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Abstract—An all-clear flare prediction is a type of solar flare
forecasting that puts more emphasis on predicting non-flaring
instances (often relatively small flares and flare quiet regions)
with high precision while still maintaining valuable predictive
results. While many flare prediction studies do not address
this problem directly, all-clear predictions can be useful in
operational context. However, in all-clear predictions, finding
the right balance between avoiding false negatives (misses) and
reducing the false positives (false alarms) is often challenging.
Our study focuses on training and testing a set of interval-based
time series named Time Series Forest (TSF). These classifiers will
be used towards building an all-clear flare prediction system by
utilizing multivariate time series data. Throughout this paper, we
demonstrate our data collection, predictive model building and
evaluation processes, and compare our time series classification
models with baselines using our benchmark datasets. Our results
show that time series classifiers provide better forecasting results
in terms of skill scores, precision and recall metrics, and they
can be further improved for more precise all-clear forecasts by
tuning model hyperparameters.

Index Terms—solar flare prediction, all-clear prediction, mul-
tivariate time series, time series classification

I. INTRODUCTION

Solar flares are one of the manifestations of solar activity

that burst out electromagnetic radiation. In the case of large

ones, they are often associated with an eruption, in the form of

a coronal mass ejection (CME). High-frequency electromag-

netic radiation and particles from flares with the associated

eruptions can be filtered out by Earth’s atmosphere. However,

they still pose a hazard to astronauts and sensitive electronic

equipment in space. Additionally, a strong enough CME can

induce currents in the Earth’s atmosphere and large networks

of power grids. With a flare prediction system, we develop the

ability to forecast and send out warning signals prior to the

flare event. Over the past three decades, scientists have focused

on implementing different model-driven techniques [1] [2]

[3] for predicting solar flares based on their intensity. More

recently, machine learning-based methods for flare prediction

have appeared. A short list of examples including support

vector machines (SVMs) in [4], [5], [6], [7], logistic regression

[8], or decision trees [9] [10] among many others.

Solar flare predictions, when modeled as binary classi-

fication problem, have flaring and non-flaring class labels.

While variations exist, flaring labels are usually associated

with occurrence of major flares (flares of class ≥M1.0 or ≥
X1.0 of the NOAA/GOES flare classification) [11]. Moreover,

besides predicting one or more flare classes, a cumulative

flare-index prediction can be attempted [12]. On the other

hand, all-clear flare prediction focuses on forecasting the non-

flaring class more precisely instead of simply predicting a

binary or probabilistic assessment of whether a flare will

occur. A predicted all-clear signal indicates that during a

prediction time interval (i.e., forecast horizon), no major flares

will occur and it is safe (or safer) to operate. Issuing an

inaccurate all-clear forecast can be crucial and devastating

considering the impact of a missed flare (which corresponds

to a false negative) that can cause disruption in the services

of many sectors, or even jeopardize an astronaut’s life or

health. Most scientific studies concentrate on predicting the

flare occurrences, which is understandable considering the

research aspect of these studies. Most of the solar flare

prediction algorithms implement point-in-time measurements

which consist of multiple physical parameters observations

with only one individual value for each solar flare event [6].

We envision that the first step towards building operationally-

driven, reliable space weather forecasting systems is building

low-risk all-clear models. Therefore, our work puts more

emphasis on the feasibility of multivariate time series data

analysis utilizing an interval-based algorithm named Time

Series Forest (TSF) as the base. As a side note, notice the study

of [13] that performs point-in-time forecasting and concludes

that random forests are a viable method for flare prediction.

Time Series Forest implements a highly specialized random

forest and relies on a number of statistical descriptive features

such as the mean, standard deviation, and slope of each interval

to feed in an ensemble of different decision trees. As for the

multivariate time series data, we take advantage of our solar

flare benchmark dataset, Space Weather Analytics for Solar

Flares (SWAN-SF) [14], which consists of solar photospheric

vector magnetograms in Spaceweather HMI Active Region

Patch (SHARP) series.

The rest of the paper is organized as follows. In Section II,

we discuss some related work on well known flare prediction

with a focus on all-clear systems. In Section III, we explain

our research methodology on data collection and preparation

as well as training and evaluating the interval-based TSF clas-

sifiers. In Section IV, we present our experimental evaluation
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for our all-clear flare prediction models. In Section V, we

provide a summary of our findings and discuss our future work

avenues.

II. RELATED WORK

Spaceweather HMI Active Region Patches (SHARPs) data

product are created using magnetograms generated by the

Helioseisemic and Magnetic Imager (HMI) onboard the Solar

Dynamics Observatory (SDO) [15], and this product consists

of geometric representations of tracked active region magne-

togram patches as well as space weather-related parameters

from solar photospheric vector magnetic fields. As solar flares

are phenomena caused by sudden, abrupt changes in magnetic

field in the solar atmosphere, it is well reasoned to build

predictive capabilities employing magnetic field parameters

[4]. One of the earlier examples is [5], where Bobra and

Couvidat used magnetic field parameters in SHARP data series

to forecast M- and X-class flares using SVMs [5]. Since then,

many researchers started taking advantage of the same idea

and implemented a number of different predictive models with

various focuses.

There are also a few studies for all-clear space weather

forecasting, particularly for flares and solar energetic par-

ticle (SEP) events. Engell et al. [16] proposed an idea of

combining pre-eruptive and post-eruptive forecasts together

for an optimization of all-clear forecasts. During the “All-

Clear” forecasts workshop in [17], a systematic comparison

between different methods was presented with a recommen-

dation of using temporal features and time series analysis for

better forecasting. Other flare prediction algorithms were also

demonstrated with the focus on predicting “all-clear periods”

from the view of solar flares and SEP events [18].

In the field of time series analysis, the general category of

interval based time series classification algorithms take advan-

tage of descriptive features (often in the form of statistical fea-

tures) that are derived from fixed or random intervals in each

time series. For each time series with length of n, there exists

n(n−1)/2 possible contiguous intervals. Each of the temporal

features that are calculated over a certain time series interval

have the ability to capture some important characteristics of the

series. However, generating features from all possible intervals

is not feasible as a dataset with a large number of parameters

will lead to the interval feature space to grow exponentially.

Deng et al. [19] proposed an implementation of a random

forest approach using only calculated statistical values of

each interval as features to overcome this exponential feature

space problem. This interval-based random forest (ensemble)

approach is the TSF where multiple decision trees are grouped

together. Each tree in this ensemble is trained using a subset

of statistical features derived from randomly selected intervals,

which plays an essential role in reducing high feature spaces.

These features include simple and effective mean, standard

deviation and slope extracted from those intervals. In Section

III, we provide more details about these statistical values and

the classifier itself.

Our work implements an interval-based classifier for solar

flare prediction via a multivariate time series forest. This

will not only provide a multivariate schema to extend the

univariate time series classifier but also build a prototype all-

clear flare prediction system which optimizes the model based

on forecast skill scores. We hope this work affords researchers

and practitioners in related fields more exposure to multivariate

time series analysis for space weather forecasting.

III. METHODOLOGY

A. Data Collection

Space Weather ANalytics dataset for Solar Flare prediction

(SWAN-SF) is a recently introduced dataset by Angryk et al.

[14]. It is an open source multivariate time series (MVTS)

dataset (can be accessed from Harvard Dataverse [20]) that

provides time series data for a collection of 24 space weather-

related physical parameters primarily calculated from magne-

tograms. The time series parameters examined in this research

are Schrijver’s R-value [21] and total unsigned flux [22]

(R VALUE and USFLUX in HARP keywords). For evaluating

the performance of our proof-of-concept multivariate time

series classifiers, we will use these two parameters, although

the analysis can be extended to include all 24 parameters.

The SWAN-SF dataset consists of five partitions that cover

the period of May 2010 to August 2018. Each of these

partitions contains approximately an equal sum of large flares

(i.e., X- and M-class). These partitions are time-segmented

which means the data instances across partitions do not

have a time overlap. The active regions are sliced with a

sliding observation window for both flare-quiet regions as

well as each verified flare with a corresponding active region

number (in this case NOAA Active Region number matched

to HARPNUM, unique HARP identifier for an active region

patch series, keyword based on [23]),

A sliding observation window (a 12 hour interval) iterates

over the multivariate time series (with 1 hour step size) and

checks if there exists a set of flares associated to the active

region in the next 24 hours. Each slice is then labeled as the

maximum intensity flare originating from that active region. In

the case when no flares are present, a flare-quiet label is used.

Note here that major flaring categories (X, M, C, B, or A) are

based on logarithmic classification of peak X-ray flux. We use

instances labeled with M- and X-class flares as our flaring class

in this work. The remaining instances with relatively weak C-

and B- class flare labels and flare-quiet ones are considered

as non-flaring class. We will refer to flaring class as ‘positive’

class and non-flaring as ‘negative’. Doing that, we model the

flare forecasting problem as a binary multivariate time series

classification task.

In our early stages of study, we have also used an under-

sampled dataset derived from SWAN-SF. This undersampled

version of the dataset reduces the number of C-, B- class

and flare-quiet instances in the non-flaring (which is the

majority class) based on the daily climatology estimates to

individual active region, eventually reducing the overall class

imbalance ratio from ∼1:50 to ∼1:6.4. We provide the number
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Fig. 1. The number of instances for X-, M-, C-, and B-class flare or flare-quiet
labels in each partition for the climatology-based undersampling scenario. The
partitions are time segmented. Each partition has similar total numbers for M-
and X-class flares.

of multivariate time series data instances per different flare-

classes for five time-segmented partitions in Figure 1. Details

of climatology-undersampled dataset (which we will refer to as

CLUS, hereafter) generation can be found in [24]. The CLUS

dataset, also partitioned using time-segmented partitioning,

covers the same active region multivariate time series as the

original SWAN-SF, and is created with 12-hour observation,

24-hour prediction windows. CLUS dataset has an advantage

over the original SWAN-SF dataset in that it preserves less

non-flaring (i.e., C-, B- class, and flare-quiet) instances. As

mentioned before, each partition stores an identical or similar

number of large flare (≥M1.0) instances. Even though the

CLUS dataset is still not balanced its imbalance is much less

extreme than the near-operational case in which all instances

from original SWAN-SF dataset is used. Meanwhile, we

believe it is worth mentioning that although the provisional

usage of the CLUS dataset in testing allows us to perform

time-efficient comparisons in the large set of experiments

we performed, it does not represent the actual or expected

performance of the models in an operational environment.

B. Methods

TSF is originally designated as a univariate time series

classifier where it makes use of a single parameter and

builds a random forest from statistical features derived from

random intervals. In our case of multivariate time series from

active region patches, we create a multivariate variant of

this algorithm. Specifically, all the multivariate parameters are

being handled with different techniques. One way of handling

multivariate data is by column concatenation, where all the

time series columns appended together into one single long

time series column. This long column will then be fed into a

single univariate TSF classifier to train it. Another method for

building a multivariate time series classifier is by the column
ensemble method. This is a parameter-wise ensemble method

of columns in which every parameter (column) will have one

classifier fitted. The prediction results that come out from

these individual column classifiers will then be aggregated as a

whole (with equal vote using prediction probabilities). This is

a homogeneous ensemble schema and overview of it is shown

in Figure 2.

Another important process in applying machine learning al-

gorithm is hyperparameter tuning. Hyperparameters are values

defined before the training process. Hyperparameter optimiza-

tion is where the optimal hyperparameter sets are selected

for the best of performance of a classifier. Grid search is

an exhaustive search designed for optimizing hyperparameter

settings over all the parameter combinations of an estimator.

Every combination of a predefined hyperparameter setting will

be placed into the searching process. This process is applied to

determine the optimal hyperparameters of our TSF classifier.

Alternatively, grid search with cross validation (GridSearch

CV) [25] is analogous to grid search where the searching

classifier in this case performs an out-of-sample validation

for further testing the model’s predicting ability. Indeed, two

subdivided training and testing sets are extracted from the

input training data to serve as cross validation subsets to

derive a more accurate estimation of the model predicting

performance.

A traditional grid search cross-validation (CV) schema is

targeted for tabulated data and assumes that the instances are

independent, meaning the random assignments of instances

to different training and testing folds (or partitions) do not

potentially create an overfitting or a memorization issue for

trained models. For time series data, sampled with a sliding

window, portions of the time series will be repeated. This

will lead to fairly similar instances put into both training

and testing sets, and the creation of models with a tendency

to memorize, rather than learn. While these models may

potentially provide better initial results, it would not be due

to their stronger generalization capabilities but a sub-optimal

sampling choice [24]. In time series analysis, where instances

are obtained with a sliding window—creating overlapping time

series instances, the data partitions for training, testing and

validation are required to be time segmented. With the use

Fig. 2. Schematic overview of the homogeneous ensemble pipeline
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of a traditional grid search CV schema, we cannot guarantee

that the data instances coming from consecutive overlapping

segments are not placed both in training and testing sets,

which will be detrimental to the reliability of time series

classification performance evaluations. To alleviate this issue,

we implemented a customized CV schema which modified

the original grid search to split by the SWAN-SF (or CLUS)

partitions for the purpose of maintaining continuous time

segmentation instead of randomized sampling. Each time

segmented training partition dataset is assigned with a partition

label. For data instances with the identical label, they will not

be placed into both testing and training sets. In addition to

the customizing the random grid search, we also modified the

scoring function for our CV and replaced the classification

accuracy with forecast skill scores, mainly Heidke Skill Score,

which we will discuss more in the next section.

IV. EXPERIMENTAL EVALUATION

The experiments are designed for the purpose of fitting

a univariate model to a multivariate time series architecture

for an all-clear flare prediction. Our aim is to demonstrate

the robustness and compare the efficiency of time series

classifiers and ensembles for predicting an all-clear signal. All

the traditional (i.e., point-in-time, tabulated) classifiers used

in this study have been built using Python with scikit-learn

library [26]. The Time Series Forest classifier that we use for

our comparison is from sktime toolkit [27]. All our source

code is open sourced for improving the reproducibility and

experiments can be see in our Project Repository [28].

A. Experimental Settings

We used the undersampled version of the SWAN-SF dataset

(namely the CLUS dataset) as our main sampling techniques.

All the missing values in the datasets have been interpolated by

using linear interpolation between adjacent data points. For the

model evaluation, we implemented a 2×2 contingency matrix

as for forecasting results in binary (i.e., flare/non-flaring).

Based on this matrix, we implemented multiple evaluation

metrics as well as essential forecast skill scores. In these

metrics measurements, TP (true positives), TN (true negatives),

FP (false positives), and FN (false negatives) are used in

standard settings, where positive stands for occurrence of a

large flare (i.e., X- and M-class [denoted as XM]) while

negative stands for comparatively smaller flare and flare-quite

region (i.e., C-, B-class and non-flaring/quiet regions [denoted

as CBN]). Note here TP is where the model correctly predicts

the flare instances (positive class) while TN is where the

model correctly predicts the the non-flaring instances (negative

class). Both FP and FN represent incorrect results, where FP

corresponds to false alarms (non-flaring instances predicted

as flare) while FN corresponds to misses (flare instances

predicted as non-flaring). Then, probability of false detection

(POFD, see Eq. 1) is the false alarm rate which is calculated as

the ratio between FP to all the actual negative class instances.

POFD =
FP

FP + TN
(1)

In addition, we used the True Skill Statistic score which

compares the difference between the probability of detection

(Recall for positive class) and the probability of false detection

(POFD). The score measurement is shown in Eq. 2.

TSS =
TP

TP + FN
− FP

FP + TN
(2)

The Heidke Skill Score measures the improvement of the

forecast over a random forecast. HSS ranges between -∞ and

1, with 1 indicating perfect performance and 0 indicating no

skill. A no skill means that the forecast is not better than

a random binary forecast based on class distributions. HSS

is given by Eq. 3 where P = TP +FN and N = FP +
TN corresponding to the observed positives and negatives,

respectively.

HSS =
2 · ((TP · TN)− (FN · FP ))

P · (FN + TN) +N · (TP + FP )
(3)

The Gilbert Skill Score considers the number of hits due

to chance, which is given as frequency of an event multiplied

by the total number of forecast events. This score formula is

given by Eq. 4

GSS =
TP − CH

TP + FP + FN − CH
,

where CH =
(TP + FP )× (TP + FN)

TP + FP + FN + TN

(4)

In addition, we also used the precision and recall scores for

both positive and negative classes, encoded as XM and CBN

respectively. Their formulas are provided in Eq.s 5,6,7 and 8.

False alarm ratio (FAR) shown in Eq. 9 is the ratio between

FP (where predict XM class wrong as CBN) and predicted

positive (a total number of XM predictions).

Precision(XM) =
TP

TP + FP
(5)

Recall(XM) =
TP

TP + FN
(6)

Precision(CBN) =
TN

TN + FN
(7)

Recall(CBN) =
TN

TN + FP
(8)

FAR =
FP

FP + TP
(9)

We conducted multiple experiments on the TSF classifier

using the evaluation metrics mentioned above. In the first

experiment, we compared the TSF classifier with simple

machine learning classifiers running on tabulated data (see

Table 1). For the integrity of our evaluations, all the classifiers

included in this experiment are trained with Partitions 1 and

2 from climatology-undersampled (CLUS) dataset and tested

with Partition 4 from the original SWAN-SF dataset. As for the

second experiment, we implemented a homogeneous ensemble
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schema where the predictive results of four TSF classifiers

trained under different hyperparameter settings are fed into a

decision tree meta-learner [29]. Each of the base TSF learner

is trained with Partition 1 from the CLUS dataset and tested

with Partition 2 from the same CLUS dataset. The final meta-

learner (ensemble model), which is a decision tree classifier,

is trained with Partition 3 from the CLUS dataset and tested

with Partition 4 from the same dataset. In the third experiment,

we generated a hyperparameter tuning procedure by applying

our customized grid search with cross validation. For tuning

the classifier, the data instances from Partition 1 to 3 in the

CLUS dataset is utilized for the training process as well as

data from Partition 4 in the original SWAN-SF dataset for the

testing process.

B. Comparison with Traditional Machine Learning Models

In the first experiment, we train multiple models based on

well-known machine learning algorithms and compare each

of them with results from our TSF classifier. Three simple

models are selected: decision tree [29], logistic regression

[8], and support vector machine (SVM) [30]. Each of the

models are trained with five statistical features (i.e., mean,

standard deviation, minimum, maximum, and median) from

R-value and USFLUX parameters. On the other hand, the TSF

classifier itself samples out random intervals from the series

and internally evaluates and uses mean, standard deviation

and slope of each random interval. These extracted values are

concatenated by the classifier to form a new dataset on the fly

and builds a random forest model on top.

TABLE I
THE EVALUATION METRICS FOR SIMPLE CLASSIFIERS AND TIME SERIES

FOREST TRAINED AND TESTED WITH UNDERSAMPLED DATASETS.

Model TSS HSS
Precision

XM
Precision

CBN
FAR

Recall
(TPR)

Decision
Tree

0.69 0.15 0.10 0.996 0.109 0.80

Logistic
Regression

0.65 0.17 0.11 0.995 0.089 0.736

Support Vector
Machine

0.51 0.17 0.11 0.99 0.067 0.581

Time Series
Forest

0.75 0.57 0.50 0.98 0.135 0.885

The detailed evaluation metrics for the simple classifiers and

TSF are shown in Table I. Our results demonstrate that the use

of this time series classifier has improved the performance

in virtually every aspect other than the precision of non-

flaring (CBN) class. Although this is accepted as many of

the flaring instances are misclassified by ordinary machine

learning techniques. We can suggest that high precision on

flaring class (XM) and high recall (TPR) lead to significantly

higher results for TSF models. However, it can be noted that

the false alarm rate for TSF is actually higher than the others.

C. Impact of Multivariate Ensemble on Model Performance

As discussed earlier, we build a homogeneous ensemble

schema where our base models will employ identical learning

algorithms and identical data under different hyperparameter

settings. The meta model, which is chosen as the decision

tree classifier, will assemble all the results returned from the

base models. In Table II, we provide detailed settings for each

individual base model. Each pair of the base learners will

be using the Column Concatenation and Column Ensemble

techniques for handling multivariate data.

TABLE II
TABULATE CLASSIFIER VS TIME SERIES FOREST CLASSIFIER

Base
Model

Model
Multivariate

Concatenation
Class weight

Number of
Estimators

Max
Depth

XM CBN

BaseModel1 TSF
Column

Concatenation1
0.33 0.67 50 3

BaseModel2 TSF
Column

Concatenation1
0.33 0.67 250 6

BaseModel3 TSF
Column

Ensemble2
0.33 0.67 50 3

BaseModel4 TSF
Column

Ensemble2
0.33 0.67 250 6

1 Column Concatenation appends multiple the time series columns into a single long

time series column
2 Column Ensemble is parameter-wise ensembling of columns in which one classifier is

fitted for each time series column and their predictions aggregated.

All-clear forecasts require a distinct attention to precise

and sensitive prediction of non-flaring (CBN) class. If we

simply issue all predictions as the majority class (CBN), the

baseline precision score will be randomized by about 86.5%

respectively. As shown in Figure 4, all of the models we

trained have performed significantly better than the baseline

statistical random models (that simply predict all non-flaring

or randomly assign classes based on their distributions). More-

over, it is desirable to have a high true negative rate (TNR)

without sacrificing much from precision and recall for XM

classes. As we perform the homogeneous ensemble schema,

our meta learner model has slightly increased in the key ac-

curacy performance measures such as precision (for detecting

CBN class instances) and recall (for XM class instances). In

predictive models with class imbalance, precision and recall

are often inversely related, which means models with high

precision often have lower recall values and vice versa. Hence,

the TNR score and the precision for XM classes are slightly

decreased as compared to the base models.

The skill scores shown in Figure 3 compare the model

performance that randomly classify all the samples to the

majority class. Note here the overall skill of a forecasting

system can be minimized if we assign all the predictions to

CBN classes, in which it could produce the exact baseline

precision scores mentioned earlier. As a result, in Figure 3,

even though the TSS of the meta model is slightly increased,

the overall skill score of the meta model is relatively lower

than both base models 3 and 4.

The measurement scores of both the false alarm ratio (FAR)

and probability of false detection (POFD) show the quality

of predicting XM classes. The lower these scores are, the

better performance a model has. The approach that aims for

maximizing the precision and recall of CBN classes comes

with the cost of increasing the false alarm ratio and false
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Fig. 3. The True Skill Statistic (TSS), Heidke Skill Score (HSS2) and Gilbert
Skill Score (GSS) performance evaluation results for Base Learners and Meta-
learner models. Results are taken from undersampled datasets (Partition 1 and
2 for Base Learners and Partition 4 for Meta-learner)

Fig. 4. The precision and recall values for both XM and CBN classes for
Base Learners and Meta-learner models. Results are taken from undersampled
datasets (Partition 1 and 2 for Base Learners and Partition 4 for Meta-learner)

detection scores. As shown in Figure 5, both FAR and POFD

scores are higher for the meta model despite lower scores

being desired.

D. Hyperparameter tuning and class weight adjustments

As we discussed earlier, there is a high imbalance ratio

between our positive and negative classes which will likely

benefit accuracy. As the model can simply classify all instances

as the majority class, a large accuracy score can be returned

as a result. For our all-clear flare forecasting, we would like

to see the overall performance of the model in terms of

skill and being able to generate high precision and recall

forecasts instead of just ‘naive’ accuracy. In this case, we used

HSS as our primary scoring function for our hyperparameter

optimization although the use of any other scoring function

could still work, in principle. In our hyperparameter tuning, we

searched up in three dimensions for the number of estimators

(number of trees in TSFs), the maximum depth of each

estimator, and the class weights between XM and CBN classes.

For the hyperparameter optimization in this experiment, our

results provide valuable information (shown in Figure 6-8).

In our best results, TSF models with 100 estimators have

almost identical HSS value distributions as those models with

500 and 1000 estimators. This is an important observation for

Fig. 5. The false alarm ratio (FAR) and probability of false detection (POFD)
values (specifically for XM class) for Base Learners and Meta-learner models.
Results are taken from undersampled datasets (Partition 2 for Base Learners
and Partition 4 for Meta-learner)

decreasing running time requirements for our project. We can

also see that the best case for HSS is obtained when the class

weights between XM and CBN classes are trending towards

1:1 to 1:0.5 among all settings. Even though the maximum

depth of the trees are less important as compared to the number

of estimators needed to be trained, this can still allow for slight

changes. Larger trees do not always guarantee the best HSS

performance. Simpler trees can provide better generalizations

and robustness. Meanwhile, these results can still change as

optimizing for other metrics.

V. CONCLUSION AND FUTURE WORK

In this work, we have trained interval-based TSF models for

the task of All-Clear flare forecasting. Our models focused

on a binary classification schema, from the perspective of

all-clear predictions, which concentrates on high precision of

non-flaring class predictions and aims to lower the number

of misses. Our trained models show that they have better

performance than the other machine learning counterparts and

they can be further optimized with both hyperparameter tuning

of class weights as well as their robustness can be increased

with ensemble learners. In our experiments, we have used two

time series parameters and even for those two our results are

in acceptable levels. This shows that time series classifiers

have great potential to improve the all-clear forecasts and is a

suitable predictive model for use in operational context. There

are more avenues that can be explored for future work which

includes but not limited to extending the analysis to other well-

known magnetic field parameters, building different ensemble

strategies, or optimizing with other evaluation metrics.
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Fig. 6. Grid search results based on HSS score with parameters of 100 estimators. Results are driven from training with undersampled datasets (Partitions
1-3 of CLUS) and testing with SWAN-SF datasets (Partitions 4 and 5). Different column colors indicate different maximum depth values.

Fig. 7. Grid search results based on HSS score with parameters of 500 estimators. Results are driven from training with undersampled datasets (Partition 1-3
of CLUS) and testing with SWAN-SF datasets (Partition 4 and 5). Different column colors indicate different maximum depth values.

Fig. 8. Grid search results based on HSS score with parameters of 1000 estimators. Results are driven from training with undersampled datasets (Partition
1-3 of CLUS) and testing with SWAN-SF datasets (Partition 4 and 5). Different column colors indicate different maximum depth values.
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