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Spectral gaps of the Laplacian on differential forms

Helton Leal and Zhiqin Lu

ABSTRACT. In this short article, we explore some basic results associated to
the Generalized Weyl criterion for the essential spectrum of the Laplacian on
Riemannian manifolds. We use the language of Gromov-Hausdorff convergence
to recall a spectral gap theorem. Finally, we make the necessary adjustments
to extend our main results, and construct a class of complete noncompact
manifolds with an arbitrarily large number of gaps in the spectrum of the
Hodge Laplacian acting on differential forms.

1. Introduction

Let X be a complete noncompact Riemannian manifold of dimension n and
denote by A the.Laplace-Beltrami operator acting on smooth functions with com-
pact support C§°(X). It is well-known that the unique self-adjoint extension of A
on L?(X) is a nonnegative definite and densely defined linear operator.

The spectrum of A, denoted by o(A), consists of all A\ € C for which A — XI
fails to be invertible. The essential spectrum of A, gess(A), consists of the cluster
points in the spectrum and of isolated eigenvalues of infinite multiplicity. The pure
point spectrum is defined by

opp(A) = 0(A)\vess(A).

A consequence of the Hodge Decomposition Theorem is that, on a compact

manifold,

o(A) = opp(A).
In the case of a noncompact manifold, however, the spectral structure is generally
more complex than in the compact case.

Nonetheless, while it is impossibe to precisely compute the pure point spectrum
for most compact manifolds, it is possible to locate the essential spectrum of the
Laplacian for a large class of complete, noncompact Riemannian manifolds.

Historically, there are many results that exhibit a large class of noncompact
manifolds whose essential spectrum is a connected subset of the real line. See,
for example [7,9-11,15,23]. Likewise, one can find large sets of manifolds for
which the essential spectrum has an arbitrarily large number of “gaps” (that is, the
number of connected components of R\oess(X) can be arbitrarily large).
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In [2], we explore this set of manifolds, in collaboration with N. Charalambous,
by first considering spectral continuity and then observing the evolution of the
spectrum of a sequence of manifolds under Gromov-Hausdorff convergence. Using
these ideas, we prove the existence of gaps in the essential spectrum of a periodic
manifold. Our result is, in essence, a new proof to that by Schoen and Tran [22], as
well as Post [19], Lledé and Post [16] who used Floquet theory; Khrabustovskyi [14]
who presented more refined results; and Exner and Post [12] who exhibit limiting
results.

It is a more complicated task to obtain similar results for the spectrum of the
Hodge Laplacian acting on k-forms on a manifold, due to the stronger connection
of the operator to the curvature.

In this note, we generalize the ideas present in 2] to the k-form spectrum, and
construct a class of complete noncompact manifolds with an arbitrary number of
gaps in the spectrum of the Hodge-Laplacian on k-forms.

2. The spectrum of the Laplacian on k-forms
Given k-forms w = a;,...ws; A Aw;, and = by wi; A=+ A w;,, , where
(w1 -+ ,wp) is a orthonormal co-frame, the L? inner product in A*M is defined as

(w,n) = k!/ arbr dV,
M

where dV' is the volume form, {es,---, e, } is a global orthonormal frame and {wy, -
-,wp} its dual frame, and I is the corresponding multi-index.

Let d : A*M — A*+1M be the exterior differential. The adjoint § of d, which
is called the codifferential operator, is § : A¥+1M — AFM satisfying

(dw, ) = (w,dn)
for all w € A*M,n € AF'M with compact support. It is worth noting that,

contrary to the differential operator d, its adjoint operator § depends on the metric
g on the manifold. We have

(677)11% = —(]C =+ I)Vsns“%

The Hodge Laplacian, also known as the Laplace-de Rham operator, is defined
as

(1) Ay =A=d§+6d=(d+ 82

Similar to the case of the Laplace-Beltrami operator, it is well-known that the
Hodge Laplacian extends to a self-adjoint, nonnegative operator densely defined
over L2(AFM). In particular, when k = 0, the Hodge Laplacian coincides with the
Laplace-Beltrami operator acting on functions.

The Weitzenbock formula (see [18], Theorem 9.4.1) gives that

Aw =V*Vw + E(R),

where R is the curvature operator and E(R) is an algebraic operator of R. Here
V'V =-> V%,
i

where V3 = Vg, Vg, — Vv, g for an orthonormal frame {E;}, is called the
connection Laplacian. The results of this paper also hold for connection Laplacian.
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We denote o(k, A) the spectrum of the Hodge Laplacian Ay. In order to use
the language of Gromov-Hausdorff convergence (see [4]), we abuse notation and use
o(k,A) to refer to the pointed metric space

(o(k,A)U{-1},-1).
Similarly, we use oess(k, A) for the pointed metric space
(Gess(k, A) U {-1},-1).
Note that these definitions imply
o(=1,A) =0(n+1,A) = 0ees(—1,A) = Gegs(n + 1, A) = 0,

meaning that the set consists of a single point metric space {—1}.

We will omit the degree k of the differential form when there is no risk of
confusion.

As mentioned above, directly computing the essential spectrum of the Laplacian
on forms has been a complicated task, even for the case of 1-forms, due to their
stronger connection to the curvature, and because of the lack of good test forms on
the manifold.

In view of the above obstacle, it would be more efficient to study the evolution
of the spectrum under various deformations of the manifolds. The first natural
case to consider is the evolution of eigenvalues under the continuous deformation
its Riemannian metric. J. Dodziuk proved the following result

THEOREM 2.1 ([8]). Let X be a compact manifold and let g; be a family of
Riemannian metrics on X. Assume that

gt —g

in the C° topology. Then the spectrum (eigenvalues) of g; converges to the spectrum
of g (as pointed metric spaces in the Gromov-Hausdorff sense).

A remarkable feature of the above theorem is that it doesn’t depend on the
curvature of the family of deformed manifolds. For the application in this paper,
we need to use a generalized version Dodziuk’s result. In the paper [4] (also see [20]
for related results), N. Charalambous and the second author generalized spectral
continuity to the case when the quadratic forms of two self-adjoint operators are
e-close.

Let 1 be a Hilbert space with two inner products (-,-)o and (-,-);. Consider
two densely defined nonnegative operators Hy and H; on 7 that are self-adjoint
with respect to the inner products (-, )y and (+,-)1 respectively. Let Qg, Qq be their
respective quadratic forms and denote the two norms on 7 by ||+ [|o and || -||;. Note
that both Qo and @ are nonnegative.

Denote the domain of the Friedrichs extension of Hy and H; by Dom(Hp) and
Dom(H;) respectively. We assume that there exists a dense subspace C C H such
that C is contained in Dom(Ho) NDom(H;). In the case of the Laplacian operators
Ho = Ay, and Hy = Ay, associated to two different metrics go and g, C will be
the space of smooth functions/forms with compact support.

DEFINITION 1 ([4]). We say that the operators Hy, Hy are e-close, if there exists
a positive constant 0 < ¢ < 1 such that for all u € C the following two inequalities
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hold

(2) (L =e) Jull§ < flullf < (1+e) ull3;

(3) (1—-€)Qo(u,u) < Q1(u,u) < (1+¢€)Qo(u,u).
We note that if Hy, H; are e-close, then for any u,v € C

(4) |(w, )1 = (u,v)o| < &([ullo |v[lo);

(%) |Q1(u,v) — Qo(u, v)| < &[Qo(u, u) Qo(v,v)]"/>.

It has been shown in [4] that two e-close operators have nearby spectra. This
result has an important application in the context of the Hodge Laplacian on k-
forms over a Riemannian manifold with two e-close metrics over it. In particular, it
allows for the proof of the following theorem which holds even in the noncompact
case.

THEOREM 2.2 ([4]). Let X be an orientable manifold, and let gy, g1 be two
smooth complete Riemannian metrics on X that are e-close for some 0 < & < 1/2.
Fiz A> 0. Then for any X € o(k, A1) N[0, A],

dist(A, o(k, Ag)) < c(4,n) £3

for some constant c(A) depending only on A. A similar result holds for the essential
spectra of the operators. In particular,

dh (O'(]{, Al), U(k, Ao)) = 0(1)
where o(1) — 0, as e — 0.

7

To clarify the notation in the above theorem, dp denotes the pointed Gromov-
Hausdorff distance between the spectra as subsets of the real line with a common
fixed point —1. o(k, A;) denotes the spectrum of nonnegative definite Hodge Lapla-
clan.A; acting on k-forms which corresponds to the metric g; for i = 0, 1.

In contrast, in the setting of a family of compact Riemannian manifolds which is
convergent in the Gromov-Hausdorff sense, we have the following important results.
The first result is due to K. Fukaya

THEOREM 2.3 ([18]). Let Xy be a family of compact Riemannian manifolds
which is Gromov-Hausdor[f convergent to a compact metric space X. We assume
that X is not a point. Assume that the curvatures of the manifolds X; are uniformly
bounded. Then the eigenvalues of X; converge to those of X .

The above result was later generalized by J. Cheeger and T. H. Colding

THEOREM 2.4 ([6]). Let Xy be a family of compact Riemannian manifolds which
is Gromov-Hausdorff convergent to a compact metric space X. We assume that X
is mot a point. Assume that the Ricci curvatures of the manifolds X, are uniformly
bounded below. Then the eigenvalues of Xy converge to those of X.

There is no known common generalization of Theorems 2.1, 2.2. 2.3 and 2.4.
In [2] we studied a special case, which allowed us to find manifolds with gaps in
their L? essential spectrum.

Let H be a self-adjoint operator on a Hilbert space 7. The norm and inner
product in # are noted by | - || and (-,-), respectively. Let o(H), 0ess(H) be the
spectrum and the essential spectrum of H, respectively. Let Dom(H) be the domain
of H. The Generalized Weyl criterion states the following.
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THEOREM 2.5 (Charalambous-Lu [3] ). Let f be a bounded positive continuous
function over [0,00). A nonnegative real number )\ belongs to the spectrum o(H)
if, and only if, there exists a sequence {1 }nen such that

(1) [[¢l, ¥n e N;
(2) (F(H)(H = Npn, (H = N)py) — 00 as n — oo; and
(3) (¥n, (H—Ntn) =0 as n — oo.

Moreover, X belongs to oess(H) of H if, and only if, in addition to the above prop-
erties

(4) Yp — 0, weakly as n — oo in H.
One direct consequence is the following.

THEOREM 2.6 (Charalambous-Lu [4]). Let M be a complete Riemannian man-
ifold. Suppose that X > 0 belongs to the essential spectrum of the Laplacian on
k-forms, oess(k,A). Then one of the following holds:

(1) X € gess(k—1,A) or
(2) A€ oess(k+1,A).

3. Basic construction

We recreate the construction in [2]. Let (Xi,¢1),(X2,92) be two complete
Riemannian manifolds. Let z; € X; and 25 € X3 be two fixed points on the
manifolds respectively.

Let

N =5"1x(-2,2)
be the product manifold equipped with the metric gy = €2gy, where go is the
standard product metric.

For any € > 0, we construct the manifold X. by gluing the three manifolds
X1, X2, N in the following way. Let f; : S"~1 x (=2, ~1) = X; be the function

f1(0,t) = exp,, (—teh),

where exp,, is the exponential map from T, X1 — X1. In particular exp,, (0) = z1.
Similarly, let fo : S"! x (1,2) — X3 be the function

fa(0,1) = expgg2 (ted),

where exp,,, is the exponential map from T, Xo — Xs. In particular exp,, (0) = za.
It is clear that f; (1 = 1,2) are diffeomorphisms between their domains and ranges.
Let X, denote the composite manifold defined by (X1, X, N, f1, f2), such that

(6) Xe = (X1\Bxz, (€)) U (X2\Ba, (€)) UN/ ~,

where we identify f; with their images respectively for ¢ = 1, 2. Roughly speaking,
X is constructed from X7, Xy by removing two balls of radius & and adding a neck
connecting them.

Abusing notation, we will identify g; with f;(g;) for i = 1,2 on the sets where
they are defined.

We construct the metric g. on X, as follows. For § > & > 0, let 03,3, 0 be a
partition of unity for X, in the following sense. Let

supp(p)) C {p € X, | dist(p, 5"~ x {0}) < 20},
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and assume that p§ =1 on {p € X, | dist(p, S"~* x {0}) < §}. Moreover, assume
that [Vp§| < C/6. Then X, \supp(p3) has two connected components X? and X3.
Let

P =1-pb
for i = 1,2 be the functions on X and X3, respectively. Then

po+ o1 +p5 =1
on X..
We define
9e = PoIN + P191 + P59
Then we have

ProposITION 3.1 ([2]). Let X1,X5 be two compact Riemannian manifolds.
Using the above notations, we have

(1) (Xe, ge) is Gromov-Hausdorff convergent to the metric space Xo, which is
the union X1 U Xo with x1 identified with xs ;
(2) Let xo be a reference point in the middle of the neck N. The pointed

Riemannian manifolds (X.,e 2g., o) are G’romov-Hausdorﬁ convergent
to (8"t x (—1,1), o).

We call (X.,g.) a smoothing of X,. Apparently, the curvature of X, are not
bounded as ¢ — 0. Nevertheless, The key property of the family of manifolds X.
is that it has uniform local Sobolev constants. We shall use this fact to prove the
spectrum continuity when the Ricci curvature of X, doesn’t have a lower bound.

LEMMA 1 ([2]). The (local) Sobolev constants for both (X.,g.) and (X.,e~2g.)
are uniformly bounded.

4. Proof of the main theorems

We begin this section with the following

LEMMA 2. Let Ay be the Hodge Laplacian on k-forms of (N,e2go) with the
Friedrichs extension, where g is the product metric. Then the first eigenvalue A1 of
Ay, diverges to +o0o as & — 0.

PROOF. We consider the first eigenvalue of (N, go) with the standard product
metric. It is well known that if k = 0, then the first eigenvalue has a positive lower
bound a > 0. By scaling, for the metric, e2go, the first eigenvalue is bounded below
by 0e~2, which diverges to co when & — 0. By .duality, the same is true for k = n.

Slmllarly, we can work out the cases when k # 0,n. Since gg is the product
metric, we have the following decomposition for A = Ay:

AN == Asn~1 ®1+1®AR

Let A¥(IN) denote the first eigenvalue of the manifold N on k-forms. Let w be the
first eigenform. Then we can write w as

w=wi A f(t)dt + g(t)wa,

where f(t),g(t) are functions such that f(£2) = g(£2) = 0 (by the Friedrichs
extension) , and wi,wy are (k — 1) and k eigenforms of S™2 respectively.
If g #£ 0, then ' '

M(S™ X R) > AY((—2,2)) > 0
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if k # 0,n, and the conclusion of the lemma proved. If g = 0, then f must not be
identically zero. As a result, we have

AF(S™1 x R) > AH((~2,2)).

Since f(42) = 0, we have A\}((—2,2)) > 0, thus completes the proof of the lemma.
O

Using the above, we shall prove the main technical result of this paper in the
following.

THEOREM 4.1. Let Xy,X5 be two compact Riemannian manifolds and take
A & Spec(X1) U Spec(X2). Consider the manifold (X.,g.) defined above. Set 20 =
dist(A, Spec(X1) U Spec(Xs)) and take N € (A — o, A\ + o). Then, for any e > 0
small enough, A" & Spec(X.).

PrROOF. Let )\ be an eigenvalue of X, and let w be an eigenform such that
lwllzz = 1. Write

w = pdw + piw + pdw = wp + w1 + wo.

it turns out that
(7 (Awp,w) + (Awy,w) + (Aws,w) = N.

Note that in fact, w; = wf’e depending on both €,§. For fixed § > 0, we let € — 0.
Since (Aw;,w)/||w||2, is bounded for i = 1,2, then using Lemma 1, by the elliptic
regularity, we have C?“-estimate. Therefore, we have a sequence limit

0,65
& _ w?»o

lim w,

Ej—)O
ase; —+0and i =1,2.

If any of w‘f’o, or wg,o is not zero, say w‘f’o = 0. Then we have

5,0
AW = Nuwi®,

Letting § — 0, the form wf’o will be convergent to an eigenform on X;\{z1}. By

the removable singularity theorem, it would be extended to an eigenform of Xj,
contradicting to the fact that A’ is away from Spec(X).

It remains to prove that it is not possible that both wf’o and wg,o are zero.
Assume otherwise, then by (7), (Awg,w)/||w||?, must be bounded when & — 0.
But this would imply that

| (Awo, wo)/[|woll72
is bounded, which contradicts to Lemma 2. This completes the proof of the theorem.
O

Using the above technical lemma, we can prove the following

THEOREM 4.2. There exists a complete non-compact Riemannian manifold M
whose essential spectrum of the Hodge Laplacian on k-forms has an arbitrarily large
number of connected components. .

PrOOF. Let X = S™ be the n-dimensional sphere and let N, S be the north
pole and the south pole of X, respectively. Define a sequence of compact manifolds
X; = X, with the corresponding north and south poles N;, S;. Define the metric
space Y by glueing the north pole of X; to the south pole of X;,; for any 7 > 0.
Then the spectrum of Y is the same as the spectrum of X = S™, which is discrete.
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Using Theorem 4.1, after a smoothing of Y to Y, then the essential spectrum of
Y. would have arbitrarily large number of connected components. L]

Using a similar argument, we can prove

COROLLARY 1. There exists a complete non-compact Riemannian manifold M
whose spectrum of the connection Laplacian on k-forms has an arbitrarily large
number of connected components.
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