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ABSTRACT
In this paper, we present Vi-Fi, a multi-modal system that leverages
a user’s smartphone WiFi Fine Timing Measurements (FTM) and
inertial measurement unit (IMU) sensor data to associate the user
detected on a camera footage with their corresponding smartphone
identi�er (e.g. WiFi MAC address). Our approach uses a recurrent
multi-modal deep neural network that exploits FTM and IMU mea-
surements along with distance between user and camera (depth
information) to learn a�nity matrices. As a baseline method for
comparison, we also present a traditional non deep learning ap-
proach that uses bipartite graph matching. To facilitate evaluation,
we collected a multi-modal dataset that comprises camera videos
with depth information (RGB-D), WiFi FTM and IMU measure-
ments for multiple participants at diverse real-world settings. Using
association accuracy as the key metric for evaluating the �delity of
Vi-Fi in associating human users on camera feed with their phone
IDs, we show that Vi-Fi achieves between 81% (real-time) to 91%
(o�ine) association accuracy.

1 INTRODUCTION
Association of cross-domain sensor data is a fundamental need
in applications and systems that exploit multi-modal sensor data.
With the pervasive use of cameras and wireless devices, one key
instance of this problem is the association between objects or per-
sons detected in camera video and wireless data originating from
their transmitters, as depicted in Figure 1. Successful association
enables use-cases such as localization by fusing depth camera mea-
surements with wireless ranging. It can also improve identi�cation
and re-identi�cation when objects reappear in camera view, and
tracking since transmitters, with user consent, can send a stable
identi�er. Moreover, it can provide a means to send messages or
noti�cations to devices observed on camera if part of the shared
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Figure 1: Motivation: Successfully associating vision-wireless
information is fundamental to sensor fusion systems. The
goal is to associate visually detected participants with corre-
sponding phone identi�ers.
identi�er is a communication address. Such capabilities open new
opportunities such as systems that improve the performance of res-
piratory disease contact tracing or exposure noti�cations in schools,
o�ces or warehouses. Current Bluetooth-based systems provide
coarse distance estimates and cannot reliably determine whether
two persons occupied the same room. Stationary cameras that can
associate people with their phones could provide more precise dis-
tance measurements and the necessary room disambiguation to
�ll this gap towards more accurate exposure noti�cations. Other
potential use cases include tra�c safety applications via vehicle-
to-pedestrian (V2P) communication, for example detecting and
notifying pedestrians in dangerous situations using road-side or
vehicle mounted cameras. Note that we focus here on cases where
users provide explicit consent and opt-in, rather than background
tracking without the phones cooperation.
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Prior Work. Multiple recent projects have addressed data as-
sociation by extracting features from multi-modal data including
image, WiFi signal or smartphone IMU measurements and consider
feature similarity as a key of association. Existing approaches to
address this association problem tend to rely on color informa-
tion [27, 56], incur accuracy tradeo�s [16, 37], or cannot provide
real-time association due to post processing needs over longer
sequences [22, 27, 31, 56, 59]. The reliance on color information
creates challenges under varied lighting conditions or in scenarios
where workers wear standardized clothing. Moreover, a large group
of works [16, 22, 32, 38, 56] assumes users are always visible in the
camera view and/or no passerby users exists during the experi-
ment, which signi�cantly reduced the complexity of the association
problem.

Approach.We propose Vi-Fi, a multi-modal approach that asso-
ciates visually detected persons, represented through the bounding
boxes generated by an object detector, with a smartphone iden-
ti�er (MAC addresses, for example), by fusing information from
vision and wireless domains. A key insight of this approach is that
both cameras and wireless receivers are now becoming capable of
improved ranging—cameras through RGB-D technology and WiFi
through Fine Timing Measurement (FTM) [1, 15]. Since cameras
are also increasingly equipped with WiFi transceivers [2–4] this
presents the opportunity to generate distance measurements be-
tween the camera and the detected persons in both the visual and
wireless domain, generating a common reference measurement
to facilitate cross-domain fusion. Yet, it remains challenging to
match these measurements due to measurement noise and ambigu-
ity. Lighting condition changes and occlusions add noise and un-
certainty to camera-based depth measurements. Multi-path fading
and shadowing degrades the accuracy of WiFi FTM measurements.

To address the above challenges and achieve the association
goal, we explore supervised (data-driven) and model-driven meth-
ods that leverage information from WiFi FTM measurements and
smartphone inertial measurement unit (IMU) motion sensor data
to match each detected participant in the camera view with their
smartphone ID. Speci�cally, we introduce a supervised multi-modal
a�nity matrix deep learning technique that learns a similarity met-
ric and predicts an a�nity matrix for multiple camera-phone pairs.
We compare this with a baseline model-driven approach involving
a bipartite trajectory matching algorithm that exploits similarities
between trajectories recovered from IMU sensor data and trajec-
tories recovered from video. To evaluate Vi-Fi’s performance, we
collect a large multi-modal dataset of real-world outdoor scenes
with multiple participants per scene. The participants have phones
that send FTMmessages. Numerous passerby pedestrians are in the
camera view. The dataset comprises RGB-D video from a mounted
camera and smartphone data from participants includingWiFi FTM
and IMU measurements.

Summary of Contributions. As a summary, Vi-Fi makes the
following contributions:
• Exploring the design space of associating moving subjects across
vision and wireless sensors using multi-modal sensors data in-
cluding depth, WiFi FTM from a single access point (AP), and
IMU measurements from users’ smartphones without the need
to rely on color and appearance information.

• Designing a new multi-modal deep neural network architecture
that learns embedding similarities of the multi-modal sensors
data to predict a�nity matrices that associate subjects across the
camera and wireless domain. The network is capable of handling
complex real-world scenarios where multiple passerby pedestri-
ans exist and signal duration is limited.

• Exploring amodel-driven bipartitematching algorithm thatmatches
trajectories estimated from camera views with those estimated
from wireless phone sensors measurements.

• Presenting a large-scalemulti-modal dataset and using this dataset
to evaluate and compare the aforementioned approaches. The
dataset consists of a total 90 RGB-D video sequences (each of
3 minutes captured at 10 frames/sec, leading to a sample set of
about 162,000 images) recorded at 6 di�erent scenarios with dif-
ferent camera perspectives , multiple uncontrolled experimental
users and passerby pedestrians. It also contains WiFi FTM mea-
surements, smartphone IMU sensor data and GPS measurements,
captured at 3Hz, 50Hz and 1 Hz, respectively.

Artifact Availability: We have made our dataset and methods im-
plementation public [5, 6]. In the dataset we label each experiment
subject with a unique identi�er to to ensure anonymity. More-
over, we adopt deface [7] to blur the faces of user participants
and passerby pedestrians to protect their privacy and biometric
information.

2 BACKGROUND AND RELATEDWORK
WiFi Fine Timing Measurement (FTM). IEEE 802.11-2016 Stan-
dard [15] has included the Fine Timing Measurement (FTM) proto-
col (802.11REVmc) to perform wireless ranging by measuring the
round trip time between an access point and aWiFi station. The pro-
tocol subtracts processing times from the round trip time, converts
it into a one-way time-of-�ight estimate, and uses this to compute
an estimated range using typical propagation speed. To achieve
higher ranging accuracy, it conducts multiple message exchanges
and compute average on the estimated ranges. [29] con�rms that
the FTM protocol can achieve meter-level accuracy in open space
environments but degrades in high multipath environments.
Camera-Wireless Association. Several surveys [51] [23] have
summarised the human-sensing methods for localization and iden-
ti�cation. Prior works [28, 37, 45, 48, 58, 61, 62] consider the associ-
ation problem as a sub-problem of person localization with various
focuses. XModal-ID [33] identi�es a person based on gait features
extracted from WiFi CSI and video footage without training, but
only in limitedWiFi areas where one person is walking. RGB-W [16]
adopts a minimum weight bipartite matching algorithm to match
visually detected participants with the corresponding WiFi MAC
addresses from multiple WiFi APs using spatial information, and
achieves 64.0% to 28.6% matching accuracy. Eye-Fi [22] leverages
WiFi CSI to estimate Angle of Arrival (AoA) using deep learning to
associate vision and AoA based trajectories with 75% accuracy us-
ing weighted Euclidean distance. [24, 47] take advantage from both
modalities for localization. However, these methods require multi-
ple WiFi APs deployed in the scene, multiple IMU devices attached
to a single user, or calibrated environments. Alongside of these
works, other sensing modalities have also been explored, including
GPS [39], Bluetooth [30], RF [41, 42, 60] and audio signal [36, 40].
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Camera-IMU Association. Using inertial sensor readings to esti-
mate motion trajectories is extensively studied. Prior work has used
this concept to associate the motion status and direction of motion
with a camera image/video feed [52, 54]. Recent methods [19, 26, 59]
associate visual tracker trajectories with smartphone IMU measure-
ments. Other works [20, 26, 27, 35, 43, 53, 57] exploit extracted
features from motion data to associate with vision data. Multi-
modal association can bene�t from learning a joint latent space
that represents semantic similarity on large datasets [17, 25] such
as using camera, smart phone and WiFi data. [37] associates sil-
houette images and accelerometer data by exploiting deep learning
features.
Multi-modal Data Extraction. Existing approaches to address
this association problem have a dependency on color informa-
tion [27, 56], incur accuracy tradeo�s [16, 37], or cannot function in
real-time due to dependency on long sequences [59] and thus long
post-processing times. The reliance on color information creates
challenges under varied lighting conditions or in scenarios where
workers wear standardized clothing. One exception is Eye-Fi [22]
which performs Angle-of-Arrival based matching using WiFi CSI
measurements. Despite many years of research, interfaces for ob-
taining CSI information are still not widely available, which leads
to practical deployment hurdles.

In summary of related works, previous methods either require
heavy infrastructure, human activity recognition as an intermediate
step [47], or feature representations based on image pixel color
that are not robust to lighting or cloth changes in constrained
environments. Someworks [16, 22, 56] assume the experiment users
are always visible in the camera �eld of view or choose to aggregate
individual user trajectories to simulate multi-user scenarios [32, 38].
Another group of works target the association problem as an o�ine
optimization problem (post-processing). The disadvantage of this
is that it requires knowledge of signi�cant history (sometimes the
entire set) of data measurements.[22, 27, 31, 56, 59] Additionally,
most of the existing work assume that all detected pedestrians in
the camera view have their corresponding IMU devices, while in
reality some passerby users may not be carrying their device or
have a device with an unknown ID. In comparison, our dataset
and results demonstrate the ability of our proposed deep a�nity
multi-modal network to overcome these limitations in diverse
scenarios, paving the path to complex, realworld deployment.
A summary of the most representative works that focus on vision-
wireless association is listed in Table 1.

3 VI-FI OVERVIEW
Figure 2 presents an overview of Vi-Fi. Vi-Fi uses a deep learning
approach to associate identities across multiple modalities - vision
and wireless devices. The system process the vision (camera) feed
and detects pedestrians (users). Within wireless devices, we lever-
age the depth information provided by WiFi FTM and the motion
pro�le from IMU. The users detected on the camera feed are associ-
atedwith their respective smartphone IDs using IMU andWiFi FTM
data obtained from their smartphones. A RGB-D camera detects
and computes each participant’s depth within its �eld-of-view for
each frame. Meanwhile, each phone exchanges WiFi FTM messages
with the AP while also gathering IMU data including accelerometer,
gyroscope, magnetometer readings.

1 2 3
4 5 6

7

Camera Modality Phone Modality
Bounding boxes

Depth
FTM
IMU
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Learning

AB C

Figure 2: Vi-Fi Overview. Our approach collects participants’
multi-modal data and associates vision and wireless mea-
surements of the same identity.

For privacy reasons, Vi-Fi is designed to only track and associate
consenting users. We consider that phones of consenting users will
actively share their measurements with a Vi-Fi server agent that
determines the associations using our proposed a�nity matrix
deep learning approach. This approach leverages discriminative
embedding features from the multi-modal sensors data to match
a visually detected person to the correct smartphone identity. We
propose a network architecture that extracts features from camera
modality (bounding boxes, depth) and smartphone modality (FTM,
IMU). The network further utilizes the learned features to compute
a�nity matrices where association probabilities are encoded for
every camera-phone pair.

Considering that deep learning approaches are highly data driven,
we also explore a model-driven approach that does not require any
training data. In this approach, referred to as bipartite motion
association, we compute motion pro�les from data gathered from
the camera and users’ smartphones. Motion pro�les comprise tra-
jectory, heading estimates, and distance from a reference point.
We compute similarity indices between corresponding pairs of mo-
tion features. The similarity metrics are combined in a bipartite
graph to determine camera-phone associations based on minimum
weight matching. At each time, the algorithm only uses the histor-
ical data from that session to compute similarity indices. It lever-
ages users’ movements across heterogeneous modalities to create
spatio-temporal motion pro�les. We note that the bipartite motion
approach is based on well-known methods of motion pro�le and
trajectory mapping techniques. Unlike the a�nity matrix approach,
we do not claim novelty, however, explore this approach merely to
study the performance of a standard baseline technique that does
not leverage deep learning.

4 MULTI-MODAL DATASET
Data Collection. To investigate the vision-phone association, we
collect 90 sequences of multi-modal data through experiments1. We
divide this dataset into two categories: Dataset A constitutes data
from experiments conducted in one controlled indoor o�ce space
environment involving 5 legitimate users and no passerby; Dataset
1Experiments with human users were conducted following strict COVID-19 protocols
and IRB stipulations. All participating users wear masks and are more than 6 ft apart
during data collection.
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Work
reference

Vision
data

Wireless
data

Scene
(Num. of
scenes)

Max.
num. of
users

Max.
num. of
passersby

Out-of-view
users

User
moving
pattern

Min. signal
duration to make
association

Association
accuracy

Open
source

[16] Silhouette RSSI
Indoor
outdoor
(2)

12 0 No Unconstrained
walking - 28.6% ⇠ 64% -

[22] Panoramic
RGB CSI indoor

(2) 10 0 No Unconstrained
walking  25 s avg: 75% -

[56] RGB
Accelerometer
Gyroscope
Compass

indoor
outdoor 12 0 No Unconstrained

walking 10 s 70% ⇠ 90% -

[38] Silhouette Accelerometer Indoor 10
(aggregated) 0 No 11 activities 3 s 76.30%

data: [8]
(modi�ed)
code: [9]

[26] RGB Accelerometer
Indoor
outdoor
(2)

8 0 yes
unconstrained
walking,
running

30 s
(avg.) 93.60% data: [10]

[32] RGB Accelerometer Indoor
(1)

12
(aggregated) 0 No 6 activities 60 s 65% ⇠ 92% -

Ours Depth

Accelerometer
Gyroscope
Magnetometer
FTM

Indoor,
outdoor
(6)

5 10 Yes Unconstrained
walking 3 s 81% data: [5]

code: [6]

Table 1: Summary of the most representative works that focus on associating vision data and wireless data.

(a) Dataset A setup (b) Dataset B setup

Figure 3: Data collection setup. In order to have a proper �eld
of view, the camera ismounted at the height of 2.4 - 2.8m. For
Dataset A, the camera is mounted to the ceiling of the facility
that has a height of 2.8 m. A Google Nest WiFi AP is placed
next to the camera. For Dataset B, the height of the camera in
each scenario is 2.6 m. The AP is placed beneath the camera
at the height of 1.4 m. For the purpose of su�cient height
and outdoor stability/mobility, we mount the ZED2 camera
on the handle of a roof-mounted bike.

B constitutes data from experiments conducted in 5 di�erent real-
world outdoor environments with 2-3 user participants and rest
of the pedestrians in view are passersby (up to 12 in our dataset).
Each video sequence lasts 3 minutes and contains RGB-D frames
(captured at 10 frames/sec), FTM, and 9-axis IMU sensor data (ac-
celerometer, gyroscope, and magnetometer) of up a Google Pixel
3a smartphone device. Each of the legitimate users (3 for Dataset
A and 5 for Dataset B) carried the Pixel phone. The users were
not restricted in how they carried the phones (in hand or in their
pocket). Our dataset is representative of a diverse set of scenarios
with participants holding smartphone devices exchanging FTM
messages with the AP and recording IMU measurements, as well as
a varying number of passerby whose phone devices did not opt in to
the FTM and IMU recording. The RGB-D camera captures the scene
and all the pedestrians under its �eld of view (FOV). The maximum

number of detected pedestrians (phone holders and passerby) at
a time is 12. A participant with a phone might exit and re-enter
the camera’s �eld of view due to unconstrained walking pattern
and limited �eld of view of the camera. As a result, the number of
pedestrians detected in vision modality could be less than, equal
to, or greater than the number of participants’ phones heard over
the wireless channel. This change of cardinality in both modalities
poses another challenge to the cross modal association. Figure 4
shows an example of continuous sampled frames from the labeled
dataset.
Collection Setup. The setup (Figure 3) consists of a mounted
Stereolabs ZED2 [11] (RGB-D) camera set at the height of 2.4 -
2.8 meters with a proper �eld of view to record video at 10fps,
which collects depth information from 0.2m to 20m away from the
camera. The smartphones are set to exchange FTM messages at
3 Hz frequency with a Google Nest WiFi Access Point anchored
besides the camera. Each smart phone also logs its IMU sensor
data at 50 Hz and GPS readings at 1 Hz (in Dataset B only). The
smartphones and camera are connected to the Internet to achieve
coarse synchronization using network time synchronization.
Ground-Truth Labeling. To mark ground truth for evaluating
association accuracy, we manually annotate the participants in the
(dataset) video frames with bounding boxes. We use a tracking mod-
ule from ZED SDK’s API to help with annotating the pedestrians
in the video scene and perform 2 total passes over the data. During
the �rst pass, the ZED tracker outputs a track ID for each tracked
person and a bounding box for that person at each frame, where the
ground truth bounding box labels are manually matched with these
track IDs every 10 frames. We perform a second pass in which each
frame’s ground truth label for the pedestrians is manually reviewed
and corrected where necessary using the Visual Object Tagging
Tool (VoTT) [12]. The two-step method saves time over manually
drawing bounding boxes and labeling each pedestrian individually.
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Figure 4: Showcasing sampled screenshots from our multi-modal dataset. The dataset contains videos recording one indoor
scenario and 5 di�erent outdoor scenarios where multiple participants randomly walk around the venue with a varying number
of passersby. Each participant, denoted by a bounding box with an alphabetical character, is holding a smart phone that is
exchanging FTM messages with an access point (located close to the RGB-D camera) while logging its IMU sensor data. Other
passersby are depicted with a bounding box labeled as “Others”. We collect a total of 94 3-minute video sequences across the 6
scenes. (Best viewed zoomed)

5 BASELINE: BIPARTITE MOTION
ASSOCIATION

We develop a model-driven approach that computes association
based on pairs of similar information from multiple modalities. Our
goal is to compute features from each modality to capture the com-
plementary characteristics as well as redundancy between the data
streams. Bipartite matching using Linear assignment or Hungarian
algorithm [13, 49] is an intuitive yet versatile approach to �nd asso-
ciations between two disjoint sets. It has been widely adopted and
evaluated in systems that require data association such as [34, 36].
It is also a popular choice among the related works that focus on
vision-wireless association [16] To this end, we construct vision-
based and wireless-based motion pro�les for each entity in the
scene and associate them under the paradigm of bipartite matching.
Figure 5 shows an overview of bipartite motion association that is
explained in the following:
Motion Pro�le Construction. Motion pro�les, computed for the
phone’s IMU and camera (vision) data, capture the relative move-
ment and positioning of entities in the scene. A motion pro�le, ? ,
is given by: ? = { 9,q,3}, where 9 is the trajectory represented as

Track ID         Phone ID
Association

Bipartite Motion
Association

FTM/Depth
 Similarity Index

Heading Similarity
Index

Trajectory Shape
Similarity Index

Time Series Synchronization

 Trajectory
Estimator

Maximum Matching Weighted
Bipartite Graphs

Bounding
Boxes

Depth
Acc.

Mag.
Dead

Reckoning

FTM

IMU

Motion Profile
Association

Motion Profile
Construction

Figure 5: Bipartite motion association overview

time-series data, q is the heading measured in degrees, and 3 is the
distance in meters from a shared reference point. We estimate each
user’s heading from the visual data, q2 by calculating the angle
between the user’s position in two consecutive frames, with respect
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to the image x-axis. For each phone, the heading q? is computed as
the rotation around the gravity axis after transformation to global
reference frame.

For trajectory estimation, the trackingmodule fromZEDAPI [11]
was found to be most accurate, in comparison to other open-sources
methods [18, 55]. Each track is a series of bounding boxes. In order
to estimate the trajectory from the phone, we leverage the data
from the IMU. We detect steps from the accelerometer signal and
employ pedestrian dead reckoning to estimate trajectories. We ini-
tialize the starting position as the reference for the dead reckoning
process. Then, we use the previously determined heading angle
q? and the average step length for adults (; = 0.8m) to update the
phone position over time.

We utilize depth information computed by the RGB-D camera to
estimate the distance between the camera and visually tracked per-
sons. On the other hand, WiFi Fine Time Measurements (FTM) [15],
currently on Android phones [14], can estimate distance between a
phone and a WiFi access point, supporting FTM positioning, with
a meter-level [1, 29] accuracy. This provides the timestamped WiFi
FTM ranges.
Motion Pro�le Association.We synchronize the data streams us-
ing their timestamps and time o�set between their clocks, followed
by re-sampling to compute pairwise similarity indices. We compute
similarity measures between each pair of motion extracted features.
All similarity indices are computed for the entire motion history
for the detected people in a video frame, as shown in Figure 6.
We use dynamic time warping (DTW) to compute (i) similarity
index �q between heading estimates q2 and q? ; and (ii) similarity
index � 9 by comparing the shapes of the trajectories 92 and 9? . Even
though the measured trajectories are in di�erent coordinate frames,
comparing shape allows us to leverage relative changes in users’
position and heading to match visual trajectories with IMU trajec-
tories. Lastly, we compute similarity index �3 to correlate FTM and
depth measurements. Depth matching addresses the limitations of
two-dimensional trajectory matching, which is insu�cient when
multiple users walk in the same direction. For example, two users
walking in a straight line along same direction will exhibit similar
trajectory shapes.
Association via Bipartite Graph. To associate phone IDs with
visually generated track IDs, we employ a bipartite graph. Bipartite
graphs have been used to model 1 : 1 matching problems. In our
bipartite graph, ⌧ = {* ,+ , ⇢}, * represents the set of connected
phones, and+ is the set of track IDs from the camera at each frame,
and ⇢ is the set of edges which connect each phone from set* with a
person from+ . Since track IDs appear and disappear as users move
in and out of the camera’s �eld of view and not all users’ phone
communicate with our system, it often results in + and* having
di�erent number of nodes. To ensure 1 : 1matching, we balance the
number of nodes by adding new nodes, labeled “ú”. We compute
edge scores for⌧ by combining the similarity indices as a weighted
sum,

Õ
F8 �8 , over all the motion features. After scanning all possible

weight combinations, the edge score is computed as, ⇢DE = 0.1�q +
0.1� 9 + 0.8�3 . In the case that the depth and FTM similarity �3 is
not incorporated in the score, we adjust the weights and the edge
score becomes: ⇢DE = 0.6�q + 0.4� 9 . We do not incorporate �3 to
evaluate the performance using IMU data alone as we discuss in

Figure 6: An example of bipartite matching at time C: . Small
vertical boxes overlaid on horizontal boxes denote ground
truth associations. The edge weights are computed over the
motion history from C0 to C: . The algorithm associates bound-
ing Box 4with PhoneA, bounding box 2with PhoneB. Bound-
ing box 3 is associated with “ú” to indicate that the user’s
phone is not opt-in. Phone C is associated with “ú” because
its user is not in the camera’s �eld of view.

the evaluation section. We input the weighted bipartite graphs into
the Hungarian algorithm [21] to match the track IDs in the scene
to phone IDs. The Hungarian algorithm provides the maximum
possible matching between track IDs and phones, preserving the
minimum cost, which is the weighted sum in our case. In Figure 6,
we demonstrate the bipartite graph construction. In the example
shown, bounding boxes 2, 3, and 4 are in the camera FOV at time
C: and there are 3 phones connected to the network A, B and C.
As mentioned earlier, the visual tracker generates two separate
bounding boxes (1 and 4) for the user carrying phone A. After the
bipartite matching, phones A and B are correctly matched to the
corresponding bounding boxes, whereas User D who does not carry
a phone, is matched with phone node “ú” and Phone C identi�ed
as not having a corresponding visual bounding box at time C: .

6 AFFINITY MATRIX LEARNING
We use the notation of a�nity matrix [50] in the context of a deep
learning model to facilitate learning advanced feature embedding
for the multi-modal data. In our multi-modal association problem,
an a�nity matrix M 2 R"⇥# quanti�es the similarity between
instance 8 2 [1,"] from group � (smartphone information) and
instance 9 2 [1,# ] from group ⌫ (camera information). Fig. 7(a)
and 7(b) show an example of ground truth a�nity matrix for 3
smartphones and 7 visually detected bounding boxes.

In our approach, we directly learn an a�nity matrix M to asso-
ciate all the phone-camera pairs at every timestamp. Each entry of
the a�nity matrixM(8, 9) represents the association score for the 8-
th smartphone and the 9-th bounding box. Applying the Hungarian
algorithm to the a�nity matrix or taking row-wise (or column-wise)
softmax of the matrix allows us to obtain the association decision
for every camera-phone pair, thus successfully associating each
bounding box from camera domain to the correct smartphone ID.

6.1 Model Architecture
Fig. 8 depicts the architecture of our multi-modal deep a�nity net-
work. The model takes inputs of two modalities as two branches.
The upper branch input consists of RGB-D information that comes
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(a) An example screenshot from the experiment. 7 pedestrians are
detected by human detector. 3 pedestrians’ phones are exchanging
FTM messages with the WiFi access point while recording IMU mea-
surements.

1 2 3 4 5 6 7 ú
A 0 1 0 0 0 0 0 0
B 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0
ú 0 0 1 1 1 1 0 0

(b) Vision-wireless ground truth association for
the above screenshot represented by an a�nity
matrix.

Figure 7: An example a�nity matrix M for 3 smartphone
devices (A⇠C) and 7 visually detected pedestrians (1⇠ 7). The
“1” cells suggest that bounding box 1 is associated to phone B,
bounding box 2 is associated to phone A and bounding box 7
is associated to phone C. “ú” indicates no association existed
for a phone device or bounding box.

from the camera modality. The lower branch of the input con-
sists of FTM and IMU information that come from phone modal-
ity. More speci�cally, for every timestamp of the video sequence,
we feed the upper branch with a history of depth measurements
3 as well as pixel coordinates (G,~) of all the bounding boxes
detected by the object tracker. We denote the camera input as
�2 2 R#⇥3⇥: where # represents the number of visually detected
bounding boxes and : represents the length of time window history.
Meanwhile, we feed the lower branch with the corresponding his-
tory of FTM measurements (FTM range A , FTM standard deviation
BC3) as well as IMU sensor data (accelerometer (G022 ,~022 , I022 ),
gyroscope(G6~A ,~6~A , I6~A ), and magnetometer(G<06,~<06, I<06))
from all the participants’ smartphones. We denote the smartphone
input as �? 2 R"⇥11⇥: , where" represents the number of smart-
phone devices communicating with the access point and : repre-
sents the length of time window synchronized with camera infor-
mation.

We adopt LSTMunits as feature extractors for themulti-modal in-
put considering they o�er signi�cant advantages over other vanilla
multi-layer network architectures when extracting features from
sequential or time-series data. Each LSTM unit (2-layer, bidirec-
tional) in parallel renders every sequence of measurements into a
feature vector 5 2 R32⇥1 for a visual bounding box or a smartphone
device. When the number of detected bounding boxes is # and the
number of participating smartphones is" , the output feature maps
of two LSTM units are 5E 2 R#⇥32 and 5? 2 R"⇥32 respectively.
Let the maximum number of participants presented simultaneously
be # E

< (# <= # E
<) and the maximum number of phone holders be

#?
" (" <= #?

<). We append extra zero row-vectors (representing
participants that are not present) to 5E and 5? so that 5? 2 R#

?
<⇥32,

5E 2 R# E
<⇥32. Thus each row of the feature map 5E and 5? is a

feature vector for a bounding box or a smart phone device, and the
padded zero vectors represent the participants that are not present.
Since # E

< bounding boxes and #?
< smartphone devices can form

# E
< ⇥ #?

< potential association pairs, we enumerate every possible
concatenation of a visual feature vector and a phone feature vec-
tor to form a feature cubic � 2 R#

?
<⇥# E

<⇥64. Thus each potential
association pair is represented by a 64 dimensional vector.

The feature cubic is then compressed to an a�nity matrix M 2
R#

?
<⇥# E

< by a compression network that consists of a sequence
of convolution layers with 1 ⇥ 1 kernel sizes. Each element of the
a�nity matrix, M8, 9 , denotes the association score for the 8-th
bounding box and the 9-th smartphone device. In order to handle
the situations where a bounding box is associated with none of
the phone devices or vice versa, we append an extra row and col-
umn to the a�nity matrix M to obtain MA 2 R(#

?
<+1)⇥# E

< and
M2 2 R#

?
<⇥(# E

<+1) . For MA , its 8-th column associates the 8-th
bounding box with #?

< + 1 devices, where the “+1” indicates the
extra unidenti�ed bounding box that does not associate to any
of the existing devices. By applying a row-wise softmax opera-
tion over "A , we obtain a matrix AA 2 R(#

?
<+1)⇥# E

< whose rows
encodes probabilistic associations between smartphone devices
and visually detected bounding boxes. Similarly, we can also apply
a column-wise softmax operation to obtain A2 2 R#

?
<⇥(# E

<+1) ,
whose columns encode the backward probabilistic associations
between bounding boxes and phones.

6.2 Network Loss
During training phases, we compute the network loss for back prop-
agation using ground truth a�nitymatricesM6 2 R(#

?
<+1)⇥(# E

<+1)

and the predicted a�nity matrices AA 2 R(#
?
<+1)⇥# E

< and A2 2
R#

?
<⇥(# E

<+1) . The total loss ! is the average of the following sub-
losses: 1) Phone-to-camera association loss !?2 , which penalizes in-
correct bounding box ID assignments for phone devices. 2) Camera-
to-phone association loss !2? , which penalizes incorrect phone
device ID assignments for bounding boxes. 3) Consistency loss
!2>=B , which encourages consistency between !?2 and !2? . 4) A�n-
ity loss !05 5 , which suppresses non-maximum entries in the a�nity
matrix. Detailed de�nitions of the losses are

!?2 (M†
6 ,AA ) =

Õ(M†
6 � (� logAA ))Õ(M†

6 )
, (1)

!2? (M‡
6 ,A2 ) =

Õ(M‡
6 � (� logA2 ))Õ(M‡

6 )
, (2)

!2>=B (A†
A ,A‡

2 ) = kA†
A �A‡

2 k1, (3)

!05 5 (M†‡
6 ,A†

A ,A‡
2 ) =

Õ(M†‡
6 � (� log(max(A†

A ,A‡
2 ))))Õ(M†‡

6 )
, (4)

! =
!?2 + !2? + !2>=B + !05 5

4
, (5)

where the notations of “†” and “‡” represent the operations of trim-
ming the last row and the last column of a matrix respectively. “�”
represents the operation of element-wise product. “

Õ
” represents

the operation of taking element-wise sum of a matrix.
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Figure 8: Deep a�nity multi-modal architecture. For camera modality, sequential measurements of each detected participants
(bounding box coordinates and depth measurements) are fed into a bidirectional LSTM unit. For phone modality, sequential
wireless measurements (FTM and IMU measurements) are fed into to another bidirectional LSTM unit. The output feature
embeddings are exhaustively combined to form a feature ensemble in which every pair of camera-phone association is encoded
by a concatenated embedding vector. The 3D ensemble cubic is squashed to a 2D a�nity matrix by fully convolutinoal layers.
Each cell of the a�nity matrix represents the probability of associating a visually detected person with a smartphone identi�er.
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Figure 9: Varying duration of detected tracklet during test
phase. The width of a solid rectangle represents a tracklet’s
duration of presence. User B and C exit and re-enter the scene
with di�erent tracklet IDs.Wemake association decisions for
every frame as the time cursor (vertical dashed line) moves
from left to right. The association prediction made at times-
tamp C is based on measurements within a sliding window.

6.3 Network deployment
Online association. After training the network, we conduct on-
line association prediction for every frame of the video. At a spe-
ci�c timestamp C , we aim to associate the current computed visual
detections (bounding boxes) with the correct smartphone IDs by
using histories of measurements from both camera and smartphone
modalities. Due to the random walking pattern of pedestrians and
occlusions, every tracklet (bounding boxes with temporarily �xed
detection ID) provided by ZED object tracking module has di�erent
duration of presence. Unlike the baseline method that utilizes whole
motion history to make association decisions (depicted in 6), when
making inference with the deep a�nity network, we apply a sliding
window mechanism so that at most 10 frames’ measurements (con-
tains approximately 3 seconds information) are considered.Setting

such a limited sliding window whose size is not growing with pro-
gram’s execution is vital for tolerable processing time, which paves
the way to real-time performance with marginal latency. Figure 9 il-
lustrates two testing cases. At timestamp C = C1, there are 3 detected
pedestrians (User A, B and C) with bounding boxes’ duration of
presences all being less than 10 frames; At timestamp C = C2, there
are 3 detected pedestrians (User B, C and D) with di�erent track IDs.
Two of them having measurement histories that are greater than
10 frames. Notice that we evaluate our algorithms under real-world
environment with minimal constraint, where users and passer-by
pedestrians walk freely in the area. There exist a large portion of
situations where users may exit and re-enter the camera’s �eld of
view asynchronously.
O�line Association using Consistency voting. Leveraging a
series of previous measurements allows us to predict association
at every timestamp. However, the association algorithm has no
“memory” at this point. For every timestamp, the association is
made only for the current time and previous association decisions
have no in�uence on the current frame’s association. In order to
improve consistency of association predictions among consecutive
timestamps, we introduce a sliding window voting scheme on top
of the association predicted at every timestamp. The voting scheme
maintains a bu�er that contains a certain number of most recent
association decisions. For a speci�c bounding box at a timestamp,
the �nal decision is the majority vote among the history of decisions
in the sliding window.

7 EVALUATION
We evaluate the performance Vi-Fi based on the correctness, quan-
ti�ed using accuracy metric, of association for various modality
combinations. We conduct micro-benchmark analysis to study the
impact of di�erent factors and parameters on association accuracy.
Data and Processing Preparation.We note that a participant is a
Vi-Fi opt in user and a passerby is a randomly occurring pedestrian
in the scene. Dataset A contains 15 sequences with 5 participants
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Input �2 2 R#⇥3⇥10 �? 2 R"⇥11⇥10

Feature
extraction LSTME (3, 32) LSTM? (11, 32)

Dimension
reduction

Conv1 (64, 128)
BatchNorm2D, ReLU

Dropout2D
Conv2 (128, 64)

BatchNorm2D, ReLU
Conv3 (64, 32)

ReLU
Conv4 (32, 1)

ReLU
Output M 2 R5⇥15

Table 2: Detailed con�guration of the A�nity Matrix Learn-
ing Network. All convolutional layers have 1 ⇥ 1 kernels.

and 0 passerby pedestrians. Dataset B contains 75 sequences col-
lected from 5 di�erent outdoor locations where the number of
participants varies between 2 and 3, and the number of passerby
pedestrians varies from 1 to 9. To construct training/testing sam-
ples, we extract windows of length 10 samples from vision and
wireless data of all the participants and passerby pedestrians. For
dataset A, the total number of training samples is 540,000, including
images, FTM and IMU data. We train and evaluate the deep neu-
ral network’s performance under the paradigm of cross validation.
In order to fully exploit the dataset while avoiding information
leakage during training phases, we conduct leave-one-out cross
validation for the 15 sequences. For dataset B, the total number
of data samples constructed is 1,070,000. Given the larger dataset,
we conduct a 5-fold cross validation on 70 sequences and test on 5
unseen sequences that are randomly picked from di�erent scenes.
We implement the network architecture using PyTorch [44] – the
detailed con�gurations of the network layers are listed in Table 2.
We train the network with an NVIDIA 1080-Ti GPU for 200 epochs
with batch size of 32, learning rate 0.001 (0.0001 after 100 epochs).
Evaluation Methodology.We evaluate the two proposed meth-
ods for association under online and o�ine modes. For the bipar-
tite matching algorithm, the online mode takes as input a history
of measurements from the beginning of the video to the current
timestamp, and then make association decisions for the current
timestamp frame by frame. In the o�ine mode, the ZED tracker
is �rst applied to the video and tracklets (contiguous image frame
sets) with di�erent tracking IDs are obtained. Then the bipartite
matching algorithm is invoked so that every tracklet is assigned
to a smartphone ID. For the a�nity matrix learning, in the online
mode the pre-trained network predicts the bounding boxes’ identi-
ties for each frame of the ZED camera video feed using a history
(up to 10 timestamps) of most recent measurement. In its o�ine
mode we employ the consistency voting scheme that updates each
frame’s prediction over set of 30 frames, equivalent to 10 seconds
(practically reasonable for o�ine processing).
Evaluation Metric.We use identi�cation precision (�⇡% ) [46] and
de�ne association accuracy as

�⇡% =
�⇡)%

�⇡)% + �⇡�%

where IDTP (IDFP) represents the number of correctly (incorrectly)
associated bounding boxes. IDP essentially computes the fraction

(a) Online Processing (b) O�ine Processing

Figure 10: Vi-Fi association accuracy for Dataset A. We com-
pare the performance of a�nity matrix deep learning ap-
proach with the bipartite motion baseline method.

(a) Online Processing (b) O�ine Processing

Figure 11: Vi-Fi association for Dataset B. We compare the
performance of a�nity matrix deep learning approach with
the bipartite motion baseline method.

of detected bounding boxes that are correctly associated with their
wireless devices. Other metrics including identi�cation recall (IDR)
and identi�cation F1 score (IDF1) also take into account false de-
tection or miss detection which are dependent on the tracker’s
performance. In our evaluation, we focus on IDP instead of IDR
or IDF1 because our methods take as input the tracker’s outputs,
and the associations are computed only for the detected bounding
boxes that are present in the scene.

7.1 Vi-Fi Accuracy on Dataset A
We summarize and present the overall association accuracy for
dataset A for a�nity matrix and bipartite motion (baseline) meth-
ods, and under online and o�ine modes in Figure 10. To better
understand how each sub-modality from the phone perspective
contributes to the task of association, we conduct an ablation study
on both methods. We show and compare the association accuracy
for the bipartite matching algorithm and the neural network when
the phone modality only comprises the FTM or IMU data. As can be
observed from Figure 10, the best association performance results
from leveraging features from both WiFi FTM measurements and
IMU sensor data. We observe sub-optimal performances when we
use only one modality to associate camera data with phone data.
It is worth noticing that FTM and IMU sensors encode di�erent
aspects of spatial information of pedestrians and compensate each
other. More speci�cally, FTM measurements only capture users’
relative distances to the access point. Relying solely on FTM mea-
surements may not distinguish situations where participants at
the same distance from the access point have di�erent walking
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patterns. On the other hand, IMU data only encodes users’ moving
patterns or gait information. Thus associating only IMU data can
fail in cases where participants have similar walking patterns. We
also observe that, though the di�erence is small, the data-driven
deep learning approach outperforms the baseline model-driven
approach, showing the importance and encouraging results of ap-
plying deep learning and a�nity matrix concepts for multi-modal
association problem.

7.2 Vi-Fi Accuracy on Dataset B
We present the average online and o�ine association accuracy
for dataset B in Figure 13(b). While the performance of bipartite
algorithm signi�cant degrades, the a�nity matrix learning presents
consistent association accuracy (81.1% online and 90.2% o�ine)
compared with results of dataset A. Moreover, we observe larger
performances gaps in the ablation study for dataset B. Training
the network with only FTM sub-modality results in 45.8% online
accuracy and 50.1% o�ine accuracy. The 8% gap between IMU only
and FTM+IMU indicate that, although features learned from FTM
alone are not representative to deliver good association accuracy,
combining FTM with IMU measurements indeed help the network
to learn a more distinctive feature representation compared to
learning using IMU measurements only.

The performance drop for bipartite matching algorithm suggests
the limitation of hand-crafted feature embedding, that it is limited
to more constraint environments like dataset A, where there is
no passerby pedestrians in the camera’s view so that a person
detected by the camera must always be one of the participants. In
comparison, the deep learning model is capable to learn a more
complex feature embedding for both modalities such that it can
handle situations not limited to dataset A, but other challenging
scenarios in dataset B where the number of passerby pedestrians
varies and a camera detected pedestrian might not belong to any
of the (opt in) participants.

7.3 Microbenchmarks for A�nity Matrix
Learning

7.3.1 Varying Lengths of Measurement Sequences. When making
association predictions based on di�erent lengths of measurements,
it is natural to speculate that longer time series of measurements
are more helpful in solving the association problem, since they
encode more information of users’ motion. In order to evaluate the
in�uence of measurement series lengths on association accuracy,
we compute per-frame association accuracy with di�erent mini-
mum measurement lengths at a timestamp. From Figure 12(a) and
12(c), we observe higher association accuracy when we have longer
measurement series lengths. Especially, we achieve 89% median
accuracy for dataset B when we have measurement lengths that
are great or equal to 10 (3 seconds). Figure 12(b) and 12(d) further
show the histogram of measurement lengths in our dataset. From
the histogram we observe a large portion of testing cases where
we have measurement series that are long enough (� 3 seconds)
for us to make reliable association decisions. This makes the a�n-
ity learning a favorable approach especially for online processing,
where we only rely on 3 seconds instead of the whole history to
make associations with high accuracy.

(a) Per-frame association accuracy un-
der varying lengths of measurements for
dataset A

(b) Histogram of measurement lengths
for dataset A

(c) Per-frame association accuracy un-
der varying lengths of measurements for
dataset B

(d) Histogram of measurement lengths
for dataset B

Figure 12: Length of measurement series a�ects association
accuracy for dataset A and B. Longer series of measurements
result in better association.

7.3.2 E�ect of Consistency Voting. We applied the voting scheme
with voting window size 30 to every video sequence of our dataset
and compare the per-frame and voted association accuracy for each
recorded video. As Figure 13 shows, the voting scheme is capable
of correcting inconsistent predictions within a series of per-frame
predictions and improve the over-all accuracy by up to 12%. Apply-
ing the voting scheme on top of the per-frame prediction means we
need extra computational resources to store the prediction history.
In order to �nd the optimal history length, we further explore how
di�erent voting window sizes might a�ect the overall accuracy.
Fig. 14 presents the relationship between majority vote window
length and overall association accuracy. When the size of the voting
window reaches 30 frames (⇡ 10 seconds), the voted association
accuracy starts to plateau. Considering that the associations for the
�rst 30 timestamps (10 seconds) be conducted o�ine, the insight
from this result suggests the feasibility to maintain a history bu�er
of per-frame predictions for the most recent 10 seconds, thus allow-
ing for real-time voting and prediction updates in real-time, on the
�y.

7.3.3 Real-time Performance. Unlike methods such as [27, 31, 56,
59] that post-processed all vision tracklets with wireless measure-
ments over a long period, our proposed a�nity matrix prediction
supports real-time execution. It requires no future information and
only a limited range of sequential information from up to 10 most re-
cent frames (3 seconds) to make accurate association prediction for
the current frame. Our current real-time prototype system achieves
the association at an average processing rate of 2.8 fps, which is
equivalent to an end-to-end processing time of 360ms.



Vi-Fi: Associating Moving Subjects across Vision and Wireless Sensors IPSN’22, May 4 – 6, 2022, Milan, Italy

(a) Dataset A (b) Dataset B

Figure 13: Association accuracy on testing set

(a) Dataset A (b) Dataset B

Figure 14: Voted association accuracy v.s. di�erent voting
window size
8 DISCUSSION
We will discuss some of the limitations of the current version of
the Vi-Fi system:

Scaling the number of pedestrians: The maximum number
of pedestrians and phones that Vi-Fi can handle is de�ned by the
dimension of the a�nity matrix in the network architecture. This
number is pre-de�ned for the network architecture and cannot
be changed after the training process. If we are required to make
associations for more crowded scenes, we will need to modify the
dimension of the a�nity matrix and �ne-tune the network with
the updated architecture. The �ne-tuning process does not require
a complete re-training of the network from scratch and thus can
be conducted in the form of a in-frequent network architecture
update.

Privacy: Although Vi-Fi will not run automatically in the back-
ground and users need to give consent to opt-in, we are aware that
associating camera monitored pedestrians with their smartphone
ID may still impose privacy concerns. For example, malicious apps
might obtain access to the camera and wireless channel so that
users’ information is breached without consent. Addressing the
privacy concerns would require separate experiment designs, sys-
tematic studies and evaluations, which are outside the scope of the
current work and considered as future work.

9 CONCLUSION
In this work, we addressed the fundamental problem of associating
subjects observed in camera views and messages transmitted from
their wireless devices. We designed a recurrent deep a�nity matrix
learning architecture that learns more distinctive representations
from raw sequential sensor data measurements of vision and wire-
less modalities. In particular, our approach builds a latent space

representation and uses the notation of a�nity matrix to compute
correlation between phone ID available through WiFi meta-data,
and images, WiFi FTM depth and IMU sensor values. We developed
a bipartite matching based baseline approach that constructs hand
crafted motion features from IMU and FTM measurements and
builds similarity correlation checks using bipartite graph matching.
To facilitate design and evaluation, we collected and evaluated a
large scalemulti-modal dataset at di�erent real-world environments
with varying number of participants and passerby pedestrians. Our
evaluation results show that the learned features from our proposed
network architecture are more distinctive for challenging crowded
environments where varying number of passerby pedestrians exist.
The proposed network architecture achieves an overall association
accuracy between 81% (real-time) to 91% (o�ine) across diverse
real-world environments.
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