- A Floe Size Dependent Scattering Model in Two- and
- Three-dimensions for Wave Attenuation by Ice Floes
- Michael H. Meylan^a, Christopher Horvat^b, Cecilia M. Bitz^c, Luke G.

 Bennetts^d
- ^aSchool of Mathematical and Physical Sciences, The University of Newcastle, Callaghan,
 NSW 2308, Australia
- ^bInstitute at Brown for Environment and Society, Brown University, Providence, RI,
 USA
- ^cDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, USA

 dSchool of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

1 Abstract

Two- and three-dimensional models are proposed for ocean-wave atten-12 uation due to scattering by ice floes in the marginal ice zone, in which the 13 attenuation rate depends on the horizontal size of the individual floes. The scattering models are shown to reproduce the behaviour of wave attenuation 15 over short wave periods. However, it is shown that scattering alone cannot explain the observed asymptotic dependence of attenuation at long wave periods. Based on these findings, it is proposed that attenuation models consist of a scattering component supplemented by an empirical damping term based on measurements, so that attenuation over all periods is correctly modelled. 20 Computer code to calculate wave attenuation through a field of ice floes is 21 provided in the supplementary material. Keywords: Sea Ice, Ocean Waves, Scattering

4 1. Introduction

Understanding the interaction between ocean waves and the sea-ice covered ocean has applications ranging from predicting sea ice extent to safe

^{*}Corresponding author.

*Preprintal additions of mike meylanenewcastle.edu.au (Michael H. Meylan) (Michael H. Meylan)

H. Meylan)

navigation. Ocean waves are frequently observed to impact the sea ice cover and to be attenuated by the ice cover (Kohout et al., 2014; Meylan et al., 2014). There is evidence that ocean waves modulate sea-ice extent (Zhang et al., 2016; Bennetts et al., 2017; Boutin et al., 2018; Roach et al., 2018, 2019; Bateson et al., 2020), and that attenuation of waves by sea ice protects ice shelves (Massom et al., 2018; Chen et al., 2019b).

A concerted effort has emerged to include and evolve the coupled repre-33 sentation of sea ice and ocean surface waves into large-scale models for improved ice—ocean physics and prediction (Bateson et al., 2020; Boutin et al., 35 2020; Roach et al., 2019; Dumont et al., 2011; Williams et al., 2013a,b; Horvat and Tziperman, 2015; Horvat et al., 2016; Williams et al., 2017; Meylan 37 et al., 2020). This effort has been focused mainly in the marginal ice zone (MIZ), where sea ice is highly fragmented, mobile, and in contact with ocean 30 waves. Models include a parameterisation of the wave attenuation coefficient 40 (i.e. the exponential rate of wave attenuation over distance travelled), generically written $\alpha(A, T, h, a)$, where A is the wave amplitude, T is wave period, h is sea ice thickness, and a is the floe radius. 43

Measurements of wave attenuation by sea ice began with pioneering work 44 by members of the Scott Polar Institute (Squire and Moore, 1980; Wadhams et al., 1988). In recent years, technological developments have allowed more detailed measurements of wave attenuation (Kohout et al., 2014; Meylan et al., 2014; Doble et al., 2015; Rogers et al., 2016; Cheng et al., 2017; 48 Meylan et al., 2018; Sutherland et al., 2018; Thomson et al., 2018; Rabault 49 et al., 2020; Horvat et al., 2020; Rogers et al., 2020; Alberello et al., 2020) 50 and better constraints on the form of α . The data collected show the atten-51 uation coefficient for long-period waves (above 10 seconds) is approximately 52 proportional to the wave period to the power of minus two, i.e. $\alpha \sim T^{-2}$ for $T > 10 \, \mathrm{s}$

80

Theoretical modelling of wave attenuation by sea ice has been the subject 55 of parallel research advances (Squire, 2020). Models can be broadly divided into two categories: those treating sea ice as a viscous layer (Weber, 1987; 57 Keller, 1998; Wang and Shen, 2010a; Sutherland et al., 2019; Chen et al., 2019a; Cheng et al., 2020) and those treating it as a scattering medium (Meylan et al., 1997; Kohout and Meylan, 2009; Bennetts et al., 2010; Ben-60 netts and Squire, 2012; Montiel et al., 2016). Viscous layer models idealise 61 the field of floes in the MIZ as a continuum, and are intuitively applicable in the long-wavelength limit. The layer models have been extended beyond viscosity, for example, Voermans et al. (2019) considered attenuation due to turbulence. In contrast, scattering models involve a large collection of individual floes, where the standard model for wave scattering by a single floe is based on a floating elastic thin plate model, and accounts for the compliant bending of large floes while preserving the rigidity of small floes (Meylan and Squire, 1994; Meylan, 2002; Bennetts and Williams, 2010).

With the exception of Perrie and Hu (1996) and the recent work Meylan et al. (2020), only two-dimensional (one horizontal dimension and one depth dimension) scattering models that have been implemented in large-scale prediction models, and often assuming floe lengths are much larger than the wavelength to avoid artificial resonance effects (Kohout and Meylan, 2008; Williams et al., 2013a; Bennetts and Squire, 2012). Contemporary three-dimensional scattering models of wave attenuation (Peter and Meylan, 2009; Bennetts and Squire, 2009; Bennetts et al., 2010; Montiel et al., 2016) have not yet produced a formula for α suitable for inclusion in large-scale models, and this is the subject of ongoing research (Meylan and Bennetts, 2018).

Scattering of ocean waves by ice floes only occurs when there is a momen-

tum exchange between the ice floe and ocean waves. In turn, the momentum exchange implies that a force is applied to the ice floe, and hence it is liable to fracture. Therefore, the effect of scattering is central to understanding ice pack break up due to waves and other processes (Kohout et al., 2016; Herman et al., 2018). After the ice pack has been broken into smaller floes, scattering is likely to have a weaker effect, especially for the long-period waves which persist far into the MIZ (Collins et al., 2015; Dolatshah et al., 2018).

There is clear evidence from experiments that the ice cover causes energy to be removed from waves at a much greater rate than for an ocean without an ice cover. However, there is no evidence to show what the mechanism 90 is that removes this energy. There is evidence to suggest that it is caused 91 by under-ice friction (Liu and Mollo-Christensen, 1988; Ardhuin et al., 2016; Boutin et al., 2018), floe collisions (Shen and Squire, 1998; Bennetts and Williams, 2015; Yiew et al., 2017), overwash (Toffoli et al., 2015; Nelli et al., 2017, 2020), or viscoelastic bending (Wang and Shen, 2010b; Mosig et al., 2015). There is also evidence that the wave action breaks the floes in a highly active breaking region (which scattering is probably dominant) until the floes are sufficiently fractured that scattering is negligible and other mechanisms 98 then dominate the wave attenuation (Ardhuin et al., 2020). Further evidence of this can be recent results on floe breaking (Voermans et al., 2019). 100

Despite the need to model wave attenuation and sea ice fracture accurately, a model including all required features of attenuation is lacking. This paper proposes an open-source model that captures both the short and long-period wave attenuation through the sea-ice cover. For short periods, we use scattering theory to account for the strong attenuation of small floes, including the effect of floe size variability. For long periods we propose an extra term which is based on experimental measurements which can easily

be updated with additional experimental data or appropriate theory. The computer code required to run the model is provided as supplementary material.

111 2. Attenuation, scattering and dissipation

There is some ambiguity in the terms attenuation, scattering and dissipation and we want to be clear here what we mean by these words. Attenuation is the observed decrease in wave height as it propagates through the MIZ. Scattering is the process that changes the direction of propagation without removing energy and dissipation is a process which removes wave energy. Both scattering and dissipation can lead to attenuation.

A critical difference between scattering and dissipation is that scattering 118 will lead to broadening of the wave direction and eventually to an isotropic 119 wave field (if there is no significant dissipation). This is attested to in mod-120 els (Montiel et al., 2016), although there is no clear observational evidence. 121 Scattering must involve momentum exchange and hence high forces and is 122 likely to cause fracture or melting. Scattering models have clear and straight-123 forward physics, which is the basis for offshore engineering and ship design 124 and which has been well validated in laboratory experiments (Meylan et al., 125 2015; Montiel et al., 2013a). It is possible that scattering only plays a signif-126 icant role in the active breaking region, but we believe its influence is more 127 comprehensive than this. However, we acknowledge that evidence to prove 128 this is lacking. 129

3. Wave scattering by individual ice floes

The scattering model treats an ice floe as a floating, elastic plate, which behaves as a rigid body in the case of long waves or large thickness. We

present a simple numerical method that works in two- and three-dimensions 133 to high accuracy and efficiency based on eigenfunction matching. The so-134 lution in three-dimensions was first given by Peter et al. (2004), and the 135 solution in two-dimensions was first given by Fox and Squire (1994) for the 136 semi-infinite case. Floating elastic plates have been the subject of laboratory 137 experiments to validate and show limitations of the model in terms of the 138 plate motion (Montiel et al., 2013a,b; Meylan et al., 2015; Yiew et al., 2016) 139 and of the scattered wave field (Bennetts et al., 2015; Nelli et al., 2017; Sree 140 et al., 2017). While the solution to our problem has appeared previously, 141 the simplified numerical solution in two-dimensions given below, which is 142 based on symmetry, has not appeared previously to our knowledge. 143 give detailed descriptions to help to understand the computer code which 144 accompanies the paper. 145

We begin by stating the governing equations for the floe—water system. We assume that the floe has a uniform thickness of h, the seafloor is flat, and that all motions are time-harmonic with radian frequency ω . The velocity potential in the water, Φ , can be expressed as,

$$\Phi(\mathbf{x}, z, t) = \operatorname{Re} \{ \phi(\mathbf{x}, z) e^{-i\omega t} \}, \tag{1}$$

where the reduced velocity potential ϕ is complex-valued, and \mathbf{x} is the horizontal spatial variable, such that $\mathbf{x}=x$ in two-dimensions and $\mathbf{x}=(x,y)$ in three-dimensions, and z is the depth variable, which points upwards, with the water surface at z=0 and the seafloor at z=-H. The ice floe is on the free surface (z=0) and occupies the domain Ω , where

$$\Omega = \{ \mathbf{x} : |\mathbf{x}| \le a \},\tag{2}$$

a is the ice floe radius (strictly, in two-dimensions 2a is the ice floe length).

The reduced potential satisfies the boundary value problem

$$\Delta \phi + \partial_z^2 \phi = 0, \quad -H < z < 0, \tag{3a}$$

$$\partial_z \phi = 0, \quad z = -H,$$
 (3b)

$$\partial_z \phi = K \, \phi, \quad z = 0, \quad \mathbf{x} \notin \Omega,$$
 (3c)

$$(F\Delta^2 + 1 - K\gamma)\partial_z \phi = K\phi, \quad z = 0, \quad \mathbf{x} \in \Omega, \tag{3d}$$

where Δ is the Laplacian operator in the horizontal plane. The constant $K = \omega^2/g$ is the (deep water) wavenumber, in which $g \approx 9.81 \,\mathrm{m\,s^{-2}}$ is the constant of gravitational acceleration. The parameters F and γ are non-dimensional versions of the flexural rigidity and mass of the floe, respectively,

$$F = \frac{Y h^3}{12(1 - \nu^2)\rho g} \quad \text{and} \quad \gamma = \frac{\rho_i h}{\rho}, \tag{3e}$$

where $\rho \approx 1025\,\mathrm{kg\,m^{-3}}$ is the water density, $Y \approx 6\,\mathrm{GPa}$ is the Young's modulus of sea ice, $\nu \approx 0.3$ is its Poisson's ratio, and $\rho_i \approx 925.5\,\mathrm{kg\,m^{-3}}$ is its density (Timco and Weeks, 2010).

The floe edges are assumed free, so that the bending moment and shear stress vanish. In the two-dimensional problem, the free-edge conditions are

$$\partial_x^2 \partial_z \phi = 0, \quad z = 0, \quad |\mathbf{x}| = a,$$
 (3f)

$$\partial_x^3 \partial_z \phi = 0, \quad z = 0, \quad |\mathbf{x}| = a.$$
 (3g)

In three-dimensions, they are

165

$$\left\{\Delta - (1 - \nu)r^{-1} \left(\partial_r + r^{-1}\partial_\theta^2\right)\right\} \partial_z \phi = 0, \quad z = 0, \quad |\mathbf{x}| = a, \tag{3h}$$

$$\left\{\partial_r \Delta - (1 - \nu)r^{-2} \left(\partial_r + r^{-1}\right) \partial_\theta^2\right\} \partial_z \phi = 0, \quad z = 0, \quad |\mathbf{x}| = a, \tag{3i}$$

where (r, θ) are polar coordinates, such that

$$x = r\cos\theta \quad \text{and} \quad y = r\sin\theta.$$
 (4)

The vertical eigenfunctions for (3) are

$$\phi_m(z) = \frac{\cos k_m(z+H)}{\cos k_m H}, \quad m = 0, 1, \dots, \quad \mathbf{x} \notin \Omega$$
 (5a)

and
$$\psi_m(z) = \frac{\cos \kappa_m(z+H)}{\cos \kappa_m H}$$
, $m = -2, -1, \dots, \mathbf{x} \in \Omega$. (5b)

The wavenumbers involved in (5) are $k = k_m \ (m = 0, 1, ...)$, where

$$k\tan\left(kH\right) = -K,\tag{6}$$

and $\kappa = \kappa_m \ (m = -2, -1, \ldots)$, where

$$\kappa \tan(\kappa H) = \frac{-K}{F\kappa^4 + 1 - K\gamma}. (7)$$

We let $k_0, \kappa_0 \in i\mathbb{R}_-, k_m, \kappa_m \in \mathbb{R}_+ \ (m = 1, 2, ...)$, such that $k_1 < k_2 < ...$

and $\kappa_1 < \kappa_2 < \dots$, and $\kappa_{-2}, \kappa_{-1} \in \mathbb{C}$, such that $\kappa_{-1} = -\overline{\kappa_{-2}}$ (in general; for

details see Bennetts et al., 2007).

We note that

$$\int_{-H}^{0} \phi_m(z)\phi_n(z) dz = A_m \delta_{mn}, \tag{8}$$

173 where

$$A_m = \frac{1}{2} \left(\frac{\cos k_m H \sin k_m H + k_m H}{k_m \cos^2 k_m H} \right), \tag{9}$$

174 and

$$\int_{-H}^{0} \phi_n(z)\psi_m(z) \,\mathrm{d}z = B_{mn},\tag{10}$$

175 where

$$B_{mn} = \frac{k_n \sin k_n H \cos \kappa_m H - \kappa_m \cos k_n H \sin \kappa_m H}{(\cos k_n H \cos \kappa_m H) (k_n^2 - \kappa_m^2)}.$$
 (11)

Radiation conditions are applied to ensure unique solutions to governing equations (3). In two-dimensions, the radiation conditions are

$$\phi(\mathbf{x}, z) \sim \begin{cases} \phi_I(\mathbf{x}, z) + \mathcal{R}\phi_I(-\mathbf{x}, z) & x \to -\infty, \\ \mathcal{T}\phi_I(\mathbf{x}, z) & x \to \infty, \end{cases}$$
(12)

where $\phi_I(x,z)$ is the incident wave potential

$$\phi_I(\mathbf{x}, z) = e^{ikx}\phi_0(z),\tag{13}$$

in which $k = ik_0$ is the incident wavenumber, and \mathcal{R} and \mathcal{T} are the reflection and transmission coefficients, respectively. In three-dimensions, the radiation condition is

$$\sqrt{r} \left(\partial_r - ik \right) \left(\phi - \phi_I \right) \to 0 \quad \text{as} \quad r \to \infty.$$
 (14)

3.1. Solution for two-dimensional model

We solve the two-dimensional problem by writing the solution as the sum of a symmetric (even) solution, $\phi^{(s)}(x,z) = \phi^{(s)}(-x,z)$, and an antisymmetric (odd) solution, $\phi^{(a)}(x,z) = -\phi^{(a)}(-x,z)$, which can be solved on $x \in (-\infty,0)$. This splitting, simplifies the solution to the finite problem and makes it a trivial extension of the semi-infinite solution of Fox and Squire (1994). To the best of the authors' knowledge, this idea has not appeared in the literature previously.

Without loss of generality, we assume that the incident potential has unit amplitude, and the symmetric solution is given by

$$\phi^{(s)}(x,z) = \phi_I(x,z) + \sum_{m=0}^{M} a_m^{(s)} e^{k_m(x+a)} \phi_m(z), \ x < -a, \tag{15}$$

 $_{192}$ in the open water, and

$$\phi^{(s)}(x,z) = \sum_{m=-2}^{M} b_m^{(s)} \frac{\cosh(\kappa_m x)}{\cosh(\kappa_m a)} \psi_m(z), \quad -a \le x \le 0, \tag{16}$$

in the ice covered water, for some suitably large M. To solve for the coefficients $a_m^{(s)}$ $(m=0,\ldots,M)$ and $b_m^{(s)}$ $(m=-2,\ldots,M)$, we use continuity of pressure and horizontal velocity to equate the potential and its derivative at x=-a, which gives, respectively,

$$\phi_0(z) + \sum_{m=0}^{M} a_m^{(s)} \phi_m(z) = \sum_{m=-2}^{M} b_m^{(s)} \psi_m(z), \tag{17}$$

197 and

$$-k_0\phi_0(z) + \sum_{m=0}^{M} a_m^{(s)} k_m \phi_m(z) = -\sum_{m=-2}^{M} b_m^{(s)} \kappa_m \tanh(\kappa_m h) \psi_m(z).$$
 (18)

Multiplying both equations by $\phi_l(z)$ (l = 0, ..., M) and integrating over $z \in (-H, 0)$, we obtain the system

$$e^{-ika}A_0\delta_{0l} + a_l^{(s)}A_l = \sum_{m=-2}^M b_m^{(s)}B_{ml},$$
 (19a)

and
$$-k_0 e^{-ika} A_0 \delta_{0l} + a_l^{(s)} k_l A_l = -\sum_{m=-2}^M b_m^{(s)} \kappa_m \tanh(\kappa_m a) B_{ml},$$
 (19b)

for l = 0, 1, ..., M. Applying the free-edge conditions (3e–f) closes the system with the equations

$$-\sum_{m=-2}^{M} b_m^{(s)} \kappa_m^3 \tan \kappa_m h = 0, \qquad (19c)$$

and
$$\sum_{m=-2}^{M} b_m^{(s)} \kappa_m^4 \tanh(\kappa_m a) \tan \kappa_m h = 0.$$
 (19d)

The system (19) is solved for the coefficients $a_m^{(a)}$ $(m=0,\ldots,M)$ and $b_m^{(a)}$ $(m=-2,\ldots,M)$.

The anti-symmetric solution is found in an almost identical manner. We express the solution as

$$\phi^{(a)}(x,z) = \phi_I(x,z) + \sum_{m=0}^{M} a_m^{(a)} e^{k_m(x+a)} \phi_m(z), \quad x < -a, \tag{20}$$

202 and

$$\phi^{(a)}(x,z) = \sum_{m=-2}^{M} b_m^{(a)} \frac{\sinh(\kappa_m x)}{\sinh(-\kappa_m a)} \psi_m(z), \quad -a \le x \le 0.$$
 (21)

Applying continuities leads to

$$e^{-ika}A_0\delta_{0l} + a_l^{(a)}A_l = \sum_{m=-2}^M b_m^{(a)}B_{ml},$$
 (22a)

and
$$-\hat{k_0}e^{-ika}A_0\delta_{0l} + a_l^{(a)}k_lA_l = -\sum_{m=-2}^M b_m^{(a)}\kappa_m \coth(\kappa_m a)B_{ml},$$
 (22b)

for l = 0, 1, ..., M, and the free-edge conditions give

$$-\sum_{m=-2}^{M} b_m^{(a)} \kappa_m^3 \tan \kappa_m h = 0, \qquad (22c)$$

and
$$\sum_{m=-2}^{M} b_m^{(a)} \kappa_m^4 \coth(\kappa_m a) \tan \kappa_m h = 0.$$
 (22d)

The total potential is

$$\phi(x,z) = \frac{1}{2} \left(\phi^{(s)}(x,z) + \phi^{(a)}(x,z) \right), \tag{23}$$

and the reflection and transmission coefficients are (from adding the symmetric and anti-symmetric solutions), respectively,

$$\mathcal{R} = \frac{e^{ika}}{2} \left(a_0^{(s)} + a_0^{(a)} \right) \tag{24a}$$

and
$$\mathcal{T} = \frac{e^{ika}}{2} \left(a_0^{(s)} - a_0^{(a)} \right).$$
 (24b)

 $_{ ext{204}}$ 3.2. Solution for three-dimensional model

For circular geometry, the potential can be expressed in terms of cylindrical polar coordinates (r, θ, z) , as (Peter et al., 2004)

$$\phi(r,\theta,z) = e^{k_0 x} \phi_0(z) + \sum_{n=-N}^{N} \sum_{m=0}^{M} a_{mn} K_n(k_m r) e^{in\theta} \phi_m(z), \quad r > a,$$
 (25)

207 and

$$\phi(r,\theta,z) = \sum_{m=-N}^{N} \sum_{m=-2}^{M} b_{mn} I_n(\kappa_m r) e^{in\theta} \psi_m(z), \quad r < a,$$
 (26)

for suitably large N and M, where I_n and K_n are modified Bessel functions, a_{mn} and b_{mn} are the coefficients of the potential in the open water and the plate covered region, respectively. We note that

$$\phi_I(\mathbf{x}, z) = \sum_{n=-N}^{N} I_n(k_0 r) \phi_0(z) e^{\mathrm{i}n\theta}.$$
 (27)

As in the solution method for the two-dimensional problems, we use the continuity of potential and its horizontal derivative (radial in this case) across the interface between open and ice-covered water, r = a. Using orthogonality of the angular (Fourier) modes, we have

$$I_{n}(k_{0}a)\phi_{0}(z) + \sum_{m=0}^{M} a_{mn}K_{n}(k_{m}a)\phi_{m}(z)$$

$$= \sum_{m=-2}^{\infty} b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z)$$
(28)

and

$$k_{0}I'_{n}(k_{0}a)\phi_{0}(z) + \sum_{m=0}^{M} a_{mn}k_{m}K'_{n}(k_{m}a)\phi_{m}(z)$$

$$= \sum_{m=-2}^{\infty} b_{mn}\kappa_{m}I'_{n}(\kappa_{m}a)\psi_{m}(z)$$
(29)

for n = -N, ..., N. Multiplying each equations by $\phi_l(z)$ (l = 0, ..., M) and integrating over $z \in (-H, 0)$, from -H to 0, gives the system

$$I_n(k_0 a) A_0 \delta_{0l} + a_{ln} K_n(k_l a) A_l = \sum_{m=-2}^{\infty} b_{mn} I_n(\kappa_m a) B_{ml}$$
 (30)

$$k_0 I'_n(k_0 a) A_0 \delta_{0l} + a_{ln} k_l K'_n(k_l a) A_l = \sum_{m=-2}^{\infty} b_{mn} \kappa_m I'_n(\kappa_m a) B_{ml}$$
 (31)

for l = 0, 1, ..., M and n = -N, ..., N. Equation (30) can be solved for the open water coefficients, such that

$$a_{ln} = -\frac{I_n(k_0 a)}{K_n(k_0 a)} \delta_{0l} + \sum_{m=-2}^{\infty} b_{mn} \frac{I_n(\kappa_m a) B_{ml}}{K_n(k_l a) A_l},$$
(32)

for l = 0, 1, ..., M and n = -N, ..., N, which can then be substituted into equation (31) to give

$$\left(k_{0}I'_{n}(k_{0}a) - k_{0}\frac{K'_{n}(k_{0}a)}{K_{n}(k_{0}a)}I_{n}(k_{0}a)\right)A_{0}\delta_{0l}$$

$$= \sum_{m=-2}^{\infty} \left(\kappa_{m}I'_{n}(\kappa_{m}a) - k_{l}\frac{K'_{n}(k_{l}a)}{K_{n}(k_{l}a)}I_{n}(\kappa_{m}a)\right)B_{ml}b_{mn}$$
(33)

210 for l = 0, 1, ..., M and n = -N, ..., N.

Free-edge conditions (3g-h) become

$$\sum_{m=-2}^{\infty} \hat{b}_{mn} \left(\kappa_m^2 I_n(\kappa_m a) - \frac{1-\nu}{a} \left(\kappa_m I'_n(\kappa_m a) - \frac{n^2}{a} I_n(\kappa_m a) \right) \right) = 0, \quad (34a)$$

$$\sum_{m=-2}^{\infty} \hat{b}_{mn} \left(\kappa_m^3 I_n'(\kappa_m a) + n^2 \frac{1-\nu}{a^2} \left(\kappa_m I_n'(\kappa_m a) + \frac{1}{a} I_n(\kappa_m a) \right) \right) = 0, \quad (34b)$$

for n = -N, ..., N, where $\hat{b}_{mn} = b_{mn} / (F \kappa_m^4 + 1 - K \gamma)$. Combined with equation (33), these conditions give the required equations to solve for the coefficients of the water velocity potential in the plate covered region. The systems are solved for the different angular modes n = 0, 1, ..., N separately, noting that the amplitudes for negative values of n are complex conjugates of their positive n counterparts.

The propagating part of the scattered wave is

$$\phi_0(z) = \sum_{n=-N}^{N} a_{0n} K_n(k_0 r) e^{in\theta} \sim \phi_0(z) r^{-1/2} D(\theta - \theta') e^{ikr} \quad \text{for large } r, \quad (35)$$

218 where

217

$$D(\theta) = i\sqrt{\frac{\pi}{2k}} \sum_{n=-N}^{N} a_{0n} e^{in\theta}$$
(36)

is the far-field amplitude (where $k = ik_0$ is the incident wavenumber).

4. Wave energy transport in the MIZ

We derive here a simple way to connect the scattering by a single floe with attenuation for a large number of floes. We begin with a simplified model for wave energy transport in the MIZ, using the model which only considers the terms due to ice

$$(\partial_t + \mathbf{c}_q \cdot \nabla) N(\mathbf{x}, t, \theta) = S_{ice}. \tag{37}$$

Equation (37) is solved for the wave action density $N(\mathbf{x}, t, \theta)$, where θ denotes wave direction. On the left-hand side of (37), \mathbf{c}_g is the group velocity, and $\nabla = (\partial_x, \partial_y)$ is the gradient operator. The term on the right-hand side, S_{ice} , is the source term for wave–ice interactions, which, similar to Dumont et al. (2011) and Williams et al. (2013a,b), we express as

$$S_{ice} = -c_g a_{ice} \alpha N(\mathbf{x}, t, \theta) \quad \text{where} \quad c_g = |\mathbf{c}_g|,$$
 (38)

 a_{ice} is the areal concentration of the ice cover, and α is the attenuation coefficient. For simplicity, the chosen form of S_{ice} neglects nonlinear dissipative phenomena, believed to occur during wave–ice interactions in the scattering regime, particularly overwash (Skene et al., 2015; Nelli et al., 2020), and floe–floe collisions (Shen and Squire, 1998; Bennetts and Williams, 2015; Yiew et al., 2017).

236 4.1. Attenuation coefficient for two-dimensional scattering

For the two-dimensional scattering model, the attenuation coefficient is expressed as $\alpha = \hat{\alpha}/(2a)$, where $\hat{\alpha}$ is the attenuation per floe, which is

$$\hat{\alpha} = -\log(|\mathcal{T}|^2),\tag{39}$$

where $|\mathcal{T}|^2$ represents the energy transmitted by an individual floe. The attenuation coefficient (39) is based on the assumption that all reflected energy

is removed from the wave field, which is equivalent to incoherent wave inter-241 actions between the floes. This formula is based on results from scattering 242 theory, which show how the scattering from a large number of randomly 243 spaced scatterers is connected with individual scattering. Details of this 244 derivation can be found in (Bennetts and Squire, 2012). This formula only 245 works in two-dimensions. Resonance occurs for certain combinations of wave 246 period and floe length, such that $|T| \approx 1$, and this leads to unrealistic values 247 of the attenuation coefficient, $\hat{\alpha} = 0$ (Williams et al., 2013a). Therefore, it is 248 typical to average the transmitted energy over a distribution of floe lengths, 249 so that 250

$$\hat{\alpha} = -\log(\langle |\mathcal{T}|^2 \rangle),\tag{40}$$

where $\langle \cdot \rangle$ denotes average, which is chosen to be normally distributed with a standard deviation 2a/5. The choice of standard deviation is somewhat arbitrary, but the results presented in §5 are largely insensitive to the variations in the standard deviation.

4.2. Attenuation coefficient for three-dimensional scattering

For the three-dimensional scattering model, we propose the attenuation coefficient is

$$\alpha = \frac{1}{A_f} \int_0^{2\pi} |D(\theta)|^2 d\theta, \tag{41}$$

where $A_f = \pi a^2$ is the area of the ocean surface occupied by an individual floe, and the integral is proportional to the energy scattered by the floe (Meylan et al., 1997). Attenuation coefficient (41) is based on the assumption that all scattered energy is removed from the wave field. This is an approximation that sets an upper bound on the effect of scattering. More complicated scattering models are possible (Meylan et al., 2020).

4.3. Floe Size Distribution

To keep the model simple and easy to implement (and evaluate), the results we present here, and the accompanying code, assume all floes are the same size. It would be possible to extend the model to a distribution of floe sizes by a suitably weighted average of the results calculated here. This would, of course, also depend on having a suitable floe size distribution. This is different from the averaging used in the two-dimensional calculations where the floe size distribution was assumed to be normal.

5. Results

73 5.1. Comparison of two- and three-dimensional attenuation coefficients

We present a few representative figures for the attenuation coefficient, comparing the two and three-dimensional scattering models. We choose the water depth to be the wavelength of the open water wave to approximate infinite depth and set M=N=10 in the expansion formulae. Figure 1 shows the attenuation coefficient as a function of wave period for thickness $h=0.5 \,\mathrm{m}$, and for floe radius $a=5 \,\mathrm{m}$, $10 \,\mathrm{m}$, $25 \,\mathrm{m}$ and $50 \,\mathrm{m}$.

The sharp drops in the attenuation coefficient at certain periods for the 280 two-dimensional case without averaging is caused by resonance. More res-281 onances occur as the floe length increases. The resonance is caused by 282 constructive interference of waves reflected at the ends of the ice floe, anal-283 ogous to a Fabry—Perot interferometer. It occurs because waves propagate 284 through the flexible ice floe. This is a two-dimensional phenomenon and 285 does not occur for the three-dimensional model in the same simple manner 286 (since waves are not restricted to travelling in only the forward and backward 287 direction. The resonances are primarily eliminated by averaging, although 288 inflexions in the attenuation coefficient still occur at the resonant periods. 289

We average by sampling with the mean floe length specified and with a standard deviation one—tenth the mean floe length for our calculations here. 291 There is some evidence of weak resonance for the three-dimensional case, 292 with inflexions for the two largest radii. The averaging over angle also helps 293 to reduce resonant effects in the three-dimensional case. Note that the 294 resonance occurs at multiples of the wavelength to floe length. As the floes 295 become larger, there is more possibility for resonances for the wave periods 296 we consider. There is no simple formula for these resonances because the 297 wavelength under the ice changes from that of open water, and there is no 298 simple value for the reflection. 299

Figures 2, 3, and 4 show similar results for floe thickness $h = 1 \,\mathrm{m}$, 1.5 m, 300 and 2 m, respectively. Away from resonances, the attenuation coefficient for 301 the two-dimensional model is higher than the attenuation coefficient for the 302 three-dimensional model for relatively long periods, i.e. periods correspond-303 ing to wavelengths much greater than the floe radius. The difference is up 304 to two orders of magnitude for long periods and the smallest floes, $a = 5 \,\mathrm{m}$. 305 More typically, the two- and three-dimensional scattering models give atten-306 uation coefficients of the same order of magnitude, and the three-dimensional 307 case often exceeds the two-dimensional case for the larger floe radii. From 308 now on, results for the three-dimensional case only will be considered. 309

310 5.2. Power laws

Figure 5 shows log-log plots of the attenuation coefficient, as a function of wave period for different ice thicknesses. For relatively long periods (wavelengths greater than the floe radius), the attenuation coefficient versus wave
period is a straight line with a negative slope in log-log space. Therefore, in
the long-period regime, the attenuation coefficient obeys a power law of the

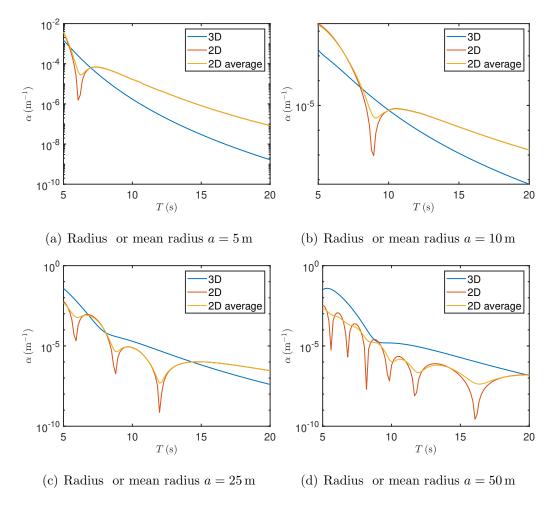


Figure 1: Attenuation α versus period T for the two and three dimensional methods for floe thickness $h=0.5\,\mathrm{m}$.

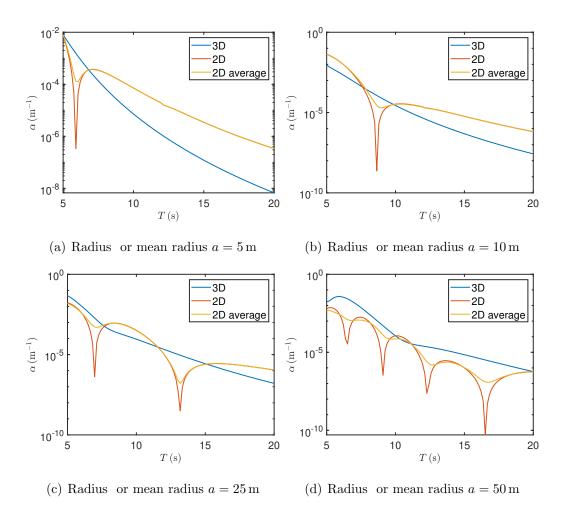


Figure 2: As in Figure 1 except the floe thickness is $h=1\,\mathrm{m}.$

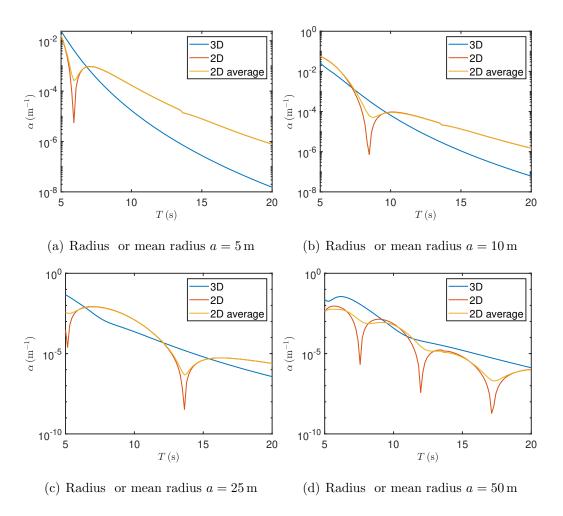


Figure 3: As in Figure 1 except the floe thickness is $h=1.5\,\mathrm{m}.$

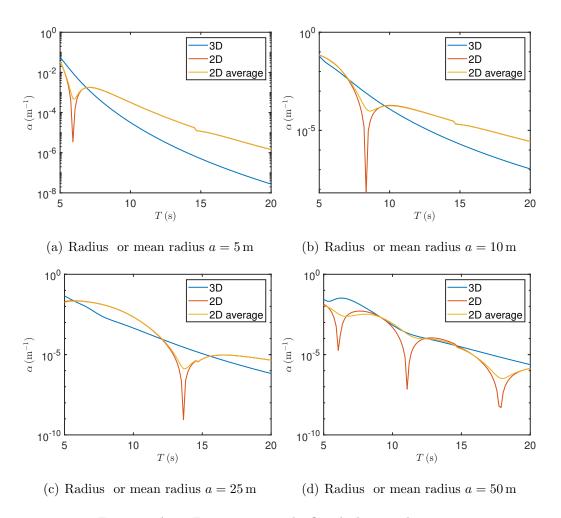


Figure 4: As in Figure 1 except the floe thickness is $h=2\,\mathrm{m}.$

316 form

$$\alpha \propto T^{-p},$$
 (42)

and the best-fit values of p for the different thicknesses are shown in the legends. The value of p is ≥ 8 , which is much greater than the values obtained from field measurements, i.e. $p \approx 2$ (Meylan et al., 2014) or 3 (Thomson et al., 2021).

Figure 6 shows log-log plots of the attenuation coefficient as a function of ice thickness, for different values of wave period and floe radius. For relatively long periods, the attenuation is a straight line with positive slope, and therefore

$$\alpha \propto h^q$$
 for T large. (43)

The legends show the best-fit values of q, from which we observe that q is generally insensitive to the wave period and floe radius, and $q \approx 2$. The complicated curves for small floes seen in Figure 6 (a) are caused by resonance effect for rigid floes at short periods, such as a resonant bobbing motion.

5.3. Extending the model to heterogeneous distributions of floes.

A single floe size cannot describe ice floes in the MIZ. It would be possible to extend the model to the case of floe size distributions by averaging the effects of each floe size. We do not attempt that here but note that this would be the logical next step if the scattering model is proven to be suitable.

6. Comparison with experiments results

Figure 7 shows a comparison of the attenuation coefficient given by the three-dimensional scattering model, with attenuation coefficient (44), as given by Meylan et al. (2014). Attenuation due to scattering dominates for short

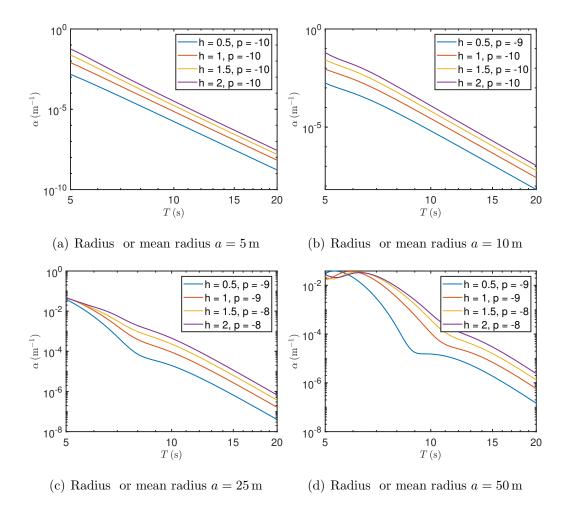


Figure 5: A log-log plot of the attenuation α as a function of period T for the thicknesses shown. The coefficient T is a linear fit in log-log space to give power law relationship in equation (42).

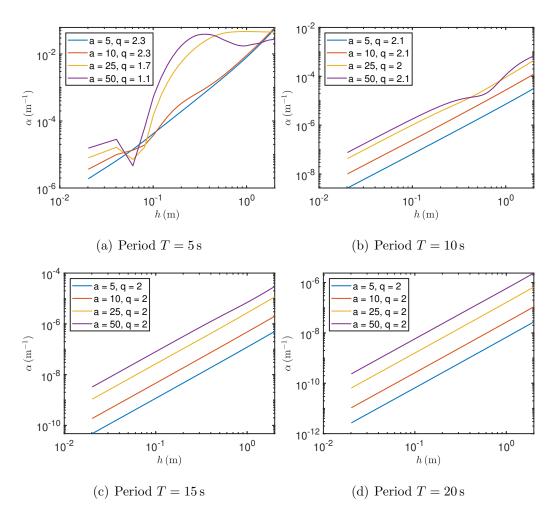


Figure 6: Log-log plot of attenuation coefficient α as a function of ice thickness h. The coefficient q is a linear fit in log-log space to give power law relationship in equation (43)

periods, and the empirical attenuation coefficient dominates for long periods. In field measurements, only long-period attenuation is likely observed because the scattering attenuation has removed the short periods over a short distance close to the ice edge.

Figure 7 shows a comparison of the attenuation coefficient given by the 342 three-dimensional scattering model, with experimental data. Figures 7 (a) 343 shows a comparison with the analysis presented in Rogers et al. (2020) in 344 which the fitting is based on wave prediction computational code. We believe 345 this is likely the most accurate experimental results. The four different lines 346 were based on the sorting of the profiles by their length used in Rogers et al. 347 (2020). The length is closely related to the wave intensity as a noise floor cut off was used. We also note that the negative results were discarded so 349 that a possible upward bias was introduced into the mean values for the 350 low-intensity cases. The estimated values for the ice thickness was 0.51 m, 351 0.50 m, 047 m, and 0.37 m for the shortest to longest respectively. We run 352 the comparison with a thickness of 0.5m and a radius of 5m, 10m, and 25m 353 (assuming concentration is 100%). The agreement with the 25m radius and 354 the longest results is remarkable. However, we do not claim that this is sufficient comparison to validate our model or conclusively prove it. We also 356 note that there is a clear divergence in the attenuation for long periods. 357

Figures 7 (b) shows a comparison with the results first presented in Meylan et al. (2014) but updated with a recent analysis which takes into account
the noise floor of the wave buoys (Thomson et al., 2021). In this case, the
comparison is nowhere near as good and the clear problem for long periods
is apparent. We note that there is no tuning in these results.

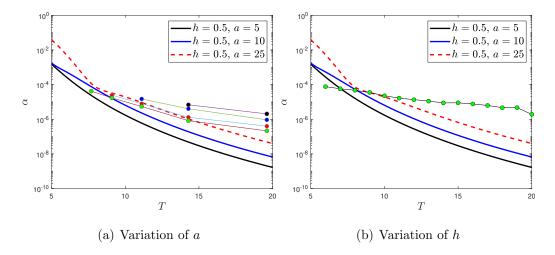


Figure 7: Comparison of attenuation coefficient α from the three-dimensional scattering model (solid thick lines) with measured attenuation (lines with dots). In (a) the results are from Rogers et al. (2020). The four curves are a sorting based on noise sensitivity. In (b) the comparison is with the measurements of Meylan et al. (2014) with an updated analysis correctly accounting for noise floor (Thomson et al., 2021).

³⁶³ 7. Long-period dissipation

364

365

366

It is clear from the comparison with measurements that scattering cannot account for the dissipation at long periods. We propose that the attenuation due to scattering be augmented by the empirical model

$$\alpha = c_1 T^{-2} + c_2 T^{-4}, \tag{44}$$

where $c_1 = 2.12 \times 10^{-3}$ (s²/m) and $c_2 = 4.59 \times 10^{-2}$ (s⁴/m), which is based on measurements reported by Meylan et al. (2014). Note that the coefficients c_1 and c_2 are likely to depend on the ice conditions, but the dependencies have not yet been resolved by measurements or theory. Note also that the evidence for the second T^{-4} term is not as strong as for the first T^{-2} term. We also note that recent evidence (Rogers et al., 2020; Thomson et al., 2021) suggest that T^{-3} may be more appropriate. We also note the numerical study of Guyenne and Parau (2017) which supports the idea that for short waves scattering dominates while for long waves it is viscous damping which dominates.

8. Summary and discussion

Attenuation of waves due to scattering by ice floes has been investigated. 378 A comparison of the two- and three-dimensional models showed that the 379 models generally agree in the regime where scattering dominates, notwith-380 standing resonances that occur primarily on the two-dimensional model. In 381 general, it was shown that the three-dimensional model eliminates does not 382 require need for averaging to eliminate resonances, as in the two-dimensional 383 model. The long-period asymptotic behaviour of the attenuation coefficient 384 for the three-dimensional scattering model was shown to be approximately 385 T^{-8} , i.e. attenuation due to scattering dies out quickly as period increases. 386 It was deduced that scattering could not account for observed long-period 387 attenuation, where the exponent has been ≈ 2 . We believe this is due to 388 a viscous damping type model or similar, but note that no model or physi-389 cal process has been found which reproduces this behaviour. We, therefore, 390 propose that the scattering model include an additional parameterised scat-391 tering term based on measurements. We have provided the computer code as 392 supplementary material, and we anticipate that further developments can be 393 made to it as our understanding advances. We hypothesise that the scattering 394 model will be necessary during breakup events when the ice cover transitions 395 from quasi-continuous to a field of relatively small floes. At this point, the 396 long-period dissipation model will prevail. We note that the key parameters 397 required for models are the floe thickness and floe size distributions. Both of 398 these are difficult to measure over large areas of the MIZ

400 Acknowledgements

The authors thank the Isaac Newton Institute for Mathematical Sciences 401 for support and hospitality during the programme Mathematics of Sea Ice 402 Phenomena (EPSRC grant number EP/K032208/1), when work on this pa-403 per was undertaken, and during which MHM and LGB were supported by 404 grants from the Simons Foundation. This work is funded by the Australian 405 Research Council (DP200102828). LGB is supported by an Australian Re-406 search Council midcareer fellowship (FT190100404). CH thanks the Na-407 tional Institute of Water and Atmospheric Science in New Zealand for their 408 hospitality and acknowledges support from the Voss Postdoctoral Fellowship 409 at Brown University and NASA Grant GR5227091. 410

411 References

- Alberello, A., Bennetts, L., Heil, P., Eayrs, C., Vichi, M., MacHutchon, K.,
 Onorato, M., Toffoli, A., 2020. Drift of pancake ice floes in the winter
 antarctic marginal ice zone during polar cyclones. Journal of Geophysical
 Research: Oceans 125 (3), e2019JC015418.
- Ardhuin, F., Otero, M., Merrifield, S., Grouazel, A., Terrill, E., 2020. Ice
 breakup controls dissipation of wind waves across southern ocean sea ice.
 Geophys. Res. Lett. 47 (13), e2020GL087699.
- Ardhuin, F., Sutherland, P., Doble, M., Wadhams, P., 2016. Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19 s. Geophysical Research Letters 43 (11), 5775– 5783.
- Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K.,

- Aksenov, Y., 2020. Impact of sea ice floe size distribution on seasonal
- fragmentation and melt of arctic sea ice. Cryosphere 14 (2), 403–428.
- Bennetts, L., Alberello, A., Meylan, M., Cavaliere, C., Babanin, A., Toffoli,
- 427 A., 2015. An idealised experimental model of ocean surface wave transmis-
- sion by an ice floe. Ocean Model. 96, 85–92.
- Bennetts, L., Squire, V., 2009. Wave scattering by multiple rows of circular
- ice floes. J. Fluid Mech. 639, 213–238.
- Bennetts, L., Williams, T., 2010. Wave scattering by ice floes and polynyas
- of arbitrary shape. Journal of Fluid Mechanics 662, 5–35.
- Bennetts, L., Williams, T., 2015. Water wave transmission by an array of
- 434 floating discs. Proc. R. Soc. A 471 (2173), 20140698.
- Bennetts, L. G., Biggs, N. R. T., Porter, D., 2007. A multi-mode approxima-
- tion to wave scattering by ice sheets of varying thickness. J. Fluid Mech.
- 579, 413–443.
- Bennetts, L. G., O'Farrell, S., Uotila, P., 2017. Impacts of ocean-wave-
- induced breakup of Antarctic sea ice via thermodynamics in a stand-alone
- version of the CICE sea-ice model. The Cryosphere 11 (3), 1035–1040.
- Bennetts, L. G., Peter, M. A., Squire, V. A., Meylan, M. H., 2010. A three-
- dimensional model of wave attenuation in the marginal ice zone. J. Geo-
- phys. Res. 115.
- Bennetts, L. G., Squire, V. A., 2012. On the calculation of an attenua-
- tion coefficient for transects of ice-covered ocean. Proc. Roy. Soc. Lon.
- 446 A 468 (2137), 136–162.

- Boutin, G., Ardhuin, F., Dumont, D., Sévigny, C., Girard-Ardhuin, F., Ac-
- censi, M., 2018. Floe size effect on wave-ice interactions: Possible effects,
- implementation in wave model, and evaluation. J. Geophys. Res.-Oceans
- 123 (7), 4779–4805.
- Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M.,
- 452 Girard-Ardhuin, F., 2020. Towards a coupled model to investigate wave—
- sea ice interactions in the arctic marginal ice zone. Cryosphere 14 (2),
- 454 709-735.
- ⁴⁵⁵ Chen, H., Gilbert, R. P., Guyenne, P., 2019a. Dispersion and attenuation in
- a porous viscoelastic model for gravity waves on an ice-covered ocean. Eur.
- J. Mech. B-Fluids 78, 88–105.
- ⁴⁵⁸ Chen, Z., Bromirski, P., Gerstoft, P., Stephen, R., Lee, W., Yun, S., Olinger,
- S., Aster, R., Wiens, D., Nyblade, A. A., 2019b. Ross ice shelf icequakes
- associated with ocean gravity wave activity. Geophysical Research Letters
- 461 46 (15), 8893–8902.
- ⁴⁶² Cheng, S., Rogers, W. E., Thomson, J., Smith, M., Doble, M. J., Wadhams,
- P., Kohout, A. L., Lund, B., Persson, O. P. G., Collins, C. O., Ackley, S.,
- Montiel, F., Shen, H. H., 2017. Calibrating a viscoelastic sea ice model for
- wave propagation in the Arctic fall marginal ice zone. J. Geophys. Res.,
- 1-24.
- Cheng, S., Stopa, J., Ardhuin, F., Shen, H. H., 2020. Spectral attenuation
- of ocean waves in pack ice and its application in calibrating viscoelastic
- wave-in-ice models. Cryosphere 14 (6), 2053–2069.
- 470 Collins, C. O., Rogers, W. E., Marchenko, A., Babanin, A. V., 2015. In situ

- measurements of an energetic wave event in the Arctic marginal ice zone.
- 472 Geophys. Res. Lett. 42 (6), 1863–1870.
- Doble, M. J., De Carolis, G., Meylan, M. H., Bidlot, J.-R., Wadhams, P.,
- 2015. Relating wave attenuation to pancake ice thickness, using field mea-
- surements and model results. Geophysical Research Letters 42 (11), 4473–
- 4481.
- Dolatshah, A., Nelli, F., Bennetts, L. G., Alberello, A., Meylan, M. H.,
- Monty, J. P., Toffoli, A., 2018. Hydroelastic interactions between water
- waves and floating freshwater ice. Physics of Fluids 30 (9), 091702.
- Dumont, D., Kohout, A. L., Bertino, L., 2011. A wave-based model for the
- marginal ice zone including a floe breaking parameterization. J. Geophys.
- 482 Res. 116.
- Fox, C., Squire, V. A., 1994. On the oblique reflexion and transmission of
- ocean waves at shore fast sea ice. Phil. Trans. R. Soc. Lond. A. 347, 185-
- 485 218.
- Guyenne, P., Parau, E. I., 2017. Numerical simulation of solitary-wave scat-
- tering and damping in fragmented sea ice. Proc. 27th Intl. Ocean Polar
- Engng Conference, pp. 373—-380.
- Herman, A., Evers, K.-U., Reimer, N., 2018. Floe-size distributions in labo-
- ratory ice broken by waves. The Cryosphere 12 (2), 685–699.
- Horvat, C., Blanchard-Wrigglesworth, E., Petty, A., 2020. Observing waves
- in sea ice with icesat-2. Geophys. Res. Lett. 47 (10), e2020GL087629.
- Horvat, C., Tziperman, E., nov 2015. A prognostic model of the sea-ice floe
- size and thickness distribution. Cryosphere 9 (6), 2119–2134.

- Horvat, C., Tziperman, E., Campin, J.-M., aug 2016. Interaction of sea ice
- floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43 (15),
- 497 8083-8090.
- 498 URL http://doi.wiley.com/10.1002/2016GL069742
- Keller, J. B., 1998. Gravity waves on ice-covered water. Journal of Geophys-
- ical Research: Oceans 103 (C4), 7663–7669.
- 501 Kohout, A. L., Meylan, M. H., 2008. An elastic plate model for wave at-
- tenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res.
- 503 113 (C9).
- Kohout, A. L., Meylan, M. H., 2009. Wave scattering by multiple floating
- elastic plates with spring or hinged boundary conditions. Mar. Struct. 22,
- ₅₀₆ 712–729.
- 507 Kohout, A. L., Williams, M. J., Dean, S., Meylan, M. H., 2014. Storm-
- induced sea ice breakup and the implications for ice extent. Nature
- 509 (7502), 604–607.
- 510 Kohout, A. L., Williams, M. J. M., Toyota, T., Lieser, J., Hutchings, J.,
- sep 2016. In situ observations of wave-induced sea ice breakup. Deep Sea
- Research Part II: Topical Studies in Oceanography 131, 22–27.
- URL http://linkinghub.elsevier.com/retrieve/pii/S096706451500212X
- Liu, A. K., Mollo-Christensen, E., 1988. Wave propagation in a solid ice pack.
- Journal of Physical Oceanography 18 (11), 1702–1712.
- Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A.,
- Stammerjohn, S. E., 2018. Antarctic ice shelf disintegration triggered by
- sea ice loss and ocean swell. Nature 558, 383–389.

- Meylan, M., Bennetts, L., Cavaliere, C., Alberello, A., Toffoli, A., 2015.
- Experimental and theoretical models of wave-induced flexure of a sea ice
- floe. Phys. Fluids 27.
- Meylan, M. H., 2002. The wave response of ice floes of arbitrary geometry.
- J. Geophys. Res. 107 (C6).
- Meylan, M. H., Bennetts, L., 2018. Three-dimensional time-domain scat-
- tering of waves in the marginal ice zone. Philosophical Transactions of
- the Royal Society A: Mathematical, Physical and Engineering Sciences
- 376 (2129), 20170334.
- Meylan, M. H., Bennetts, L., Mosig, J., Rogers, W., Doble, M., Peter, M. A.,
- 2018. Dispersion relations, power laws, and energy loss for waves in the
- marginal ice zone. Journal of Geophysical Research: Oceans 123 (5), 3322–
- ₅₃₁ 3335.
- Meylan, M. H., Bennetts, L. G., Kohout, A. L., 2014. In-situ measurements
- and analysis of ocean waves in the antarctic marginal ice zone. Geophys.
- Res. Lett. 41 (14), 5046–5051.
- Meylan, M. H., Perrie, W., Toulany, B., Hu, Y., Casey, M., 2020. On the
- three-dimensional scattering of waves by flexible marginal ice floes. J Geo-
- phys. Res.-Oceans 125 (2).
- Meylan, M. H., Squire, V. A., 1994. The response of ice floes to ocean waves.
- J. Geophy. Res. 99 (C1), 891–900.
- Meylan, M. H., Squire, V. A., Fox, C., 1997. Towards realism in modeling
- ocean wave behavior in marginal ice zones. J. Geophy. Res. 102 (C10),
- 22981-22991.

- Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F., Ferrant, P., 2013a.
- Hydroelastic response of floating elastic discs to regular waves. Part 1.
- Wave basin experiments. J. Fluid Mech. 723, 604–628.
- Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F., Ferrant, P., 2013b.
- Hydroelastic response of floating elastic discs to regular waves. Part 2.
- ⁵⁴⁸ Modal analysis. J. Fluid Mech. 723, 629–652.
- Montiel, F., Squire, V., Bennetts, L., 2016. Attenuation and directional
- spreading of ocean wave spectra in the marginal ice zone. J. Fluid Mech.
- 790, 492–522.
- Mosig, J. E. M., Montiel, F., Squire, V. A., 2015. Comparison of viscoelastic-
- type models for ocean wave attenuation in ice-covered seas. Journal of
- Geophysical Research: Oceans 120 (9), 6072–6090.
- 555 URL http://dx.doi.org/10.1002/2015JC010881
- 556 http://doi.wiley.com/10.1002/2015JC010881
- Nelli, F., Bennetts, L., Skene, D., Monty, J., Lee, J., Meylan, M., Toffoli,
- A., 2017. Reflection and transmission of regular water waves by a thin,
- floating plate. Wave Motion 70, 209–221.
- Nelli, F., Bennetts, L. G., Skene, D. M., Toffoli, A., 2020. Water wave trans-
- mission and energy dissipation by a floating plate in the presence of over-
- wash. J. Fluid Mech. 889.
- Perrie, W., Hu, Y., 1996. Air-ice-ocean momentum exchange. part 1:energy
- transfer between waves and ice floes. J. of Phys. Ocean. 26, 1705–1720.
- Peter, M. A., Meylan, M. H., 2009. Water-wave scattering by vast fields of
- bodies. SIAM J. Appl. Math. 70 (5), 1567–1586.

- Peter, M. A., Meylan, M. H., Chung, H., 2004. Wave scattering by a circular
- elastic plate in water of finite depth: a closed form solution. Int. J. Offshore
- Polar 14 (2), 81–85.
- 570 Rabault, J., Sutherland, G., Gundersen, O., Jensen, A., Marchenko, A.,
- Breivik, Ø., 2020. An open source, versatile, affordable waves in ice in-
- strument for scientific measurements in the polar regions. Cold Reg. Sci.
- Techol. 170, 102955.
- Roach, L. A., Bitz, C. M., Horvat, C., Dean, S. M., dec 2019. Advances in
- Modeling Interactions Between Sea Ice and Ocean Surface Waves. Journal
- of Advances in Modeling Earth Systems 11 (12), 4167–4181.
- URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001836
- Roach, L. A., Horvat, C., Dean, S. M., Bitz, C. M., 2018. An emergent sea ice
- floe size distribution in a global coupled ocean-sea ice model. J. Geophys.
- Res.-Oceans 123 (6), 4322–4337.
- Rogers, E. W., Meylan, M. H., Kohout, A. L., 2020. Estimates of spectral
- wave attenuation in antarctic sea ice, using model/data inversion. Cold
- ⁵⁸³ Reg. Sci. and Tech., 103198.
- Rogers, W. E., Thomson, J., Shen, H. H., Doble, M. J., Wadhams, P., Cheng,
- S., 2016. Dissipation of wind waves by pancake and frazil ice in the autumn
- b eaufort s ea. J. Geophys. Res.-Oceans 121 (11), 7991–8007.
- 587 Shen, H. H., Squire, V. A., 1998. Wave Damping in Compact Pancake Ice
- Fields Due to Interactions Between Pancakes. In: Jeffries, M. O. (Ed.),
- Antarctic Research Series. American Geophysical Union, Washington, D.
- 590 C., pp. 325–341.

- Skene, D., Bennetts, L., Meylan, M., Toffoli, A., 2015. Modelling water wave overwash of a thin floating plate. Journal of Fluid Mechanics 777, R3.
- Squire, V., Moore, S. C., 1980. Direct measurement of the attentuation of ocean waves by pack ice. Nature 283 (5745), 365 368.
- Squire, V. A., 2020. Ocean wave interactions with sea ice: a reappraisal.

 Annu. Rev. Fluid Mech. 52, 37–60.
- Sree, D. K. K., Law, A. W.-K., Shen, H. H., 2017. An experimental study on the interactions between surface waves and floating viscoelastic covers. Wave Motion 70, 195–208.
- Sutherland, G., Rabault, J., Christensen, K. H., Jensen, A., 2019. A two
 layer model for wave dissipation in sea ice. Appl. Ocean Res. 88, 111–118.
- Sutherland, P., Brozena, J., Rogers, W. E., Doble, M., Wadhams, P., 2018.
 Airborne remote sensing of wave propagation in the marginal ice zone. J.
 Geophys. Res.-Oceans 123 (6), 4132–4152.
- Thomson, J., Ackley, S., Girard-Ardhuin, F., Ardhuin, F., Babanin, A.,
 Boutin, G., Brozena, J., Cheng, S., Collins, C., Doble, M., et al., 2018.
 Overview of the arctic sea state and boundary layer physics program. J
 Geophys. Res.-Oceans 123 (12), 8674–8687.
- Thomson, J., Hosekova, L., Meylan, M. H., Kohout, A. L., Kumar, N., 2021.

 Spurious rollover of wave attenuation rates in sea ice caused by noise in

 field measurements. J Geophys. Res.-Oceans.
- Timco, G., Weeks, W., 2010. A review of the engineering properties of sea ice. Cold Reg. Sci. Techol. 60 (2), 107–129.

- Toffoli, A., Bennetts, L. G., Meylan, M. H., Cavaliere, C., Alberello, A.,
- Elsnab, J., Monty, J. P., 2015. Sea ice floes dissipate the energy of steep
- ocean waves. Geophys. Res. Lett. 42 (20), 8547–8554.
- Voermans, J., Babanin, A., Thomson, J., Smith, M., Shen, H., 2019. Wave
- attenuation by sea ice turbulence. Geophys. Res. Lett. 46 (12), 6796–6803.
- Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M., Moore, S. C.,
- 1988. The attenuation rates of ocean waves in the marginal ice zone. J.
- Geophys. Res. 93 (C6), 6799 6818.
- 622 Wang, R., Shen, H. H., 2010a. Gravity waves propagating into an ice-covered
- ocean: A viscoelastic model. Journal of Geophysical Research 115 (C6),
- 624 C06024.
- 625 URL http://dx.doi.org/10.1029/2009JC005591
- http://doi.wiley.com/10.1029/2009JC005591
- Wang, R., Shen, H. H., 2010b. Gravity waves propagating into an ice-covered
- ocean: A viscoelastic model. J. Geophys. Res. 115 (C6).
- Weber, J. E., 1987. Wave attenuation and wave drift in the marginal ice zone.
- J. Phys. Oceanogr. 17 (12), 2351–2361.
- Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., Bertino, L.,
- 2013a. Wave-ice interactions in the marginal ice zone. Part 1: Theoretical
- foundations. Ocean Model. 71, 81–91.
- Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., Bertino, L.,
- 2013b. Wave–ice interactions in the marginal ice zone. Part 2: Numerical
- implementation and sensitivity studies along 1D transects of the ocean
- surface. Ocean Model. 71, 92–101.

- Williams, T. D., Rampal, P., Bouillon, S., 2017. Wave–ice interactions in the neXtSIM sea-ice model. The Cryosphere 11 (5), 2117–2135.
- 640 Yiew, L. J., Bennetts, L. G., Meylan, M. H., French, B. J., Thomas, G. A.,
- 2016. Hydrodynamic responses of a thin floating disk to regular waves.
- Ocean Model. 97, 52–64.
- Yiew, L. J., Bennetts, L. G., Meylan, M. H., Thomas, G. A., French, B. J.,
- 2017. Wave-induced collisions of thin floating disks. Physics of Fluids
- 29 (12), 127102.
- ⁶⁴⁶ Zhang, J., Stern, H., Hwang, B., Schweiger, A., Steele, M., Stark, M., Graber,
- H. C., 2016. Modeling the seasonal evolution of the Arctic sea ice floe size
- distribution. Elem Sci Anth 4, 000126.