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Abstract—As the capacity of DRAM continues to grow, the 
refresh operation rapidly becomes the performance and power-
efficiency bottleneck. Also, restore time, the time given for 
recharging cells post access, makes an increasingly large amount 
of negative impact on performance. To tackle these problems, in 
this paper, we propose an in-situ charge detection and adaptive 
data restoration DRAM (CDAR-DRAM) architecture, which can 
dynamically adjust the refresh rate and also relax the constraints 
on restore time. The proposed CDAR-DRAM employs a low-cost 
skewed-inverter-based detector, which can reduce the excessive 
timing margins that prior work added to guarantee the 
functionality of leaky DRAM cells under the worst-case 
temperature condition. Moreover, an adaptive DRAM refresh and 
restore scheme is proposed, which can switch automatically 
between two modes: (i) a refresh mode that supports adaptive 
refresh rate, and (ii) a restore mode that relaxes the constraints on 
restore time dynamically for cells having sufficient charge. With 
the transistor- and architecture-level simulations, we evaluate the 
CDAR-DRAM in an 8-core system across different workloads. 
Compared with the prior art, the proposed architecture achieves 
a 9.4% improvement in system performance and a 14.3% 
reduction in energy consumption, without requiring the time-
consuming profiling process which many prior works employed.  

Keywords—DRAM, refresh, restore, row activate time, in-situ 
charge detection, adaptive restore time, multi-rate refresh 

I. INTRODUCTION 
In recent years, the refresh and restore operations of dynamic random 
access memory (DRAM) have drawn great attention due to their 
increasing impact on the performance of DRAM and computer systems. 
As the DRAM capacity continues to grow, the refresh overhead keeps 
increasing. For 64GB DRAM chips that are under development, the 
refresh overhead is estimated to degrade throughput by up to 50% and 
account for 50% of the total power consumption of DRAM [1]. Also, 
the restore time, i.e., the time that is given to recharge a DRAM bitcell 
after the read or write access, continues to dominate DRAM access 
latency in past decades [2-5]. The impact of restore time even becomes 
worse for the technology node of 20 nm or below [6, 7]. Consequently, 
mitigating the refresh overhead and speeding up the bitcell restoration 
process are paramount to successfully develop the next-generation 
high-performance and energy-efficient DRAM. 

Prior works tried to reduce the refresh overhead in DRAM by 
exploiting the large spread of data retention time tRET of bitcells [1, 8-
11]. Most of bitcells indeed can retain their data much longer than the 
pessimistically-set refresh window tREFW of 64ms [1, 12]. Therefore, 
prior works proposed to perform infrequent refresh operations for the 

majority of the cells that are not leaky whereas frequent refresh 
operations only for a small number of leaky cells. To identify those 
leaky cells, prior works relied on profiling the tRET for every row of 
bitcell array. However, the profiling procedure would take hours to 
even days to collect all the minimum tRET. This is because tRET depends 
on data pattern and also varies over time due to the variable retention 
time phenomenon [13, 14]. 

On the other hand, prior works tried to shorten the restore time (and 
refresh time) by leveraging the fact that the restoration time can be 
smaller if a bitcell still retains a large amount of charge on its capacitor 
or it is about to refresh [3-6, 15-19]. To do so, prior works proposed to 
add extra isolation transistors to the bitlines in DRAM chips to reduce 
the charge loss of bitcells [3, 19]. Some other works instead, exploited 
the different charge levels of bitcells due to the temporal correlation of 
operations [4-6, 15-18]. For instance, the restore truncation (RT) 
scheme [6] aimed to restore a cell’s voltage just enough to sustain data 
until the next refresh operation. Fig. 1 shows an example case. If a “read” 
operation is issued during the time window win0, the RT scheme 
initiates a normal restore process as the next refresh is distant in time; 
during win1, it can restore the cell’s voltage only up to V1 since the 
subsequent refresh operation will recharge the cell to VDD. Prior works 
estimated the required time to restore/refresh cells to a partial voltage 
(e.g., V1) via profiling and simulation, and modulated DRAM timing 
parameters such as refresh cycle time (tRFC), row activate time (tRAS), 
and row address to column address delay (tRCD) for controlling the 
restoration (or refresh) strength/duration. 

However, most of the prior works have relied on profiling and 
simulation under the static worst-case condition and seldom account for 
dynamic variations such as temperature. Indeed, the actual working 
temperature of DRAM is very likely to be less than the worst-case 
temperature (85 ⁰C) [16]. Such an approach, therefore, makes DRAM 
operate with a large amount of unexploited margin during most of its 
runtime. To confirm this, we simulated the lower bounds of tRAS from 
45 ⁰C to 85 ⁰C and found that tRAS can be set 31% smaller at 65 ⁰C and 
45% smaller at 45 ⁰C as compared to 85 ⁰C (Fig. 2).  

In this work, we aim to replace the static profiling and simulation-
based approach with in-situ sensing hardware for the goal of exploiting 
those pessimistically-set margins in runtime. To do so, we propose an 
in-situ charge detection and adaptive data restore DRAM (CDAR-
DRAM) architecture. It consists of (i) in-situ charge detectors to 
monitor the voltages of bitlines and to estimate tRET of bitcells, and (ii) 
an adaptive refresh and restore scheme to modulate the refresh rate and 
the restore timing parameters. The detailed circuit-level SPICE 
simulations confirm that our detector can detect the voltage of a bitcell 
in a 2-bit resolution. We evaluate the proposed architecture in an 8-core 
system using architectural simulators. The CDAR-DRAM can improve 
the system performance by 9.4% and energy efficiency of DRAM by 
14.3%, as compared to the prior art [6]. 
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Fig. 1. The restore truncation scheme [6]. 

  
Fig. 2. The tRAS margin for different temperatures. 

The major contributions of this paper can be summarized as follows: 
(1) We propose an in-situ bitline charge detection scheme that can 
estimate the DRAM cell’s voltage in runtime. This helps to remove 
pessimistic timing margins for the cells that retain a good amount of 
charges. The detection process takes place simultaneously with 
DRAM’s refresh operations, thereby incurring little performance 
overhead. (2) We propose an adaptive refresh and restore scheme. 
Working with the above detectors, the adaptive scheme can reduce 
refresh overhead and the pessimistic margin added to the restore timing. 
The scheme enables CDAR-DRAM to switch automatically between 
two modes: (i) a refresh mode to change the refresh interval 
progressively, and (ii) a restore mode to dynamically optimize restore 
timing. It provides improvements in both performance and energy 
efficiency. 

The remainder of the paper is organized as follows. Sec. II presents 
the proposed CDAR-DRAM architecture. Sec. III describes our 
evaluation platform. Sec. IV introduces the experimental results and 
related discussion. Finally, Sec. V concludes the paper.  

II. CDAR-DRAM ARCHITECTURE 
In this section, we present CDAR-DRAM, an architecture with in-situ 
charge detection and adaptive refresh and restore schemes. Fig. 3 shows 
the proposed architecture. It requires modifying the DRAM and the 
controller. For a typical DRAM chip having multiple banks, each bank 
is composed of columns of bitcells and sense amplifier (SA) circuits. 
The proposed architecture adds bitline voltage detectors to bitlines, 
whose outputs are converted by a timing-to-digital converter (TDC). 
The TDC produces a 2-bit output CNT that roughly represents the 
smallest bitcell voltage of a row of bitcells. On the other hand, the 
controller takes CNT and estimates the maximum tREFW, and updates a 
timing table based on it. After that, it issues commands with variable 
restore timing. 

A. In-situ Charge Detection Scheme 
Our goal is to find out the DRAM cell’s voltage level right after the 
refresh window (Vc,init) so that we can reduce the refresh rate and 
shorten restore time if Vc,init is high. To achieve this goal, we propose 
an in-situ charge detection scheme based on the detectors and the TDC. 

Fig. 4 shows the workflow of our proposed in-situ charge detection 
scheme. First of all, the sense amplification is performed on Vc,init. If 
Vc,init is > 0.5·VDD, the sense amplification increases the bitline voltage  

 
Fig. 3. The proposed CDAR-DRAM architecture. 

 
Fig. 4. The workflow of the in-situ charge detection scheme. 

(VBL) toward VDD. Here, the higher Vc,init is, the faster the VBL is 
restored to VDD. Therefore, we measure the time when VBL crosses a 
threshold voltage, tDET, which can indicate the level of Vc,init before the 
sense amplification. For being used in the memory controller, tDET is 
converted to the digital value CNT, which the memory controller uses 
to estimate the Vc,init level range based on a pre-defined lookup table. 

Fig. 5(a) shows the circuits for the bitline voltage detection scheme. 
It illustrates the sensing of the capacitor voltage of the bitcell of the i-th 
column of a bank (Celli) via the bitline of the i-th column (BLi). The 
existing SA circuits are recycled but we add the bitline detector. The 
detector contains three transistors: M0 is controlled by an “enable” 
signal, which is high for detection and low otherwise; M1 and M2 
compose an inverter-based voltage comparator, whose input is BLi and 
output is DETi. The switching threshold voltage (VM) of the comparator 
is set by the sizing of M1 and M2. We optimize the detector circuits for 
process variation tolerance, area, and power efficiency, which will be 
further discussed in Sec. II.B.  

The detection takes place during the refresh operation. Specifically, 
a bitline (BL) is pre-charged to 0.5VDD and then the access transistor of 
a bitcell is enabled. This initiates charge-sharing between a bitcell and 
a BL, which pushes VBL by ΔV away from 0.5VDD. The SA amplifies 
this difference, and as a result, it restores the voltage of the bitcell 
capacitor and BL to VDD. During this restoration process, the bitline 
detector compares VBL with VM and changes its output DET from high 
to low if VBL is greater than VM. The time that DET switches high to 
low is defined as tDET and the TDC converts it to a digital code. Fig. 5(b) 
shows an example timing waveform of the bitline detection. We 
consider two bitcells Cell0 and Cell1, where we assume that Cell0’s 
potential, denoted as Vc,init0 is high while Cell1’s potential Vc,init1 is low. 
This difference makes BL1 take longer in the restoration process than 
BL0, making tDET1 longer than tDET0.  

Since the DRAM timing is constrained by the cell that has the 
lowest voltage in the row, we need to account for only the slowest DETi 
switching. This can be achieved by OR-ing all the DETi signals of a 
row (note that the DETi signal is active low) and feeding its output 
DETslwst to the TDC. Fig. 6 shows the exemplary waveform of the TDC 
process. Before the detection, CNT is zero initially. During the 
detection, CNT increases every clock cycle unless DETslwst has fallen 
to zero. In the exemplary case, DET1 transits later than DET0 so the OR  
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Fig. 5. (a) The hardware for bitline voltage detection; (b) The waveform of the 
bitline voltage detection for cells with high and low Vc,init. 

 
Fig. 6. The TDC process for converting the switching time of DETslwst to CNT.  

TABLE I.  THE CORRESPONDING VC,INIT OF CNT 

CNT 2’b11 2’b10 2’b01 2’b00 
Vc,init (VDD) [0.55, 0.6) [0.6, 0.7)  [0.7, 0.85) [0.85, 1) 

 

tree takes DET1 as the DETslwst. As a result, the final CNT is 2’b10 when 
DETslwst transits low. 

After obtaining the CNT, the corresponding Vinit range can be 
inferred based on a pre-defined lookup table. We characterize the 
lookup table based on the circuit-level SPICE simulation. We found the 
CNT values for Vc,init from the minimum sustainable voltage (Vmin, set 
to 0.55VDD) to VDD, which is summarized in Table I. 

Note that so far the discussions assume DRAM cells store “1”. The 
case for a cell storing “0” is similar except that we need to use the bitline 
detector whose VM is less than 0.5VDD. Nevertheless, restoring a cell 
storing “0” is fundamentally faster than restoring a cell storing “1” due 
to the NMOS access transistor [19], thereby not as critical. 

B. Design Optimization of The Bitline Charge Detector 
To improve the robustness and energy efficiency, we optimize the 
bitline detector circuits in terms of transistor size and supply voltage 
VDDH. First of all, the switching threshold VM should be higher than 
0.5VDD for a cell storing “1”. Upsizing M2 can increase VM but it costs 
more silicon area. Increasing supply voltage (VDDH) can also increase 
VM yet at the cost of energy consumption and reliability. 

Meanwhile, as shown in Fig. 7, the restore speed of the bitline slows 
down as VBL approaches VDD. This implies that large VM0 increases the 
variation of tDET. For this respect, it is better to set VM where the VBL 
curve has the largest slope.  

To find out the optimal parameters of the bitline detector, we 
perform circuit-level SPICE simulation. We build a 512×512 DRAM 
subarray along with SA circuits using 55nm DDR3 model parameters 
[20]. The transistor model is based on the Predictive Technology Model 
(PTM) [21]. To evaluate the robustness of the proposed detector, we 
run Monte Carlo simulations with process variations based on [22].  

Fig. 8(a) shows the variation of tDET (σt) across different transistor 
sizes and VDDH values under a temperature of 85 ⁰C. The σt firstly 

 
Fig. 7. The variation of the detector’s output switching time σt is sensitive to the 
VM of the detector. 

  
Fig. 8. (a) The variation of DETi’s switching time σt, and (b) the power 
consumption of the bitline detector. 

 
Fig. 9. The CNT value across different temperatures.  

reduces and then increases due to the change of VM. We set VDDH to 
1.4V since it achieves the smallest σt across most of the transistor sizes. 
Fig. 8(b) shows the dynamic and static power consumption with 
different transistor sizes. Considering reducing both variations and 
power consumption, the “Size1” is chosen for M1 and M2 of the 
detector. M0 is less important for the operation of the detector and it is 
set to the minimum size. 

To show the robustness of the proposed detection circuits, we swept 
temperatures from 45 ⁰C to 85 ⁰C and check the variation of CNT. Fig. 
9 shows the simulated CNT with different Vc,inits. For Vc,init=0.575VDD, 
the detection circuits generate the CNT correctly (CNT=2’b11) for all 
temperatures, therefore ensuring the correct operations for the worst-
case cells. When Vc,init is higher, the detection circuits generate CNT 
correctly when the temperature is 45 ⁰C to 55 ⁰C. As the temperature 
goes up, the CNT may be one level higher than expected, which results 
in a pessimistic estimation of Vc,init.  

C. Adaptive Refresh and Restore Scheme 
So far, we obtained the CNT as the representative of the possible range 
of Vc,init, with which the memory controller can remove the existing 
timing margins for cells with high Vc,init. 

To improve DRAM performance and energy efficiency, we 
proposed a multi-rate refresh and adaptive restoration scheme, which 
contains (i) a data retention time estimation method to find out the 
proper refresh rates and (ii) a timing-table-based adaptive refresh and 
restore strategy. 
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Fig. 10. The retention time estimation process.  

Fig. 10 shows an example of our presented retention time 
estimation process, which progressively increases the refresh window 
(tREFW) until it approaches the data retention time (tRET) of a DRAM cell 
for minimizing the refresh rate. The red line shows the actual DRAM 
cell voltage would gradually decay from VDD to the minimum 
sustainable voltage Vmin within tRET, which can be approximated as a 
linear curve [6]. The memory controller issues a refresh operation every 
time at tREFWX (X is the iterations of our estimation process, which can 
be 0, 1, 2, or 3), where the cell voltage decays from VDD to VX (i.e., 
Vc,init at Xth iteration). 

Initially, refresh operations are sent at tREFW0 of 64ms. The detection 
circuits would output a CNT of 2’b00 after the first detection at tREFW0, 
indicating V0 is between 0.85VDD and VDD (see Table I). The low bound 
of possible V0 (i.e., Ve0=0.85VDD) is used for the worst-case charge 
decay estimation as shown with the “line1”. The horizontal intercept of 
“line1” is taken as tREFW1, where the cell voltage is estimated to decrease 
to Vmin. Then, tREFW1 is set as the new refresh window for the next 
iteration.  

Repeating the process until the CNT at tREFWX is 2’b10. As a result, 
VX is low to 0.6VDD, which is very close to Vmin (=0.55VDD), indicating 
that the final tREFWX is nearly the maximum. Due to temperature 
variations, the CNT may become 2’b11, indicating a very low VX. The 
VX may be lower than Vmin if the temperature goes up, so the tREFW is 
reduced by half for safety once CNT is 2’b11.  

During the above estimation process, the tREFW of each step is taken 
from the horizontal intercept of the approximated linear charge decay, 
which is formalized as follows: 

 tREFW = tREFWpre×(VDD-Vmin)/(VDD-Vc,init,lb) (1) 

where tREFWpre is the previous refresh window time, and Vc,init,lb is the 
lower bound of possible Vc,init according to CNT.  

By the introduced retention time estimation method, the maximum 
tREFW can be approached during runtime without stalling DRAM. The 
proposed method can adaptively change tREFW against temperature 
variations to achieve a sufficient and reliable refresh rate reduction. 

Based on the estimated tREFW, a timing-table-based dynamic 
refresh strategy is shown in Fig. 11 (, , and ). The timing table 
(in the refresh mode) uses a 3-bit tag (“001”/“01X”/“1XX”) to 
represent the refresh rate for each row. The position of the first “1” in 
the tag represents a different tREFW. The right-side bits (e.g., “XX”) are 
used as a refresh counter, which decreases every 64ms (). If the 
refresh counter is zero, the memory controller sends a refresh operation. 
The tag is initialized to “001” () for a tREFW of 64ms and will be 
updated due to suboptimal tREFWpre (). For example, if the estimated 
tREFW can be twice of tREFWpre, a tag of “01X” (128ms- row) is updated 
to “1XX” (256ms-row) to reduce the refresh rate. 

 
Fig. 11. A timing-table-based adaptive refresh and restore strategy. 

TABLE II.  ADJUSTED REFRESH RATE AND RESTORE TIME 

Mode 
flag Tag 

tREFW 

(ms) 

tRAS for 
1st/2nd/3rd/4th 
sub-window 

(cycles) 

tWR for 
1st/2nd/3rd/4th 
sub-window 

(cycles) 
Refresh 
mode 
(“0”) 

001 64 
32/24/20/19 14/12/10/9 01X 128 

1XX 256 

Restore 
mode 
(“1”) 

111 256 32/24/20/19 

14/12/10/9 110 256 28/20/16/16 
101 256 23/16/13/13 
100 256 16/13/13/13 

 

Since most cells have high Vc,inits at low temperatures, an adaptive 
restore scheme ( and  in Fig. 11) is adopted to speed up 
restorations for these cells. In restore mode, the low two bits of the tag 
represent different restore speed levels. All tags are initialized to “111” 
() for a conservative restore time. The tag will be updated for optimal 
restore time () according to CNT. For example, if CNT is 2’b00, 
which means the cell has a high Vc,init (≥0.85VDD), a tag of “111” will 
be updated to “100” for faster restoration of the cell. 

The CDAR-DRAM can automatically switch between the refresh 
mode and restore mode (). The memory controller starts with the  
refresh mode and tracks the minimum tREFW (tREFWmin) in the timing 
table. If tREFWmin is 256ms (i.e., all tags are “1XX”), the memory 
controller will switch automatically to the restore mode and setting all 
tags to “111” (). Moreover, if the tREFW has to be reduced (i.e., 
CNT=2’b11), the CDAR-DRAM switches back to the refresh mode. 

Table II lists the adjusted restore timing parameters and the refresh 
rate for different tags through a circuit-level SPICE simulation. 
Besides, similar to the restore truncation scheme [6], for each tag, four 
different tRAS/tWR are adopted for operations that arrive in the four sub-
windows of tREFW (see Fig. 1). Note that the minimum tRAS in the table 
is 13 cycles since tRAS should be larger than tRCD (12 cycles). The tRAS 
could be even lower if reducing tRCD through methods in [3-5, 16-18] 
to further speed up the restoration. 

III. EVALUATION METHODOLOGY 
To evaluate the proposed CDAR-DRAM architecture, we run the 
simulation using a cycle-accurate DRAM simulator, Ramulator [23]. 
For workloads, we randomly selected benchmarks from SPEC 
CPU2006 and PARSEC suite, covering non-memory-intensive ones 
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like 444.namd, 458.sjeng, and blackscholes, as well as memory-
intensive ones like 429.mcf, 470.lbm, and canneal. The benchmarks are 
converted to CPU traces for Ramulator through Pin [24]. We use 
DRAMPower [25] to obtain the energy results of DRAM.  

We modeled an 8-core system with configurations shown in Table 
III. The DRAM timing parameters follow the Micron DDR3 datasheet 
[2]. We used the DRAM retention distribution parameters provided in 
[12] and modeled the temperature effects according to [13]. The 
simulation was performed for 1 billion cycles, corresponding to 256ms 
given our 4GHz clock frequency, which ensures each row is refreshed 
at least once considering a maximum tREFW of 256ms. We measured the 
performance using the weighted speedup metric [27]. The energy 
results were reported as the average energy consumption per request [1]. 

TABLE III.  SYSTEM CONFIGURATION 

Processor 8-core, 4GHz, 3-wide issue, 128 ROB size 

Memory 
Controller 

Address mapping: rw:cl:rk:bk:ch:offset 
32-entry read/write request queues 
Page management policy: closed-page with FR-FCFS 

DRAM 

DDR3-1866 [2] 
2 channels, 1 rank/channel, 8 banks/rank 
64K rows/bank, 8 KB/row 
tCK = 1.07ns, width: x8 
tRCD/tRAS/tWR = 12/32/14 cycles 

 

IV. RESULTS AND ANALYSIS 
To evaluate the effectiveness of CDAR-DRAM, we made a comparison 
with the normal DDR3 [2] and the RT architecture [6]. The RT 
architecture adopted both multi-rate refresh and partial restoration 
methods to optimize the refresh window (tREFW) and restore time (tRAS), 
which is similar to ours. There are also plenty of prior works that tried 
to optimize the refresh or restoration operations, however, they focus 
on improving only the refresh [1, 8-11,15] or restoration [3-5, 16-18]. 
Besides, some prior works [4, 19] further optimize restoration beyond 
the RT architecture by adopting the tRCD reduction methods, which are 
orthogonal with ours. For the above reasons, we chose to make a 
comparison with the state-of-the-art RT architecture [6]. 

We evaluated the normal DDR3, RT architecture, and the 
proposed CDAR-DRAM under two different conditions: the worst-
case condition (the temperature is 85 ⁰C) and the normal-case 
condition (the temperature varies between 45 ⁰C and 65 ⁰C [16, 28]). 
For the normal-case condition, we assumed the temperature is 45 ⁰C 
for 50% of the time and 65 ⁰C for the remaining, which is a pessimistic 
assumption for our design since the DRAM temperature may seldom 
exceed 50 ⁰C [16]. 

The following architectures were studied:  
• Baseline: the normal DDR3 [2] with timing parameters that 

ensure the data correctness in the worst-case temperature, i.e., 
85 ⁰C. 

• RT-85/-65: the RT DRAM architecture with fixed timing 
parameters that are profiled in the worst-case/normal-case 
condition. 

• CDAR-85/-65: the proposed CDAR-DRAM at the worst-
case/normal-case temperature.  

A. Profiling Overhead 
To mitigating refresh or restore overhead, most prior works [1, 6, 8-11, 
14, 15] have to find the data retention time tRET of all cells through 
profiling. The profiling process is very time-consuming and the DRAM 
has to be laid off during profiling. According to the experiment for 2Gb 
DRAM chips in [13], the profiling process takes days to reliably find 
the lowest tRET of all cells. Due to the error accumulation [14] and long-
term issues like aging, the profiling process has to perform termly. 
However, in the proposed CDAR-DRAM, the tRET can be estimated 
through in-situ detection simultaneously with the refresh operations, 
which takes no extra time. 

B. Impact on Performance 
Fig. 12 shows the normalized weighted speedup on 20 randomly 
combined eight-core workloads (i.e., from w1 to w20) and the average 
result (i.e., AVG). When the temperature is 85 ⁰C, where DRAM cells 
have small tRETs, the CDAR-85 works in the refresh mode, whose 
timing table represents different refresh rates as RT-85 does. So, 
CDAR-85 and RT-85, on average, have the same 2.9% performance 
improvement over the baseline.  

 
Fig. 12. Performance comparison of different schemes. 
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Fig. 13. Energy comparison of different schemes. 
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In the normal condition, the normal DDR3 still has to use the worst-
case timing parameters. For the RT-65, we assume that it can be aware 
of the DRAM temperature and is profiled at 65 ⁰C for the normal 
condition. By removing the timing margin of tRAS from 85 ⁰C to 65 ⁰C, 
RT-65 achieves an average 6.4% performance improvement over the 
baseline. 

Since our proposed CDAR-65 can modulate timing parameters 
adaptively through the in-situ detection circuits with temperature 
variations in the normal condition, the system performance is improved 
by 12.6% over the baseline. The CDAR-65 showed a performance 
improvement of 9.4% and 5.4% over the RT-85 and RT-65, 
respectively. The CDAR-65 outperformed the RT architecture because 
of the unexploited timing margins by the static profiling method. If the 
DRAM temperature is 45 ⁰C or even below [16], most DRAM cells 
have tRET greater than 780ms [13] therefore can retain more charge on 
their capacitor. In this case, a more aggressive reduction of tRAS could 
make for restoring these cells in our CDAR architecture. 

C. Impact on DRAM Energy 
Fig. 13 compares the energy consumption of different architectures on 
the 20 workloads. At 85 ⁰C, the RT-85 showed a 4.6% energy reduction 
as compared to the baseline. The CDAR-85 reduced energy by 2.8% 
than baseline. The CDAR-85 consumed more energy than the RT-85 
since the detection circuits of CDAR-85 would cause additional energy 
overhead. In the normal-case condition, the RT-65 showed an energy 
reduction of 8.5%. The proposed CDAR-65 can save energy by 18.2% 
compared to the baseline. As compared with RT-85/-65, CDAR-65 can 
reduce energy consumption by 14.3%/10.6%.  

D. Area Overhead of Detection Circuits 
We evaluated the area overhead of our detection circuits in a DRAM 
chip since the DRAM is very cost-sensitive. The detection circuits 
contain two parts: bitline detectors and the TDC block. Based on the 
size of detectors (see Fig. 8) and the transistor sizes of SA circuits from 
[20], the area of bitline detectors is about 9.13% of the area of the SA 
circuits. Considering the sense amplifier circuits occupy 8%~15% of 
the DRAM die area [26], our detectors cause up to 1.37% area 
overhead. Besides, according to the synthesis results of our TDC block 
with a 65nm process, the TDC block takes an extra 0.38% area 
overhead of a DRAM die. Thus, the proposed detection circuits increase 
the DRAM die area by 1.11%~1.75%.  

V. CONCLUSION 
In this paper, we proposed CDAR-DRAM, an architecture that 
adaptively adjusts refresh rate and relaxes restore timing based on in-
situ detecting of the bitline voltage. Unlike prior profiling methods to 
collect data retention time under the static worst-case condition, the 
CDAR-DRAM adopted in-situ skewed-inverter-based detection 
circuits to estimate the retention time of cells during runtime without 
stalling normal DRAM operations. Based on the proposed adaptive 
refresh and restore scheme, the CDAR-DRAM can dynamically adjust 
the refresh rate and restore time for different cells. The proposed 
CDAR-DRAM can reduce the pessimistic timing margins that are 
preserved for the worst-case temperature in a rare case and a small 
number of weak cells. Experimental results show that in a typical 
temperature range, CDAR-DRAM can improve the system 
performance by 9.4% and saves energy by 14.3% for an 8-core system 
as compared with the state-of-art architecture. 
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