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Abstract

High-performance kernel libraries are critical to exploiting
accelerators and specialized instructions in many applica-
tions. Because compilers are difficult to extend to support
diverse and rapidly-evolving hardware targets, and auto-
matic optimization is often insufficient to guarantee state-
of-the-art performance, these libraries are commonly still
coded and optimized by hand, at great expense, in low-level
C and assembly. To better support development of high-
performance libraries for specialized hardware, we propose
a new programming language, Exo, based on the principle of
exocompilation: externalizing target-specific code generation
support and optimization policies to user-level code. Exo
allows custom hardware instructions, specialized memories,
and accelerator configuration state to be defined in user li-
braries. It builds on the idea of user scheduling to externalize
hardware mapping and optimization decisions. Schedules
are defined as composable rewrites within the language, and
we develop a set of effect analyses which guarantee program
equivalence and memory safety through these transforma-
tions. We show that Exo enables rapid development of state-
of-the-art matrix-matrix multiply and convolutional neural
network kernels, for both an embedded neural accelerator
and x86 with AVX-512 extensions, in a few dozen lines of
code each.

CCS Concepts: + Software and its engineering — Do-
main specific languages.
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1 Introduction

Modern computers are increasingly comprised of accelera-
tors. From neural and cryptography engines, to image signal
processors, to GPUs, a state-of-the-art system-on-chip (SoC)
today includes dozens of different specialized accelerators.
Even within their main CPUs, performance improvement
increasingly comes via new instructions performed by spe-
cialized functional units. This specialized hardware is or-
ders of magnitude more efficient than software running on
general-purpose hardware, but most applications are only
able to realize this performance and efficiency insofar as key
low-level libraries of high-performance kernels (e.g., BLAS,
cuDNN, MKIL, etc.) are optimized to exploit the hardware.
While the role played by high-performance kernel libraries
is increasingly critical, there is little programming language
support for the performance engineers who write them.
Progress continues to be made after decades of effort on
fully-automatic compiler optimization, but state-of-the-art
kernels—from linear algebra, to deep learning, to signal pro-
cessing and cryptography—are still predominantly written
by hand, directly in low-level C and hardware-specific in-
trinsics or assembly, or with lightweight metaprogramming
(e.g., macros or C++ templates) of such low-level code. As a
result, developing and tuning these libraries is enormously
labor intensive, limiting the range of accelerated routines and
creating barriers to deploying new or improved accelerators.
Developing accelerated high-performance libraries is a
unique software engineering task, with several unusual char-
acteristics. First, in contrast to conventional programs on
general-purpose processors, the hardware-software inter-
faces to accelerators are both complex—including special-
ized memories, exposed configuration state, and complex
operations—and highly diverse, with different complexities
unique to each accelerator. Second, the rates of change at dif-
ferent levels in the stack—from applications to hardware
ISA—are inverted: accelerator architectures change more
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rapidly than the essential functions which run on them (e.g.,
mobile phone SoCs are rebuilt every year, with major re-
visions to nearly every accelerator block, while the BLAS
standard changes much more slowly), and the implementa-
tion of these functions to most efficiently use the hardware is
iterated more quickly, still. This is especially acute during ac-
celerator development, where target application workloads
are often fixed, while both the hardware architecture and
kernels mapping to it are iteratively co-designed to maximize
performance and efficiency.

In this paper, we propose exocompilation as a new ap-
proach to programming language and compiler support for
developing hardware-accelerated high-performance libraries.
The principle of exocompilation is to externalize as much
accelerator-specific code-generation logic and optimization
policy from the compiler as possible, instead exposing them
at the user level to high-performance library writers. Specif-
ically, we externalize accelerator specification to user-level
libraries, and we build on the idea of user scheduling, popular-
ized by languages like Halide and TVM [8, 29], to externalize
hardware mapping and optimization decisions.

We develop a new language and compiler called Exo based
on this principle of exocompilation. Exo allows custom hard-
ware instructions to be user-defined and abstracted as pro-
cedures. It also allows specialized memories and accelerator
configuration state to be defined in user code, without modi-
fying the core compiler. User scheduling enables a rich space
of optimization and hardware mapping choices to be directly
explored by the performance engineer, rather than requiring
an automated optimizer to always make perfect decisions.

In contrast to optimization by manually rewriting low-
level code, scheduling transformations are concise and safe.
They elide many details like array and loop re-indexing
(which can be automatically inferred), while guaranteeing
both functional equivalence and memory safety. Different
schedules best optimize the same library function for differ-
ent hardware, or even for different parameter values, and
specialized versions for each case can be generated from a
single source algorithm. Arbitrary program fragments can
be replaced during scheduling with equivalent user-defined
accelerator instructions, or specialized subroutines, using
a unification procedure that automates the transformation
of essential arguments and array indexing. Finally, in con-
trast to languages like Halide and TVM, Exo implements
user scheduling via composable rewrite rules. This allows
the scheduling language itself to be easily extended, since
each operator defines an independent rewrite, rather than
interacting with all others in a monolithic lowering process.

We explore what is required of safety analyses for such a
language, and define a set of effect analyses which support
guarantees of program equivalence and memory safety af-
ter scheduling (§5). We make the simplifying assumption of
affine loops and array indexing, which has been shown to be
sufficient for many kernels of interest in high-performance
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libraries [12]. Nonetheless, accelerator configuration intro-
duces global mutable state which breaks the classic “static
control program” assumption, and requires introducing ap-
proximation into the analyses. Our analyses are then de-
fined in a ternary logic, which distinguishes effects which
definitely occur (necessary for, e.g., eliminating redundant
setting of configuration state) from those which maybe oc-
cur (relevant for reasoning about the statement reorderings
which emerge from many loop transformations).

Finally, we perform a series of case studies applying Exo
to optimizing high-performance kernels for specialized hard-
ware. We develop user-level backends for the Berkeley Gem-
mini neural network accelerator [16] (a software-controlled
systolic array similar to many TPU-like architectures) and
x86-64 with AVX-512. For each target, we focus on opti-
mizing matrix multiply and convolutional neural network
layers — among the most highly-optimized kernels in com-
mon libraries. Using Exo, we were able to easily develop
implementations competitive with state-of-the-art libraries
in a few days and a few dozen lines of code.

2 Example

Today’s large machine learning models (and scientific com-
puting) rely on highly tuned matrix-matrix multiplication
kernels (aka. GEMM). In order to introduce Exo, we will
show how to write and optimize such GEMM kernels, target-
ing one to an accelerator ISA designed to resemble machine
learning accelerators. These accelerators all focus on the ef-
ficient execution of small (e.g. 16 X 16), dense matrix-matrix
multiplication instructions.

Optimizing these kernels is primarily an exercise in or-
chestrating data movement, and only secondarily a matter
of selecting compute instructions, such as the actual matrix
multiplication primitive. Therefore, we need to explicitly
schedule loads and stores from custom, explicitly managed
accelerator memories. Lastly, much of the behavior of hard-
ware accelerators is controlled by infrequently changing con-
figuration state. Instructions to configure such state usually
flush the accelerator pipeline.

To model a particular hardware accelerator, users must de-
fine custom memories, instructions and configuration state.
This work is done once per accelerator, written as a hardware
library. Throughout the example, we will indicate whether
each piece of code lives in the application (GEMM) or can be
abstracted out into a reusable description of the hardware.

2.1 Exo Procedures, Compilation, and Scheduling
Consider matrix-matrix multiplication, written in Exo:

@proc
def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):
for i in seq(@, 128):
for j in seq(@, 128):
for k in seq(@, 128):
Cfi, j1 += A[i, k1 * B[k, j]
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Exo is embedded in Python, and the function decorator
@proc indicates the beginning of an Exo function. Function
arguments are given by the syntax

(name): (type)[(size)] @ (memory)

R is an abstract type for all numeric data types, which can
be specialized to specific precision types such as f32 and 18
via scheduling operations. For simplicity, the (size) in this
example is constant, but usually refers dependently to other
function arguments. The @ symbol is a memory specification;
@RAM means that the buffer is expected to be in DRAM.
Finally, for i in seq(@, 128) is a sequential for loop that
ranges from 0 to 127 (inclusive).
Exo compiles to C source code in the expected way:

void gemm(float *A, float *B, float *C) {
for (int i=0; i<128; it++) {
for (int j=0; i<128; i++) {
for (int k=0; i<128; i++) {
CL128%i + j] += A[128*i + k] * B[128*k + j1;
Y 3

In order to target our accelerator, we need to expose a
16 X 16 matrix-multiplication as the inner loop nest. We do
this by using scheduling operations to rewrite the procedure.
In particular, we split(i, 16,i0,1i) (sim. for j, k) and then
reorder () the loops (see §3.3) to produce the following tiled
matrix multiplication:

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for io in seq(2, 8):
in app.py

for jo in seq(@, 8):
for ko in seq(@, 8):
for ii in seq(@, 16):
for ji in seq(@, 16):
for ki in seq(0, 16):
C[16*io+ii, 16%jo+jil += A[..]1 = B[..]

2.2 Memories

Many accelerators—including ours in this example—have ex-
plicitly-managed memories. Performance critically depends
on how data movement to and from these memories is inter-
leaved with other computation. Therefore Exo puts schedul-
ing of data movement in the hands of the programmer. The
first step in doing this, is to define custom memories on a

per-accelerator basis. For example,
in hw_lib.py

= hw_malloc({sz});"

class ACCUMULATOR(Memory) :
def alloc(...):
return f"{prim_type
def free(...):
return f"hw_free({name});"
def read(...): # also write, reduce
raise MemGenError('memory is not addressable')

name

If a buffer is annotated with AccuMULATOR instead of
DRAM, then these alloc and free macros will determine the
C code that is generated when that buffer is allocated or freed.
(see §3) Furthermore, note that the AcCUMULATOR memory
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explicitly disables code generation for reading, writing and
accumulating into individual locations, preventing direct
access from C. Instead, we will only allow custom instructions
(see below) to access this custom memory.

Supposing we have written custom ACCUMULATOR and
SCRATCHPAD memories, we use stage_mem scheduling oper-
ations to stage C, A, and B into these memories:

def gemm(...):
res: R[...] @ ACCUMULATOR
a : R[...] @ SCRATCHPAD
b : R[...] @ SCRATCHPAD
for io in seq(@, 8):
for jo in seq(@, 8):
. # Load C to res
for ko in seq(@, 8):
# Load A to a
for ii in seq(@, 16):
for ki in seq(@, 16):
al...1 =A[...]
. # Load B to b
# Matmul of a and b
for ii in seq(@, 16):
for ji in seq(@, 16):
for ki in seq(0, 16):
resf..]+=al..]*b[..]
. # Store res to C

2.3 Instructions

We can clearly see opportunities in the above code to map
loops to semantically equivalent accelerator instructions.
However, to do this safely and soundly, the compiler needs
definitions of our accelerator instructions in terms of Exo’s
semantics. The key idea of exocompilation is to provide users
with a framework for defining these instructions in libraries,
without modifying the compiler itself. Below, we show an
example of such a definition for the scratchpad load.
@instr("config_ld( .strides[0]);\n"

"mvin( .data, .data, ) )M
def 1ld_data(n: size, m: size,

src: [RI[n, m] @ DRAM, in hw_lib.py

dst: [RI[n, 16] @ SCRATCHPAD):
assert m <= 16
for i in seq(@, n):
for j in seq(@, m):
dst[i,j] = srcli,j]
Notice that this function has been annotated with @instr
rather than @proc. This indicates that the declaration asserts
equivalence between the Exo code in the body and the C
code template (i.e. macro) in the annotation. The resulting
1d_data function may be scheduled and called like any other
function, but Exo’s C code generator will instead emit the
C code “config_ld({src}.strides...)”, with argument
placeholders {src} and {dst} substituted appropriately.
Exo provides a replace() scheduling directive (§3.4) for
matching code in one procedure with the body of another
procedure (including an @instr like 1d_data), then replac-
ing the matched code with an appropriate procedure call.
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2.4 Configuration State

We could issue this directive now to schedule the accelerator
instructions, however, the C code has fused the expensive
config_ld instruction to the mvin instruction we are really
interested in scheduling. Since the stride does not actually
change during the kernel, this will cause the accelerator
pipeline to repeatedly flush and stall. We must somehow
schedule the configuration instruction independently of the
actual load.

Therefore, we need a way to define hardware state. The
following code models the stride configuration state in Exo.

@config

class Configload: in hw_lib.py
src_stride : stride

@instr("config_ld( ;™M

def config_ld_def(s : stride):

Configload.src_stride = s

Here, Configload defines a global struct of configuration
variables, here containing a single src_stride field that
models the state of the stride hardware parameter. We also
write an instruction definition, config_ld_def, that updates
the src_stride field. Now we can write a new instruction
for the 16 X 16 load without the config_ld setup:
@instr("mvin( .data, .data, X )M

def real_ld_data(...):
in hw_lib.py

assert Configload.src_stride ==
stride(src, 0)
# same as ld_data
Using scheduling instructions, we will rewrite the body of
1d_data into a call to config_ld_def (), followed by a call
to real_ld_data(). First, we use the configwrite_at()
scheduling operation to rewrite 1d_data into the following:

def ld_data(...): in hw_lib.py

assert m <= 16

Configload.src_stride = stride(src, 0)

for i in seq(@, n):

for j in seq(@, m):
dst[i,j] = srcli,j]

Unlike previous scheduling operations, configwrite_at()
only partially preserves procedure equivalence—the new
1d_data() is only equivalent up to the configuration state
Configload. src_stride. In general, Exo needs to reason
about this kind of program equivalence modulo configura-
tion state (see definition 4.1 and §6.2).

Since the statement ConfiglLoad.src_stride = ... is
equivalent to the body of config_ld_def, and the state-
ment for i in seq(...):... is equivalent to the body of
real_ld_data, we can now replace() the body of 1d_data

with the two calls, as desired:
in hw_lib.py

def 1ld_data(...):
assert m <= 16
config_ld_def(stride(src, 0))
real_ld_data(n, m, src, dst)
By following this same procedure, we can create instruction
abstractions for our 16x16 matmul and store instructions. At
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last, we can replace the code in gemm with calls to 1d_data
and inline its definition.
def gemm(...):
res: R[...T1 ...
for io in seq(2, 8):
for jo in seq(@, 8):
. # Loading C to res
for ko in seq(@, 8):
config_ld_def(stride(A, 0))
real_ld_data(16, 16, A[...], al..
# etc. etc.

)

We will hoist the call to config_ld_def using scheduling
operations reorder_stmts(), fission_after(), as well as
remove_loop (). Doing so will require Exo’s program analy-
sis to both reason about when different statements commute
(can be reordered) as well as when they are idempotent (allow-
ing the loop to be removed). To further complicate matters,
the presence of global, mutable configuration state means
that fully precise analyses are undecidable, and thus impossi-
ble in Exo. By using a ternary logic (§5), Exo can distinguish
between memory locations that are definitely written to (a
necessary condition for idempotency) and locations that are
maybe written to (the relevant condition for commutativity).

def gemm(...): .
--ln app.py

config_ld(stride(A, 0))
res: R(...1 ...
for io in seq(2, 8):
for jo in seq(@, 8):
. # Loading C to res
for ko in seq(@, 8):
real_ld_data(16, 16, A[...], al..
. # etc. etc.

)

All of the above code transformations are achievable using
the scheduling primitives discussed in Section 3. Full defi-
nitions of the memory, configuration, and load instructions
for the Gemmini accelerator can be found in supplemental
appendix G.!

3 The Exo Language and System

The Exo system consists of an imperative programming lan-
guage (§3.1), means of defining hardware targets via libraries
(§3.2), and a rewrite-based scheduling system (§3.3, 3.4). Fig-
ure 1 shows the Exo system from the standpoint of a particu-
lar program being compiled. In this section, we explain each
part of this process.

3.1 The Exo Language

Exo is a familiar imperative language in the mold of the
static control program model [12]. It supports for-loops, if-
conditions, arrays and procedures, but not while-loops or
recursion. A BNF grammar for its formal core is defined
later (Fig. 3). In addition to that grammar, the full language
supports stride values and expressions, as well as memory
annotations, both of which were shown in the example (§2).

! Appendices are available as Supplemental Material on the ACM Digital
Library.
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User schedules via rewrites (§3.3)

Frontend .split()
.reorder() Backend
Type Check —
Memory/Precision Check E‘
Bounds Check -unroll() = <
ook .inline() Codegen [User defined (§3.2):
Assert Chec .replace() (§3.4) *«Memory
« Config
« Instructions

Figure 1. Exo system overview

Six relatively standard (but not universally adopted) fea-
tures of Exo are worth discussing further: (1) control/data
separation, (2) mutable global control state, (3) dependently
typed arrays [38], (4) array windowing/slicing, (5) explicit
+= reduction primitives, and (6) static assertions.

(1) Exo is built around a distinction between control and
data values. Control values (types int, bool, size, etc.)
are constrained so that they may be analyzed more pre-
cisely. Arithmetic on integer control values must be quasi-
affine, meaning that values can only be multiplied, divided,
or modulo-ed by an integer literal. Expressions inside loop
bounds and branches must be control values. Meanwhile,
data values (types R, f32, 18, etc.) are floating-point or fixed-
point numbers stored in scalars or arrays. There are no re-
strictions on allowed computations between data values. (2)
Configuration state (§2) is introduced via structs of variables
using @config and modeled formally as global variables (§4).
Unlike the other sources of control values, configuration
state is mutable. Consistent with the idea of static control
programs, Exo currently prohibits any dependence of control
values on data-values, regardless of whether those control
variables are local or global.

(3) Dependently typed arrays allow sizes to be specified
by control value expressions of strictly positive value. Exo
then performs static bounds checks, guaranteeing memory
safety without incurring any of the costs of dynamic bounds
checks. This is made possible by the control/data separation
idea. (4) Arrays in Exo are further extended with support
for windowing (aka. slicing) via the x[1o:hi] syntax. Cre-
ating a window does not copy data; instead, reading from
and writing to locations in a window accesses the under-
lying buffer (e.g. if y = x[3:8] then y[2] == x[3+2]).In
particular, note that windows may be lower-dimensional
than their underlying buffers by slicing some indices, while
point-accessing others. For instance, x[0:n, j] creates a 1-
dimensional window on column j of matrix x. (5) In addition
to primitive reading and writing, reduction via the += syn-
tax is supported as a special commutative and associative
operation from the point of view of program analysis.

(6) Finally, we allow static assertions about control values
to be made at the beginning of procedures. These asser-
tions act as pre-conditions and not as dynamic tests. Program
analysis within a procedure may assume its asserted pre-
conditions, whereas a calling procedure is only valid if it
ensures that the callee’s pre-conditions are true.
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3.1.1 Backend Checks: Precision and Memory. Type-
checking, bounds-checking, and assertion checking are all
front-end checks on Exo code. By contrast, consistency of
data-variable precision types as well as consistency of mem-
ory annotations are performed as back-end checks immedi-
ately prior to code generation. Exo requires all data-expres-
sions to have consistent precision, (e.g. multiplying an f32
and 18 is forbidden) but inserts type-casts as necessary just
before writing or reducing data values.

3.1.2 Code Generation. Exo is designed to generate hu-
man-readable C-code that is more or less a syntactic trans-
lation of the corresponding Exo code. This enables the pro-
grammer to more easily integrate Exo with existing tools
and workflows. There are a few non-obvious details with this
translation that merit discussion. First, all data values (in-
cluding scalars, buffers, and windows) are passed by pointer
rather than by value. This is necessary even in the case of
scalars to allow “returning” modified scalar values to a caller.
Second, windows are compiled to structs containing both
the data pointer and stride values, since the static size of
a window is insufficient to compute a linear address into
the underlying buffer. Lastly, we translate static assertions
into compiler-specific optimization hints to help improve
downstream analyses and optimizations.

3.2 Hardware Targets as Libraries

To add support for a new hardware accelerator to Exo, pro-
grammers write a library, rather than a compiler backend.
These libraries use three key features of the Exo language: (1)
memories, (2) instructions, and (3) configuration state. Using
these features, an Exo programmer can hand-write code to
target a given accelerator, or use scheduling to rewrite a
simple program into one targeting a given accelerator (§3.3).

Defining hardware in libraries has two advantages over
defining hardware in compiler backends (as Halide, TVM,
LLVM and most compilers do). First, hardware vendors do
not need to maintain compiler forks in order to protect pro-
prietary details of their hardware. Second, the cost of adding
support for new hardware is significantly reduced. Our ex-
perience adding support for new hardware to both Exo and
Halide suggests that the library approach requires at least
an order of magnitude less development time.

3.2.1 Memories. By default, all Exo buffers are assumed
to reside in system DRAM and are managed using standard
malloc and free. However, hardware accelerators often re-
quire modeling buffers that are resident in special acceler-
ator memories, are pinned to special address ranges in the
global address space, or otherwise exhibit strange behavior.
To support these scenarios, Exo allows users to tag buffer
and window types with a memory annotation. For example,
x : f32[n] @ MEM says that the vector x lives in a custom
memory MEM. These custom memories are defined by sub-
classing a Memory base class (§2) and overloading methods.
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Exo allows custom memories to change code generation
for buffer alloc, free, and windowing via string interpola-
tion. The author of a custom memory chooses whether to
allow standard reading and writing the buffer (e.g., if the
memory simply changes the memory management policy) or
disable all usual accessing of the memory. The latter option
is ideal for modeling hardware scratchpads, which should
only be accessed using custom instructions. Such improper
accesses are prevented by “backend checks.” In general, mem-
ory annotations are ignored during scheduling.

3.2.2 Instructions. Instructions in Exo are procedures
that are annotated with a macro/string-template. For ex-
ample, given a vector load procedure with the signature
load(n : size, dst : f32[n], src : f32[n]),wecan
make it into an instruction by annotating it with @instr(
"hw_1d( , , )") instead of @proc. When code
generating calls to instructions, this annotation string is used
instead of a sub-procedure call. Arguments are interpolated
into the template as strings. This works as well for schedul-
ing fine-grained intrinsics as it does for coarse-grained calls
to existing microkernels or library calls.

As a result, the annotated Exo procedure has no effect on
code generation, but instead serves as a semantic specifica-
tion of the instruction for the purposes of checking cor-
rectness and program equivalence (for scheduling). This
approach to an instruction mechanism has the following
benefits and tradeoffs. First, programmers need not learn
any additional specification language beyond Exo. Second,
Exo entrusts programmers with the responsibility of veri-
fying the link between the Exo procedure and annotation.
Third and finally, programmers can use instructions in clever
ways, including as an escape hatch. For example, a prefetch
instruction can be modeled using a no-op procedure and
thereby be inserted anywhere.

3.2.3 Configuration State. As we saw in §2, Exo models
hardware configuration state via global structs of control
variables annotated by @config. When defining configura-
tions, programmers have the choice of realizing them as
DRAM-resident data or disabling direct access to the config-
uration state (similar to disabling direct reading and writing
of a memory). In the latter case, no global struct is generated.

3.3 Scheduling via Rewrites

Rather than directly writing code that uses a hardware li-
brary, Exo users transform a simple program into an equiva-
lent, but more complex and high-performance version, tar-
geted to the specific hardware accelerator. This transforma-
tion is accomplished via successive rewriting of the applica-
tion—a process called scheduling.

Because Exo is an embedded DSL, schedules are written
as meta-programs in the host language (Python). Each prim-
itive scheduling operator (Figure 2) takes a procedure p plus
some other arguments as input, and returns an equivalent,
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Command Transform
.. for i: for j:
p.reorder(i,) for j: ™ for i:
sy L . for io<I/c:
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for i in lo,hi:
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for i in lo,c:
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for i:

N

p.partition_loop(i,c)

p.remove_loop(i)

Figure 2. Some primitive Exo scheduling operators. Each
operator rewrites sy ~» s; within a procedure p. This sort of
rewrite based scheduling makes it easier to expand the list of
primitive operators, since the correctness of each operator
is independent of the correctness of each other operator.

rewritten procedure as output. Most of these operators re-
quire pointing at a location within the procedure. In our
prototype, this is accomplished via simple syntactic pattern
matching strings. For instance, src : _ points at the first
allocation of a buffer named src, and for i in _: _ #2
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points at the third loop in p with an iteration variable named
i. This APl is currently being re-designed, but was sufficient
to demonstrate the benefits of rewrite-based scheduling.

Exo advances the idea of user-scheduling in two important
ways. First, like Lift and Elevate [19, 31] but unlike Halide
and TVM, scheduling operators are rewrites of programs,
rather than arguments to a monolithic lowering process. As
a result, the implementation and correctness of a schedul-
ing primitive is independent of each other primitive. This
makes the Exo implementation much simpler and easier to
maintain. Importantly, Exo rewrites imperative rather than
functional programs (Lift and Elevate). This makes checking
the correctness of primitive rewrites more complex (§5,F).

Second, Exo supports scheduling of programs decomposed
into procedures. This happens via the inline (), call_eqv(),
and replace() primitives. inline() simply inlines a proce-
dure’s body at some call site, and replace() can be thought
of as the inverse of inline() (see next section). call_eqv()
on the other hand replaces a call to some sub-procedure f
with a call to an equivalent sub-procedure f’. This equiva-
lence is tracked by provenance, since the Exo system records
the sequence of transformations by which f was transformed
into f’. This concept of an equivalent sub-procedure is com-
plicated by those scheduling primitives which pollute con-
figuration state (e.g. bind_config()). To handle these, Exo
tracks a lattice of different equivalence relations, modulo
different parts of the configuration state (§6).

This provenance tracking system also enables an impor-
tant optimization: when constructing SMT queries we may
use the simplest equivalent (including configuration) defini-
tion of a procedure when constructing SMT queries. This
is necessary to keep the cost of calling the solver low as
scheduling complicates a procedure.

3.4 Code Replacement & Instruction Selection

The replace () scheduling primitive takes a designated state-
ment block s and replaces it with a call to a designated sub-
procedure foo. In particular, when foo is an @instr, this
rewriting performs instruction selection. In other cases, it
allows Exo programmers to manage code size trade-offs, as
well as more neatly abstract and organize their code.

Our implementation of replace() is based on a form of
unification modulo linear equalities. First, we attempt to
unify (i.e. pattern match) the body of the sub-procedure foo
with the designated statement block s. When doing this,
the arguments of foo are designated as unknowns, the free
variables of s as known symbols and any symbols intro-
duced/bound in the body of foo or within s are unified. The
ASTs are required to match exactly with respect to state-
ments, and with respect to all expressions which are not
simply integer typed control. Equivalences between integer
typed control expressions are recorded as a system of linear
equations to be solved in a second step.
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If Exo did not support windowing, then we could deter-
mine expressions for the unknown argument variables by
symbolically solving the resulting linear system of equa-
tions. However, the possibility of windowing expressions as
arguments forces us to make categorical choices between
different possible windowing expressions, resulting in dis-
junctions as well as conjunctions of linear equalities. For
example, if replace is asked to infer a 1-dimensional window
onto a 2-dimensional buffer x, it could infer an expression
of the form x[i,jlo: jhi] or of the form x[ilo:ihi, j]. To
handle this complication, we observe that all inferred integer
expressions must be affine combinations of the known, free
variables. Therefore, we can transform our symbolic linear
system problem into a linear system in the unknown coeffi-
cients of these affine expressions. Once encoded in this way,
we can discharge the problem to an SMT solver.

4 Formal Core Language

In order to define our program analysis, we provide a for-
mal definition of the core of Exo, including a denotational
semantics. The core idea is that statements denote store-
transforming functions of type ¥ — X. Using these seman-
tics we can define equivalence of Exo programs as functional
equivalence of their denotations. A scheduling transforma-
tion can then be said to be safe when it transforms between
equivalent Exo programs.

4.1 Mathematical Model of Exo Programs

The main concept in our mathematical model of Exo pro-
grams is the store, which represents the program state at
any given point during its execution. The simplest model
of a store ¢ € ¥ would be a partial function from variable
names to values. However, we must complicate this naive
model in a few ways. Rather than present the full definitions
(available in a supplemental appendix), we will focus on a
high level gloss of the ideas here.

Control values are modeled as Boolean or integer values
(in B and Z) while data values are modeled as real numbers
(in R). Names of variables are drawn from a set of identifiers
Name. Additionally, we rely on exceptional values to capture
errors € and unknown or uninitialized data L. For simplicity,
we assume that all built in functions on data (basic arithmetic
and the math library) are total, so that e.g. 0/0 is not an error.

The first complication is that we need to model buffers
and windows. Buffers can be thought of as maps from co-
ordinate tuples to data Z™ — (R W {L, €}), where L desig-
nates uninitialized but allocated memory, whereas € desig-
nates out-of-bounds memory. These buffers are placed in
the store X at special addresses £ € Name that are disjoint
from names used in the program. Then windows can be
modeled as a pair of a buffer address ¢ and affine-indexing
function ¢ € Z" — Z™. For instance, reading a window at
coordinates i would translate to the lookup o (£) (¢(i)).
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Having modeled buffers and windows, we can define stores
o € ¥ as partial functions from Name to buffers, windows,
or control values. In order to further capture the concept of
program crashes (which should never happen for well-typed,
well-bounded and assertion-satisfying programs) we expand
the domain of stores to include the special value e. We may
assume that all functions are strict with respect to ¢, meaning
that once a program crashes it remains crashed.

4.2 Syntax, Semantics, and Well-Typed Programs

The syntax for the formal core of Exo is straightforward (Fig-
ure 3). The denotation of a statement or procedure s is written
S [s] and is a function 3 — 3. The full definition of denota-
tions for expressions, statements and procedures are deferred
to a supplemental appendix (§A). Note again that this core
language makes no reference to user-defined instructions or
memories. This is because the core program analysis is blind
to those features—which only affect code generation. This
separation is what allows us to make the program analysis
extensible to new hardware backends.

Our focus in this paper is not on basic type-checking
(which is standard) or even bounds-checking and assertion-
checking (which are straightforward based on prior work
and repurposing our later analysis machinery). However, it
is worth re-iterating what guarantees all of these front-end
checks provide for Exo programs. First, all integer-valued
control expressions are constrained to be quasi-affine. Sec-
ond, all windowing and accessing of buffers and windows is
statically guaranteed to be in-bounds. Lastly, any procedure
call is guaranteed to satisfy the asserted pre-conditions of
the called procedure. Mutation of non-global control values
is also prohibited. The quasi-affine restriction in particular
is what allows us to translate arbitrary control expressions
into SAT queries modulo the Linear Integer Arithmetic (LIA)
theory, and thus discharge problems to an SMT solver.

4.3 Program Equivalence

Definition 4.1 (program equivalence). Let s, s; both be
Stmt or Proc. These two programs are equivalent, written
s1 = s, when the store-transforming functions they denote
are equivalent S [[s;] = S [sz] on valid input stores—i.e. stores
which are not in an error state and satisfy any precondition
assertions of s; and s, which are equivalent.

As we discussed earlier (§2), we often want to reason
about programs that are equivalent “up-to/excluding a set of
globals £” because many transformations end up polluting
configuration state. We define a lattice of weaker equivalence
relations:

Definition 4.2 (program equivalence modulo globals). Let
s1, S2 both be Stmt or Proc, and let £ C Namegjopq; be a set of
globals to ignore. The two programs are equivalent “modulo
L7, written s; =y s, whenVo,x ¢ L.S[s;] o x =S [s2] o x,
with the same caveats about valid input stores.
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74 : ArgType = bool | int |R[e*]
75 : SigType = (x:74) — 7s | unit
7:Type = 74 |R
note: we use -* to mean 0 or more
e:Expr i= x variables
| op(e*) built-in operations
| efe*] array read
| win(e, w*) window expression

w: WinCoord := e point-access

interval-access

| e.e
{ +, -, %, /,mod, and, or, not, } X
opey _ B U Literals
==,<, <=, >, >=
s:Stmt = s;s sequencing
| if e thens guards
| forxine.edos  sequential loops
| alloc x(e*) array allocation
| efe*]=e array write
| efe*]+=e¢ array reduce
| x=e global write
| pCe™ sub-procedure call
proc p : s
pdef : Proc := asserte
dos
L:Lib o= globals (x : 7)*

pdef”

Figure 3. Abstract Syntax for Exo core language

5 Effect Analysis & Transformation of
Programs

Our analysis of Exo programs is based on an effect analysis.
An effect a extracted from a statement s characterizes which
functions f : ¥ — ¥ the statement s could possibly denote
S [s]. This effect analysis allows us to determine when code
transformations like s;;s; ~» s5;5; and s;;s2 > s are valid.

This analysis will require us to define (1) effect-expressions
and environments, (2) a global symbolic data-flow analysis,
(3) location sets as a symbolic abstraction of store locations,
and finally (4) effects as an abstraction of programs. We can
then state safety conditions for various program rewrites
using these building blocks.

5.1 Ternary Logic

When extended with L, B becomes a ternary logic with the
values true (true or T), false (false or F), and unknown (L).
Intuitively, this ternary logic will allow us to distinguish
between statements that are definitely true, and statements
that may be true. As detailed in supplemental appendix B,
this logic can be encoded in classical logic for the purposes
of targeting SMT solvers.

We define two additional operators for collapsing back
down from ternary to classical logic. D p (“definitely p”) is
defined by DT = T, DL = F, and DF = F; M p (“maybe p”)
is defined by MT =T, ML =T, and MF = F.
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5.2 Effect Expressions

Effect Expressions both give us a way of expressing symbolic
values and of encoding sentences in a first-order logic, for
discharging to an SMT solver.

Definition 5.1 (Effect Expressions). We define the following
grammar of effect-expressions

ee : EffExpr z= x| ¢ | L | op(ee”) | ee? ee else ee | Vx.ee

where every expression either has sort bool or sort int. The
operators are the same as the bool and int operators from
Figure 3. Recall that in the case of int operators, the pseudo-
affine condition means that the quotient for / and mod must
be a constant, and one side of * must be a constant.

Definition 5.2 (Effect Environments).
y : EffEnv = (Namegyjopa W Namejocqr) — EffExpr

are partial functions that default to mapping x to x, not L.

Effect environments abstract functions ¥ — X with re-
spect to control values, not stores X. This is why they may
appear to be impredicative (mapping x to x by default). We
define substitution y(ee) in the usual way. Using this, we can
define composition of two effect environments (y - y")x =
y(y’(x)), which may also be resolved by substituting with y
inside the expressions bound by y’. This definition of substi-
tution extends naturally up to our later definitions of location
sets LocSet, and effects a.

5.3 Global Dataflow

The major complication in our program analyses is handling
mutable, global control state—which makes precise analysis
of program control logic undecidable. Our dataflow analysis
is symbolic (producing effect environments as a result) and
control-sensitive (symbolic values reflect guards wrapped
around statements). However we must make some kind of
approximation to force convergence on loops. We use a very
simple heuristic, expressed symbolically: If every loop itera-
tion does not change the value of a global variable x, then
the loop behaves as an identity function. Otherwise, the loop
drives x to the uncertain value L. This usually suffices be-
cause configuration state that depends on the loop iteration
is usually meaningless outside of the loop.

We define global dataflow analysis ValG : Stmt — EffEnv
precisely in supplemental appendix C, along with lifting of
expressions to effect expressions Lift : Expr — EffExpr.

5.4 Location Sets
Definition 5.3 (Location Set).

L : LocSet 0| {x,ee’} | LUL] U, L
| LNnL|L-L|filter(ee, L)
Location sets symbolically abstract sets of global and heap
locations in the store.
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These sets support a set membership predicate (_ € _) :
(Name x EffExpr") — LocSet — EffExpr and an is-empty
predicate (_ = 0) : LocSet — EffExpr, both in the expected
way (see supplemental appendix D for details)

Note that because effect expressions are a ternary logic,
these location sets express upper and lower bounds on a set
of locations: points definitely not in the set, points definitely
in the set, and a penumbra of points ambiguously in the
set. We collapse these sets down to “classical sets” using the
aforementioned operators: DL meaning points definitely
in the set, and ML meaning points that might be in the
set. Thus x € DL means D(x € Ls) and x ¢ ML means
D(x ¢ L).

5.5 Effects
Definition 5.4 (Effects).

a: Effect == a;al| 0| Guard(ee, a) | Loop(x,a)
| GlobalRead(x) | GlobalWrite(x)
| Read(x,ee*) | Write(x, ee™)
| Reduce(x,ee*) | Alloc(x)

This definition allows us to define the obvious transla-
tion of expressions (Eff, : Expr — Effect) and statements
(Eff : Stmt — Effect) into effects (see supplemental appen-
dix E). Effects then allow us to define read, write, and reduce
location sets.

To start, we define the set of buffers allocated by and
visible to subsequent statements/effects:

A : Effect — LocSet

A Alloc(x) = {x}

A (ar;a2) =A(a1) UA(az)
A =0

Definition 5.5 (Locations of an Effect). Let Rdg, Wrg, Rdy,
Wry, and R+y, be functions Effect — LocSet. To avoid re-
dundancy, define common cases for all such functions ¥

F : Effect — LocSet

F Guard(ee, a) = filter(ee, F a)

F Loop(x,a) =U,F a
Sequencing is defined differently for read and write sets:
Rdg (a1;a2) =Rdg(a1) U (Rdg(a;) — Wrg(ar) — A(ay))
Wrg (a1;a2) = Wrg(ar) U (Wrg(a3) — A(ar))
Rdy (a1;a2) =Rdg(a;) U (Rdg(a;) — Wry(a;) — A(ay))
Wry (a1;az) = Wrg(a;) U (Wrg(ay) — A(ay))
R4y (ar;a;) =R+p(ar) U (R+y(a)) — A(ay))

Each function detects its corresponding leaf-node:

Rdg GlobalRead(x) = {x}

Wrg GlobalWrite(x) = {x}

Rdy Read(x, eeq,...,ee,) = {x,eey,...,ee,}
Wry Write(x, eeq, ..., ee,) = {x,eey,...,ee,}
R+y Reduce(x, eeq, ..., ee,) = {x,eey,...,ee,}
F =0
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From these five primitive sets we can define six other
useful sets:

Rda =RdgaURdya
Wra =WrgaUWryga
R+a =R+ga—-Wrga
Alla =RdaUWraUR+yga

Moda =WraUR+y a
RWa =RdaUWra

5.6 Effects as Abstraction

The different objects we have talked about so far each ab-
stract some part of the program. For instance, the dataflow
analysis of a statement ValG [s] is an abstraction of its deno-
tation S [[s] with respect to global values. Similarly, the effect
extracted from an expression Eff, [e] abstracts its denota-
tion E [[e], and the effect extracted from a statement Eff [s]
abstracts its denotation S [s]. But what do we mean by this?

The effect abstraction a for a statement s with denotation
f guarantees a few properties. First, it provides an analogue
of the “frame axiom” from separation logic. If a location
x lies outside of MMod(a), then it is unmodified: fox
ox. Second, if a location is in the write set x € DWr(a),
then the post-hoc value at that location fox is determined
solely by the values at read locations y € MRd(a). Third,
if a location is reduced to x € DR+(a), then the difference
between the initial and final value at that location fox — ox

is determined solely by values at read locations y € MRd(a).
Finally, so long as the values at read locations y € MRd(a)
are determined, then one of the three previous cases applies
to every store location, even if we can’t be certain which
set(s) the location is in.

Even more simply in the case of expression abstraction,
the effect a of an expression e with denotation f : ¥ — Val
guarantees one property: The value fo is solely determined
by the values at read locations y € MRd(a).

5.7 Basic Program Rewrites

The preceding analysis objects allow us to turn program
equivalence checks into SMT queries.

Reorder statements. The rewrite s;;s, > s5;5; is safe
when Commutes Eff [s1] Eff [s2] holds. Commutativity of
statements is defined as non-interference of effects. A special
exception must be made for locations that are reduced.

Definition 5.6 (Commutativity).

Commutes a; a; =
Wr(a;) N All(ay) =0 A Wr(ay) N All(a;) =0
R+(a;) NRd(az) =0 A R+(az) NRd(a;) =0

Shadow statement. The rewrite s;;s, ~ s, is safe when
Shadows Eff [si]] Eff [sz]] holds. Whereas commutativity re-
quires reasoning about what definitely doesn’t intersect (and
hence what memory might be touched), shadowing requires
reasoning positively about what definitely is overwritten—
which is why a one-sided approximation sets is insufficient.
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Definition 5.7 (Shadowing).

Shadows a; a; =
Vx € MMod(a;) = (x ¢ MRd(a;) A x € DWr(ay))

New config write. The rewrite s ~ s; x,=e is always safe,
but only results in code that is equivalent modulo {x,}. As
we will soon see (§6.2), performing this rewrite in a context
requires satisfying additional conditions, but in isolation it
is very simple.

5.8 Loop Rewrites

When working with rewrites of loops, it is convenient to
abbreviate notation for an iteration variable being in bounds.
If the variable x occurs in for x in e, .. ep; do , then let
Bd(x) = Lift [eso] < x < Lift [ep;] in the following.

Loop reordering. One of the most basic non-trivial loop
transformations is loop-reordering. When can we rewrite
for x do for y do s into for y do for x do s? This transfor-
mation is valid when the loop bounds commute with the
body, and when any loop iterations that are moved past each
other commute. To formulate these conditions, let a, be the
effect of the x-loop’s bound-expressions and a, similarly for
the y-loop. Let x’, y’ be copies of these iteration variables s.t.
s’ =[x > x'][y — y']s. Let a = Eff [s] and a’ = Eff [s].
Then the reordering condition may be precisely stated as

(Vx,y. MBd(x,y) = Commutes((ax;ay),a))
A Vx,y, x",y". M(Bd(x, 4, x,y') Ax <x' Ay <)
= Commutes(a, a’)

Loop fusion & fission. Another basic loop transforma-
tion is to fuse two loops together, or in reverse to fission
one loop in two. When can we rewrite for x do s;;s; into
(for x do s1);for x do s,? This is possible when the loop
bound commutes with the first statement, and when the
statements that get reordered commute with each other.
Letting a, be the effect of the loop bounds, a; = Eff [s1],
S5 [x = x']s; and a; = Eff [[sﬂ] we can state fission
conditions precisely as

(Vx. MBd(x) = Commutes(ay,a;)) A
(Vx,x". M(Bd(x,x") Ax’ < x) = Commutes(ay, a}))

Loop removal. In order for the rewrite for x dos ~» s
to be safe, the variable x must not be free in s, s must be
idempotent, and the loop must run for at least one iteration.
If a = Eff [s], then these conditions are precisely

(3x. DBdA(x)) A Shadows(a, a)

6 Contextual Analyses

In order to make our program rewriting primitives useful,
we must be able to modify some fragment of a procedure in
a context. In this section, we define one-holed statement con-
texts, define how to process them, and extend equivalences
between statements to account for context.



Exocompilation for Productive Programming of Hardware Accelerators

6.1 Contexts & Derived Quantities
Definition 6.1 (Contexts).
C: Ctxt

e |C;s|s;C|forxine.edoC
| ifethenC
The expression C[s] means a statement resulting from sub-

stituting the hole () in context C with statement s. Similarly,
we can have a Proc context: proc p : 7y assert e do C.

We define three derived quantities from a context/state-
ment pair C/s: (1) CtrIPred [C] s : EffExpr, a predicate ex-
pressing under what conditions the statement s will execute;
(2) PreValG [C] s : EffEnv, capturing the dataflow values
right before executing s; and (3) PostEff [C] s : Effect, telling
us the effect of context code that executes after s. (See sup-
plemental appendix F for details.)

6.2 Context Extension

Using these tools we can get from an argument of the form
s1 = s back up to an argument of the form C[s;] = C[sz].
Thus, we can reach into the body of some procedure and
perform a local rewrite, while maintaining equivalence of
the overall procedure.
Consider a context C with statements s; and s;, as well as
a set of global names £ to consider equivalence “up to.”
Let p = CtrlPred C 54
y = PreValG C s;
a = PostEff C s
L'=M(L-Wrga)
s{,sé = y(s1),y(s2)
If (MPZS{ELSQ)/\D(RdGaﬂLZ(D)
Then C[s;] =4 Clss]

7 Case Studies
7.1 Gemmini

Using Exo, we developed highly-optimized schedules for
Gemmini [16], a DNN accelerator, which significantly out-
performed DNN kernel implementations that had been hand-
written by Gemmini’s designers.

We targeted Gemmini’s default architectural instantiation,
which include a 16x16 systolic array that performs block
matrix multiplications, a 256KB scratchpad for quantized
inputs and weights, and a 64KB accumulator for partial sums.
Gemmini’s instruction set architecture (ISA) includes low-
level instructions to move strided matrices to and from the
scratchpad, as well as instructions to calculate dot products
and perform non-linear activations on this data.

Gemmini also ships with a hand-written C library for com-
mon DNN kernels. This library wraps calls to Gemmini’s low-
level ISA in statically-scheduled, hand-tuned loops. However,
Gemmini can also be built with hardware loop unrollers that
dynamically schedule these kernels to maximize overlap be-
tween data loads, data stores, and matrix multiply operations.
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Figure 4. Performance of Exo-generated code on the Gem-
mini DNN accelerator. Exo-generated code achieves much
higher performance than the DNN kernels hand-written by
the designers of Gemmini (Old-lib). Gemmini’s dynamically-
scheduled hardware loop unrollers (Hardware) outperform
Exo by using additional hardware resources, but therefore
require additional chip area and power consumption.

The hardware implementations typically run much faster
than the software implementations at the cost of hardware
complexity, area, power consumption, and reduced sched-
uling flexibility. The hardware kernels also have fixed loop
orders and dataflows, while the software can adapt these to
different tensor shapes.

We implemented kernels for matrix multiply (MATMUL)
and convolutional (conv) layers in Exo and compared their
performance against Gemmini’s handwritten C library and
hardware loop unrollers. The results are shown in Figures 4a
and 4b, respectively. The tensor shapes in both are selected
from those in a ResNet-50 DNN with a batch size of 4.

On average, Exo-generated code outperforms Gemmini’s
handwritten C library by 3.5X on the MATMUL sizes listed
above, and achieves 67% of the performance of the hardware
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loop unrollers. For the convolutions listed, it runs 2.9% faster
than the handwritten library, and is competitive with the
hardware loop unroller, achieving 79% of its performance.

Note that the hardware loop unrollers use optional hard-
ware resources (increasing area and power consumption)
which are not available to Exo or the handwritten C library.
However, we expect that changing Gemmini’s ISA to support
coarser-granularity instructions and better schedules may
be able to close this performance gap in the future, provid-
ing software-programmable performance comparable to the
inflexible hardware loop-unrollers.

Finally, Exo enabled faster co-design of Gemmini’s hard-
ware-software interface. When we started targeting Gem-
mini, its low-level hardware configuration instructions had
many side effects which made optimizations difficult to rea-
son about, limiting the performance we could achieve. We
worked with the Gemmini hardware designers to disaggre-
gate these configuration instructions into more orthogonal
components; e.g. instructions which configured Gemmini’s
memory units would no longer have any side effects on the
arithmetic units. 46 lines in Gemmini’s handwritten C li-
brary had to be updated after this change, compared to only
5 in Exo’s implementation. Exo made it easier for program-
mers to target fluid and changing hardware targets, which
is common when developing new accelerators.

7.2 x86

As an acid test of the language design, we optimized matrix-
matrix multiplication (SGEMM) for x86, where we can com-
pare against state-of-the-art libraries that run near theoreti-
cal peak compute throughput. We chose to target single-core
x86 with AVX512 extensions.’

Recall that the computation is given by C += A-B where C
is MXN, Ais MxK, and B is KX N. Our Exo implementation
decomposes the problem as follows: at the deepest level
of blocking, a register-blocked micro-kernel accumulates
the inner dimension into a 6 X 64 panel of C, the output
matrix. The level above the micro-kernel handles edge cases
by dispatching to specialized versions of the micro-kernel
for each edge case. Along the bottom, five distinct kernels
are needed as they are always 64 elements wide and never
0 or 6 tall; similarly, four distinct kernels are needed along
the right. The variable tail on the right edge is handled by
masked loads. Finally, one level above this handles staging
memory and blocking.

Every one of these routines was produced by scheduling
and specializing a single, naive implementation of sGEMM
consisting of three nested loops. Unification and equivalent-
call replacement were crucial for avoiding any sort of error-
prone, manual optimization.

2 Although multi-core implementations are valuable, single-core workloads
are representative of practice (ML inference in interactive web services
is often run batch-parallel on single-core kernels), and the baselines are
highly-optimized.
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Figure 5. scEMM performance compared to state-of-the-art
libraries on x86. Benchmarks were run on one core of an
Intel i7-1185G7 running at 4.3GHz.

The performance results are shown in Figure 5. All bench-
marks were run on an Intel i7-1185G7 at 4.3 GHz, a Tiger Lake
CPU with AVX-512 instructions and peak single-precision
floating-point performance of 137.60 GFLOPs. We tested
our SGEMM against the hand-optimized implementations
in Intel’s MKL and the open-source OpenBLAS in two ex-
periments. First (Fig. 5a), we tested square matrices , so
M = N = K. Each implementation performs quite closely
(within measurement noise), between 80-95% of theoretical
peak FLOPS across the parameter range.

Second (Fig. 5b), we tested our sGEMM on a fixed workload,
but with a variable aspect ratio for C. Specifically, we fix the
inner dimension K = 512 and the product MN = 5122, then
we sweep across the ratio M/ N keeping the total FLOP count
identical across experiments. Here, Exo matches OpenBLAS
almost exactly, but MKL pulls ahead of both implementations
when the aspect ratio is very far from square. MKL includes



Exocompilation for Productive Programming of Hardware Accelerators

Impl. ||[N|W | H | IC | OC | % of peak

Exo || 5[82]102]128] 128 40.50%
Halide || 5 | 82| 102 | 128 | 128 | 40.59%
oneDNN || 5 | 82 | 102 | 128 | 128 | 40.55%

Figure 6. Summary of x86 coNv performance results. Single-
threaded performance of various implementations with no
padding and unit stride. A ReLU activation is applied. Bench-
marks were run on an Intel i7-1185G7 running at 4.3GHz on
a single core. The size was chosen to match the previously-
published hand-scheduled Halide implementation. All three
specialize or JIT to tune their code to specific sizes.

more specialized kernels for these extreme aspect ratios,
which would be natural to do with further scheduling in Exo,
as well.

For a final experiment, we tried to replicate the convolu-
tional layer performance of a highly-tuned implementation
provided by the Halide project. State of the art convolutions
specialize or JIT-compile code templates to particular input,
output, and kernel sizes. In Halide’s case, it specialized to
a batch size of 5, a kernel size of 3 X 3, an output size of
80 x 100, and 128 channels for both input and output. There
is no padding and unit stride is used. We configured Intel’s
oneDNN convolution to use these parameters and scheduled
a basic description of convolution in Exo to these parameters,
too. The results are shown in Figure 6. Our coNv performs
almost identically to the optimized baselines.

Overall, we believe these results show that Exo can be
used to achieve performance competitive with state-of-the-
art, highly hand-tuned libraries on x86.

7.3 Code Size

Figure 7 summarizes some statistics regarding the size of
Exo programs relative to hand-written C baselines.

On x86, our SGEMM schedule instantiates many special-
ized micro-kernels for handling loop tail cases at higher
levels. Unlike Gemmini, it does not have SGEMM-specific
hardware to utilize that might reduce the scheduling burden.
Even so, the basic algorithm is expressed in 11 statements
(the function signature, three loops, an accumulation state-
ment, and a handful of size assertions) and 162 scheduling
directives. The generated C code totals 831 source lines of
code This already constitutes a nearly 5x code size reduction,
but a comparison to OpenBLAS (an established open-source
implementation) is even more favorable: at least 1690 source
lines of code® make up that implementation. MKL is more
complex, still.

Although the x86 conv implementation is “only” half the
size of the equivalent generated C, it is much more flexible

3Summing the source line counts of the files mentioned in kernel/-
x86_64/KERNEL . SKYLAKEX for non-transposed SGEMM gives a very loose
lower bound
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App. Platform H C (gen) ‘ C (ref) ‘ Alg. ‘ Sched. ‘
MATMUL | Gemmini 462 313 23 43
CONV Gemmini 8317 450 26 44
SGEMM x86 846 >1,690 | 11 162
CONV x86 102 >5,400 | 23 39

Figure 7. Source code sizes for matrix multiplication and
convolutional layer on Gemmini and x86. Gemmini imple-
ments a fixed-point matrix multiply neural network layer
(with fused ReLU activation), while x86 implements the BLAS
SGEMM kernel. Both implement a standard 2D convolutional
layer with ReLU activation. The Exo sources are counted in
lines of code for the algorithm and number of directives for
the schedule. This is compared to the size of both the Exo-
generated C and state-of-the-art reference implementations
(Gemmini standard library, OpenBLAS, and oneDNN, respec-
tively) in source lines of code.

since other specialized versions can be quickly instantiated
by meta-programming the schedule in Python. The size of
the most comparable open-source implementation, Intel’s
oneDNN, is difficult to measure; just one file in the imple-
mentation measures well over 5000 source lines of code?. The
size of the Halide code and schedule was nearly identical to
ours: 64 relevant lines, compared to 62.

The story is similar for our Gemmini kernels. Both the
matmul and conv Exo implementations are an order of mag-
nitude smaller than the original, handwritten C implementa-
tions. The large generated code sizes reflect the high degree
of loop unrolling in the generated schedules. A real appli-
cation would likely either resort to the C preprocessor to
manage this complexity, or not attempt the transformation
at all (or as aggressively) beyond whatever the C compiler
might choose to do automatically.

8 Related Work

User-Schedulable Languages Exo builds on the idea of
programmer-visible scheduling languages, popularized in
part by Halide and TVM, and used in many recent languages
and systems [5, 8, 18, 21, 24, 28, 29, 34, 35, 41]. The ex-
plicit control over compiler transformations offered by user-
schedulable languages was foreshadowed earlier in many
script- or pragma-based compiler tools in HPC [7, 10, 11, 20,
39], and the definition of parametric optimization spaces in
SPIRAL [15], all of which have been applied to matrix-matrix
multiply and related kernels. The polyhedral loop optimiza-
tion community has simultaneously explored similar ideas
in its own context [3, 4, 32, 36, 37, 40].

Exo builds on attempts to formalize guarantees of safety
and equivalence under scheduling in Halide [30]. In sharp
contrast to Halide, Exo adopts the approach of implementing
scheduling via algebraic rewrites within a core language.

4src/cpu/x64/jit_avx512_common_conv_kernel.cpp
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While prior systems which follow this approach work mostly
on restricted functional languages, where equivalence before
and after rewrites is straightforward (and often not formally
checked) [19, 25, 31], Exo rewrites imperative code, and relies
on effect analyses which reduce to SMT for verification.

Instruction Selection Exo’s instruction/procedure mapping
mechanism is related to the classic problem of instruction
selection [2]. Traditional instruction selection applies local
pattern matching rules to replace small IR fragments with
equivalent instructions, but this struggles to effectively ex-
ploit accelerator instructions which correspond to large, com-
plex program fragments. Recent work applies more powerful
search techniques to target more complex SIMD instructions
using program synthesis [27] and equality saturation [33].
Exo allows substitution of much larger program fragments
with arbitrary equivalent procedures, under explicit pro-
grammer control, and allows these substitutions to be in-
terleaved with further scheduling transformations rather
than confined to the compiler backend. TVM provides a re-
lated “tensorization” directive for replacing loop fragments
with instructions asserted as equivalent [8], but it lacks the
combination of automation and checking provided by Exo’s
unification procedure.

Program Analysis Our framework for verifying equiva-
lence and safety of Exo programs builds on several threads
from type systems and dependence analysis. Dependently-
typed arrays, especially as adapted in the formalization of
Halide, inform our treatment of memory safety [22, 23, 30,
38]. Dependence analysis, especially on static control pro-
grams, forms a common basis for reasoning about the safety
of loop transformations [12, 14]. When combined with rea-
soning about affine indexing, this is the basis of polyhedral
compilation [13]. In contrast, our approach builds on effect
types, as proposed by Gifford and Lucassen [17]. While these
approaches are distinct, the earliest foundations of depen-
dencies for program parallelization define conditions on read
and write sets closely related to our effect analyses [6].

Despite this difference, Exo can be seen as a polyhedral
compiler, in the sense that it is built on linear integer arith-
metic and static control programs. However, the program
analysis used in Exo goes beyond what is normally called
“polyhedral analysis” in two respects: mutable control state
(for which we must rely on an approximating symbolic
dataflow analysis §5.3), and justifying code deletion/insertion
(§5.7, §6.2). Both of these phenomena are necessary to sup-
port scheduling of hardware accelerators that make use of
configuration state. They also forced us to adopt ternary logic
at the base of our program analysis in order to safely prop-
agate the dataflow approximations. If configuration state
were eliminated, Exo would more closely resemble tradi-
tional polyhedral compilers focused purely on reordering
statement instances.
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9 Limitations & Future Work

Multi-Core Semantics Although the instruction replace-
ment directive (§3.4) enables users to access fine-grained
intra-instruction or SIMD parallelism, Exo does not currently
model multi-core parallelism. Naively, we could introduce
a parallel for-loop with OpenMP-like semantics. Our effect
analysis is powerful enough to conservatively check that
different loop iterations touch strictly disjoint regions of
memory. However, there is no single platform independent
approach to threading—which clashes with our design goal
of externalizing hardware backends. A more ambitious solu-
tion would find some way to externalize both the semantics
and primitives associated with different kinds of threading.
(e.g. pthreads, CUDA, MP], etc.)

Alternatively, the .replace() directive applied to a no-
op instruction can serve an escape hatch to, for example,
inject OpenMP pragmas around a given loop. We tested this
on our conv implementation and observed that our new
implementation still matches Halide, while both pull ahead
of oneDNN by 25% (flops) on 8 or more threads.

Automatic Scheduling We have not yet written any au-
toschedulers [1, 9, 26, 42] for Exo, but plan to. We expect Exo
autoscheduling to differ from prior systems in two essential
ways. First, because hardware targets are externalized, id-
iosyncratic, and frequently proprietary, we do not expect any
one single autoscheduling strategy to work across all accel-
erators. Second, because Exo schedules are composable (as
successive rewrites) rather than monolithic, Exo autosched-
ulers can also be developed compositionally. This opens up
the possibility of developing libraries of re-usable mid-level
scheduling operators built from semi-automated combina-
tions of primitive scheduling operators. With time, whole
suites of optimization passes could be written—entirely ex-
ternal to the Exo compiler.
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