingestion, LSM-trees buffer in-
coming inserts, updates, and deletes (i.e., ingestion, in general)
within main memory. Once the memory buffer becomes full, the
entries contained are sorted on the key and the buffer is flushed as



a sorted run to the disk-component of the tree. In practice, a sorted
run is a collection of one or more immutable files that have typically
the same size. For an LSM-tree with L levels, we assume that its
first level (Level 0) is an in-memory buffer and the remaining levels
(Level 1 to L — 1) are disk-resident [21, 42]. On disk, each Level i
(i > 1) has a capacity that is larger than that of Level i — 1 by a
factor of T, where T is the size ratio of the tree.
LSM-Compactions. To limit the number of sorted runs on disk
(and thereby, to facilitate fast lookups and better space utilization),
LSM-trees periodically sort-merge runs (or parts of a run) from a
Level i with the overlapping runs from Level i + 1. This process of
data re-organization and creating fewer longer sorted runs on disk
is known as compaction. However, the process of sort-merging data
requires the data to be moved back and forth between the disk and
main memory. This results in write amplification, which can be as
high as 40X in state-of-the-art LSM-based data stores [46].

Partial compactions. To amortize data movement, and thus, avoid
latency spikes, state-of-the-art LSM-engines organize data into
smaller files, and perform compactions at the granularity of files
instead of levels [28]. If Level i grows beyond a threshold, a com-
paction is triggered and one file (or a subset of files) from Level i
is chosen to be compacted with files from Level i + 1 that have an
overlapping key-range. This process is known as partial compaction.
Fig. 2 presents a comparative illustration of the full compaction and
partial compaction routines in LSM-trees.

Querying LSM-Trees. Since LSM-trees realize updates and deletes
in an out-of-place manner, multiple entries with the same key may
exist in a tree with only the recent-most version being valid.
Point lookups. A point lookup starts at the memory buffer and
traverses the tree from the smallest level to the largest one, and from
the youngest to the oldest run within a level. A lookup terminates
immediately after a matching key is found. To limit the number of
runs a lookup probes, state-of-the-art LSM-engines use in-memory
data structures, such as Bloom filters and fence pointers [23, 30].
Range scans. A range scan requires sort-merging the runs qualifying
for a range query across all levels of the tree. The runs are sort-
merged in memory and the latest version for each qualifying entry
is returned while discarding all older, logically invalidated versions.
Deletes in LSM-Trees. A point delete operation is realized by in-
serting a special type of key-value entry, known as a tombstone,
that logically invalidates the target entries without necessarily dis-
turbing them. During compactions, a tombstone purges any older
entries with a matching key. A delete is eventually considered as per-
sistent once the corresponding tombstone reaches the last tree-level,
at which point the tombstone can be safely dropped. The time taken
to persistently delete a data object from an LSM-based data store
depends on process of data re-organization. Compactions, thus, also
play a critical role in timely and persistent deletion of entries, espe-
cially in light of the new data privacy regulations [1, 26, 38, 50, 54].

3 THE COMPACTION DESIGN SPACE

In this section, we identify the design primitives that provide a
structured decomposition of arbitrary compaction strategies. This
allows us to create the taxonomy of the universe of LSM compaction
strategies, including all the classical as well as new ones.
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Fig. 2: (a) When invoked, the classical full compaction rou-
tine compacts whole levels at a time, while (b) partial com-
pactions perform compactions at the granularity of files.

3.1 Compaction Primitives

We define a compaction strategy as an ensemble of design primitives
that represents the fundamental decisions about the physical data
layout and the data (re-)organization policy. Each primitive answers
a fundamental design question.

1) Compaction trigger: When to re-organize the data layout?

2) Data layout: How to lay out the data physically on storage?

3) Compaction granularity: How much data to move at-a-time
during layout re-organization?

4) Data movement policy: Which block of data to be moved during
re-organization?

Together, these design primitives define when and how an LSM-
engine re-organizes the data layout on the persistent media. The
proposed primitives capture any state-of-the-art LSM-compaction
strategy and also enables synthesizing new or unexplored com-
paction strategies. Below, we define these four design primitives.

3.1.1 Compaction Trigger. Compaction triggers refer to the set
of events that can initiate a compaction job. The most common
compaction trigger is based on the degree of saturation of a level in
an LSM-tree [3, 30-32, 35, 56, 57]. The degree of saturation for Level
i (1 <i<L-1)istypically measured as the ratio of the number of
bytes of data stored in Level i to the theoretical capacity in bytes for
Level i. Once the degree of saturation goes beyond a pre-defined
threshold, one or more immutable files from Level i are marked
for compaction. Some LSM-engines use the file count in a level to
compute degree of saturation [32, 34, 35, 49, 55]. Note that the file
count-based degree of saturation works only when all immutable
files are of equal size, or for systems that have a tunable file size.
The “#sorted runs” compaction trigger, triggers a compaction if the
number of sorted runs (or “tiers”) in a level goes past a predefined
threshold, regardless of the size of a level.

Other compaction triggers include the staleness of a file, the
tombstone-based time-to-live, and space and read amplification. For
example, to ensure propagation of updates and deletes to the deeper
levels of a tree, some LSM-engines assign a time-to-live (TTL)
for each file during its creation. Each file can live in a level for
a bounded time, and once the TTL expires, the file is marked for
compaction [30]. Another delete-driven compaction trigger ensures
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Fig. 3: The primitives that define LSM compactions: trigger, data layout, granularity, and data movement policy.

bounded persistence latency of deletes in LSM-trees through a dif-
ferent timestamp-based scheme. Each file containing at least one
tombstone is assigned a special time-to-live in each level, and up
on expiration of this timer, the file is marked for compaction [51].
Below, we present a list of the most common compaction triggers:

i) Level saturation: level size goes beyond a nominal threshold
ii) #Sorted runs: sorted run count for a level reaches a threshold
iii) File staleness: a file lives in a level for too long
iv) Space amplification (SA): overall SA surpasses a threshold
v) Tombstone-TTL: files have expired tombstone-TTL

3.1.2 Data layout. The data layout is driven by the compaction
eagerness, and determines the data organization on disk by control-
ling the number of sorted runs per level. Compactions move data
between storage and memory, consuming a significant portion of
the device bandwidth. There is, thus, an inherent competition for
the device bandwidth between ingestion (external) and compaction
(internal) — a trade-off depending on the eagerness of compactions.

The data layout is commonly classified as leveling and tiering [21,
22]. With leveling, once a compaction is triggered in Level i, the
file(s) marked for compaction are merged with the overlapping
file(s) from Level i + 1, and the result is written back to Level i + 1.
As a result, Level i + 1 ends up with a (single) longer sorted run
of immutable files [30-32, 34, 35, 56]. For tiering, each level may
contain more than one sorted runs with overlapping key domains.
Once a compaction is triggered in Level i, all sorted runs in Level
i are merged together and the result is written to Level i + 1 as a
new sorted run without disturbing the existing runs in that level [3,
7, 8, 30, 55, 57]. A hybrid design is proposed in Dostoevsky [23]
where the last level is implemented as leveled and all the remaining
levels on disk are tiered. A generalization of this idea is proposed
in the literature as a continuum of designs [24, 37] that allows each
level to separately decide between leveling and tiering. Among
production systems, RocksDB implements the first disk-level (Level
1) as tiering [49], and it is allowed to grow perpetually in order to
avoid write-stalls [11, 12, 14] in ingestion-heavy workloads. Below
is a list of the most common options for the data layout:

i) Leveling: one sorted run per level
ii) Tiering: multiple sorted runs per level
iii) 1-leveling: tiering for Level 1; leveling otherwise
iv) L-leveling: leveling for last level; tiering otherwise
v) Hybrid: a level can be tiering or leveling independently

3.1.3 Compaction Granularity. Compaction granularity refers
to the amount of data moved during a single compaction job. One
way to compact data is by sort-merging and moving all data from a
level to the next level — we refer to this as full compaction [2, 3, 58,

62]. This results in periodic bursts of I/Os due to large data move-
ment during compactions, and as a tree grows deeper, the latency
spikes are exacerbated causing prolonged write stalls. To amortize
the I/O costs due to compactions, leveled LSM-based engines em-
ploy partial compaction [30, 32, 34, 45, 51, 55], where instead of mov-
ing a whole level, a smaller granularity of data participates in every
compaction. The granularity of data can be a single file [28, 34, 51]
or multiple files [2, 3, 8, 45] depending on the system design and the
workload. Note that, partial compaction does not radically change
the total amount of data movement due to compactions, but amor-
tizes this data movement uniformly over time, thereby preventing
undesired latency spikes. A compaction granularity of “sorted runs”
applies principally to LSMs with lazy merging policies. Once a com-
paction is triggered in Level i, all sorted runs (or tiers) in Level i are
compacted together, and the resulting entries are written to Level
i+ 1 as a new immutable sorted run. Below, we present a list of the
most common compaction granularity options:

i) Level: all data in two consecutive levels
ii) Sorted runs: all sorted runs in a level
iii) Sorted file: one sorted file at a time
iv) Several sorted files: several sorted files at a time

3.1.4 Data Movement Policy. When partial compaction is em-
ployed, the data movement policy selects which file(s) to choose
for compaction. While the literature commonly refers to this deci-
sion as file picking policy [27], we use the term data movement to
generalize for any possible data movement granularity.

A naive way to choose file(s) is at random or by using a round-
robin policy [32, 35]. These data movement policies do not focus
on optimizing for any particular performance metric, but help in re-
ducing space amplification. To optimize for read throughput, many
production data stores [30, 34] select the “coldest” file(s) in a level
once a compaction is triggered. Another common optimization goal
is to minimize write amplification. In this policy, files with the least
overlap with the target level are marked for compaction [13, 27]. To
reduce space amplification, some storage engines choose files with
the highest number of tombstones and/or updates [30]. Another
delete-aware approach introduces a tombstone-age driven file pick-
ing policy that aims to timely persist logical deletes [51]. Below, we
present the list of the common data movement policies:

i) Round-robin: chooses files in a round-robin manner

ii) Least overlapping parent: file with least overlap with “parent”
iii) Least overlapping grandparent: as above with “grandparent”
iv) Coldest: the least recently accessed file

v) Oldest: the oldest file in a level
vi) Tombstone density: file with #tombstones above a threshold
vii) Tombstone-TTL: file with expired tombstones-TTLs
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3.2 Compaction as an Ensemble of Primitives

Every compaction strategy takes one or more values for each of the
four primitives. The trigger, granularity, and data movement policy
are multi-valued primitives, whereas data layout is single-valued.
For example, a common LSM design [2] has a leveled LSM-tree
(data layout) that compacts whole levels at a time (granularity)
once a level reaches a nominal size (trigger). This design does
not implement many subtle optimizations including partial com-
pactions, and by definition, does not need a data movement policy.
A more complex example is the compaction strategy for a leveled
LSM-tree (data layout) in which compactions are performed at the
granularity of a file. A compaction is triggered if either (a) a level
reaches its capacity or (b) a file containing tombstones is re-
tained in a level longer than a pre-set TTL [51]. Once triggered,
the data movement policy chooses (a) the file with the highest
density of tombstones, if there is one or (b) the file with the
least overlap with the parent level, otherwise.
The Compaction Design Space Cardinality. Two compaction
strategies are considered different from each other if they differ
in at least one of the four primitives. Compaction strategies that
differ in only one primitive, can have vastly different performance
when subject to the same workload while running on identical
hardware. Plugging in some typical values for the cardinality of the
primitives, we estimate the cardinality of the compaction universe
as >10%, a vast yet largely unexplored design space. Table 1 shows a
representative part of this space, detailing the compaction strategies
used in more than twenty academic and production systems.
Compactions Analyzed. For our analysis and experimentation,
we select ten representative compaction strategies that are preva-
lent in production and academic LSM-based systems. We codify
and present these candidate compaction strategies in Table 2. Full
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represents the compaction strategy for leveled LSM-trees that com-
pacts entire levels upon invocation. LO+1 and LO+2 denote two par-
tial compaction routines that choose a file for compaction with the
smallest overlap with files in the parent (i+1) and grandparent (i +2)
levels, respectively. RR chooses files for compaction in a round-robin
fashion from each level. Cold and 01d are read-friendly strategies
that mark the coldest and oldest file(s) in a level for compaction,
respectively. TSD and TSA are delete-driven compaction strategies
with triggers and data movement policies that are determined by
the density of tombstones and the age of the oldest tombstone con-
tained in a file, respectively. Tier represents a variant of tiered
data layout, where compactions are triggered when either (a) the
number of sorted runs in a level or (b) the estimated space amplifi-
cation in the tree reaches certain thresholds. This interpretation of
tiering is also referred to as universal compaction in systems like
RocksDB [39, 49]. Finally, 1-Lv1 represents a hybrid data layout
where the first disk level is realized as tiered while the others as
leveled. This is the default data layout for RocksDB [39, 48].

4 BENCHMARKING COMPACTIONS

We now discuss our experimental platform, how we integrated new
compactions policies, and our measurement methodology.

4.1 Standardization of Compaction Strategies

We choose RocksDB [30] as our experimental platform, as it (i)
is open-source, (ii) is widely used across industry and academia,
(iii) has a large active community. To ensure fair comparison we
implement all compaction strategies under the same LSM-engine.
Implementation. We integrate our codebase into RocksDB v6.11.4.
We assign to compactions a higher priority than writes to accurately
benchmark them, while always maintaining the LSM structure [53].
Compaction Trigger. The default compaction trigger for (hybrid)
leveling in RocksDB is level saturation [48], and for the univer-
sal compaction is space amplification [49]. RocksDB also supports
delete-driven compaction triggers, specifically whether the #tomb-
stones in a file goes beyond a threshold. We further implement a
trigger based on the tombstones age to facilitate timely deletes [51].
Data layout. By default, RocksDB supports only two different data
layouts: hybrid leveling (tiered first level, leveled otherwise) [48]
and a variation of tiering (with a different trigger), termed universal
compaction [49]. We also implement pure leveling by limiting the
number of first-level runs to one, and triggering a compaction when
the number of first-level files is more than one.

Compaction Granularity. The granularity for leveling is file and
sorted runs for tiering. To implement classical leveling, we mark
all files of a level for compaction. We ensure that ingestion may
resume only after all the compaction-marked files are compacted
thereby replicating the behavior of the full compaction routine.
Data Movement Policy. RocksDB (v6.11.4) provides four different
data movement policies: a file (i) with least overlap with its par-
ent level, (ii) least recently accessed, (iii) with the oldest data in a
level, and (iv) that has more tombstones than a threshold. We also
implement partial compaction strategies that choose a file (v) in a
round-robin manner, (vi) with the least overlap with its grandparent
level, and (vii) based on the age of the tombstones in a file.



Primitives Full LO+1 Cold [30] | 0ld [30] TSD [30, 34] RR [31, 32, LO+2 TSA [51] Tier 1-Lv1 [30, 39, 48]
ve [3,58,62] | [22,30,51] 35, 56] [32, 35] [8, 33, 47]
. TS-densi . # . T
Trigger level saturation| level sat. level sat. | level sat. 1. TS-density level sat. level sat. LTS age 1. #sorted runs 1 #sorted rur]l_s
2. level sat. 2. level sat. 2. space amp. 2. level sat.
Data layout ‘ leveling ‘ leveling ‘ leveling ‘ leveling ‘ leveling ‘ leveling ‘ leveling ‘ leveling ‘ tiering ‘ hybrid
T
Granularity ‘ levels ‘ files ‘ files ‘ files ‘ files ‘ files ‘ files ‘ files ‘ sorted runs ‘ L sozrt;;lels'gns
ata Sf 5 " s 2 i , T
Ddt.d movement N/A least overlap. coldest file | oldest file 1. most tombstones round-robin least overlap. 1. expired TS-TTL N/A 1. N/A ;
policy parent 2. least overlap. parent grandparent | 2. least overlap. parent 2. least overlap. parent

Table 2: Compaction strategies evaluated in this work. [L: levels with leveling; ”: levels with tiering,.]

Designing the Compaction API. We expose the compaction prim-
itives through a new API as configurable knobs. An application can
configure the desired compaction strategy and initiate workload
execution. The API also allows the application to change the com-
paction strategy for an existing database. Overall, our experimental
infrastructure allows us (i) to ensure an identical underlying struc-
ture while setting the compaction benchmark, and (ii) to tune and
configure the design of the LSM-engine as necessary.

4.2 Performance Metrics

We now present the performance metrics used in our analysis.
Compaction Latency. The compaction latency includes the time
taken to (i) identify the files to compact, (ii) read the participating
files to memory, (iii) sort-merge (and remove duplicates from) the
files, (iv) write back the result to disk as new files, (v) invalidate the
older files, and (vi) update the metadata in the manifest file [30].
The RocksDB metric rocksdb.compaction.times.micros is used
to measure the compaction latency.

Write Amplification (WA). The repeated reads and writes due to
compaction cause high WA [46]. We formally define WA as the num-
ber of times an entry is (re-)written without any modifications to disk
during its lifetime. We use the RocksDB metric compact.write.bytes
and the actual data size to compute WA.

Write Latency. Write latency is driven by the device bandwidth
utilization, which depends on (i) write stalls due to compactions and
(ii) the sustained device bandwidth. We use the db.write.micros
histogram to measure the average and tail of the write latency.
Read Amplification (RA). RA is the ratio between the total num-
ber of disk pages read for point lookups and the pages that should
be read ideally. We use rocksdb.bytes.read to compute RA.
Point Lookup Latency. Compactions determine the position of
the files in an LSM-tree which affects point lookups on entries
contained in those files. Here, we use the db.get.micros histogram.
Range Lookup Latency. The range lookup latency depends on
the selectivity of the range query, but is affected by the data layout.
We also use the db.get.micros histogram for range lookups.
Space Amplification (SA). SA depends on the data layout, com-
paction granularity, and the data movement policy. SA is defined
as the ratio between the size of logically invalidated entries and the
size of the unique entries in the tree [23]. We compute SA using the
size of the database and the size of the logically valid entries.
Delete Performance. We measure the degree to which the tested
compaction strategies persistently delete entries within a time-
limit [51] in order to analyze the implications of compactions from
a privacy standpoint [1, 26, 38, 50, 54, 60]. We use the RocksDB file
metadata age and a delete persistence threshold.
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4.3 Benchmarking Methodology

We now discuss the methodology for varying the key input param-
eters for our analysis: workload and the LSM tuning.

4.3.1 Workload. A typical key-value workload comprises of five
primary operations: inserts, updates, point lookups, range lookups,
and deletes. Point lookups target keys that may or may not exist
in the database — we refer to these as non-empty and empty point
lookups, respectively. Range lookups are characterized by their
selectivity. To analyze the impact of each operation, we vary the
fraction of each operation as well as their qualitative characteristics
(i.e., selectivity and entry size). We further vary the data distribution
of ingestion and queries focusing on (i) uniform, (ii) normal, and (iii)
Zipfian distributions. Overall, our custom-built benchmarking suite
is a superset of the influential YCSB benchmark [19] as well as the
insert benchmark [15], and supports a number of parameters that
are missing from existing workload generators, including deletes.
Our workload generator exposes over 64 degrees of freedom, and is
available via GitHub [52] for dissemination, testing, and adoption.

4.3.2 LSM Tuning. We further study the interplay of LSM tun-
ing and compaction strategies. We consider questions like which
compaction strategy is appropriate for a specific LSM design and a
given workload? To answer such questions we vary in our experi-
mentation key LSM tuning parameters, like (i) the memory buffer
size, (ii) the block cache size, and (iii) the size ratio of the tree.

5 EXPERIMENTAL EVALUATION

We now present the key experimental results using the ten com-
paction strategies listed in Table 2.

Goal of the Study. Our analysis aims to answer the following
three fundamental questions:

i) Performance implications: How do compactions affect the
overall performance of LSM-engines?

ii) Workload influence: How do workload distribution and com-
position influence compactions, and thereby, the perfor-
mance of LSM-engines?

iii) Tuning influence: What is the interplay between LSM com-
pactions and tuning?

Ultimately, the goal of this study is to help practitioners and re-
searchers to make informed decisions when deciding which com-
paction strategies to support and use in an LSM-based engine.

Experimental Setup. For our experiments, we use an AWS EC2
server with t2.2xlarge instances (virtualization: hardware virtual
machine) [5]. Each virtual machine has 8 Intel Scalable Processors
(vCPUs) at 3.0GHz, 32GB of DIMM RAM, 45MB of L3 cache, and
runs Ubuntu 20.04 LTS. For storage, we attach a 40GB SSD volume



with 4000 provisioned IOPS (volume type: i02) [4]. For experiments
with data size larger than 16GB, we switch to a 500GB SSD.
Default Setup. Unless otherwise mentioned, all experiments are
performed on a RocksDB setup with an LSM-tree of size ratio 10 [21,
27, 30]. The memory buffer is implemented as a hash skiplist [29].
The size of the write buffer is set to 8MB which can hold up to 512
16KB disk pages [21, 22, 27, 34]. Fence pointers are maintained for
each disk page, and Bloom filters are constructed for every file with
10 bits memory allocated for every entry [22, 24]. Additionally, we
have 8MB block cache (RocksDB default) assigned for data, filter,
and index blocks [27]. To capture the true raw performance of
RocksDB as an LSM-engine, we (i) assign compactions a higher
priority than writes, (ii) enable direct I/Os for both read and write
operations, (iii) limit the number of memory buffers (or memtables)
to two (one immutable and one mutable), and (iv) set the number
of background threads responsible for compactions to 1.
Workloads. Unless otherwise mentioned, ingestion and lookups
are uniformly generated, and the average size of a key-value entry is
128B with 4B keys [20, 41, 43]. We vary the number of inserts, going
up to 228, As compaction performance proves to be agnostic to data
size, and in the interest of experimenting with many configurations,
we perform our base experiments with 10M inserts [16, 21], both
interleaved and serial with respect to lookups. Further specifications
of the workloads are presented before each set of experiments.
Presentation. For each experiment, we present the primary obser-
vations (O) along with key takeaway (TA) messages. In the interest
of space, we limit our discussion to the most interesting results. Fur-
ther, note that TSD and TSA, fall back to LO+1 in absence of deletes,
and thus, are omitted from the experiments without deletes.

5.1 Performance Implications

We first analyze the implications of compactions on the ingestion,
lookup, and overall performance of an LSM-engine.

5.1.1 Data loading. In this experiment, we insert 10M key-value
entries uniformly generated into an empty database to quantify the
raw ingestion and compaction performance.

01: Compactions Cause High Data Movement. Fig. 4(a) shows
that the overall (read and write) data movement due to compactions
is significantly larger than the actual size of the data ingested.
Among the leveled LSM-designs, Full moves 63X (32X for reads
and 31X for writes) the data originally ingested. The data movement
is significantly smaller for Tier, however, it remains 23X of the data
size. The data movement for 1-Lv1 is similar to that of the leveled
strategies in partial compaction. These observations conforms with
prior work [46], but also highlight the problem of read amplification
due to compactions leading to poor device bandwidth utilization.
02: Partial Compaction Reduces Data Movement at the Ex-
pense of Increased Compaction Count. We now shift our at-
tention to the different variations of leveling. Fig. 4(a) shows that
leveled partial compaction leads to 34%—56% less data movement
than Full. The reason is twofold: (1) A file with no overlap with
its parent level, is only logically merged. Such pseudo-compactions
require simple metadata (file pointer) manipulation in memory, and
no I/Os. (2) A smaller compaction granularity reducing overall data
movement by choosing a file with (i) the least overlap, (ii) the most
updates, or (iii) the most tombstones for compaction. . Specifically,
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LO+1 (and LO+2) is designed to pick files with the least overlap with
the parent i + 1 (and grandparent i + 2) level. They move 10%-23%
less data than other partial compaction strategies.

Fig. 4(b) shows that the partial compaction strategies as well as
1-Lv1 perform 4X more compaction jobs than Full, which is equal
to the number of tree-levels. Note that for an LSM-tree with partial
compaction, every buffer flush triggers cascading compactions to all
L levels, while in a full-level compaction system this happens when
alevel is full (every T compactions). Finally, since both Tier and
Full are full-level compactions the compaction count is similar.

TA I: Larger compaction granularity leads to fewer but larger com-
pactions. Full-level compactions perform about 1/L times fewer com-
pactions than partial compaction routines, however, full-level compaction
moves nearly 2L times more data per compaction.

03: Full Leveling has the Highest Mean Compaction Latency.
As expected, Full compactions have the highest average latency
(1.2-1.9% higher than partial leveling, and 2.1X than tiering). The
mean compaction latency is observed to be directly proportional
to the average amount of data moved per compaction. Full can
neither take advantage of pseudo-compactions nor optimize the
data movement during compactions, hence, on average the data
movement per compaction remains large. 1-Lv1 provides the most
predictable performance in terms of compaction latency. Fig. 4(c)
shows the mean compaction latency for all strategies as well as
the median (P50), the 90" percentile (P90), the 99¢ h percentile
(P99), and the maximum (P100). The tail compaction latency largely
depends on the amount of data moved by the largest compaction
jobs triggered during the workload execution. We observe that the
tail latency (P90, P99, P100) is more predictable for Full, while
partial compactions, and especially, tiering have high variability
due to differences in the data movement policies.

The compaction latency presented in Fig. 4(c) can be broken to

IO time and CPU time. We observe that the CPU effort is about
50% regardless of the compaction strategy. During a compaction,
CPU cycles are spent in (1) obtaining locks and taking snapshots,
(2) merging the entries, (3) updating file pointers and metadata, and
(4) synchronizing output files post compaction. Among these, the
time spent to sort-merge the data in memory dominates.
The Tail Write Latency is Highest for Tiering. Fig. 4(d) shows
that the tail write latency is highest for tiering. The tail write latency
for Tier is ~2.5% greater than Full and 5-12x greater than partial
compactions. Tiering in RocksDB [49] optimizes for writes and
opportunistically seeks to compact all data to a large single level.
This design achieves lower average write latency (Fig. 5(b)) at the
expense of prolonged write stalls in the worst case, which is when
the overlap between two consecutive levels is very high. Full also
has 2-5x higher tail write stalls than partial compactions because
when multiple consecutive levels are close to saturation, a buffer
flush can result in a cascade of compactions. 1-Lv1 too has a higher
tail write latency as the first level is realized as tiering.

TA II: Tier may cause prolonged write stalls. Tail write stall for Tier
is ~25ms, while for partial leveling (01d) it is as low as 1.3ms.

5.1.2 Querying the Data. In this experiment, we perform 1M
point lookups on the previously generated preloaded database (with
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Fig. 4: Compactions influence the ingestion performance of LSM-engines heavily in terms of (a) the overall data movement,
(b) the compaction count, (c) the compaction latency, and (d) the tail latency for writes, as well as (e, f) the point lookup
performance. The range scan performance (g) remains independent of compactions as the amount of data read remains the
same. Finally, the lookup latency (h) depends on the proportion of empty queries («) in the workload.

10M entries). The lookups are uniformly distributed in the domain
and we vary the fraction of empty lookups a between 0 and 1.
Specifically, « = 0 indicates that we consider only non-empty
lookups, while for « = 1 we have lookups on non-existing keys.
We also execute 1000 range queries, while varying their selectivity.

04: The Point Lookup Latency is Highest for Tiering and
Lowest for Full-Level Compaction. Fig. 4(e) shows that point
lookups perform the best for Full, and the worst for tiering. The
mean latency for point lookups with tiering is between 1.1-1.9x
higher than that with leveled compactions for lookups on existing
keys, and ~2.2x higher for lookups on non-existing keys. Note
that lookups on existing keys must always perform at least one
I/O per lookup (unless they are cached). For non-empty lookups
in a tree with size ratio T, theoretically, the lookup cost for tiering
should be T higher than its leveling equivalent [21]. However, this
worst-case cost is not always accurate; in practice it depends on (i)
the block cache size and the caching policy, (ii) the temporality of
the lookup keys, and (iii) the implementation of the compaction
strategies. RocksDB-tiering has overall fewer sorted runs than text-
book tiering. Taking into account the block cache and temporality
in the lookup workload, the observed tiering cost is less than Tx
the cost observed for Full. In addition, Full is 3%-15% lower than
the partial compaction routines, because during normal operation
of Full some levels might be entirely empty, while for partial com-
paction all levels are always close to being full. Finally, we note
that the choice of data movement policy does not affect the point
lookup latency significantly, which always benefits from Bloom
filters (10 bits-per-key) and the block cache (0.05% of the data size).
Point Lookup Latency Increases for Comparable Number of
Empty and Non-Empty Queries. A surprising result for point
lookups that is also revealed in Fig. 4(e) is that they perform worse
when the fraction of empty and non-empty lookups is balanced.
Intuitively, one would expect that as we have more empty queries
(that is, as « increases) the latency would decrease since the only
data accesses needed by empty queries are the ones due to Bloom
filter false positives [21]. To further investigate this result, we plot
in Fig. 4(h) the 90° h percentile (P90) latency which shows a similar

curve for point lookup latency as we vary «. In our configuration
each file uses 20 pages for its Bloom filters, 4 pages for its index
blocks, and that the false positive is FPR = 0.8%. A non-empty
query needs to load the Bloom filters of the levels it visits until it
terminates. For all intermediate levels, it accesses the index and
data blocks with probability FPR, and then fetches the index and
data blocks for the target level. On the other hand, an empty query
probes the Bloom filters of all levels before returning an empty
result. Note that for each level it also accesses the index and data
blocks with FPR. The counter-intuitive shape is a result of the non-
empty lookups not needing to load the Bloom filters for all levels
when a = 0 and the empty lookups accessing index and data only
when there is a false positive when a = 1. Fig. 4(h) also shows the
highly predictable point lookup performance of 1-Lvl.

TA III: The point lookup latency is largely unaffected by the data
movement policy. In presence of Bloom filters (with high enough memory)
and small enough block cache, the point query latency remains largely
unaffected by the data movement policy as long as the number of sorted runs
in the tree remains the same. This is because block-wise caching of the filter
and index blocks reduces the time spent performing disk I/Os significantly.

05: Read Amplification is Influenced by the Block Cache
Size and File Structure, and is Highest for Tiering. Fig. 4(f)
shows that the read amplification across different compaction strate-
gies for non-empty queries (@ = 0) is between 3.5 and 4.4. This is
attributed to the size of filter and index blocks which are 5x and 1x
the size of a data block, respectively. Each non-empty point lookup
fetches between 1 and L filter blocks depending on the position
of the target key in the tree, and up to L - FPR index and data
blocks. Further, the read amplification increases exponentially with
a, reaching up to 14.4 for leveling and 21.3 for tiering (for ¢ = 0.8).
Fig. 4(f) also shows that the estimated read amplification for point
lookups is between 1.2x and 1.8X higher for Tier than for leveling
strategies. This higher read amplification for Tier is owing to the
larger number of sorted runs in the tree, and is in line with O4.

The Effect of Compactions on Range Scans is Marginal. To
answer a range query, LSM-trees instantiate multiple run-iterators
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Fig. 5: (a-c) The average ingestion performance for workloads with interleaved inserts and queries is similar to that of an
insert-only workload, but (d) with worse tail performance. However, (e) interleaved lookups are significantly faster.

scanning all sorted runs containing qualifying data. Thus, its per-
formance depends on (i) the iterator scan time (which relates to
selectivity) and (ii) the time to merge the data. The number of sorted
runs in a leveled LSM-tree remains the same, which results in sim-
ilar range query latency for all leveled variations, especially for
larger selectivity (Fig. 4(g)). Note that without updates or deletes,
the amount of data qualifying for a range query remains largely
identical for different data layouts despite the number of runs being
different. The ~5% higher average range query latency for Tier is
attributed to the additional I/Os needed to handle partially qualify-
ing disk pages from each run (O(L - T) in the worst case).

5.1.3 Executing mixed workloads. We now discuss the perfor-
mance implications when ingestion and queries are mixed. We
interleave the ingestion of 10M unique key-value entries with 1M
point lookups. The ratio of empty to non-empty lookups is varied
across experiments. All lookups are performed after L — 1 levels are
full. Fig. 5 compares side by side the results for serial and interleaved
execution of workloads with same specifications.

06: Mixed Workloads have Higher Tail Write Latency. Fig-
ures 5(a) and (b) show that the mean latency of compactions that
are interleaved with point queries is only marginally affected for all
compaction strategies. This is also corroborated by the write ampli-
fication remaining unaffected by mixing reads and writes as shown
in Fig. 5(c). On the other hand, Fig. 5(d) shows that the tail write
latency is increased between 2-15X. This increase is attributed to
(1) the need of point queries to access filter and index blocks that
requires disk I/Os that compete with writes and saturate the device,
and (2) the delay of memory buffer flushing during lookups.
Interleaving Compactions and Point Queries Helps Keeping
the Cache Warm. Since in this experiment we start the point
queries when L — 1 levels of the tree are full, we expect that the in-
terleaved read query execution will be faster than the serial one, by
1/L (25% in our configuration) which corresponds to the difference
in the height of the trees. However, Fig. 5(e) shows this difference
to be between 26% and 63% for non-empty queries and between 69%
and 81% for empty queries. The reasons interleaved point query
execution is faster than expected are that (1) about 10% of lookups
terminate within the memory buffer, without requiring any disk
I/Os, and (2) the block cache is pre-warmed with filter, index, and
data blocks cached during compactions. Fig. 5(d) and 5(e) show how
1-Lv1 brings together the best of both worlds and offer reasonably
good ingestion and lookup performance simultaneously.

TA IV: Compactions help lookups by warming up the caches. As the
file metadata is updated during compactions, the block cache is warmed up
with the filter, index, and data blocks, which helps subsequent point lookups.

5.2 Workload Influence

Next, we analyze the implications of the workloads on compactions.

5.2.1 Varying the Ingestion Distribution. In this experiment,
we use an interleaved workload that varies the ingestion distribu-
tion (Zipfian with s = 1.0, normal with 34% standard deviation),
and has uniform lookup distribution. We use a variant of the Zip-
fian distribution, called PrefixZipf, where the key prefixes follow
a Zipfian distribution while the suffixes are generated uniformly.
This allows us to avoid having too many updates in the workload.

Ingestion Performance is Agnostic to Insert Distribution. Fig-
ures 4(a), 6(a), and 6(e) show that the total data movement during
compactions remains virtually identical for (unique) insert-only
workloads generated using uniform, PrefixZipf, and normal distri-
butions, respectively. Further, we observe that the mean and tail
compaction latencies are agnostic of the ingestion distribution (Fig.
4(c), 6(b), and 6(f) are almost identical as well). As long as the data
distribution does not change over time, the entries in each level fol-
low the same distribution and the overlap between different levels
remains the same. Therefore, for an ingestion-only workload the data
distribution does not influence the choice of compaction strategy.
O7: Insert Distribution Influences Point Queries. Figure 6(c)
shows that while tiering has a slightly higher latency for point
lookups, the relative performance of the compaction strategies is
close to each other for any fraction of non-empty queries in the
workload (all values of «). This is because when empty queries are
drawn uniformly from the key domain, the level-wise metadata
and index blocks help to entirely avoid a vast majority of unnec-
essary disk accesses (including fetching index or filter blocks). In
Fig. 6(d), we observe that the read amplification remains compa-
rable to that in Fig. 4(f) (uniform ingestion) for « = 0 and even
a = 0.4. However, for ¢ = 0.8, the read amplification in Fig. 6(d)
becomes 65%-75% smaller than in the case of uniform inserts. The
1/Os performed to fetch the filter blocks is close to zero. This shows
that all compaction strategies perform equally well while executing an
empty query-heavy workload on a database pre-populated with Pre-
fixZipf inserts. In contrast, when performing lookups on a database
pre-loaded with normal ingestion, the point lookup performance
(Fig. 6(g)) largely resembles its uniform equivalent (Fig. 4(h)), as
the ingestion-skewness is comparable. The filter and index block
hits are ~ 10% higher for the normal distribution compared to uni-
form for larger values of «, which explains the comparatively lower
read amplification shown in Fig. 6(h). This plot also shows the first
case of unpredictable behavior of LO+2 for ¢ = 0 and a = 0.2. We
observe more instances of such unpredictable behavior for LO+2,
which probably explains why it is rarely used in new LSM stores.
Once again, for both the compaction and tail lookup performance,
1-Lv1 offers highly predictable performance.

5.2.2 Varying the Point Lookup Distribution. In this exper-
iment, we change the point lookup distribution to Zipfian and
normal, while keeping the ingestion distribution as uniform.
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mance of the database remains nearly identical with improvement in the lookup performance.
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Fig. 7: Skewed lookup distributions like Zipfian (a, b) and normal (c, d) improve the lookup performance dramatically in the
presence of a block cache and with the assistance of Bloom filters.

The Distribution of Point Lookups Significantly Affects Per-
formance. Zipfian point lookups on uniformly populated data
leads to low latency point queries for all compaction strategies, as
shown in Fig. 7(a) because the block cache is enough for the popu-
lar blocks in all cases, as also shown by the low read amplification
in Fig. 7(b). On the other hand, when queries follow the normal
distribution, partial compaction strategies LO+1 and L0+2 dominate
all other approaches, while Tier is found to perform significantly
slower than all other approaches, as shown in Fig. 7(c) and 7(d).

TA V: For skewed ingestion/lookups, all compaction strategies be-
have similarly in terms of lookup performance. While the ingestion
distribution does not influence its performance, heavily skewed ingestion or
lookups impacts query performance due to block cache and file metadata.

5.2.3 Varying the Proportion of Updates. We now vary the
update-to-insert ratio, while interleaving queries with ingestion.
An update-to-insert ratio 0 means that all inserts are unique, while a
ratio 8 means that each unique insert receives 8 updates on average.
08: For Higher Update Ratio Compaction Latency for Tier-
ing Drops; LO+2 Dominates the Leveling Strategies. As the
fraction of updates increases, the mean compaction latency de-
creases significantly for tiering because we discard multiple up-
dated entries in every compaction (Fig. 8(a)). We observe similar
but less pronounced trends for Full and LO+2, while the remain-
ing leveling strategies remain largely unchanged. Overall, larger
compaction granularity helps to exploit the presence of updates by
invalidating more entires at a time. Among the leveling strategies,
LO+2 performs best as it moves ~20% less data during compactions,
which also affects write amplification as shown in Fig. 8(b).

As the fraction of updates increases, all compaction strategies
including Tier have lower tail compaction latency. Fig. 8(c) shows
that Tier’s tail compaction latency drops from 6x higher than

Full to 1.2X for an update-to-insert ratio of 8, which demonstrates
that Tier is most suitable for update-heavy workloads. We also
observe that lookup latency and read amplification also decrease
for update-heavy workloads.

The Point Lookup Latency Stabilizes with the Level Count.
Fig. 8(d) shows that as the update-to-insert ratio increases, the mean
point lookup latency decreases sharply before stabilizing. The initial
sharp fall in the latency is attributed to a decrement in the number
of levels (from 4 to 3) in the LSM-tree, when the update-to-insert
ratio increases from 0.4 to 1. The latency then stabilizes because
non-empty point lookups perform at least one disk I/O, which, in
turn, dominates the overall lookup cost.

TA VI: Tiering dominates the performance for update-intensive
workloads. When subject to update-intensive workloads, Tier exhibits su-
perior compaction performance along with comparable lookup performance
(as leveled LSMs), which allows it to dominate the overall performance space.

5.24 Varying Delete Proportion. We now analyze the impact
of deletes, which manifest as out-of-place invalidations with special
entries called tombstones [51]. We keep the same data size and vary
the proportion of point deletes in the workload. All deletes are
issued on existing keys and are interleaved with the inserts.

TSD and TSA Offer Superior Delete Performance. We quantify
the efficacy of deletion using the number of tombstones at the end of
the workload execution. The lower this number, the faster deleted
data has been purged from the database, which in turn reduces
space, write, and read amplification. Fig. 8(e) shows that TSD and
TSA maintain the fewer tombstones at the end of the experiment. For
a workload with 10% deletes, TSD purges 16% more tombstones than
Tier and 5% more tombstones than LO+1 by picking the files that
have a tombstone density above a pre-set threshold for compaction.
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Fig. 8: Experiments with varying workload and data characteristics (a-1) and LSM tuning (m-r) show that there is no perfect
compaction strategy — choosing the appropriate compaction strategy is subject to the workload and the performance goal.

For TSA, we experiment with two different thresholds for delete
persistence: TSAs3 and TSAsg is set to 33% and 50% of the experi-
ment run-time, respectively. As TSA guarantees persistent deletes
within the thresholds set, it compacts more data aggressively, and
ends up with 7-10% fewer tombstones as compared to TSD. Full
manages to purge more tombstones than any partial compaction
routine, as it periodically compacts entire levels. Tier retains the
highest number of tombstones as it maintains the highest number
of sorted runs overall. As the proportion of deletes in the workload
increases, the number of tombstones remaining the LSM-tree (after
the experiment is over) increases. TSA and TSD along with Full
scale better than the partial compaction routines and tiering. By
compacting more tombstones, TSA and TSD also purge more invalid
data reducing space amplification, as shown in Fig. 8(f).

09: Optimizing for Deletes Comes at a (Write) Cost. The re-
duced space amplification offered by TSA and TSD is achieved by
compacting the tombstones eagerly, which increases the overall
amount of data moved due to compaction. Fig. 8(g) shows that
TSD and TSAso compacts 18% more data than the write optimized
LO+1 (for TSAs33 this becomes 35%). Thus, TSD and TSA are useful
when the objective is to (i) persist deletes timely or (ii) reduce space
amplification caused by deletes.

TA VII: TSD and TSA are tailored for deletes. TSA and TSD, by design,
choose files with tombstones for compactions to reduce space amplification.
TSA ensures timely persistent deletion by compacting more data eagerly for
smaller persistence thresholds, which increases the write amplification.

5.2.5 Varying the Ingestion Count. We now report the scala-
bility results by varying the data size from 2%7B to 23°B.

010: Tier Scales Poorly Compared to Leveled and Hybrid
Strategies. The mean compaction latency scales sub-linearly for
all compaction strategies barring Tier, as shown in Fig. 8(h). The
relative advantages of compaction strategies with leveled and hybrid

data layouts remain similar regardless of the data size. This obser-
vation is further backed up by Fig. 8(i) which shows how write
amplification scales. We also observe that the advantages of the
RocksDB-implementation of tiering (i.e., universal compaction) [49]
diminishes as the data size grows beyond 8GB. Fig. 8(j) shows that
as the data size increases, the tail compaction latency for Tier
increases, as the worst-case overlap between files from consecu-
tive levels increase significantly. This makes Tier unsuitable for
latency-sensitive applications. When the data size reaches 2GB,
Full triggers a cascading compaction that writes all data to a new
level, causing spikes in write amplification and compaction latency.

5.2.6 Varying Entry Size. Here, we keep the key size constant
(4B) and vary the value from 4B to 1020B to vary the entry size.
011: For Smaller Entry Size, Leveling Compactions are More
Expensive. Smaller entry size increases the number of entries per
page, which in turn, leads to (i) more keys to be compared during
merge and (ii) bigger Bloom filters that require more space per
file and more CPU for hashing. Fig. 8(k) shows these trends. We
also observe similar trends for write amplification in Fig. 8(1) and
for query latency. They both decrease as the entry size increases.
However, as the overall data size increases with the entry size, we
observe the compaction latency and write amplification to increase
steeply for Tier (similarly to Fig. 8(h) and (i)).

5.3 LSM Tuning Influence

In the final part of our analysis, we discuss the interplay of com-
pactions with the standard LSM tunings knobs, such as memory
buffer size, page size, and size ratio.

012: Compactions with Tiering Scale Better with Buffer Size.
Fig. 8(m) shows that as the buffer size increases, the mean com-
paction latency increases across all compaction strategies. The size
of buffer dictates the size of the files on disk, and larger file size
leads to more data being moved per compaction. Also, for larger
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file size, the filter size per file increases along with the time spent
for hashing, which increases compaction latency. Further, as the
buffer size increases, the mean compaction latency for Tier scales
better than the other strategies. Fig. 8(n) shows that the high tail
compaction latency for Tier plateaus quickly as the buffer size
increases, and eventually crossovers with that for the eagerer com-
paction strategies when the buffer size becomes 64MB.

We also observe in Fig. 8(o) that among the partial compaction
routines 01d experiences an increased write amplification through-
out, while LO+1 and LO+2 consistently offer lower write amplifi-
cation and guarantee predictable ingestion performance. Fig. 8(p)
shows that as the memory buffer size increases, the mean point
lookup latency increases superlinearly. This is because, for larger
memory buffers, the files on disk hold a greater number of pages,
and thereby, more entries. Thus, the combined size of the index
block (one index per page) and filter block (typically, 10 bits per
entry) per file grows proportionally with the memory buffer size.
The time elapsed in fetching the index and filter blocks causes the
mean latency for point lookups to increase significantly.

All Compaction Strategies React Similarly to Varying the
Page Size. In this experiment, we vary the logical page size, which
in turn, changes the number of entries per page. The smaller the
page size, the larger the number of pages per file — meaning more
I/Os are required to access a file on the disk. For example, when the
page size shrinks from 21°B to 2%B, the number of pages per file dou-
bles. With smaller page size, the index block size per file increases
as more pages should be indexed, which also contributes to the
increasing I/Os. Thus, an increase in the logical page size, reduces
the mean compaction latency, as shown in Fig. 8(q). In Fig. 8(r), we
observe that as the page size increases, the size of the index block
per file decreases, and on average fewer I/Os are performed to fetch
the metadata block overall for every point lookup.
Miscellaneous Observations. We also vary LSM tuning parame-
ters such as the size ratio, the memory allocated to Bloom filters,
and the size of the block cache. We observe that changing the values
of these knobs affects the different compaction strategies similarly,
and hence, does not influence the choice of the appropriate com-
paction strategy for any particular set up.

6 DISCUSSION

The design space detailed in Section 3 and the experimental analysis
presented in Section 5 aim to offer to database researchers and
practitioners the necessary insights to make educated decisions
when selecting compaction strategies for LSM-based data stores.

Know Your LSM Compaction. LSM-trees are considered “write-
optimized”, however, in practice their performance strongly de-
pends on when and how compactions are performed. We depart from
the notion of treating compactions as a black-box, and instead, we
formalize LSM compactions as an ensemble of four fundamental
compaction primitives. This allows us to reason about each of these
primitives and navigate the LSM compaction design space in search
of the appropriate compaction strategy for a workload or for cus-
tom performance goals. Further, the proposed compaction design
space provides the necessary intuitions about how simple modifica-
tions (like data movement policy or compaction granularity) to an
existing engine (like RocksDB) can be key to achieving significant
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performance improvement or cost benefits. For instance, RocksDB
can modularize their compaction implementation by decoupling the
code logic for every primitive. This will not only expose the primi-
tives as tunable knobs, but will facilitate synthesizing and testing
new compaction algorithms tailored to a developer’s requirements.
Avoiding the Worst Choices. We discuss how to avoid com-
mon pitfalls. For example, tiering is often considered as the write-
optimized variant, however, we show that it comes with high tail
latency, making it unsuitable for applications that need worst-case
performance guarantees. Also, applications requiring stable perfor-
mance should avoid LO+2 due to its unpredictable performance. On
the other hand, partial compactions with leveling, and especially,
hybrid leveling (e.g., 1-Lv1) offer the most stable performance.
Adapting with Workloads. In prior work tiering is used for write-
intensive use-cases, while leveling offers better read performance.
However, in practice, in mixed HTAP-style workloads, lookups
have a strong temporal locality, and are essentially performed on
recent hot data. In such cases, the block cache is frequently proved
to be enough for holding the working set and eliminate the need
for other costly optimizations for read queries.

Exploring New Compaction Strategies. Ultimately, this work
lays the groundwork for exploring the vast design space of LSM
compactions. A key intuition we developed during this analysis is
that contrary to existing designs, LSM-based systems can benefit
by employing different compaction primitives at different levels,
depending on the exact workload and the performance goals. The
compaction policies we experimented with already support a wide
range of metrics they optimize for including system throughput,
worst-case latency, read, space, and write amplification, and delete
efficiency. Using the proposed design space, new compaction strate-
gies can be designed with new or combined optimization goals. We
also envision systems that automatically select compaction strate-
gies on the fly depending on the current context and workload.

7 CONCLUSIONS

LSM-based engines offer efficient ingestion and competitive read
performance, while being able to manage various optimization goals
like write and space amplification. A key internal operation that is
at the heart of how LSM-trees work is the process of compaction
that periodically re-organizes the data on disk.

We present the LSM compaction design space that uses four prim-
itives to define compactions: (i) compaction trigger, (ii) the data
layout, (iii) compaction granularity, and (iv) the data movement
policy. We map existing approaches in this design space and we
select several representative policies to study and analyze their
impact on performance and other metrics including write/space
amplification and delete latency. We present an extensive collection
of observations, and we lay the groundwork for LSM systems that
can more flexibly navigate the design space for compactions.
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