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Abstract—Applying deep learning to object detection provides
the capability to accurately detect and classify complex objects in
the real world. However, currently, few mobile applications use
deep learning because such technology is computation-intensive
and energy-consuming. This article, to the best of our knowl-
edge, presents the first detailed experimental study of a mobile
augmented reality (AR) client’s energy consumption and the
detection latency of executing Convolutional Neural Networks
(CNN) based object detection, either locally on the smartphone
or remotely on an edge server. In order to accurately measure the
energy consumption on the smartphone and obtain the break-
down of energy consumed by each phase of the object detection
processing pipeline, we propose a new measurement strategy.
Our detailed measurements refine the energy analysis of mobile
AR clients and reveal several interesting perspectives regarding
the energy consumption of executing CNN-based object detec-
tion. Furthermore, several insights and research opportunities are
proposed based on our experimental results. These findings from
our experimental study will guide the design of energy-efficient
processing pipeline of CNN-based object detection.

Index Terms—Object detection, augmented reality, edge com-
puting, energy consumption, energy measurement.

I. INTRODUCTION

W ITH the advancement in Deep Learning in the past few
years, we are able to create complex machine learn-

ing models for detecting objects in real-time video frames.
This advancement has the potential to make Augmented
Reality (AR) devices highly intelligent and enable industries
to favor machine learning models with superior performance.
For example, AR automotive applications (e.g., deep learning-
based AR head-up-displays (HUDs)) are promised to help
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increase road safety, bring intuitive activities to driving, and
enhance driving experience in the future. Meanwhile, as
people nowadays are using their smartphones to a larger
extent and also expect increasingly advanced performance
from their mobile applications, the industry needs to adopt
more advanced technologies to meet such expectations. One
such adoption can be the use of deep learning-based AR
applications.

However, few mobile AR applications use deep learn-
ing today because of inadequate infrastructure support (e.g.,
limited computation capacity and battery resource of smart-
phones). Deep learning algorithms are computation-intensive,
and executed locally in ill-equipped smartphones may not
provide acceptable latency for end users. For instance, in
Deepmon [1], it takes approximately 600 ms for small and
medium convolutional neural network (CNN)1 models and
almost 3 seconds for large CNN models to process one frame,
which is obviously not acceptable for real-time processing [2].

Two research directions have emerged to address this chal-
lenge. The first direction is to tailor the computation-intensive
deep learning algorithms to be executed on smartphones. For
instance, Tiny-YOLO [3] that has only 9 convolutional lay-
ers (24 convolutional layers in a full YOLO network) is
developed and optimised for use on embedded and mobile
devices. TensorFlow Lite [4] is TensorFlow’s lightweight solu-
tion for embedded and mobile devices. It enables low-latency
inference of on-device machine learning models with a small
binary size and fast performance supporting hardware accel-
eration. However, the reduction of the inference latency is
at the cost of the precision degradation of the detection.
The other research direction that is widely used in running
deep learning in smartphones is to transfer all the computa-
tion data to more powerful infrastructures (e.g., the remote
cloud and edge servers) and execute deep learning algorithms
there [5]–[7]. Such offloading-based solutions can reduce the
inference latency and extend smartphones’ battery life only
when the network access is reliable and sufficiently fast.

Our Motivation: Although the complexity and capabili-
ties of smartphones continue to grow at an amazing pace,
smartphones are expected to continually become lighter and
slimmer. When combined with energy-hungry deep learning-
based applications, the limited battery capacity allowed by

1A CNN is a deep learning algorithm which has demonstrated great success
on image recognition, image classifications, object detection, etc.
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these expectations now motivates significant investment into
smartphone power management research. In order to bet-
ter investigate and understand the relationship between the
energy consumption and the performance of deep learning-
based applications such as CNN-based object detection, we
propose the following questions:

RQ 1: How is energy consumed when a CNN-based object
detection application is executed locally on a mobile AR
client? In order to help a mobile AR device to extend its bat-
tery life, conducting a comprehensive measurement study is
significantly important.

RQ 2: Does offloading the object detection tasks to a
powerful infrastructure significantly decrease both the energy
consumption and latency? When a CNN-based object detec-
tion application is executed remotely, communication latency
is non-negligible and unstable, especially in wireless networks.
Previous work [8] shows that smartphone’s radio interfaces
account for up to 50% of the total power budget. In addition,
improved communication speeds generally come at the cost of
higher power consumption [9].

RQ 3: Besides the network condition, what else impacts the
energy consumption and latency when executed remotely, and
how? Executing object detection on a remote edge server is
one of the most commonly used approaches to assist resource-
constrained smartphones in improving their energy efficiency
and performance [10]. Therefore, to further improve the effi-
ciency for executing object detection remotely, understanding
the factors that may impact the detection performance is
critical.

Our Contributions: In this article, we conduct, to the best
of our knowledge, the first comprehensive experimental study
that investigates how a mobile AR client’s energy efficiency,
latency, and detection accuracy are influenced by diverse fac-
tors (e.g., CPU governor, CNN model size, and image post
processing algorithm) in both local and remote executions.
We make the following contributions:

1) Developing two Android benchmark applications that
perform real-time object detections: one is running a
light CNN model locally on the smartphone and the
other is running a large CNN model remotely on an
edge server.

2) Measuring and evaluating the energy consumption and
latency of each phase in the implemented end-to-end
CNN-based object detection processing pipeline. Both
local and remote executions are investigated.

3) Comparing the local execution and the remote execution
in terms of energy efficiency, latency, detection accuracy,
etc.

4) Proposing several insights which can potentially guide
the future design of energy-efficient mobile AR systems
based on our experimental study.

The rest of this article is organized as follows. Section II
discusses related work. Section III describes our proposed
methodology and key performance metrics that we consider
in this study. Experimental results of the local execution and
remote execution are presented in Section IV and Section V,
respectively. Finally, Sections VI and VII discusses threats to
validity and concludes the paper, respectively.

II. RELATED WORK

Energy Measurement: With the popularity of energy con-
strained mobile devices (e.g., smartphone, AR glass, and
smartwatch), a number of research has investigated how the
energy is consumed in mobile devices when executing applica-
tions through measurement studies [11]–[13]. Reference [14]
proposes and implements a measurement framework that
can physically measure the energy consumption of mobile
devices and automate the reporting of measurement back to
researchers. References [15], [16] study the energy consump-
tion of GUI colors on OLED displays. In addition, the energy
efficiency of network protocols such as HTTP on mobile
devices has been discussed in [17], [18]. However, very few
energy measurement studies focus on running deep learning-
based applications on mobile devices, especially mobile AR
applications. Although [19] discusses and compares the energy
efficiency of different machine learning applications in terms
of algorithm, implementation, and operating system (OS),
our work focuses on a specific application, object detec-
tion, and conducts a comprehensive study on (i) energy
efficiency comparison between local and remote executions
as well as (ii) how hardware and software configurations
impact the energy efficiency of executing object detections
on smartphones.

Energy Modeling: Energy modeling has been widely used
for investigating the factors that influence the energy consump-
tion of mobile devices. References [20]–[24] propose energy
models of WiFi and LTE data transmission with respect to the
network performance metrics, such as data and retransmission
rates. References [25]–[29] propose multiple power consump-
tion models to estimate the energy consumption of mobile
CPUs. Tail energy caused by different components, such as
disk, Wi-Fi, 3G, and GPS in smartphones has been investigated
in [11], [29]. However, none of them can be directly applied
to estimate the energy consumed by mobile AR applications.
This is because mobile AR applications introduce a variety of
(i) energy consuming components (e.g., camera sampling and
image conversion) that are not considered in the previous mod-
els and (ii) configuration variables (e.g., computation model
size and camera sample rate) that also significantly influence
the energy consumption of mobile devices.

CNN: In recent years, applying CNNs to object detection
has been proven to achieve excellent performance [1], [3],
[30]–[33]. In [34], [35], the speed and accuracy trade-offs of
various modern CNN models are compared. However, none
of these works considered the performance of running CNNs
on smartphones. In addition, although existing papers have
extensively investigated how to run CNN models on mobile
devices, including model compression of CNNs [36], GPU
acceleration [1], and only processing important frames [5],
none of these works considered the energy consumption of
executing CNNs on smartphones. In [37], a small number
of measurements on the battery drain of running a CNN on
a powerful smartphone are conducted. However, its battery
drain results are reported by the Android OS that can only
provide coarse-grained results. For example, it only shows
the total battery usage of running a CNN on a smartphone
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for 30 minutes. In addition, it only studies running CNNs on
smartphones with high computation capabilities and the exper-
imental results are not comparable to smartphones with poor
computation capabilities.

Computation Offloading: Most existing research on com-
putation offloading focuses on how to make offloading
decisions. References [38]–[41] coordinate the scheduling
of offloading requests for multiple applications to fur-
ther reduce the wireless energy cost caused by the long
tail problem. Reference [42] proposes an energy-efficient
offloading approach for multicore-based mobile devices.
Reference [43] discusses the energy efficiency of computation
offloading for mobile clients in cloud computing. However,
these solutions cannot be applied to improving the energy
efficiency of mobile devices in mobile AR offloading cases.
This is because (i) a variety of pre-processing tasks in mobile
AR executions, such as camera sampling, screen rendering,
and image conversion, are not taken into account and (ii)
besides the latency constraint that is considered in most exist-
ing computation offloading approaches, detection accuracy is
also a key performance metric, which must be considered
while designing a mobile AR offloading solution. In addition,
although some existing work proposes to study the tradeoffs
between the mobile AR service latency and detection accu-
racy [35], [44], [45], none of them considered (i) the energy
consumption of the mobile AR device and (ii) the whole
processing pipeline of mobile AR (i.e., starting from camera
sampling to obtaining detection results).

CPU Frequency Scaling: Our work is also related to CPU
frequency scaling. For modern mobile devices, such as smart-
phones, CPU frequency and the voltage provided to the CPU
can be adjusted at run-time, which is called Dynamic Voltage
and Frequency Scaling (DVFS). Prior work [38], [46]–[48]
proposes various DVFS strategies to reduce the mobile device
energy consumption under various applications, such as video
streaming [38] and delay-tolerant applications [47]. However,
to the best of our knowledge, there have been no efforts fac-
toring in the energy efficiency of mobile AR applications in
the context of mobile device DVFS.

III. PROPOSED METHODOLOGY

This section describes the overview of our developed
testbed for experimental studies, implemented benchmark
applications, our proposed energy measurement process, along
with the key performance metrics defined to evaluate the
performance of the CNN-based object detection processing
pipeline.

A. Overview of the Testbed

As shown in Fig. 1, our testbed consists of three major
components: mobile AR client (e.g., smartphone), edge server
attached to a WiFi access point (AP), and power monitor.

Mobile AR Client: We implement a mobile AR client on a
rooted Nexus 6 smartphone running Android 5.1.1 OS. It is
equipped with Qualcomm Snapdragon 805 SoC (System-on-
Chip). The CPU frequency ranges from 0.3 GHz to 2.649 GHz.

Fig. 1. Overview of the developed testbed.

Edge Server: The edge server is developed to process
received image frames sent from a smartphone and send the
detection results back to the smartphone. We implement an
edge server on an Nvidia Jetson AGX Xavier which is con-
nected to a WiFi AP through a 1Gbps Ethernet cable (the
length of the cable is less than 1 meter). The transmission
latency between the server and AP can be ignored. Two major
modules are implemented on the edge server. The first one
is the communication service handler module which performs
authentication and establishes a TCP socket connection with
the mobile AR client. This module is also responsible for dis-
patching the detection results to the corresponding smartphone.
The second one is the object detection module that is designed
based on a custom framework called Darknet [49] with GPU
acceleration and runs YOLOv3 [3], a large neural network
model with 24 convolutional layers. The YOLOv3 model used
in our experiments is trained on COCO dataset [50] and can
detect 80 classes.

Power Monitor: To measure the power consumption, we use
an external power monitor, a Monsoon Power Monitor [51], to
provide power supply for the test smartphone. Different from
old smartphone models, modern smartphones like Nexus 6
have very tiny battery connectors, making it very challenging
to connect the power monitor to them. To solve this problem,
we modify the battery connection of Nexus 6 by designing a
customized circuit and soldering it to the smartphone’s power
input interface. In addition, the power measurements are taken
with the screen on, with the Bluetooth/LTE radios disabled,
and with minimal background application activity, ensuring
that the smartphone’s base power is low and does not vary
unpredictably over time. For the measurements of the power
consumption in local execution, the base power is defined
as the power consumed by the smartphone when its WiFi
interface is turned off. For the measurements of the power
consumption in remote execution, the base power is defined
as the power consumed when the smartphone is connected to
the AP without any data transmission activity.

B. Benchmark Applications

Three benchmark applications are implemented in this arti-
cle. The first application is executing CNN-based object
detection on tested smartphones, defined as local execution.
The second application is executing CNN-based object detec-
tion on our equipped edge server, defined as remote execution.
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Fig. 2. Processing pipeline of the CNN-based object detection application implemented in this paper.

Fig. 3. The diagrams of the pipelines for benchmark applications.

Figs. 2 and 3 provide an overview of the processing pipeline of
these two benchmark applications implemented in this article,
composed of five pipelined operations: 1) image generation;
2) preview; 3) image conversion; 4) local/remote execution;
and 5) detection result rendering. These two benchmark appli-
cations share the same pipelined operations except Phase
4 (i.e., local execution (yellow box) and remote execution
(green box)). The third application only executes the image
generation and preview (i.e., Phase 1 and 2).

Image Generation (Phase 1): The input to this phase is con-
tinuous light signal and the output is an image frame. In this
phase, the image sensor first senses the intensity of light and
converts it into an electronic signal. A Bayer filter is respon-
sible for determining the color information. Then, an image
signal processor (ISP) takes the raw data from the image senor
and converts it into a high-quality image frame. The ISP per-
forms a series of image signal processing operations to deliver
a high-quality image, such as noise reduction, color correction,
and edge enhancement. In addition, the ISP conducts auto-
mated selection of key camera control values according to
the environment (e.g., auto-focus (AF), auto-exposure (AE),
and auto-white-balance (AWB)). The whole image genera-
tion pipeline in our benchmark applications is constructed
based on android.hardware.camera2 which is a pack-
age that provides an interface to individual camera devices
connected to an Android device. CaptureRequest is a
class in android.hardware.camera2 that constructs the
configurations for the capture hardware (sensor, lens, and
flash), the processing pipeline, and the control algorithms.
Therefore, in our implemented benchmark applications, we
use CaptureRequest to set up image generation con-
figurations. For example, CaptureRequest.CONTROL_
AE_MODE_OFF disables AE and CaptureRequest.
CONTROL_AE_TARGET_FPS_RANGE sets the camera FPS

(i.e., the number of frames that the camera samples per sec-
ond). In this article, all default image processing operations
are enabled and the camera FPS is set to 15 fps.

Preview (Phase 2): The input to this phase is a lat-
est generated image frame with YUV_420_888 format2

(i.e., the output of Phase 1) and the output is a camera
preview rendered on a smartphone’s screen with a pre-
defined preview resolution. In this phase, the latest generated
image frame is first resized to the desired preview resolu-
tion and then buffered in a SurfaceTexture which is
a class capturing frames from an image stream (e.g., cam-
era preview or video decode) as an OpenGL ES texture.
Finally, the camera preview frame in SurfaceTexture
is copied and sent to a dedicated drawing surface,
SurfaceView, and rendered on the screen. In our bench-
mark applications, the preview resolution is set via method
SurfaceTexture.setDefaultBufferSize(). In this
article, the preview resolution is set to 800 × 600 pixels (dif-
ferent Android devices may have different supported preview
resolution sets).

Image Conversion (Phase 3): The input to this phase is a lat-
est generated image frame with YUV_420_888 format (i.e.,
the output of Phase 1) and the output is a cropped RGB image
frame. In this phase, in order to further process camera cap-
tured images (i.e., object detection), an ImageReader class
is implemented to acquire the latest generated image frame,
where ImageReader.OnImageAvailableListener
provides a callback interface for being notified that a
new generated image frame is available and method
ImageReader.acquireLatestImage() acquires the
latest image frame from the ImageReader’s queue while

2For android.hardware.camera2, YUV_420_888 format is recom-
mended for YUV output [52].
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Fig. 4. An example of local clock synchronization.

dropping an older image. Additionally, the desired size and
format of acquired image frames are configured once an
ImageReader is created. In our benchmark applications,
the desired size and the preview resolution are the same
(800 × 600 pixels) and the image format in ImageReader
is set to YUV_420_888. Furthermore, an image converter is
implemented to convert the YUV_420_888 image to an RGB
image, because the input to a CNN-based object detection
model must be an RGB image. Two image conversion
methods are implemented in our benchmark applications: one
is Java-based and the other is C-based (we compare these
two methods in Section V-D). Finally, the converted RGB
image is cropped to the size of the CNN model for object
detections.

Local/Remote Execution (Phase 4): The input to this phase
is a converted and cropped image frame (i.e., the output of
Phase 3) and the output is an object detection result. In our
benchmark applications, the object detection result contains
one or multiple bounding boxes with labels that identify the
locations and classifications of the objects in an image frame.
Each bounding box consists of 5 predictions: (x, y, w, h) and a
confidence score [3]. The (x, y) coordinates represent the cen-
ter of the box relative to the bounds of the grid cell. The (h, w)
coordinates represent the height and width of the bounding box
relative to (x, y). The confidence score reflects how confident
the CNN-based object detection model is on the box contain-
ing an object and also how accurate it thinks the box is what
it predicts. (i) In the local execution, the benchmark applica-
tion is implemented with a light framework called TensorFlow
Lite [4] which is TensorFlow’s lightweight solution for embed-
ded and mobile devices. It runs a small CNN model, called
MobileNetv1 [36]. In order to run MobileNetv1 with differ-
ent frame resolutions in TensorFlow Lite on smartphones, we
convert pre-trained MobileNetv1 SSD models to TensorFlow
Lite models (i.e., optimized FlatBuffer format identified by
the .tflite file extension). (ii) In the remote execution, the
benchmark application transmits the converted and cropped
image frame to the edge server through a wireless TCP socket
connection in real time. To avoid having the server process
stale frames, the application always sends the latest generated
frame to the server and waits to receive the detection result
before sending the next frame for processing.

Detection Result Rendering (Phase 5): The input to this
phase is the object detection result of an image frame (i.e.,
the output of Phase 4) and the output is a view with overlaid
augmented objects (specifically, overlaid bounding boxes and
labels in this article) on top of the physical objects (e.g., a
cup).

C. Energy Measurement Strategy

In order to measure the energy consumption of running
those two benchmark applications on a smartphone and obtain
the breakdown of energy consumed by each phase presented
in Fig. 2, we design a measurement strategy. The key idea
of the proposed measurement strategy is synchronizing the
recorded time in log files (saved by benchmark applications in
the tested Android smartphone) and power measurement data
(exported by the Monsoon power monitor). However, this is
very challenging, because the tested smartphone and the power
monitor do not share the same global clock. For example,
in Android smartphones, the recorded time of an event can
be counted by a system clock, uptimeMillis,3 where the
clock is counted in milliseconds since the system is booted
(e.g., if an event happens 100 milliseconds after the system
is booted, the exported timestamp of the event in the log file
is 100). On the other hand, in the power monitor, the times-
tamp is counted in milliseconds since the power measurement
is launched.

Local Clock Synchronization & Event Localization: To syn-
chronize the exported timestamps of the Android smartphone
and the power monitor, we propose to set up a flag event
that can be tracked easily and accurately in both of them.
The touch event that launches the benchmark application is
selected as the flag event to synchronize the timestamps. For
example, Fig. 4(a) illustrates the power consumption of the
tested smartphone recorded by a Monsoon power monitor. The
power measurement is launched at time 0 and the smartphone
only consumes the base power, described in Section III-A.
Then, we touch the icon of the benchmark application at time
0.192s (i.e., the moment that the benchmark application is
launched). On the other hand, Fig. 4(b) depicts the times-
tamps recorded by the Android kernel4 when the touch event
is triggered, which denotes that the touch event happens at
time 4716.264801s. After the timestamp of the flag event is
acquired, the local clocks in the tested smartphone and the
power monitor can be synchronized easily and accurately. For
example, if the start and end time for executing an image con-
version are recorded as 4726.136s and 4726.612s in the log
file generated by the benchmark application, the power con-
sumption of the image conversion can be localized between

3This clock stops when the system enters deep sleep (CPU off, display dark,
and device waiting for external input), but is not affected by clock scaling,
idle, or other power saving mechanisms. Additionally, it is guaranteed to be
monotonic, and is suitable for interval timing when the interval does not span
device sleep.

4These timestamps are also generated by clock uptimeMillis but with
microsecond precision.
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Fig. 5. An example of event localization in the collected power measurement data (CPU governor: Interactive, remote execution with C-based image
conversion method).

Fig. 6. Power measurement and valid data collection process.

Fig. 7. A fragment of the power consumption of image generation and preview and base (CPU governor: Interactive).

10.063s and 10.539s in the power measurement data recorded
by the power monitor. Fig. 5 presents an example of event
localization in the collected power measurement data through
our proposed strategy.

Script for Capturing the Touch Event: Since the touch
event happens before the benchmark application launching,
the function of capturing the touch event cannot be directly
added into the benchmark application. In addition, the tested
smartphone’s USB interface is automatically disabled when
the power measurement starts. Thus, the smartphone can-
not be instructed to start or terminate a touch event listener
through transmitting adb shell commands by a computer.
Considering the above mentioned limitations, we design a
lightweight application and implement it to record touch
events. The function of this application is to run a touch
event listener in the background using an adb shell com-
mand getevent -lt /dev/input/event0. We evalu-
ate whether running this background touch event listener will
impact the power consumption of benchmark applications. The
measurement results show that the average power consumption
of the smartphone is 3.721W (running the remote execu-
tion benchmark application with the touch event listener) and
3.704W (running the remote execution benchmark application
without the touch event listener), where the two measurements
are under the same conditions and each measurement runs for
5 minutes. Therefore, the result demonstrates that our back-
ground touch event listener has little impact on the power
consumption of benchmark applications.

Cooling-off Period: Furthermore, in order to mitigate the
interference from screen touching, application launching,

camera initializing, and CNN model loading in the collected
power measurement data, a cooling-off period is set up, as
shown in Fig. 6. In the cooling-off period, benchmark appli-
cations only executes Phases 1 and 2 for generating a fixed
number of image frames (e.g., 150 frames in this article). After
the cooling-off period, benchmark applications start execut-
ing the whole processing pipeline and generating valid power
consumption data.

Power/Energy Consumption Dissection: Fig. 3 illustrate that
image generation and preview (Phases 1 and 2), image con-
version and local/remote execution (Phases 3 and 4), and base
(e.g., OS and screen) are executed in parallel. The workload of
running our benchmark applications on the tested smartphone
is composed of these three parallel executions. In addition, the
power consumption is increased by the workload increment.
Therefore, our strategy for dissecting the power consumption
of each phase is:

1) Measuring the power consumption of the whole pro-
cessing pipeline, image generation and preview (Phases
1 and 2),5 and base separately with the same configura-
tions (e.g., CPU governor, camera sampling rate, and
preview resolution) and conditions (e.g., background
activity and screen brightness). Figs. 5 and 7 present
examples of how the power consumption of these three
parallel executions look like.

5In order to measure the power consumption of phases 1 and
2, we implement an application that only executes image generation
and preview, where it uses the same Android camera package (i.e.,
android.hardware.camera2) and camera configurations (e.g., preview
resolution) with our benchmark applications.
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2) Isolating the power consumption of (i) image generation
and preview + image conversion + base, (ii) image gen-
eration and preview + local/remote execution + base,
and (iii) image generation and preview + others + base
through the proposed clock synchronization and event
localization strategy.

3) Obtaining the power consumption of image conver-
sion, local/remote execution, and others by subtracting
the average power consumption of image generation
and preview and base from cases (i), (ii), and (iii),
respectively.

4) Obtaining the energy consumption of each phase via
calculating the integral of the power consumption over
the latency. For example, the energy consumption of an
image conversion is the sum of its power consumption
within an image conversion latency.

Validation: Paper [13] observed that a single energy mea-
surement could be misleading due to the variability in energy
consumption. Therefore, in this article, all of our measurement
experiments are repeated multiple times, and each energy con-
sumption and latency result shown in Sections IV and V is
the mean value of completing 200 object detections. Since we
observe that the variance of the mean value of the measured
data, such as power consumption, per frame latency, and per
frame energy consumption, is negligible after the number of
the collected object detections is over 200 in all of our mea-
surement experiments, collecting measurement results based
on 200 object detection executions is good enough for achiev-
ing stable and accurate results. Furthermore, in order to ensure
that each measurement is launched with a clean environment,
the benchmark application is re-installed on the tested smart-
phone through Android Studio and the data generated during
the execution such as log files are transferred to a workstation
and removed from the smartphone after each measurement,
even though the configuration of the benchmark application
does not require to be changed in the next measurement.

D. Key Performance Metrics

We define three performance metrics to evaluate the
performance of the CNN-based object detection processing
pipeline implemented in this article:

Per Frame Latency: The per frame latency is the total time
needed to obtain the detection results on one image frame
(i.e., usually shown as one or multiple bounding boxes that
identify the locations and classifications of the objects in a
frame). In this article, it is defined as the time period from
the moment the Image Reader acquires one camera captured
image frame to the moment the bounding boxes are drawn on
the mobile AR client’s screen, as depicted in Fig. 2. In the
local execution, the per frame latency includes the time used
for converting the YUV frame to the RGB frame, cropping the
frame to the fitted resolution k × k pixels, and executing CNN,
defined as inference latency, on the smartphone. In the remote
execution, the per frame latency includes, besides the image
conversion and crop latency that are both executed locally on
the smartphone, the communication latency (i.e., transmitting

the frame and receiving the results) and the inference latency
on the edge server.

Per Frame Energy Consumption: The per frame energy con-
sumption is the total amount of energy consumed in a mobile
AR client by successfully performing the object detection on
one image frame. In the local execution, the per frame energy
consumption includes the energy consumed by camera sam-
pling (i.e., image generation), screen rendering (i.e., preview),
image conversion, inference, and operating system (i.e., base).
In the remote execution, it includes the energy consumed by
camera sampling, screen rendering, image conversion, com-
munication, and operating system. In a per frame energy
consumption, the image generation and preview are usually
executed multiple times (depends on the length of the per
frame latency), while the image conversion and local/remote
execution are executed only once.

Detection Accuracy: The mean average precision (mAP) is a
commonly used performance metric in object detection. Better
performance is indicated by a higher mAP value. Specifically,
the average precision [53] is computed as the area under the
precision/recall curve through numerical integration. The mAP
is the mean of the average precision across all classes.

IV. EXPERIMENTAL RESULTS OF LOCAL EXECUTION

RQ 1: How is energy consumed when a CNN-based object
detection application is executed locally on a mobile AR
client? To answer this question, in this section, we describe
our efforts towards measuring and understanding the energy
consumption and the performance of running CNN models on
smartphones locally. We begin by measuring the per frame
latency and the per frame energy consumption of execut-
ing CNN-based object detection under different smartphone’s
CPU governors in Section IV-A. In addition, we explore the
impact of the CNN model size on the per frame latency
and the per frame energy consumption in Section IV-B.
Lastly, in Section IV-C, we summarize the insights from our
measurement studies and discuss potential research opportu-
nities for improving the energy efficiency of locally executing
CNN-based object detection on smartphones.

A. The Impact of CPU Governor

CPU Governor6: Dynamic voltage and frequency scaling
(DVFS) is a technique commonly used for dynamically adjust-
ing the voltage and frequency of a mobile device’s CPU in
order to balance the trade-off between the power consump-
tion of the device and the required performance. In order
to offer DVFS, the CPU provides a set of valid voltages
and frequencies that can be dynamically selected by a power
management policy which is usually called a CPU gover-
nor. Different CPU governors adjust the CPU voltage and
frequency based on variant criteria such as CPU usage. The
six most popular CPU governors are described as follows:

• Conservative governor: It adjusts the CPU frequency
based on the current usage and it biases the mobile device

6We change the Android smartphone’s CPU governor manually by writ-
ing files in /sys/devices/system/cpu/[cpu#]/cpufreq/ scal-
ing_governor virtual file system with root privilege.
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Fig. 8. CPU governor vs. per frame latency (CNN model size: 300 × 300 pixels).

to prefer the lowest possible CPU frequency as often as
possible. In other words, a large and persistent load can
be placed on the CPU only before the CPU frequency is
raised. Thus, the conservative governor is good for the
mobile device’s battery life.

• Ondemand governor: It adjusts the CPU frequency based
on the current usage, which is similar to the conservative
governor. However, the ondemand governor immediately
boosts the CPU to the highest possible frequency when
there is a load on the CPU and switches back to the lowest
possible frequency when the CPU is idle rather than grad-
ually increases and decreases the CPU frequency. Thus, it
offers excellent interface fluidity due to its high-frequency
bias.

• Interactive governor: It is the default CPU governor for
most android mobile devices. Similar to conservative and
ondemand governors, it sets the CPU frequency based on
the current usage. However, the interactive governor is
designed for latency-sensitive and interactive workloads,
so it is more aggressive about scaling the CPU speed up
in response to CPU-intensive activities.

• Userspace governor: It allows the user or any userspace
program to set the CPU to a specific frequency (i.e., the
CPU frequency is set to 1.497 GHz in this work), whereas
it only allows the CPU frequency to be set to predefined
fixed values.

• Powersave governor: It sets the CPU statically to the
lowest possible frequency to minimize the energy con-
sumption of the mobile device’s CPU.

• Performance governor: It sets the CPU statically to the
highest possible frequency to maximize the performance
of the mobile device’s CPU.

Per Frame Latency: We first seek to investigate how the
CPU governor impacts the per frame latency of object detec-
tion in the local execution scenario, where a CNN model is
executed on a smartphone and the model size is 300 × 300
pixels. The experimental results are shown in Fig. 8, where
Figs. 8(a)–8(f) depict the frequency variations of the tested
smartphone’s CPUs and Figs. 8(g)–8(l) illustrate the latency

of each phase in the object detection processing pipeline.
We show the latency of the two highest time-consuming
phases, image conversion and inference latency, which comes
up to 95% of the per frame latency. We observe that (1) as
described above, the conservative governor provides a grace-
ful CPU frequency increase, which causes temporarily high
per frame latency and low frame per second (FPS) when the
object detection application is launched, as shown in Figs. 8(a)
and 8(g). This observation demonstrates that the conservative
governor may not be suitable for CNN-based object detection
applications because object detection requires a high fluidity
to interact with the user. (2) Although both ondemand and
interactive governors provide aggressive responses to the exe-
cution of object detection, as depicted in Figs. 8(b) and 8(c),
the ondemand governor offers a relatively steadier latency
performance than the interactive governor due to its high-
frequency bias. In Figs. 8(d), 8(e), and 8(f), the CPU is set to a
user-defined, the lowest, and the highest possible frequencies,
respectively. (3) It is not surprising to find that the pow-
ersave governor is the worst-performing governor in terms
of the latency, where its per frame latency is almost eight
times higher than that of the performance governor. (4) The
performance governor outperforms other presented CPU gov-
ernors in terms of latency, and the measured average per frame
latency is shown in Table I.

Per Frame Energy Consumption: We next examine how
the CPU governor impacts the per frame energy consumption
of executing object detection on the smartphone. The exper-
imental results are shown in Fig. 9, where Figs. 9(a)–9(f)
depict the power consumption; Figs. 9(g)–9(l) illustrate the
average per frame energy consumption; and Figs. 9(m)–9(r)
depict the average percentage breakdown of energy consumed
by each phase in the processing pipeline. We make the
following observations. (5) The performance governor con-
sumes the highest power consumption, as shown in Fig. 9(f),
because the processors always run with the highest possible
CPU frequency. Although it is capable of providing the best
latency performance, continuously run with the highest CPU
frequency may cause the smartphone overheating and trigger
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Fig. 9. CPU governor vs. power and average per frame energy consumption (CNN model size: 300 × 300 pixels).

TABLE I
LATENCY RESULTS OF THE LOCAL EXECUTION WITH DIFFERENT CPU GOVERNORS

TABLE II
PER FRAME ENERGY CONSUMPTION RESULTS OF THE LOCAL EXECUTION WITH DIFFERENT CPU GOVERNORS

CPU throttling mechanisms to avoid thermal emergencies by
sacrificing the performance. (6) Interestingly, the performance
governor provides the lowest per frame energy consumption,
while the powersave governor offers the highest per frame
energy consumption, as shown in Table II. This observation
indicates a critical trade-off between the battery life (i.e.,
power consumption) and per frame energy consumption in
CNN-based object detection applications.

In order to dissect the energy drain through different pro-
cessing pipeline phases, we break down the per frame energy
consumption as follows: image generation and preview, infer-
ence, image conversion, base, and others. We find that (7)
the image generation and preview phase always contributes
the highest energy consumption (i.e., approximately 45.3% -
70.0%). The reason it consumes considerably high energy is
executing the 3A (i.e., AF, AE, and AWB) and multiple fine-
grained image post processing algorithms (e.g., noise reduction

(NR), color correction (CC), and edge enhancement (EE)) on
ISP. These sophisticated algorithms are designed to make an
image that is captured by the smartphone camera look perfect.
However, is it always necessary for the camera captured frame
to be processed by all of those energy-hungry image process-
ing algorithms in order to achieve a successful object detection
result? In addition, the number of frames captured by the cam-
era per second is a fixed value (e.g., 24 or 30 frames/second)
or in a range (e.g., [7, 30] frames/second), which is controlled
by the AE algorithm. However, due to the limited computa-
tion capacity of smartphones, usually the detection FPS is far
slower than the camera capture frame rate. On the other hand,
the CNN always extracts the latest camera captured frame,
which indicates that, from the perspective of the energy effi-
ciency of the object detection pipeline, capturing frames with a
fast rate is unnecessary and energy-inefficient. Therefore, both
raising CPU frequency and decreasing camera capture frame
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Fig. 10. CNN model size vs. CPU frequency & latency (CPU governor: interactive).

Fig. 11. CNN model size vs. latency (CPU governor: performance).

rate are efficient approaches to reduce the energy consumption
of image generation and preview.

Besides the energy consumption of image generation and
preview, inference and image conversion phases consume a
large amount of energy, as depicted in Fig. 9 and Table II. (8)
Although a low CPU frequency incurs high per frame energy
consumption, it decreases the energy consumption of both
inference and image conversion phases. This observation indi-
cates that there is a trade-off between the energy consumption
reduction of image generation and preview phases and infer-
ence and image conversion phases. For example, raising the
CPU frequency can decrease the energy consumption of image
generation and preview phases but concurrently increases the
energy consumption of inference and image conversion phases.
Furthermore, (9) the conservative governor provides the low-
est base energy consumption, which demonstrates that existing
CPU governors are capable of scaling CPU frequency for the
workload of the smartphone’s operating system.

B. The Impact of CNN Model Size

CNN Model Size: Recently, CNN-based methods have
become the leading approach for achieving high quality object
detection. The CNN model size determines the detection accu-
racy (i.e., mAP). Increasing the CNN model size always results
in a gain of mAP [54], [55]. In this section, we seek to inves-
tigate how the CNN model size impacts the per frame latency
and energy consumption of executing the object detection on
the smartphone.

Per Frame Latency: In this experiment, we implement the
MobileNets [36] with six different CNN model sizes (i.e., from
100 × 100 to 600 × 600 pixels). Figs. 10 and 11 depict
the latency results of running CNN-based object detection
with different model sizes, where the smartphone works on
interactive and performance governors, respectively. We make
the following observations. (10) Running a large CNN model
increases the average CPU frequency under the interactive
governor, as shown in Figs. 10(a)–10(f). This observation
demonstrates that a larger CNN model will generate more
workload on the smartphone’s CPU. (11) A larger CNN
model always results in a higher per frame latency for
both interactive and performance governors, as depicted in
Figs. 10(g) and 11(a), where the per frame latency of the
interactive and performance boosts 220% and 247%, respec-
tively, when the CNN model size increases from 100 × 100
to 600 × 600 pixels. (12) The per frame latency increment
is mainly from the raise of the inference latency, while the
image conversion latency does not vary much when the CNN
model size increases, as illustrated in Figs. 10(h), 10(i), 11(b),
and 11(c). This is because no matter what the CNN model
size k × k is configured, every YUV frame is converted
to an RGB frame with the preview resolution k1 × k2 first.
After the image conversion is completed, the RGB frame
is resized to k × k pixels. (13) For each CNN model size,
the performance governor provides a lower per frame latency
(i.e., 14%-21%) than the interactive governor, which demon-
strates that our observation (4) can be applied to diverse CNN
model sizes.
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Fig. 12. CNN model size vs. per frame energy consumption (CPU governor: interactive).

Fig. 13. CNN model size vs. per frame energy consumption (CPU governor: performance).

Per Frame Energy Consumption: We next examine how
the CNN model size impacts the per frame energy consump-
tion of executing object detection on the smartphone. Figs. 12
and 13 depict the measured per frame energy consumption
results of running CNN-based object detection with differ-
ent model sizes, where the smartphone works on interactive
and performance governors, respectively. Figs. 12(a)–12(f)
and 13(a)–13(f) illustrate the average per frame energy con-
sumption; and Figs. 12(g)–12(l) and Figs. 13(g)–13(l) depict
the average percentage breakdown of energy consumed by
each phase in the processing pipeline. We observe that (14)
the per frame energy consumption grows dramatically as the
CNN model size increases, which is mainly contributed by
the inference energy consumption increment. For example, the
inference energy consumption accounts for 4.7% and 38.0%
of the per frame energy consumption when the CNN model
size is 100 × 100 and 600 × 600 pixels, respectively, as
shown in Fig. 12. In addition, although increasing the CNN
model size always results in a gain of mAP, the gain of mAP
becomes smaller as the increase of the model size [3]. This
observation inspires us to trade mAP for the per frame energy
consumption reduction when the CNN model size is large. (15)
There is a reduction in the proportion of the energy con-
sumption of both the image generation and preview phase
and base phase when the CNN model size grows. As we
discussed in Section IV-A, a large proportion of the image
generation and preview energy consumption to the per frame

energy consumption may result in the smartphone expending
significant reactive energy for sampling non-detectable image
frames. These two observations indicate that there is a trade-
off between reducing the per frame energy consumption and
decreasing the proportion of the reactive energy. Therefore,
a comprehensive approach for improving the energy effi-
ciency of executing CNN-based object detection on smart-
phones must take into account the reduction of both the per
frame energy consumption and the proportion of the reactive
energy.

C. Insights and Research Opportunities

Insights:
• Ondemand and performance CPU governors achieve

lower per frame energy consumption and latency than the
other four popular CPU governors when the smartphone
locally executes the CNN-based object detection applica-
tion. However, as the smartphone’s CPUs keep running
at the highest frequency in the performance governor,
it may cause the smartphone overheating and trigger
CPU throttling mechanism to avoid thermal emergencies
by sacrificing the performance. Therefore, the ondemand
governor is recommended as the default CPU governor
of the local execution, which supports sustainable and
low per frame energy consumption and latency object
detections.
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Fig. 14. CPU governor vs. per frame latency (CNN model size: 320 × 320 pixels).

• Both the CPU governor (i.e., CPU frequency) and
the CNN model size significantly impact the per
frame latency and energy consumption. However, simply
increasing the CPU frequency or decreasing the CNN
model size is inadequate to minimize the per frame
energy consumption because different phases may have
opposite reactions.

• Increasing the CNN model size always results in a gain
of mAP and an increment of the per frame energy con-
sumption. However, the amount of the increment of
mAP becomes smaller as the increase of the model size,
while the increment of the per frame energy consump-
tion becomes larger as the increase of the model size.
Therefore, this observation inspires us to trade mAP for
the per frame energy consumption reduction when the
CNN model size is large.

• In order to improve the energy efficiency of smartphones
that locally execute the CNN-based object detection, we
must jointly consider the per frame energy consumption,
the proportion of the reactive energy, and the battery life.

Research Opportunities:
• Current CPU governors cannot achieve energy-efficient

object detection on smartphones (i.e., jointly consider-
ing the per frame energy consumption, the proportion of
the reactive energy, and the battery life). A CPU gover-
nor specifically designed for CNN-based object detection
applications is critical and desirable.

• An intelligent configuration adaption algorithm that is
capable of selecting the best combination of the CPU
governor, CNN model size, and camera sample rate
according to the smartphone’s battery life, processor’s
temperature, and detection accuracy requirement might
be a potential solution for achieving energy-efficient and
high-performance object detection.

V. EXPERIMENTAL RESULTS OF REMOTE EXECUTION

RQ 2: Does offloading the object detection tasks to a
powerful infrastructure significantly decrease both the energy
consumption and latency? To answer this question, in this
section, we describe the experimental results on evaluating

the impact of various factors on the energy consumption of a
mobile AR client, latency, and detection accuracy of remotely
executing CNN-based object detection on smartphones. We
begin by measuring the per frame latency and the per frame
energy consumption of executing CNN-based object detection
under different smartphone’s CPU governors in Section V-A.
In addition, we explore the impact of the CNN model size
on the per frame latency and the per frame energy consump-
tion in Section V-B. Furthermore, the image generation and
preview phase and image conversion phase are discussed in
Sections V-C and V-D, respectively. Lastly, in Section V-E, we
summarize the insights from our measurement studies and dis-
cuss potential research opportunities for improving the energy
efficiency of remotely executing CNN-based object detection
on smartphones.

A. The Impact of CPU Governor

Per Frame Latency: We first seek to investigate how the
CPU governor impacts the per frame latency of object detec-
tion in the remote execution scenario, where a CNN model
is executed on the implemented edge server with a 5GHz
WiFi link to the smartphone. The executed CNN model size
is 320 × 320 pixels. The experimental results are shown in
Fig. 14, where Figs. 14(a)–14(f) depict the frequency varia-
tions of the tested smartphone’s CPUs and Figs. 14(g)–14(l)
illustrate the latency of each phase in the object detection
processing pipeline. Compared to the local execution, a new
time-consuming phase named communication is introduced
into the processing pipeline of the remote execution besides
image conversion and inference phases. We obtain similar
observations to (3) and (4). In addition, (16) Fig. 14(a) shows
that only one core of the smartphone’s processor reaches to the
highest possible frequency under the conservative governor,
which indicates that running CNN models on the edge server is
capable of reducing the workload on the smartphone’s CPUs.
(17) However, because of the workload reduction and the con-
servative governor’s low-frequency bias, the per frame latency
of the remote execution under the conservative governor is
approximately 10.3% larger than that of the local execution,
as shown in Table III. This observation demonstrates that the
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TABLE III
LATENCY RESULTS OF THE REMOTE EXECUTION WITH DIFFERENT CPU GOVERNORS

TABLE IV
SMARTPHONES AND THE EDGE SERVER USED IN THIS EXPERIMENT

TABLE V
CLASSIFICATION & LATENCY RESULTS OF DIFFERENT SMARTPHONES

conservative governor is not suitable for the remote execution
either and performs worse in the remote execution.

Interestingly, we find that (18) the remote execution
achieves significantly distinct per frame latency reduction
when the smartphone works on different CPU governors. For
example, as shown in Table III, the remote execution achieves
a per frame latency reduction of 45.7% in the powersave gover-
nor compared to the local execution, while it only obtains a per
frame latency reduction of 0.5% in the performance governor.
This observation may infer that locally executing CNN-based
object detection on the smartphone with advanced processors
and working on a high CPU frequency is capable of achieving
a comparable latency performance as the remote execution.
This inference is important for guiding whether a smartphone
has to offload its object detection tasks to the edge server for
reducing the service latency.

In order to verify this inference, we conduct a measure-
ment study using three smartphones with different computa-
tion capacities, where their characteristics are summarized in
Table IV. We classify them into two classes, low-end and
high-end smartphones, according to their general hardware
performance tested by using an Antutu benchmark [56]. The
testing results are shown in Table V. All these three smart-
phones work on the interactive governor. The results verify
our inference above, where the per frame latency of the low-
end smartphones is decreased around 12%, whereas the per

frame latency of the high-end smartphone is increased approxi-
mately 38.7% when offloading the object detection tasks to the
edge server (note that the value of the latency reduction may
differ depending on how powerful the edge server’s GPU is).
This observation supports the fact that lots of recently released
smartphones with high computation power possess the capabil-
ity of running a light CNN model with low latency. However,
the detection accuracy of the large CNN model on the edge
server is better than that of the light CNN model on the smart-
phone (e.g., mAP = 51.5 on the server and mAP = 19.3 on the
smartphone when the frame resolution is around 300 × 300
pixels). Furthermore, in general, different use cases may have
variant latency/accuracy requirements. For example, the AR
cognitive assistance case where a high-end wearable device
helps visually impaired people to navigate on a street may
need a low latency but can tolerate a relatively high number
of false positives (i.e., false alarms are fine but missing any
potential threats on the street is costly) [37]. In contrast, an AR
used for recommending products in shopping malls or super-
markets may tolerate a relatively long latency but require high
detection accuracy. Therefore, both the smartphone’s compu-
tation capacity and the use case should be considered when
determining the appropriate execution approach (i.e., local or
remote).

Per Frame Energy Consumption: We next explore how the
CPU governor impacts the per frame energy consumption of
object detection in the remote execution scenario, where the
smartphone works on the interactive CPU governor. The exper-
imental results are shown in Fig. 15, where Figs. 15(a)–15(f)
depict the power consumption; Figs. 15(g)–15(l) illustrate the
average per frame energy consumption; and Figs. 15(m)–15(r)
show the average percentage breakdown of energy consumed
by each phase in the processing pipeline. We find that (19)
the remote execution decreases the power consumption com-
pared to the local execution when the smartphone works on
conservative, ondemand, interactive, and performance CPU
governors. However, when the smartphone works on userspace
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Fig. 15. CPU governor vs. power and average per frame energy consumption (CNN model size: 320 × 320 pixels).

TABLE VI
PER FRAME ENERGY CONSUMPTION RESULTS OF THE REMOTE EXECUTION WITH DIFFERENT CPU GOVERNORS

and powersave CPU governors, the remote execution con-
sumes more power than the local execution, as shown in
Table VI. This observation is a supplement to observation
(16), which indicates that (i) offloading the object detection
tasks to the edge server may not be able to reduce the work-
load on the smartphone when the smartphone’s CPUs run at
a low frequency; (ii) the communication phase (i.e., remote
execution) is more power-consuming than the inference phase
(i.e., local execution) when the CPU frequency is low. (20) As
depicted in Figs. 15(g)-15(l) and Table VI, the remote execu-
tion is capable of reducing the per frame energy consumption
compared to the local execution when the smartphone works
on these six tested CPU governors. In addition, observation
(18) and its corresponding inference are also applicable for
the per frame energy consumption.

Interestingly, (21) the userspace governor (i.e., the CPU
frequency is set to 1.49GHz) achieves the lowest per frame
energy consumption in the remote execution, as illustrated in
Figs. 15(g)–15(l) and Table VI. This observation is different
from the local execution, where the CPU with the highest
frequency achieves the lowest per frame energy consump-
tion. We conduct an experiment study to explore the reason,
where we set the test smartphone to the userspace governor
and gradually raise its CPU frequency from the lowest to the
highest. The experimental results are shown in Fig. 16. We
find that (22) the higher the CPU frequency, the lower per
frame latency the smartphone derives and the higher power it

consumes. However, the reduction of the per frame latency
and the increase of the power consumption are dispropor-
tional, as depicted in Figs. 16(a) and 16(b). For example,
as compared to 2.26GHz, 2.64GHz only reduces about 5%
latency but increases about 14% power consumption. As com-
pared to 0.3GHz, 0.72GHz reduces about 55% latency but
only increases about 24% power consumption. This observa-
tion advocates adapting the smartphone’s CPU frequency for
the per frame latency reduction by trading as little increase of
the per frame energy consumption as possible. For example,
Fig. 16(c) illustrates that selecting the CPU frequency around
2.26GHz achieves the lowest per frame energy consumption, a
comparable per frame latency, and a lower power consumption
compared to 2.64GHz.

B. The Impact of CNN Model Size

Per Frame Latency: In this experiment, we implement six
object detection models based on the YOLOv3 framework [3]
with different CNN model sizes (i.e., from 128 × 128 to
608 × 608 pixels). The test smartphone works on the default
CPU governor, interactive. Fig. 17 depicts the per frame
latency of running CNN-based object detection with different
model sizes in the remote execution. We make the following
observations. (23) In contrary to the local execution, raising the
CNN model size in the remote execution decreases the average
CPU frequency, as shown in Figs. 17(a)–17(f). This is because
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Fig. 16. Performance variations with increasing the CPU frequency in remote execution (CNN model size: 320 × 320 pixels).

Fig. 17. CNN model size vs. CPU frequency, latency, and detection accuracy (CPU governor: interactive).

the smartphone experiences a relatively long idle period (i.e.,
waiting for the detection results from the edge server) when
the CNN model size is large (i.e., a long inference latency at
the edge server side). In WiFi networks, when transmitting a
single image frame, the smartphone’s wireless interface expe-
riences four phases: promotion, data transmission, tail, and
idle. When an image transmission request comes, the wireless
interface enters the promotion phase. Then, it enters the data
transmission phase to send the image frame to the edge server.
After completing the transmission, the wireless interface is
forced to stay in the tail phase for a fixed duration and waits
for other data transmission requests and the detection results.
If the smartphone does not receive the detection result in the
tail phase, it enters the idle phase and waits for the feedback
from its associated edge server. Therefore, in contrary to the
local execution, using a large CNN model size in the remote
execution can extend the battery life and improve the detection
accuracy. (24) Similar to the local execution, a larger CNN
model size always results in a higher per frame latency in the
remote execution, where the per frame latency increment is
mainly from the raise of the communication and the inference
latency, as shown in Figs. 17(g)–17(j). In addition, Fig. 17(k)
depicts the detection accuracy of the YOLO under different
CNN model sizes, where the detection accuracy is defined
as the ratio of the number of correctly recognized objects to
that of the total objects in an image frame (on calculating the
accuracy, we assume that the YOLO is capable of detecting

all objects in an image frame when the CNN model size is
608 × 608 pixels). We find that (25) although a higher CNN
model size enables a better detection accuracy, the accuracy
gain narrows down at a high CNN model size. However, (26)
the speed of the per frame latency and the inference latency
increases becomes faster at a higher CNN model size, as illus-
trated in Figs. 17(g) and 17(j). These two observations inspire
us to trade detection accuracy (i.e., mAP) for the per frame
latency reduction when the CNN model size is large.

Per Frame Energy Consumption: We next investigate how
the CNN model size impacts the per frame energy consump-
tion in the remote execution. Fig. 18 shows the measured
energy consumption results, where the smartphone works on
the interactive CPU governor. We observe that (27) the remote
execution saves approximately 52.5% per frame energy on
average when the frame resolution is 608 × 608 pixels, as
shown in Table VII. However, it consumes slightly more per
frame energy than the local execution when the frame resolu-
tion is 128 × 128 pixels. This observation is rather significant,
which demonstrates that running CNN-based object detection
remotely does not always consume less energy than the local
execution. In addition, (28) the larger the CNN model size,
the more per frame energy reduction the remote execution
derives compared to the local execution. For example, running
a 224 × 224 pixels model only reduces about 14.1% per frame
energy, while executing a 608 × 608 pixels model decreases
about 52.5% per frame energy consumption. Therefore, in
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Fig. 18. CNN model size vs. per frame energy consumption (CPU governor: interactive).

TABLE VII
PER FRAME ENERGY CONSUMPTION RESULTS OF THE REMOTE EXECUTION WITH DIFFERENT CNN MODEL SIZES

Fig. 19. Power consumption analyses of image generation and preview phases (remote execution).

order to take the best advantage of the remote execution,
executing a CNN with a larger model size is recommended.

C. The Impact of Image Generation and Preview

RQ 3: Besides the network condition, what else impacts the
energy consumption and latency when executed remotely, and
how? As we presented in the aforementioned observations, the
image generation and preview is the most energy-consuming
phase in both local and remote execution scenarios. Thus, to
improve the energy efficiency of the object detection process-
ing pipeline, we must reduce the energy consumption of image
generation and preview phases. We seek to understand the
interactions between the power consumption and various fac-
tors (e.g., the preview resolution, 3A, and several image post
processing algorithms) as follows.

Preview Resolution vs. Power Consumption: We first exam-
ine how the preview resolution influences the power consump-
tion of image generation and preview phases, as shown in
Fig. 19(a). We find that (29) as the preview resolution grows,
the power consumption increases dramatically. Therefore, a
preview with a higher frame resolution on the smartphone pro-
vides a better quality preview for users, but at the expense of
battery drain, which is applicable for both local and remote
execution cases.

Camera FPS vs. Power Consumption: We next vary the
smartphone’s camera FPS to explore how it impacts the
device’s power consumption, where the camera FPS is defined
as the number of frames that the camera samples per sec-
ond. Fig. 19(b) shows that (30) a large camera FPS leads
to a high power consumption. However, as shown in Fig. 2,
not every camera captured image frame is sent to the edge
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TABLE VIII
IMAGE CONVERSION LATENCY RESULTS WITH DIFFERENT CONVERSION METHODS

Fig. 20. Comparison of the object detection results (remote execution).

server for detection. Because of the need (i) to avoid the pro-
cessing of stale frames and (ii) to decrease the transmission
energy consumption, only the latest camera sampled image
frame is transmitted to the server. This may result in the
smartphone expending significant reactive power for sampling
non-detectable image frames. In Fig. 19(c), we quantify the
sampling efficiency with the variation of the camera FPS.
As we expected, (31) a large camera FPS leads to a lower
sampling efficiency (e.g., less than 2% of the power is con-
sumed for sampling the detectable image frames when the
camera FPS is set to 30). However, in most mobile AR
applications, users usually request a high camera FPS for a
smoother preview experience, which is critical for tracking
targets in physical environments. Interestingly, (32) increasing
CPU frequency can reduce the reactive power for sampling, as
shown in Fig. 19(c). These observations demonstrate that when
a high camera FPS is requested, increasing CPU frequency
can promote the sampling efficiency but may also boost the
power consumption. Therefore, finding a CPU frequency that
can balance this tradeoff is critical.

Image Post Processing and 3A Algorithms vs. Power
Consumption: Lastly, we examine the effect of multiple image
post processing and 3A algorithms on the power consump-
tion of image generation and preview phases, as shown in
Figs. 19(d) and 19(e). Note that when the AE is disabled, we
manually set the camera ISO and exposure time to 400 and
20 ms, respectively. We observe that (33) disabling the 3A,
NR, CC, and EE algorithms decreases the power consump-
tion by 14.8%. We conduct another experiment to understand
if disabling these algorithms would impact the object detec-
tion performance. As shown in Fig. 20, (34) the detection
performance does not degrade. Furthermore, we compare
the per frame energy consumption among three cases, as
depicted in Fig. 19(e): 1) all enabled with camera capture
frame rate 30; 2) all disabled with camera capture frame rate
30; and 3) all disabled with camera capture frame rate 5.
We find that (35) the per frame energy consumption of the

second and the third cases decreases by approximately 10%
and 27%, respectively, compared to the first case. Therefore,
these three observations may answer the question that we
presented in Section IV-A: these energy-hungry image post
processing algorithms may not be necessary for camera cap-
tured image frames to achieve successful object detection
results.

D. The Impact of the Image Conversion Method

As depicted in Tables I and III, the image conversion phase
is one of the most time-consuming phases in both local and
remote execution scenarios. This is because the image conver-
sion method that we implemented in the testbed is developed
based on Java, which is inefficient and slow. Thus, in order to
improve the efficiency of the image conversion, we implement
image conversion based on C in Android Native Development
Kit (NDK). We compare these two methods by measuring
their conversion latency with different preview resolutions.
The measurement results are presented in Table VIII. We
find that the image conversion method developed based on
C decreases the image conversion latency by over 90%.

E. Insights and Research Opportunities

Insights:
• Offloading the object detection to the edge server does

not always reduce the per frame latency and energy con-
sumption of the mobile AR client compared to the local
execution. For example, as we observed in our experi-
ments, locally running a detection model with a size of
100 × 100 pixels achieves lower per frame latency and
energy consumption than the remote execution that runs
a CNN with a similar model size. In addition, the spe-
cific CNN model size when the local execution has better
performance than the remote execution may vary with the
computation capacities of the edge server and mobile AR
clients, and even the wireless network bandwidth.

• In the remote execution, the mobile AR client does not
achieve the lowest per frame energy consumption when
its CPU is set to the highest frequency, which is different
from the local execution. For example, in our experiment,
the lowest per frame energy consumption is obtained
when the CPU frequency is around 2.26GHz. Although
this value may be different for diverse smartphones or
wearable AR devices, this knowledge is important for
designing the CPU scaling mechanism.

Research Opportunities:
• The energy consumption of the communication phase

becomes the second largest portion of the per frame
energy consumption when the frame resolution of the
offloaded image is large (determined by the CNN model
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size). Thus, improving the image transmission energy
efficiency is a potential research issue for the remote
execution. For example, as we presented, when trans-
mitting an image frame, the mobile AR client’s wireless
interface experiences four phases: 1) promotion; 2) data
transmission; 3) tail; and 4) idle. After completing the
transmission, the wireless interface is forced to stay in
the tail phase for a fixed duration and waits for other data
transmission requests and the detection results. Therefore,
developing a mechanism that can adaptively adjust the
duration of the tail phase based on the predicted infer-
ence latency at the edge server and background activities
of the mobile AR client may possibly improve the energy
efficiency of the mobile AR client by allowing it to enter
the idle phase faster.

• Although our experimental results indicate that some
energy-consuming image post processing algorithms may
not be necessary for mobile AR clients to achieve
successful object detection results, more comprehensive
studies are required to investigate this issue. For exam-
ple, is this result influenced by other factors, such as the
object category, frame resolution, and object detection
algorithm?

VI. THREATS TO VALIDITY

External validity: External validity can be criticized by
using a single version of Android OS on the tested Google
Nexus 6 smartphone. The threat is mitigated by running our
benchmark applications on multiple smartphones with sig-
nificantly different computation capacity (i.e., high-end and
low-end), as described in Table IV. Furthermore, although the
numerical values of our measurement with a specific experi-
ment configuration (e.g., the per frame energy consumption of
locally executing a 320 × 320 CNN model with Interactive
CPU governor) cannot be generalized to all possible smart-
phones, such as iPhone 12 and Samsung Galaxy Note20, this
article focuses on investigating the trend of how the smart-
phone’s energy consumption may vary when our benchmark
applications are executed with different configurations, which
will help predict variations on the energy consumption of other
smartphones. In addition, an architecture-level comparison is
not conducted in this article (e.g., comparing the energy effi-
ciency of running the benchmark applications on an iPhone
with an Apple’s bionic chip and an Android phone with a
Samsung’s Exynos chip). Because comparing different archi-
tectures is more challenging and needs more efforts on the
hardware setup (e.g., selecting appropriate smartphones and
using different ways to connect the power supply to each
smartphone based on their different circuit designs) as well
as the experiment design, we leave it to our future work.
External validity may also be threatened by using a custom-
designed object detection benchmark instead of real-world
applications. However, our benchmark applications exercise
most of the main functionalities of existing and potential
mobile object detection applications, such as image generation,
camera preview, image conversion, inference, data transmis-
sion, and virtual content rendering, which means that our

custom-designed object detection benchmark applications are
representative.

Internal validity: The collected power consumption and
CPU frequency data might be influenced by the background
activities. We mitigate this threat by terminating all other
optional applications and services that can impact the smart-
phone’s workload. One of the main contributions of this article
is comparing the energy consumption and latency of executing
CNN-based object detections locally and remotely. To have a
fair comparison between the local and remote executions, each
comparison is conducted with the same configurations (e.g.,
CPU governor, CNN model size, preview resolution, and cam-
era sampling rate) and under the same conditions. For instance,
all the power measurements are conducted in a constant tem-
perature laboratory. In addition, the temperature of the tested
smartphone’s CPU may increase when running the benchmark
application, which may impact the power consumption of the
smartphone. To mitigate this threat, a new measurement is
launched only if the temperature of the CPU cools down to
around 42◦C after the previous measurement.

Construct validity: Dissecting the energy consumption for
each phase in an application is difficult. The accuracy of our
evaluation is guaranteed by the energy measurement strategy
we proposed in Section III-C, including the local clock syn-
chronization and cooling-off period. Specifically, the precision
of the local clock synchronization is in millisecond. In addi-
tion, we hypothesize that the power consumption is influenced
by the workload accumulation, which is the assumption for
breaking down the power consumption of the three parallel
executions in our benchmark applications.

VII. CONCLUSION

In this article, we presented the first detailed experimen-
tal study of the energy consumption and the performance
of a CNN-based object detection application. We examined
both local and remote execution cases. We found that the
performance of object detection is heavily affected by vari-
ous factors, such as CPU governor, CPU frequency, and CNN
model size. Although executing object detection on remote
edge servers is one of the most commonly used approaches
to assist low-end smartphones in improving their energy effi-
ciency and performance, contrary to our expectation, local
execution may consume less energy and obtain lower latency,
as compared to remote execution. Overall, we believe that our
findings provide great insights and guidelines to the future
design of energy-efficient processing pipeline of CNN-based
object detection.
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