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Abstract—Ultra-high-definition (UHD) videos are enjoying in-
creased popularity in people’s daily usage because of the good
visual experience. However, the data size of UHD videos is 4-
16 times larger of HD videos. This will bring many challenges
to existing video delivery systems, such as the shortage of
network bandwidth resources and longer network transmission
latency. Super resolution (SR) algorithms are widely used in
video delivery applications to tackle these challenges. However,
applying the super resolution model on UHD videos requires
much more GPU memory, as compared with HD videos, which
brings a significant challenge to existing systems.

In this paper, we propose a deep compression framework
named Pearl, which utilizes the power of deep learning to
compress UHD videos. New channel-based super resolution
models are developed to overcome the GPU memory shortage
problem. In pearl, instead of applying the traditional RGB-
based super resolution model, three separate super resolution
models are trained based on the Y, U, and V channels of UHD
videos. These super resolution models are used to reconstruct
a UHD video from a low-resolution video. With Pearl, super
resolution algorithms can be successfully applied to UHD videos.
As a result, the data size of UHD videos can be significantly
reduced during network transmission. At the same time, the
efficiency of video encoding and decoding can also be improved
with Pearl. To the best of our knowledge, Pearl is the first deep
learning driven compression framework on UHD videos. We
evaluate the performance of Pearl with extensive experiments.
In all considered scenarios, Pearl can compress up to 95% of
video data size during the video transmission and achieve 2.4
times faster, as compared with existing systems'.

I. INTRODUCTION

Ultra-high-definition (UHD) videos (4K and 8K) are enjoy-
ing increased popularity in people’s daily lives because of the
better visual experience compared with HD videos. However,
UHD videos will bring challenges on data transmission and
storage because the data size of 4k and 8k resolution is 4 times
and 16 times larger than 2k resolution for a video, respectively.

Video delivery has been extensively studied. Content Dis-
tributed Networks (CDNs) [1], [2] are the main tools that
content providers like Google and Netflix use to improve the
video delivery performance. A CDN consists of a group of
servers that are placed across the world. These servers pull the
contents from the original server and cache a copy of them
allowing visitors to retrieve the content from the nearest server.
CDNs serve a large portion of the video deliveries across the
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Internet. One of the main challenges of CDNs is the limited
storage of the distributed servers, which leads to cached videos
on the distributed servers frequently being replaced [3], [4].
This shortage will be amplified with the increasing amount of
UHD videos in CDNs.

Adaptive bitrate (ABR) algorithms [5], [6] are widely
used to optimize video transmission. In ABR algorithms, a
video is encoded into multiple bitrates. Each bitrate video
is divided into multiple small video chunks. ABR algorithms
will dynamically choose a bitrate for each video chunk. The
bitrate selection is based on various observations such as the
network throughput and playback buffer occupancy. The goal
is to maximize user Quality of Experience (QoE) by adapting
the video bitrate based on the underlying network conditions.
However, limited network bandwidth resource may lead to
poor user QoE of UHD video delivery even though state-of-
the-art ABR algorithms are adopted.

With the magic of Graphics Processing Units (GPUs) and
deep learning techniques, many approaches try to use deep
neural networks (DNNs) to improve the performance of video
delivery and user QoE [7]-[9]. For instance, a compression
framework based on convolutional neural networks (CNNs) is
proposed to achieve high-quality image compression at low
loss rates [10]. Deep reinforcement learning (RL) models are
integrated with ABR algorithms to optimize user QoE [5].
However, these works are mainly focused on improving the
performance of existing ABR systems. The challenges brought
by UHD videos are not considered.

Super resolution (SR) is proposed in the computer vision
field [11], [12]. It aims to upscale and improve the details
within an image. A low-resolution image is taken as an input
to a super resolution model and a higher resolution image
containing more details is the output. The performance of
super resolution algorithms can be greatly improved by DNNs.
Because super resolution algorithms can be used for video
compression and reconstruction, they have been widely used in
video delivery applications [13]. However, all existing works
are focused on 2k videos. The GPU memory will become
a bottleneck when applying super resolution on UHD videos.
The reason is that the data size of 4k and 8k videos is 4 and 16
times larger than that of 2k videos, respectively, while the GPU
memory usage of the super resolution model is determined
by the data size of the input video frame. Most of the
current GPUs cannot support such a high memory requirement.
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Fig. 1. The visualization results of super resolution models.

We can crop UHD frames to several parts and apply super
resolution models on each part to reduce the memory demand.
However, this approach will introduce additional latency.

In this work, we propose Pearl, a fast deep compression
framework that applies deep learning techniques to UHD video
content compression to maximize UHD video delivery perfor-
mance and user QoE. Compared with existing frameworks that
apply traditional RGB-based super resolution algorithms [11]
for video content delivery [6], [13], channel-based super
resolution models are adopted in Pearl. Instead of using the
whole RGB video frame as the input to the super resolution
model, we divide the video into three separate channels (Y, U,
and V channels). For each channel, we train a specific super
resolution model. Channel-based super resolution models can
significantly reduce the GPU memory requirement. As a
result, Pearl can successfully apply super resolution on UHD
videos. Another advantage of adopting channel-based super
resolution models is that the latency of video encoding can
also be reduced, because additional cropping and combination
processes involved in the RGB-based super resolution models
are not needed in our proposed channel-base super resolution
models. To the best of our knowledge, Pearl is the first deep
learning driven compression framework on UHD videos.

The rest of the article is organized as follows: Section II
shows background and related work. Section III presents
the research motivation and challenges. Section IV presents
the design of the proposed framework. Section V shows
the performance evaluation, followed by the conclusion in
Section VL.

II. BACKGROUND AND RELATED WORK
A. Video encoding and decoding

A video is a continuous series of frames. For each video
frame, the most commonly used color mode is RGB, which
means that each video frame can be divided into three channels
(R, G, and B). However, a video is not composed of original
RGB frames. To save storage space, video frames are first
compressed and encoded into a video. To achieve better
compression performance, the color mode of video frames
is transformed from RGB to YUV in most video codecs,
such as H.26x and VPx [14], [15]. In all the exiting super

resolution based video delivery systems, video frames are
extracted (decoded) from the received video with the RGB
color mode. After applying the super resolution model, the
generated RGB video frames need to be encoded into video
again. Different from these systems, we propose to use YUV
channel-based super resolution models. In Pearl, the results
generated by the super resolution models are channels in the
YUV color mode. As a result, Pearl can reduce the video
processing latency.

B. Super resolution

Recent research on super resolution has achieved great
progress with the development of deep CNNs [11], [12].
In a super resolution algorithm, a low-resolution image is
taken as an input and a higher resolution image containing
more details is the output. Super resolution has been used
in a variety of computer vision applications, including video
enhancement, medical diagnosis, and surveillance [16]. For a
super resolution model, we can choose the scales of up-scaling.
{x2, x3, x4} are widely used in super resolution algorithms,
where xk means upscaling both the width and height of
the video frame k times. Currently, no existing work has
applied super resolution models on UHD video frames because
most of the current GPU models cannot support such a high
memory requirement. Since the GPU memory usage of a super
resolution model is determined by the data size of the input
image, it will be reduced if we can reduce the input image
size. A straightforward solution is to crop the UHD video
frame into multiple smaller parts. After applying the super
resolution algorithms on each part, all the generated results
are collected and combined into a UHD video frame. However,
this method will introduce additional image processing time.
To tackle this challenge, we propose a channel-based super
resolution model in Pearl. We propose to divide a UHD video
into three channels. The input data size is then reduced by 3
times if using the frame in each channel as the input to the
super resolution model.

C. Existing frameworks

There have been many papers that apply DNN models
on image compression [10], [17], [18]. The results show
that DNN-based image compression outperforms traditional
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image compression algorithms. However, only a few studies
have applied DNNs on video compression [19]. It is very
challenging for deep learning models to achieve the same
level of inter-frame compression performance compared with
non-DNN based video encoding algorithms. Recently, super
resolution has been used for video compression [6], [13].
Instead of directly compressing the video content, the image
resolution of the video is first downscaled to reduce the video
size in these systems. As a result, lower network transmission
latency can be achieved and less network bandwidth resources
are needed. However, all of these systems are focused on
2k videos. The challenges brought by UHD videos are not
addressed in these systems. To the best of our knowledge,
Pearl is the first framework applying deep learning driven
compression on UHD videos.

III. RESEARCH MOTIVATION AND CHALLENGES

In this section, we show the challenges of applying super
resolution algorithms on UHD video delivery.

First, we study the impact of applying super resolution
algorithms on video frame quality?. To better demonstrate the
performance of the super resolution algorithm, we choose a
state-of-the-art super resolution algorithm [11] for the experi-
ments and compare it with the ABR algorithm.

A 2k HD video is encoded with 5 bitrates: 6000k, 4800k,
2400k, 1200k, and 400k. The 6000k bitrate video is defined
as the original video. H.264 is the video codec used here. The
peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) of different bitrate frames are shown in the first
row of Fig. 1. We can find that the PSNR and SSIM keep
decreasing with the decrease of bitrate. When the bitrate is less
than 1000kbps, the frame is blurry. For the super resolution
model, we choose 4 different scales:{x2,x3,x4,x6}. After
applying the super resolution models with different scales, we
measure the PSNR and SSIM of the generated frames. The
results are presented in the second row of Fig. 1. Compared
with adaptive bitrates, the results generated by the super
resolution model are smoother than the frames with different
bitrates from the visual experience. The super resolution model
can always achieve higher SSIM and lower PSNR values.
When it comes to the low bitrate, super resolution can achieve

2Peak signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM) are the most widely used evaluation metrics on video frame quality.

better video quality. The results of the video frame quality
comparisons prove that we can use super resolution models to
compress 2k videos.

However, we fail to directly apply the existing super resolu-
tion model on UHD video frames for all the scales. The frame
resolution of 4k and 8k videos is 3840x2160 and 7680x4320,
respectively. As shown in Fig. 2 (a), the GPU memory required
for 4k and 8k video frames are 9 GB and 13 GB when the
scale is set as x4, which cannot be supported by most of
the existing GPU models. Such high-resolution frames cannot
be directly generated by the deep compression models. To
solve this problem, we crop the 4k and 8k video frames
into multiple parts. The 4k video frame is divided into four
parts and each part is a 2k sub-frame. The 8k video frame is
divided into 16 sub-frames. We then can successfully apply
the super resolution model by frame cropping. However, the
model execution time will be significantly increased. It takes
over 20 seconds to process an 8k video frame. At the same
time, image cropping and combining cause additional frame
processing time.

We can conclude that super resolution algorithms can
achieve good performance on video compression. However,
existing systems face many challenges when super resolution
algorithms are directly applied to UHD videos. Thus, we
propose Pearl, the first deep learning driven compression
framework for UHD videos.

IV. PROPOSED DESIGN

In this section, we detail the design and implementation of
Pearl, a system that applies the channel-based super resolution
model for UHD video compression. First, we describe the
whole system framework. Then, the designs of channel-based
super resolution algorithms are presented.
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Fig. 3. The proposed system framework.

A. System framework

As shown in Fig. 3, Pearl mainly contains two parts: video
sender and receiver.

Sender: The original UHD video on the sender side is
down-scaled from high resolution to low-resolution with dif-
ferent scales. The deeply compressed low-resolution video is
then transmitted through the network to the receiver.

Receiver: After receiving the low-resolution video from the
sender, the receiver reconstructs the low-resolution video to
UHD video. In Pearl, the received video will be divided into
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three separate channels: the Y, U, and V channel. Then, the
channel-based super resolution model is applied to each frame
in each channel. All the channels will be upscaled from low
resolution to UHD channels. After that, the upscaled UHD
channels are encoded into a UHD video with video codecs.
We also present the pipeline of the baseline approach
(CropSR) in Fig. 3 because there is no existing work applying
super resolution algorithms to UHD videos. In the baseline
approach, all video frames are extracted from the received low-
resolution video. These RGB image frames are cropped into
several subframes. After applying the state-of-the-art super
resolution model to each subframe, the generated results will
be combined to generate the upscaled UHD frames. Then, the
upscaled UHD frames are encoded into a UHD video with
video codecs. However, the time of video encoding in CropSR
is different from Pearl. More details are shown in Section V.

B. Channel-based super resolution model

There are several state-of-the-art super resolution algo-
rithms, such as EDSR and ESRGAN [11], [12]. The input of
most existing super resolution algorithms is an RGB video
frame. The main obstacle of adopting these algorithms on
UHD video frames is the limited GPU memory. To perform
super resolution on UHD video frames, we propose channel-
based super resolution models. Instead of using the whole
RGB video frame as the input to the super resolution model,
each separate frame channel is set as the input. In this case,
the data size of the super resolution model is reduced by 3
times. As a result, the GPU memory problem is solved.

Individual video frames have different color modes, such
as RGB and YUV. However, the color mode of video frames
in the encoded video is YUV, because the YUV color mode
can improve video compression performance during video
encoding. As a result, encoding Y, U, and V channels can
generate a video, while encoding R, G, and B channels
cannot. If we divide a video frame into R, G, and B three
separate channels, we need to combine the generated results
after applying the super resolution model on each channel to
generate RGB UHD video frames. Then, a UHD video can be
obtained by encoding these UHD video frames. Therefore, it is
obvious that YUV channel-based video encoding can achieve
lower video processing time. Thus, we adopt YUV channel-
based super resolution models in Pearl to improve the system
performance.

C. Model implementation details

Because there are no 4k and 8k video data sets available for
training our super resolution model, we use the most widely
used 2k video data set, DIV2k and Flick2k [20], to train
the proposed channel-based super resolution models. Super
resolution models trained on these datasets can be widely
applied on videos with different content, which means that
super resolution models are not sensitive to the content of
testing videos. The base super resolution algorithm we use is
MDSR [11]. We modify the base super resolution algorithm to
achieve our proposed designs. The algorithm is implemented

with Pytorch. For training the super resolution model, the
frames (1920x1080) are downsampled to {960x540, 640x360,
480x270, 320x180} for {x2, x3, x4, x6}. For the hyperparam-
eters, we adopt the same setting as in MDSR. The batch size is
64, and the learning rate is 10~%. The optimization algorithm
applied in all the super resolution models is Adam.

V. PERFORMANCE EVALUATION

In this section, we provide an extensive evaluation of the
proposed video compression framework under three main eval-
uation metrics: video compression rate, video frame quality,
and video processing time.

A. Experiment setup

Videos: The UHD videos used for experiments are down-
loaded from YouTube. We download 4 videos from 2 cate-
gories (1: Beauty, 2: Sports). All the videos are cut into 5 min-
utes length and re-encoded. The video processing library and
encoding codec we use are FFMPEG and H.264, respectively.
The encoding frame resolution, frame chunk size (GOP), and
the frame rate are:

o 2k videos: {1920x1080, 4 seconds, 24 FPS}
o 4k videos: {3840x2160, 4 seconds, 30 FPS}
o 8k videos: {7680x4320, 4 seconds, 60 FPS}

Experiment settings. To evaluate the video QoE, we choose
4 scales {x2,x3,x4,x6} to downscale the frame resolution. The
downscale method is bicubic. Then, we convert each down-
scaled video. For UHD videos, each video is encoded into
20Mbps and 60Mbps for 4K and 8K videos. These videos
are set as the original video for down-scaling. To satisfy
the requirements of the training and testing of deep learning
models, we use a server with an RTX 2080TT GPU.

Baseline approach: CropSR. In the baseline approach, all
the RGB video frames are extracted from downscaled videos.
Each video frame is cropped into multiple parts. The 4k
downscaled video frame is divided into four sub-frames. These
sub-frames share a 4-pixel overlapping area among each other.
The 8k video frame is divided into four 4k parts. Then each 4k
part follows the same procedures as 4k frames. Each sub-frame
is then fed into a state-of-the-art super resolution model. After
applying the super resolution model, all generated results are
combined to obtain UHD video frames.

Upscaling approach: Bicubic. We can upscale a video
frame without using deep learning models. Bicubic inter-
polation [21] is one of the most widely used methods to
upscale video frames. However, the quality of the video
frame generated by Bicubic is poor compared with using deep
learning models. Less required computation resources (CPU
only) and fast execution speed are the main advantages of the
Bicubic algorithm.

B. Video compression rate

To evaluate the video compression rate, we have two granu-
larity: frame and video. The average frame data size of a video
is less than that of an isolated video frame, because the inter-
frame compressing is applied by video encoding algorithms.
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Fig. 4. The normalized frame and video data size.
TABLE 1
THE PERFORMANCE OF SUPER RESOLUTION ALGORITHMS
SR Pearl CropSR Bicubic SR Pearl CropSR Bicubic
Scale | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | Scale | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
8kx2 | 29.36 0.90 32.71 0.91 24.36 0.74 4kx2 | 29.36 0.90 31.74 0.89 22.41 0.77
8kx3 31.39 0.93 34.83 0.93 21.46 0.58 4kx3 31.36 0.93 34.09 0.91 20.09 0.61
8kx4 | 35.12 0.96 38.42 | 0.96 19.83 0.47 4kx4 | 35.05 0.96 37.60 0.94 19.03 0.51
8kx6 | 34.76 0.91 38.13 0.92 18.23 0.34 4kx6 | 35.85 0.92 38.01 0.90 18.04 0.41

The reason that we study the frame level compression rate is
that videos are sent frame by frame in some scenarios.

Frame: Fig. 4(a), (b), (c) show the data size of 2k, 4Kk,
and 8k video frames, respectively. For 5 different down-
sampling scales, the data size of a single channel frame is
reduced by 58.56%, 62.69%, 61.46% on average, for 2k,
4k, and 8k video frames, respectively. For full 2k frames,
down-scaling can reduce the frame data size by {72.8%,
85.6%, 91.2%, 95.6%} for {x2,x3,x4,x6} down-scaling scales,
{70.5%, 85.3%, 91.2%, 95.8%} and {70.1%, 84.7%, 90.6%,
95.4%} for full 4k and 8k frames, respectively.

Video: The video data size of 2k, 4k, and 8k videos are
shown in Fig. 4(d), (e), (f). The data size of a single channel
video is reduced by 50.10%, 62.23%, 53.35% on average,
for 2k, 4k, and 8k videos, respectively. For 2k videos, down-
scaling can reduce the video data size by {65.38%, 80.84%,
87.55%, 93.44%} for {x2,x3,x4,x6} down-sampling scales,
{66.23%, 81.61%, 87.93%, 93.47%} and {69.81%, 84.62%,
90.29%, 95.21%} for 4k and 8k videos, respectively.

In summary, applying the super resolution model can reduce
70% to 95% of frame data size and 65% to 95% of video data
size for UHD videos.

C. Video frame quality

We define the bottom-line construction quality of a video
frame as (30 dB, 0.85) for PSNR and SSIM. The cumulative
distribution function (CDF) of the PSNR and SSIM are shown
in Fig. 5. About 99% of the reconstructed frames are above
the bottom-line quality for the x2 scale, 97%, 79%, 71% for
the x3, x4, and x6 scale, respectively. There are some recon-
structed frames with extremely high PSNR and SSIM values.
The reason is that these frames contain a large percentage of

pure color blocks. The super resolution model can achieve a
high accuracy for recovering pure color blocks.

The average reconstruction video frame quality of the
channel-based super resolution model for 4k and 8k video
frames are presented in Table I. Compared with the state-
of-the-art super resolution model adopted in CropSR, our
proposed channel-based super resolution models lose about
7% video frame quality. This is because using a single channel
to train the super resolution model will lose the global informa-
tion of the video frame compared with using the whole RGB
frame. However, the channel-based super resolution model
can achieve much better frame quality as compared with the
Bicubic algorithm.

—_x2
5 — X3
0.5 14 |
O X6

30 40 60 so 100 04 0.6 0.8 1
PSNR (SR) SSIM(SR)

Fig. 5. The quality CDF of the reconstructed UHD video frames.

D. Video processing time

The video processing time can be mainly divided into 3
parts: video frame extraction time, the super resolution model
execution time, and video encoding time.

As shown in Fig. 6, Pearl spends much less model execution
time compared with CropSR. Without considering the parallel
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computing, Pearl only needs to execute 3 times to generate
a whole UHD video frame. However, it needs 4 executions
for a 4k video frame and 16 executions for an 8k video
frame in CropSR. At the same time, the average execution
time of the super resolution model in Pearl is also less than
in CropSR because of the smaller input data size. However,
unlike in CropSR, only the RGB video frames need to be
extracted from the downscaled video, the downscaled video
in Pearl is divided into three channels, and all the frames in
each channel need to be extracted. As a result, Pearl costs
more frame extraction time compared with CropSR. Moreover,
compared with encoding the RGB video frames into a video,
encoding YUV channel frames takes less video encoding time.
Additionally, CropSR needs additional video processing time
to crop and combine the sub-frames. Thus, CropSR costs more
video encoding time compared with Pearl. Overall, Pearl can
achieve 2.4 times faster compared with CropSR.

VI. CONCLUSION

In this paper, we proposed a fast deep learning driven com-
pression framework named Pearl, which utilizes the power of
deep learning to compress UHD videos. An optimal compact
representation from the origin UHD videos is learned with
channel-based super resolution models. The super resolution
model is used to reconstruct a UHD video from a low-
resolution video. Pearl can compress up to 95% of video
data size during the video transmission, which significantly
saves network bandwidth resources and reduces the network
transmission latency.
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