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Abstract

Two- and three-dimensional models are proposed for ocean-wave atten-
uation due to scattering by ice floes in the marginal ice zone, in which the
attenuation rate depends on the horizontal size of the individual floes. The
scattering models are shown to reproduce the behaviour of wave attenuation
over short wave periods. However, it is shown that scattering alone cannot
explain the observed asymptotic dependence of attenuation at long wave pe-
riods. Based on these findings, it is proposed that attenuation models consist
of a scattering component supplemented by an empirical damping term based
on measurements, so that attenuation over all periods is correctly modelled.
Computer code to calculate wave attenuation through a field of ice floes is

provided in the supplementary material.

Keywords: Sea Ice, Ocean Waves, Scattering

1. Introduction

Understanding the interaction between ocean waves and the sea-ice cov-

ered ocean has applications ranging from predicting sea ice extent to safe
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navigation. Ocean waves are frequently observed to impact the sea ice cover
and to be attenuated by the ice cover (Kohout et al., 2014; Meylan et al.,
2014). There is evidence that ocean waves modulate sea-ice extent (Zhang
et al., 2016; Bennetts et al., 2017; Boutin et al., 2018; Roach et al., 2018,
2019; Bateson et al., 2020), and that attenuation of waves by sea ice protects

ice shelves (Massom et al., 2018; Chen et al., 2019b).

A concerted effort has emerged to include and evolve the coupled repre-
sentation of sea ice and ocean surface waves into large-scale models for im-
proved ice-ocean physics and prediction (Bateson et al., 2020; Boutin et al.,
2020; Roach et al., 2019; Dumont et al., 2011; Williams et al., 2013a,b; Hor-
vat and Tziperman, 2015; Horvat et al., 2016; Williams et al., 2017; Meylan
et al., 2020). This effort has been focused mainly in the marginal ice zone
(M1z), where sea ice is highly fragmented, mobile, and in contact with ocean
waves. Models include a parameterisation of the wave attenuation coefficient
(i.e. the exponential rate of wave attenuation over distance travelled), gener-
ically written a(A, T, h,a), where A is the wave amplitude, 7" is wave period,

h is sea ice thickness, and «a is the floe radius.

Measurements of wave attenuation by sea ice began with pioneering work
by members of the Scott Polar Institute (Squire and Moore, 1980; Wad-
hams et al., 1988). In recent years, technological developments have allowed
more detailed measurements of wave attenuation (Kohout et al., 2014; Mey-
lan et al., 2014; Doble et al., 2015; Rogers et al., 2016; Cheng et al., 2017;
Meylan et al., 2018; Sutherland et al., 2018; Thomson et al., 2018; Rabault
et al., 2020; Horvat et al., 2020; Rogers et al., 2020; Alberello et al., 2020)
and better constraints on the form of a. The data collected show the atten-
uation coefficient for long-period waves (above 10 seconds) is approximately

proportional to the wave period to the power of minus two, i.e. a« ~ T2 for
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Theoretical modelling of wave attenuation by sea ice has been the subject
of parallel research advances (Squire, 2020). Models can be broadly divided
into two categories: those treating sea ice as a viscous layer (Weber, 1987,
Keller, 1998; Wang and Shen, 2010a; Sutherland et al., 2019; Chen et al.,
2019a; Cheng et al., 2020) and those treating it as a scattering medium
(Meylan et al., 1997; Kohout and Meylan, 2009; Bennetts et al., 2010; Ben-
netts and Squire, 2012; Montiel et al., 2016). Viscous layer models idealise
the field of floes in the M1z as a continuum, and are intuitively applicable in
the long-wavelength limit.  The layer models have been extended beyond
viscosity, for example, Voermans et al. (2019) considered attenuation due to
turbulence. In contrast, scattering models involve a large collection of indi-
vidual floes, where the standard model for wave scattering by a single floe is
based on a floating elastic thin plate model, and accounts for the compliant
bending of large floes while preserving the rigidity of small floes (Meylan and
Squire, 1994; Meylan, 2002; Bennetts and Williams, 2010).

With the exception of Perrie and Hu (1996) and the recent work Meylan
et al. (2020), only two-dimensional (one horizontal dimension and one depth
dimension) scattering models that have been implemented in large-scale pre-
diction models, and often assuming floe lengths are much larger than the
wavelength to avoid artificial resonance effects (Kohout and Meylan, 2008;
Williams et al., 2013a; Bennetts and Squire, 2012). Contemporary three-
dimensional scattering models of wave attenuation (Peter and Meylan, 2009;
Bennetts and Squire, 2009; Bennetts et al., 2010; Montiel et al., 2016) have
not yet produced a formula for « suitable for inclusion in large-scale models,

and this is the subject of ongoing research (Meylan and Bennetts, 2018).

Scattering of ocean waves by ice floes only occurs when there is a momen-
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tum exchange between the ice floe and ocean waves. In turn, the momentum
exchange implies that a force is applied to the ice floe, and hence it is liable
to fracture. Therefore, the effect of scattering is central to understanding ice
pack break up due to waves and other processes (Kohout et al., 2016; Herman
et al., 2018). After the ice pack has been broken into smaller floes, scattering
is likely to have a weaker effect, especially for the long—period waves which

persist far into the M1z (Collins et al., 2015; Dolatshah et al., 2018).

There is clear evidence from experiments that the ice cover causes energy
to be removed from waves at a much greater rate than for an ocean without
an ice cover. However, there is no evidence to show what the mechanism
is that removes this energy. There is evidence to suggest that it is caused
by under-ice friction (Liu and Mollo-Christensen, 1988; Ardhuin et al., 2016;
Boutin et al., 2018), floe collisions (Shen and Squire, 1998; Bennetts and
Williams, 2015; Yiew et al., 2017), overwash (Toffoli et al., 2015; Nelli et al.,
2017, 2020), or viscoelastic bending (Wang and Shen, 2010b; Mosig et al.,
2015). There is also evidence that the wave action breaks the floes in a highly
active breaking region (which scattering is probably dominant) until the floes
are sufficiently fractured that scattering is negligible and other mechanisms
then dominate the wave attenuation (Ardhuin et al., 2020). Further evidence

of this can be recent results on floe breaking (Voermans et al., 2019).

Despite the need to model wave attenuation and sea ice fracture accu-
rately, a model including all required features of attenuation is lacking. This
paper proposes an open-source model that captures both the short and long-
period wave attenuation through the sea-ice cover. For short periods, we
use scattering theory to account for the strong attenuation of small floes,
including the effect of floe size variability. For long periods we propose an

extra term which is based on experimental measurements which can easily
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be updated with additional experimental data or appropriate theory. The
computer code required to run the model is provided as supplementary ma-

terial.

2. Attenuation, scattering and dissipation

There is some ambiguity in the terms attenuation, scattering and dissi-
pation and we want to be clear here what we mean by these words. At-
tenuation is the observed decrease in wave height as it propagates through
the M1z. Scattering is the process that changes the direction of propagation
without removing energy and dissipation is a process which removes wave
energy. Both scattering and dissipation can lead to attenuation.

A critical difference between scattering and dissipation is that scattering
will lead to broadening of the wave direction and eventually to an isotropic
wave field (if there is no significant dissipation). This is attested to in mod-
els (Montiel et al., 2016), although there is no clear observational evidence.
Scattering must involve momentum exchange and hence high forces and is
likely to cause fracture or melting. Scattering models have clear and straight-
forward physics, which is the basis for offshore engineering and ship design
and which has been well validated in laboratory experiments (Meylan et al.,
2015; Montiel et al., 2013a). It is possible that scattering only plays a signif-
icant role in the active breaking region, but we believe its influence is more
comprehensive than this. However, we acknowledge that evidence to prove

this is lacking.

3. Wave scattering by individual ice floes

The scattering model treats an ice floe as a floating, elastic plate, which

behaves as a rigid body in the case of long waves or large thickness. We
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present a simple numerical method that works in two- and three-dimensions
to high accuracy and efficiency based on eigenfunction matching. The so-
lution in three-dimensions was first given by Peter et al. (2004), and the
solution in two-dimensions was first given by Fox and Squire (1994) for the
semi-infinite case. Floating elastic plates have been the subject of laboratory
experiments to validate and show limitations of the model in terms of the
plate motion (Montiel et al., 2013a,b; Meylan et al., 2015; Yiew et al., 2016)
and of the scattered wave field (Bennetts et al., 2015; Nelli et al., 2017; Sree
et al., 2017). While the solution to our problem has appeared previously,
the simplified numerical solution in two-dimensions given below, which is
based on symmetry, has not appeared previously to our knowledge. = We
give detailed descriptions to help to understand the computer code which
accompanies the paper.

We begin by stating the governing equations for the floe—water system.
We assume that the floe has a uniform thickness of h, the seafloor is flat, and
that all motions are time-harmonic with radian frequency w. The velocity

potential in the water, ®, can be expressed as,
O(x,2,t) = Re {o(x, z)e ™}, (1)

where the reduced velocity potential ¢ is complex-valued, and x is the hor-
izontal spatial variable, such that x = x in two-dimensions and x = (x,¥)
in three-dimensions, and z is the depth variable, which points upwards, with
the water surface at z = 0 and the seafloor at z = —H. The ice floe is on

the free surface (z = 0) and occupies the domain 2, where
Q={x:[x| <a}, (2)

a is the ice floe radius (strictly, in two-dimensions 2 a is the ice floe length).
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The reduced potential satisfies the boundary value problem

Ap+*¢p=0 —H<z2<0, (3a)
d.6=0, z=—H, (3b)
0.0=K¢, 2=0, x¢Q, (3c)

(FA’+1-Kv)0,0=K¢, z=0 x€q, (3d)

where A is the Laplacian operator in the horizontal plane. The constant
K = w?/g is the (deep water) wavenumber, in which g ~ 9.81ms2 is the
constant of gravitational acceleration. The parameters F' and v are non-

dimensional versions of the flexural rigidity and mass of the floe, respectively,

F = g
0 =9 0g and P (3e)

where p ~ 1025kgm™ is the water density, Y ~ 6GPa is the Young’s
modulus of sea ice, v &~ 0.3 is its Poisson’s ratio, and p; ~ 925.5kgm™3 is its
density (Timco and Weeks, 2010).

The floe edges are assumed free, so that the bending moment and shear

stress vanish. In the two-dimensional problem, the free-edge conditions are
020.6=0, 2=0, |x|=a, (3f)

8202(;5 =0, 2=0, |x|=a. (3g)

In three-dimensions, they are
(A= =v)yr (0, +77'95)}0.0=0, z2=0, [x|=q, (3h)

{O.A—1=v)r 2 (0, +771)0;}0.0=0, 2=0, [x|=a, (3i)



166 where (r,0) are polar coordinates, such that
r=rcosf and y=rsinb. (4)

The vertical eigenfunctions for (3) are

~ coskpy(z+ H)
Qbm (Z) - COS ka ) 07 17 ) X ¢ Q (5&)
H
and wm(z):wsw(z+ ) m——2_1... xeq (5b)

coS Ky H

167 'The wavenumbers involved in (5) are k = k,, (m =0,1,...), where

ktan (kH) = — K, (6)
e and K = K, (m = —2,—1,...), where
-K
t H) = .
ktan(kH) Freit1— Ko (7)

w0 We let ko, kg € iIR_, by, ki € Ry (m = 1,2,...), such that k; < ky < ...
o and K < kg < ..., and k_9,k_1 € C, such that k_; = —K_3 (in general; for
i details see Bennetts et al., 2007).

172 We note that

0
| on:)0n(2) e = Ao, (%)
—H
173 where
1 (cosk,, Hsink, H+ k,,H
A ==
"2 ( Ky cos? k,, H ) ’ )
174 and
0
| onenlz)dz = B, (10)
_H
175 Where

k,sin k,H cos k,,H — k,, cos k, H sin k,,, H

B, = ) 11
(cos kpH cos kp,H) (k2 — K2) ()

8
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Radiation conditions are applied to ensure unique solutions to governing
equations (3). In two-dimensions, the radiation conditions are
¢I<X7 Z) + R¢[(—X, Z) T — —00,
o(x,z) ~ (12)

Tor(x,2) T — 00,

where ¢;(x, z) is the incident wave potential

¢I(X7 Z) - eikmqbo(z)? (13)

in which k = ik is the incident wavenumber, and R and 7 are the reflection
and transmission coefficients, respectively. In three-dimensions, the radiation

condition is

V(0. —ik) (¢ —¢7) = 0 as r — oo. (14)

3.1. Solution for two-dimensional model

We solve the two-dimensional problem by writing the solution as the
sum of a symmetric (even) solution, ¢*)(z,z) = ¢®)(—x,2), and an anti-
symmetric (odd) solution, ¢(¥(z, z) = —¢* (—x, 2), which can be solved on
x € (—00,0). This splitting, simplifies the solution to the finite problem and
makes it a trivial extension of the semi-infinite solution of Fox and Squire
(1994). To the best of the authors’ knowledge, this idea has not appeared in
the literature previously.

Without loss of generality, we assume that the incident potential has unit

amplitude, and the symmetric solution is given by

M
¢ (2, 2) = gr(z,2) + Y aDem ¢, (2), x < —a, (15)
m=0

in the open water, and

o al s cosh(km)
o (x, z) Z b " cosh(x )wm(z), —a<x<0, (16)
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in the ice covered water, for some suitably large M. To solve for the coeffi-
cients al) (m=20,...,M) and bl (m = —=2,..., M), we use continuity of

pressure and horizontal velocity to equate the potential and its derivative at

xr = —a, which gives, respectively,
M M
4D allom (2) = Y b)), (17)
m=0 m=—2
and
M
_k0¢0 + Z&(s m(bm Z bgi)ﬁm tanh(ﬁm )wm( ) (18)
m=—2

Multiplying both equations by ¢;(z) (I = 0,..., M) and integrating over
€ (—H,0), we obtain the system

M
e Ay +at A= > 0B, (19a)

m=—2

and  — koe * A0y, —|—al k;lA Z b mmtanh(mma)Bml, (19b)

m=—2
for 1 =0,1,..., M. Applying the free-edge conditions (3e—f) closes the sys-

tem with the equations

- Z b k3 tan k,h = 0, (19¢)
m=—2
and Z bk tanh(k,a) tan kb = 0. (194d)

m=—2
The system (19) is solved for the coefficients al? (m=0,...,M) and bl
(m=-2,...,M).
The anti-symmetric solution is found in an almost identical manner. We

express the solution as

¢ (x, 2) = é4(

N
=
t\z
+

3

I Mi

[en]

Q/\
??‘
3
)
+
S
©
3
—~
:_/
S
A
|
S
o
(=
S~—



202 and
M

-
6wz = 30 g Sy ) —azao. @)

m=—2
Applying continuities leads to

M
e % A 060 + al(a)Al = Z VB,  (22a)

m=—2

M
and  — koe  Aydo + al(a) kA = — Z bgg)nm coth(kp,a) B, (22b)

m=—2

for l =0,1,..., M, and the free-edge conditions give

M
- Z bW k3 tan kp,h = 0, (22¢)
m=—2
M
and Z bW rd coth(k,a)tan k,h = 0. (22d)
m=—2
203 The total potential is
1

8(r,2) = 5 (09(r,2) + 6z, 2) (23)

and the reflection and transmission coefficients are (from adding the sym-

metric and anti-symmetric solutions), respectively,

ika
R = 62 ( QI >) (24a)
ika
and T = 62 (a(()s) — a(()a)> : (24b)

s 3.2. Solution for three-dimensional model

205 For circular geometry, the potential can be expressed in terms of cylin-

206 drical polar coordinates (r, 6, z), as (Peter et al., 2004)

P(r,0,2) = e*%py (2 Z Zamn w(kmr)e™ o (2), T>a,  (25)

—N m=0

11
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and

o(r,0,z2) Z Z o I (K1) €0 (2)), a, (26)

—N m=-2

for suitably large N and M, where I,, and K, are modified Bessel functions,
Qmn and b,,, are the coefficients of the potential in the open water and the
plate covered region, respectively. We note that

N

¢1(x,2) = > I(kor)eo (2)e™. (27)

n=—N

As in the solution method for the two-dimensional problems, we use the
continuity of potential and its horizontal derivative (radial in this case) across
the interface between open and ice-covered water, r = a. Using orthogonality

of the angular (Fourier) modes, we have

I (koa)go (2) + Zamn 2 (km@) o (2) (28)
= m_ZZ D L (Fon @)1 (2)
and _
koI, (Koa)do (2) + Zamnk K, (kma) m (2) (29)

m=0

= Z bmn"'imlrlz (:‘iman(Z)

m=—2
for n = —N, ..., N. Multiplying each equations by ¢;(z) (I =0,..., M) and
integrating over z € (—H,0), from —H to 0, gives the system

In(kOQ)AO(SOl + aln kla Al Z bmn] ’ima ml (30)

m=—2

koI, (koa) Aodoy + amki K., (kya) Ay = Z bonbim I (Fma) By (31)

m=—2

12
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211

212

213

214

215

216

217

218

219

fori=0,1,...,M and n = —N, ..., N. Equation (30) can be solved for the

open water coefficients, such that

I koa Hma
A = — 501 Z bmn kla Al (32)

for{ =0,1,...,M and n = —N, ..., N, which can then be substituted into

equation (31) to give

/ K, (koa)
(kOIn(/foa) - komfn(koa)> Aodo (33)
- 22 (/{',mf;.b(/ima) — kl%h(/@ma)) Biibimn

foril=0,1,....,.M andn=—N,...,N.
Free-edge conditions (3g—h) become

S b (K;In(nma) ! 2 </€m[7’1(/<ama) - %anmma))) —0, (34a)

m=—2

a2

Z D (/{ I (k) + n? 2= (MI;(nma) + %In(/@ma))> =0, (34b)

m=—2
for n = —N,..., N, where bpy = by / (Fri +1 — K7). Combined with
equation (33), these conditions give the required equations to solve for the
coefficients of the water velocity potential in the plate covered region. The
systems are solved for the different angular modes n = 0,1, ..., N separately,
noting that the amplitudes for negative values of n are complex conjugates
of their positive n counterparts.

The propagating part of the scattered wave is

Z aon Ky (kor)e™ ~ ¢o(2)r~Y2D(0 — 0")e*™  for large r,  (35)

N
__ 1 inf
0) =1,/ oF n:ZN aone (36)

is the far-field amplitude (where k = ikq is the incident wavenumber).

where

13
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4. Wave energy transport in the MIZ

We derive here a simple way to connect the scattering by a single floe with
attenuation for a large number of floes. We begin with a simplified model
for wave energy transport in the M1z, using the model which only considers

the terms due to ice
(O +c,-V) N(x,t,0) = Sice. (37)

Equation (37) is solved for the wave action density N (x,t, ), where 6 denotes
wave direction. On the left-hand side of (37), ¢, is the group velocity, and
V = (0y, 0,) is the gradient operator. The term on the right-hand side, S,
is the source term for wave-ice interactions, which, similar to Dumont et al.

(2011) and Williams et al. (2013a,b), we express as
Sice = —Cgice@N(x,t,0) where ¢, = |cy], (38)

a;ce 18 the areal concentration of the ice cover, and « is the attenuation coef-
ficient. For simplicity, the chosen form of S;.. neglects nonlinear dissipative
phenomena, believed to occur during wave—ice interactions in the scattering
regime, particularly overwash (Skene et al., 2015; Nelli et al., 2020), and
floe—floe collisions (Shen and Squire, 1998; Bennetts and Williams, 2015;
Yiew et al., 2017).

4.1. Attenuation coefficient for two-dimensional scattering

For the two-dimensional scattering model, the attenuation coefficient is

expressed as a = &/(2a), where & is the attenuation per floe, which is
a = —log(|TP?), (39)

where |T|? represents the energy transmitted by an individual floe. The at-

tenuation coefficient (39) is based on the assumption that all reflected energy

14
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is removed from the wave field, which is equivalent to incoherent wave inter-
actions between the floes. This formula is based on results from scattering
theory, which show how the scattering from a large number of randomly
spaced scatterers is connected with individual scattering. Details of this
derivation can be found in (Bennetts and Squire, 2012). This formula only
works in two—dimensions. Resonance occurs for certain combinations of wave
period and floe length, such that |T'| ~ 1, and this leads to unrealistic values
of the attenuation coefficient, & = 0 (Williams et al., 2013a). Therefore, it is
typical to average the transmitted energy over a distribution of floe lengths,

so that

& = —log({|T)), (40)

where (-) denotes average, which is chosen to be normally distributed with a
standard deviation 2a/5. The choice of standard deviation is somewhat arbi-
trary, but the results presented in §5 are largely insensitive to the variations

in the standard deviation.

4.2. Attenuation coefficient for three-dimensional scattering

For the three-dimensional scattering model, we propose the attenuation

coefficient is
1 27

oa=—
Af 0

|D(0)|* db, (41)

where A; = ma? is the area of the ocean surface occupied by an individ-
ual floe, and the integral is proportional to the energy scattered by the floe
(Meylan et al., 1997). Attenuation coefficient (41) is based on the assump-
tion that all scattered energy is removed from the wave field. This is an
approximation that sets an upper bound on the effect of scattering. More

complicated scattering models are possible (Meylan et al., 2020).
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4.8. Floe Size Distribution

To keep the model simple and easy to implement (and evaluate), the
results we present here, and the accompanying code, assume all floes are
the same size. It would be possible to extend the model to a distribution
of floe sizes by a suitably weighted average of the results calculated here.
This would, of course, also depend on having a suitable floe size distribution.
This is different from the averaging used in the two-dimensional calculations

where the floe size distribution was assumed to be normal.

5. Results

5.1. Comparison of two- and three-dimensional attenuation coefficients

We present a few representative figures for the attenuation coefficient,
comparing the two and three-dimensional scattering models. We choose the
water depth to be the wavelength of the open water wave to approximate
infinite depth and set M = N = 10 in the expansion formulae. Figure 1
shows the attenuation coefficient as a function of wave period for thickness
h = 0.5m, and for floe radius @ = 5m, 10m, 25m and 50 m.

The sharp drops in the attenuation coefficient at certain periods for the
two-dimensional case without averaging is caused by resonance. More res-
onances occur as the floe length increases.  The resonance is caused by
constructive interference of waves reflected at the ends of the ice floe, anal-
ogous to a Fabry—Perot interferometer. It occurs because waves propagate
through the flexible ice floe. This is a two-dimensional phenomenon and
does not occur for the three-dimensional model in the same simple manner
(since waves are not restricted to travelling in only the forward and backward
direction. The resonances are primarily eliminated by averaging, although

inflexions in the attenuation coefficient still occur at the resonant periods.
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We average by sampling with the mean floe length specified and with a
standard deviation one—tenth the mean floe length for our calculations here.
There is some evidence of weak resonance for the three-dimensional case,
with inflexions for the two largest radii. The averaging over angle also helps
to reduce resonant effects in the three—dimensional case.  Note that the
resonance occurs at multiples of the wavelength to floe length. As the floes
become larger, there is more possibility for resonances for the wave periods
we consider. There is no simple formula for these resonances because the
wavelength under the ice changes from that of open water, and there is no
simple value for the reflection.

Figures 2, 3, and 4 show similar results for floe thickness h = 1m, 1.5m,
and 2m, respectively. Away from resonances, the attenuation coefficient for
the two-dimensional model is higher than the attenuation coefficient for the
three-dimensional model for relatively long periods, i.e. periods correspond-
ing to wavelengths much greater than the floe radius. The difference is up
to two orders of magnitude for long periods and the smallest floes, a = 5 m.
More typically, the two- and three-dimensional scattering models give atten-
uation coefficients of the same order of magnitude, and the three-dimensional
case often exceeds the two-dimensional case for the larger floe radii. From

now on, results for the three-dimensional case only will be considered.

5.2. Power laws

Figure 5 shows log-log plots of the attenuation coefficient, as a function
of wave period for different ice thicknesses. For relatively long periods (wave-
lengths greater than the floe radius), the attenuation coefficient versus wave
period is a straight line with a negative slope in log—log space. Therefore, in

the long-period regime, the attenuation coefficient obeys a power law of the
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form

ax TP (42)

and the best-fit values of p for the different thicknesses are shown in the
legends. The value of p is > 8, which is much greater than the values obtained
from field measurements, i.e. p &~ 2 (Meylan et al., 2014) or 3 (Thomson
et al., 2021).

Figure 6 shows log—log plots of the attenuation coefficient as a function
of ice thickness, for different values of wave period and floe radius. For
relatively long periods, the attenuation is a straight line with positive slope,

and therefore

ax h? for T large. (43)

The legends show the best-fit values of ¢, from which we observe that ¢ is
generally insensitive to the wave period and floe radius, and ¢ =~ 2. The
complicated curves for small floes seen in Figure 6 (a) are caused by resonance

effect for rigid floes at short periods, such as a resonant bobbing motion.

5.3. FExtending the model to heterogeneous distributions of floes.

A single floe size cannot describe ice floes in the Miz. It would be possible
to extend the model to the case of floe size distributions by averaging the
effects of each floe size. We do not attempt that here but note that this would

be the logical next step if the scattering model is proven to be suitable.

6. Comparison with experiments results

Figure 7 shows a comparison of the attenuation coefficient given by the
three-dimensional scattering model, with attenuation coefficient (44), as given

by Meylan et al. (2014). Attenuation due to scattering dominates for short
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shown. The coefficient T is a linear fit in log-log space to give power law relationship in

equation (42).
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periods, and the empirical attenuation coefficient dominates for long peri-
ods. In field measurements, only long-period attenuation is likely observed
because the scattering attenuation has removed the short periods over a short

distance close to the ice edge.

Figure 7 shows a comparison of the attenuation coefficient given by the
three-dimensional scattering model, with experimental data. Figures 7 (a)
shows a comparison with the analysis presented in Rogers et al. (2020) in
which the fitting is based on wave prediction computational code. We believe
this is likely the most accurate experimental results. The four different lines
were based on the sorting of the profiles by their length used in Rogers et al.
(2020). The length is closely related to the wave intensity as a noise floor
cut off was used. We also note that the negative results were discarded so
that a possible upward bias was introduced into the mean values for the
low—intensity cases. The estimated values for the ice thickness was 0.51 m,
0.50 m, 047 m, and 0.37 m for the shortest to longest respectively. We run
the comparison with a thickness of 0.5m and a radius of bm, 10m, and 25m
(assuming concentration is 100%). The agreement with the 25m radius and
the longest results is remarkable. However, we do not claim that this is
sufficient comparison to validate our model or conclusively prove it. We also

note that there is a clear divergence in the attenuation for long periods.

Figures 7 (b) shows a comparison with the results first presented in Mey-
lan et al. (2014) but updated with a recent analysis which takes into account
the noise floor of the wave buoys (Thomson et al., 2021). In this case, the
comparison is nowhere near as good and the clear problem for long periods

is apparent. We note that there is no tuning in these results.
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Figure 7: Comparison of attenuation coefficient o from the three-dimensional scattering
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In (b) the comparison is with the measurements of Meylan et al. (2014) with an updated

analysis correctly accounting for noise floor (Thomson et al., 2021).

7. Long-period dissipation

It is clear from the comparison with measurements that scattering cannot
account for the dissipation at long periods. We propose that the attenuation

due to scattering be augmented by the empirical model
a=cT 2+ T, (44)

where ¢; = 2.12x 1072 (s?/m) and ¢y = 4.59 x 1072 (s*/m), which is based on
measurements reported by Meylan et al. (2014). Note that the coefficients
c; and ¢y are likely to depend on the ice conditions, but the dependencies
have not yet been resolved by measurements or theory. Note also that the
evidence for the second T~ term is not as strong as for the first 772 term.
We also note that recent evidence (Rogers et al., 2020; Thomson et al., 2021)
suggest that T2 may be more appropriate. We also note the numerical

study of Guyenne and Parau (2017) which supports the idea that for short
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waves scattering dominates while for long waves it is viscous damping which

dominates.

8. Summary and discussion

Attenuation of waves due to scattering by ice floes has been investigated.
A comparison of the two- and three-dimensional models showed that the
models generally agree in the regime where scattering dominates, notwith-
standing resonances that occur primarily on the two-dimensional model. In
general, it was shown that the three-dimensional model eliminates does not
require need for averaging to eliminate resonances, as in the two-dimensional
model. The long-period asymptotic behaviour of the attenuation coefficient
for the three-dimensional scattering model was shown to be approximately
T8, i.e. attenuation due to scattering dies out quickly as period increases.
It was deduced that scattering could not account for observed long-period
attenuation, where the exponent has been ~ 2. We believe this is due to
a viscous damping type model or similar, but note that no model or physi-
cal process has been found which reproduces this behaviour. We, therefore,
propose that the scattering model include an additional parameterised scat-
tering term based on measurements. We have provided the computer code as
supplementary material, and we anticipate that further developments can be
made to it as our understanding advances. We hypothesise that the scattering
model will be necessary during breakup events when the ice cover transitions
from quasi-continuous to a field of relatively small floes. At this point, the
long-period dissipation model will prevail. We note that the key parameters
required for models are the floe thickness and floe size distributions. Both of

these are difficult to measure over large areas of the M1z
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