
CDAR-DRAM: An In-situ Charge Detection and
Adaptive Data Restoration DRAM Architecture for
Performance and Energy Efficiency Improvement

Chuxiong Lin1, Weifeng He1*, Yanan Sun1, Zhigang Mao1, Mingoo Seok2
1Dept. of Micro-Nano Electronic, Shanghai Jiao Tong University, Shanghai, China

2Dept. of Electrical Engineering, Columbia University, New York, NY, USA
*Corresponding author: hewf@sjtu.edu.cn

Abstract—As the capacity of DRAM continues to grow, the
refresh operation rapidly becomes the performance and power-
efficiency bottleneck. Also, restore time, the time given for
recharging cells post access, makes an increasingly large amount
of negative impact on performance. To tackle these problems, in
this paper, we propose an in-situ charge detection and adaptive
data restoration DRAM (CDAR-DRAM) architecture, which can
dynamically adjust the refresh rate and also relax the constraints
on restore time. The proposed CDAR-DRAM employs a low-cost
skewed-inverter-based detector, which can reduce the excessive
timing margins that prior work added to guarantee the
functionality of leaky DRAM cells under the worst-case
temperature condition. Moreover, an adaptive DRAM refresh and
restore scheme is proposed, which can switch automatically
between two modes: (i) a refresh mode that supports adaptive
refresh rate, and (ii) a restore mode that relaxes the constraints on
restore time dynamically for cells having sufficient charge. With
the transistor- and architecture-level simulations, we evaluate the
CDAR-DRAM in an 8-core system across different workloads.
Compared with the prior art, the proposed architecture achieves
a 9.4% improvement in system performance and a 14.3%
reduction in energy consumption, without requiring the time-
consuming profiling process which many prior works employed.

Keywords—DRAM, refresh, restore, row activate time, in-situ
charge detection, adaptive restore time, multi-rate refresh

I. INTRODUCTION
In recent years, the refresh and restore operations of dynamic random
access memory (DRAM) have drawn great attention due to their
increasing impact on the performance of DRAM and computer systems.
As the DRAM capacity continues to grow, the refresh overhead keeps
increasing. For 64GB DRAM chips that are under development, the
refresh overhead is estimated to degrade throughput by up to 50% and
account for 50% of the total power consumption of DRAM [1]. Also,
the restore time, i.e., the time that is given to recharge a DRAM bitcell
after the read or write access, continues to dominate DRAM access
latency in past decades [2-5]. The impact of restore time even becomes
worse for the technology node of 20 nm or below [6, 7]. Consequently,
mitigating the refresh overhead and speeding up the bitcell restoration
process are paramount to successfully develop the next-generation
high-performance and energy-efficient DRAM.

Prior works tried to reduce the refresh overhead in DRAM by
exploiting the large spread of data retention time tRET of bitcells [1, 8-
11]. Most of bitcells indeed can retain their data much longer than the
pessimistically-set refresh window tREFW of 64ms [1, 12]. Therefore,
prior works proposed to perform infrequent refresh operations for the

majority of the cells that are not leaky whereas frequent refresh
operations only for a small number of leaky cells. To identify those
leaky cells, prior works relied on profiling the tRET for every row of
bitcell array. However, the profiling procedure would take hours to
even days to collect all the minimum tRET. This is because tRET depends
on data pattern and also varies over time due to the variable retention
time phenomenon [13, 14].

On the other hand, prior works tried to shorten the restore time (and
refresh time) by leveraging the fact that the restoration time can be
smaller if a bitcell still retains a large amount of charge on its capacitor
or it is about to refresh [3-6, 15-19]. To do so, prior works proposed to
add extra isolation transistors to the bitlines in DRAM chips to reduce
the charge loss of bitcells [3, 19]. Some other works instead, exploited
the different charge levels of bitcells due to the temporal correlation of
operations [4-6, 15-18]. For instance, the restore truncation (RT)
scheme [6] aimed to restore a cell’s voltage just enough to sustain data
until the next refresh operation. Fig. 1 shows an example case. If a “read”
operation is issued during the time window win0, the RT scheme
initiates a normal restore process as the next refresh is distant in time;
during win1, it can restore the cell’s voltage only up to V1 since the
subsequent refresh operation will recharge the cell to VDD. Prior works
estimated the required time to restore/refresh cells to a partial voltage
(e.g., V1) via profiling and simulation, and modulated DRAM timing
parameters such as refresh cycle time (tRFC), row activate time (tRAS),
and row address to column address delay (tRCD) for controlling the
restoration (or refresh) strength/duration.

However, most of the prior works have relied on profiling and
simulation under the static worst-case condition and seldom account for
dynamic variations such as temperature. Indeed, the actual working
temperature of DRAM is very likely to be less than the worst-case
temperature (85 ⁰C) [16]. Such an approach, therefore, makes DRAM
operate with a large amount of unexploited margin during most of its
runtime. To confirm this, we simulated the lower bounds of tRAS from
45 ⁰C to 85 ⁰C and found that tRAS can be set 31% smaller at 65 ⁰C and
45% smaller at 45 ⁰C as compared to 85 ⁰C (Fig. 2).

In this work, we aim to replace the static profiling and simulation-
based approach with in-situ sensing hardware for the goal of exploiting
those pessimistically-set margins in runtime. To do so, we propose an
in-situ charge detection and adaptive data restore DRAM (CDAR-
DRAM) architecture. It consists of (i) in-situ charge detectors to
monitor the voltages of bitlines and to estimate tRET of bitcells, and (ii)
an adaptive refresh and restore scheme to modulate the refresh rate and
the restore timing parameters. The detailed circuit-level SPICE
simulations confirm that our detector can detect the voltage of a bitcell
in a 2-bit resolution. We evaluate the proposed architecture in an 8-core
system using architectural simulators. The CDAR-DRAM can improve
the system performance by 9.4% and energy efficiency of DRAM by
14.3%, as compared to the prior art [6].

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 1093

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
61

46

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The restore truncation scheme [6].

Fig. 2. The tRAS margin for different temperatures.

The major contributions of this paper can be summarized as follows:
(1) We propose an in-situ bitline charge detection scheme that can
estimate the DRAM cell’s voltage in runtime. This helps to remove
pessimistic timing margins for the cells that retain a good amount of
charges. The detection process takes place simultaneously with
DRAM’s refresh operations, thereby incurring little performance
overhead. (2) We propose an adaptive refresh and restore scheme.
Working with the above detectors, the adaptive scheme can reduce
refresh overhead and the pessimistic margin added to the restore timing.
The scheme enables CDAR-DRAM to switch automatically between
two modes: (i) a refresh mode to change the refresh interval
progressively, and (ii) a restore mode to dynamically optimize restore
timing. It provides improvements in both performance and energy
efficiency.

The remainder of the paper is organized as follows. Sec. II presents
the proposed CDAR-DRAM architecture. Sec. III describes our
evaluation platform. Sec. IV introduces the experimental results and
related discussion. Finally, Sec. V concludes the paper.

II. CDAR-DRAM ARCHITECTURE
In this section, we present CDAR-DRAM, an architecture with in-situ
charge detection and adaptive refresh and restore schemes. Fig. 3 shows
the proposed architecture. It requires modifying the DRAM and the
controller. For a typical DRAM chip having multiple banks, each bank
is composed of columns of bitcells and sense amplifier (SA) circuits.
The proposed architecture adds bitline voltage detectors to bitlines,
whose outputs are converted by a timing-to-digital converter (TDC).
The TDC produces a 2-bit output CNT that roughly represents the
smallest bitcell voltage of a row of bitcells. On the other hand, the
controller takes CNT and estimates the maximum tREFW, and updates a
timing table based on it. After that, it issues commands with variable
restore timing.

A. In-situ Charge Detection Scheme
Our goal is to find out the DRAM cell’s voltage level right after the
refresh window (Vc,init) so that we can reduce the refresh rate and
shorten restore time if Vc,init is high. To achieve this goal, we propose
an in-situ charge detection scheme based on the detectors and the TDC.

Fig. 4 shows the workflow of our proposed in-situ charge detection
scheme. First of all, the sense amplification is performed on Vc,init. If
Vc,init is > 0.5·VDD, the sense amplification increases the bitline voltage

Fig. 3. The proposed CDAR-DRAM architecture.

Fig. 4. The workflow of the in-situ charge detection scheme.

(VBL) toward VDD. Here, the higher Vc,init is, the faster the VBL is
restored to VDD. Therefore, we measure the time when VBL crosses a
threshold voltage, tDET, which can indicate the level of Vc,init before the
sense amplification. For being used in the memory controller, tDET is
converted to the digital value CNT, which the memory controller uses
to estimate the Vc,init level range based on a pre-defined lookup table.

Fig. 5(a) shows the circuits for the bitline voltage detection scheme.
It illustrates the sensing of the capacitor voltage of the bitcell of the i-th
column of a bank (Celli) via the bitline of the i-th column (BLi). The
existing SA circuits are recycled but we add the bitline detector. The
detector contains three transistors: M0 is controlled by an “enable”
signal, which is high for detection and low otherwise; M1 and M2
compose an inverter-based voltage comparator, whose input is BLi and
output is DETi. The switching threshold voltage (VM) of the comparator
is set by the sizing of M1 and M2. We optimize the detector circuits for
process variation tolerance, area, and power efficiency, which will be
further discussed in Sec. II.B.

The detection takes place during the refresh operation. Specifically,
a bitline (BL) is pre-charged to 0.5VDD and then the access transistor of
a bitcell is enabled. This initiates charge-sharing between a bitcell and
a BL, which pushes VBL by ΔV away from 0.5VDD. The SA amplifies
this difference, and as a result, it restores the voltage of the bitcell
capacitor and BL to VDD. During this restoration process, the bitline
detector compares VBL with VM and changes its output DET from high
to low if VBL is greater than VM. The time that DET switches high to
low is defined as tDET and the TDC converts it to a digital code. Fig. 5(b)
shows an example timing waveform of the bitline detection. We
consider two bitcells Cell0 and Cell1, where we assume that Cell0’s
potential, denoted as Vc,init0 is high while Cell1’s potential Vc,init1 is low.
This difference makes BL1 take longer in the restoration process than
BL0, making tDET1 longer than tDET0.

Since the DRAM timing is constrained by the cell that has the
lowest voltage in the row, we need to account for only the slowest DETi
switching. This can be achieved by OR-ing all the DETi signals of a
row (note that the DETi signal is active low) and feeding its output
DETslwst to the TDC. Fig. 6 shows the exemplary waveform of the TDC
process. Before the detection, CNT is zero initially. During the
detection, CNT increases every clock cycle unless DETslwst has fallen
to zero. In the exemplary case, DET1 transits later than DET0 so the OR

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1.0

tRAS margin V c
el

l (
V D

D
)

Time (ns)

 45 °C
 65 °C
 85 °C

0.975VDD

31% 14%

1094

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. (a) The hardware for bitline voltage detection; (b) The waveform of the
bitline voltage detection for cells with high and low Vc,init.

Fig. 6. The TDC process for converting the switching time of DETslwst to CNT.

TABLE I. THE CORRESPONDING VC,INIT OF CNT

CNT 2’b11 2’b10 2’b01 2’b00
Vc,init (VDD) [0.55, 0.6) [0.6, 0.7) [0.7, 0.85) [0.85, 1)

tree takes DET1 as the DETslwst. As a result, the final CNT is 2’b10 when
DETslwst transits low.

After obtaining the CNT, the corresponding Vinit range can be
inferred based on a pre-defined lookup table. We characterize the
lookup table based on the circuit-level SPICE simulation. We found the
CNT values for Vc,init from the minimum sustainable voltage (Vmin, set
to 0.55VDD) to VDD, which is summarized in Table I.

Note that so far the discussions assume DRAM cells store “1”. The
case for a cell storing “0” is similar except that we need to use the bitline
detector whose VM is less than 0.5VDD. Nevertheless, restoring a cell
storing “0” is fundamentally faster than restoring a cell storing “1” due
to the NMOS access transistor [19], thereby not as critical.

B. Design Optimization of The Bitline Charge Detector
To improve the robustness and energy efficiency, we optimize the
bitline detector circuits in terms of transistor size and supply voltage
VDDH. First of all, the switching threshold VM should be higher than
0.5VDD for a cell storing “1”. Upsizing M2 can increase VM but it costs
more silicon area. Increasing supply voltage (VDDH) can also increase
VM yet at the cost of energy consumption and reliability.

Meanwhile, as shown in Fig. 7, the restore speed of the bitline slows
down as VBL approaches VDD. This implies that large VM0 increases the
variation of tDET. For this respect, it is better to set VM where the VBL
curve has the largest slope.

To find out the optimal parameters of the bitline detector, we
perform circuit-level SPICE simulation. We build a 512×512 DRAM
subarray along with SA circuits using 55nm DDR3 model parameters
[20]. The transistor model is based on the Predictive Technology Model
(PTM) [21]. To evaluate the robustness of the proposed detector, we
run Monte Carlo simulations with process variations based on [22].

Fig. 8(a) shows the variation of tDET (σt) across different transistor
sizes and VDDH values under a temperature of 85 ⁰C. The σt firstly

Fig. 7. The variation of the detector’s output switching time σt is sensitive to the
VM of the detector.

Fig. 8. (a) The variation of DETi’s switching time σt, and (b) the power
consumption of the bitline detector.

Fig. 9. The CNT value across different temperatures.

reduces and then increases due to the change of VM. We set VDDH to
1.4V since it achieves the smallest σt across most of the transistor sizes.
Fig. 8(b) shows the dynamic and static power consumption with
different transistor sizes. Considering reducing both variations and
power consumption, the “Size1” is chosen for M1 and M2 of the
detector. M0 is less important for the operation of the detector and it is
set to the minimum size.

To show the robustness of the proposed detection circuits, we swept
temperatures from 45 ⁰C to 85 ⁰C and check the variation of CNT. Fig.
9 shows the simulated CNT with different Vc,inits. For Vc,init=0.575VDD,
the detection circuits generate the CNT correctly (CNT=2’b11) for all
temperatures, therefore ensuring the correct operations for the worst-
case cells. When Vc,init is higher, the detection circuits generate CNT
correctly when the temperature is 45 ⁰C to 55 ⁰C. As the temperature
goes up, the CNT may be one level higher than expected, which results
in a pessimistic estimation of Vc,init.

C. Adaptive Refresh and Restore Scheme
So far, we obtained the CNT as the representative of the possible range
of Vc,init, with which the memory controller can remove the existing
timing margins for cells with high Vc,init.

To improve DRAM performance and energy efficiency, we
proposed a multi-rate refresh and adaptive restoration scheme, which
contains (i) a data retention time estimation method to find out the
proper refresh rates and (ii) a timing-table-based adaptive refresh and
restore strategy.

45 55 65 75 85
0

1

2

3
C

N
T

Temperature (°C)

 0.925VDD 0.775VDD 0.65VDD 0.575VDD

1095

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. The retention time estimation process.

Fig. 10 shows an example of our presented retention time
estimation process, which progressively increases the refresh window
(tREFW) until it approaches the data retention time (tRET) of a DRAM cell
for minimizing the refresh rate. The red line shows the actual DRAM
cell voltage would gradually decay from VDD to the minimum
sustainable voltage Vmin within tRET, which can be approximated as a
linear curve [6]. The memory controller issues a refresh operation every
time at tREFWX (X is the iterations of our estimation process, which can
be 0, 1, 2, or 3), where the cell voltage decays from VDD to VX (i.e.,
Vc,init at Xth iteration).

Initially, refresh operations are sent at tREFW0 of 64ms. The detection
circuits would output a CNT of 2’b00 after the first detection at tREFW0,
indicating V0 is between 0.85VDD and VDD (see Table I). The low bound
of possible V0 (i.e., Ve0=0.85VDD) is used for the worst-case charge
decay estimation as shown with the “line1”. The horizontal intercept of
“line1” is taken as tREFW1, where the cell voltage is estimated to decrease
to Vmin. Then, tREFW1 is set as the new refresh window for the next
iteration.

Repeating the process until the CNT at tREFWX is 2’b10. As a result,
VX is low to 0.6VDD, which is very close to Vmin (=0.55VDD), indicating
that the final tREFWX is nearly the maximum. Due to temperature
variations, the CNT may become 2’b11, indicating a very low VX. The
VX may be lower than Vmin if the temperature goes up, so the tREFW is
reduced by half for safety once CNT is 2’b11.

During the above estimation process, the tREFW of each step is taken
from the horizontal intercept of the approximated linear charge decay,
which is formalized as follows:

 tREFW = tREFWpre×(VDD-Vmin)/(VDD-Vc,init,lb) (1)

where tREFWpre is the previous refresh window time, and Vc,init,lb is the
lower bound of possible Vc,init according to CNT.

By the introduced retention time estimation method, the maximum
tREFW can be approached during runtime without stalling DRAM. The
proposed method can adaptively change tREFW against temperature
variations to achieve a sufficient and reliable refresh rate reduction.

Based on the estimated tREFW, a timing-table-based dynamic
refresh strategy is shown in Fig. 11 (, , and ). The timing table
(in the refresh mode) uses a 3-bit tag (“001”/“01X”/“1XX”) to
represent the refresh rate for each row. The position of the first “1” in
the tag represents a different tREFW. The right-side bits (e.g., “XX”) are
used as a refresh counter, which decreases every 64ms (). If the
refresh counter is zero, the memory controller sends a refresh operation.
The tag is initialized to “001” () for a tREFW of 64ms and will be
updated due to suboptimal tREFWpre (). For example, if the estimated
tREFW can be twice of tREFWpre, a tag of “01X” (128ms- row) is updated
to “1XX” (256ms-row) to reduce the refresh rate.

Fig. 11. A timing-table-based adaptive refresh and restore strategy.

TABLE II. ADJUSTED REFRESH RATE AND RESTORE TIME

Mode
flag Tag

tREFW

(ms)

tRAS for
1st/2nd/3rd/4th
sub-window

(cycles)

tWR for
1st/2nd/3rd/4th
sub-window

(cycles)
Refresh
mode
(“0”)

001 64
32/24/20/19 14/12/10/9 01X 128

1XX 256

Restore
mode
(“1”)

111 256 32/24/20/19

14/12/10/9 110 256 28/20/16/16
101 256 23/16/13/13
100 256 16/13/13/13

Since most cells have high Vc,inits at low temperatures, an adaptive
restore scheme ( and  in Fig. 11) is adopted to speed up
restorations for these cells. In restore mode, the low two bits of the tag
represent different restore speed levels. All tags are initialized to “111”
() for a conservative restore time. The tag will be updated for optimal
restore time () according to CNT. For example, if CNT is 2’b00,
which means the cell has a high Vc,init (≥0.85VDD), a tag of “111” will
be updated to “100” for faster restoration of the cell.

The CDAR-DRAM can automatically switch between the refresh
mode and restore mode (). The memory controller starts with the
refresh mode and tracks the minimum tREFW (tREFWmin) in the timing
table. If tREFWmin is 256ms (i.e., all tags are “1XX”), the memory
controller will switch automatically to the restore mode and setting all
tags to “111” (). Moreover, if the tREFW has to be reduced (i.e.,
CNT=2’b11), the CDAR-DRAM switches back to the refresh mode.

Table II lists the adjusted restore timing parameters and the refresh
rate for different tags through a circuit-level SPICE simulation.
Besides, similar to the restore truncation scheme [6], for each tag, four
different tRAS/tWR are adopted for operations that arrive in the four sub-
windows of tREFW (see Fig. 1). Note that the minimum tRAS in the table
is 13 cycles since tRAS should be larger than tRCD (12 cycles). The tRAS
could be even lower if reducing tRCD through methods in [3-5, 16-18]
to further speed up the restoration.

III. EVALUATION METHODOLOGY
To evaluate the proposed CDAR-DRAM architecture, we run the
simulation using a cycle-accurate DRAM simulator, Ramulator [23].
For workloads, we randomly selected benchmarks from SPEC
CPU2006 and PARSEC suite, covering non-memory-intensive ones

1096

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

like 444.namd, 458.sjeng, and blackscholes, as well as memory-
intensive ones like 429.mcf, 470.lbm, and canneal. The benchmarks are
converted to CPU traces for Ramulator through Pin [24]. We use
DRAMPower [25] to obtain the energy results of DRAM.

We modeled an 8-core system with configurations shown in Table
III. The DRAM timing parameters follow the Micron DDR3 datasheet
[2]. We used the DRAM retention distribution parameters provided in
[12] and modeled the temperature effects according to [13]. The
simulation was performed for 1 billion cycles, corresponding to 256ms
given our 4GHz clock frequency, which ensures each row is refreshed
at least once considering a maximum tREFW of 256ms. We measured the
performance using the weighted speedup metric [27]. The energy
results were reported as the average energy consumption per request [1].

TABLE III. SYSTEM CONFIGURATION

Processor 8-core, 4GHz, 3-wide issue, 128 ROB size

Memory
Controller

Address mapping: rw:cl:rk:bk:ch:offset
32-entry read/write request queues
Page management policy: closed-page with FR-FCFS

DRAM

DDR3-1866 [2]
2 channels, 1 rank/channel, 8 banks/rank
64K rows/bank, 8 KB/row
tCK = 1.07ns, width: x8
tRCD/tRAS/tWR = 12/32/14 cycles

IV. RESULTS AND ANALYSIS
To evaluate the effectiveness of CDAR-DRAM, we made a comparison
with the normal DDR3 [2] and the RT architecture [6]. The RT
architecture adopted both multi-rate refresh and partial restoration
methods to optimize the refresh window (tREFW) and restore time (tRAS),
which is similar to ours. There are also plenty of prior works that tried
to optimize the refresh or restoration operations, however, they focus
on improving only the refresh [1, 8-11,15] or restoration [3-5, 16-18].
Besides, some prior works [4, 19] further optimize restoration beyond
the RT architecture by adopting the tRCD reduction methods, which are
orthogonal with ours. For the above reasons, we chose to make a
comparison with the state-of-the-art RT architecture [6].

We evaluated the normal DDR3, RT architecture, and the
proposed CDAR-DRAM under two different conditions: the worst-
case condition (the temperature is 85 ⁰C) and the normal-case
condition (the temperature varies between 45 ⁰C and 65 ⁰C [16, 28]).
For the normal-case condition, we assumed the temperature is 45 ⁰C
for 50% of the time and 65 ⁰C for the remaining, which is a pessimistic
assumption for our design since the DRAM temperature may seldom
exceed 50 ⁰C [16].

The following architectures were studied:
• Baseline: the normal DDR3 [2] with timing parameters that

ensure the data correctness in the worst-case temperature, i.e.,
85 ⁰C.

• RT-85/-65: the RT DRAM architecture with fixed timing
parameters that are profiled in the worst-case/normal-case
condition.

• CDAR-85/-65: the proposed CDAR-DRAM at the worst-
case/normal-case temperature.

A. Profiling Overhead
To mitigating refresh or restore overhead, most prior works [1, 6, 8-11,
14, 15] have to find the data retention time tRET of all cells through
profiling. The profiling process is very time-consuming and the DRAM
has to be laid off during profiling. According to the experiment for 2Gb
DRAM chips in [13], the profiling process takes days to reliably find
the lowest tRET of all cells. Due to the error accumulation [14] and long-
term issues like aging, the profiling process has to perform termly.
However, in the proposed CDAR-DRAM, the tRET can be estimated
through in-situ detection simultaneously with the refresh operations,
which takes no extra time.

B. Impact on Performance
Fig. 12 shows the normalized weighted speedup on 20 randomly
combined eight-core workloads (i.e., from w1 to w20) and the average
result (i.e., AVG). When the temperature is 85 ⁰C, where DRAM cells
have small tRETs, the CDAR-85 works in the refresh mode, whose
timing table represents different refresh rates as RT-85 does. So,
CDAR-85 and RT-85, on average, have the same 2.9% performance
improvement over the baseline.

Fig. 12. Performance comparison of different schemes.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 AVG

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

w
rt

to
 b

as
el

in
e

Workloads

 Baseline RT-85 RT-65 CDAR-85 CDAR-65

Fig. 13. Energy comparison of different schemes.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 AVG

0.80

0.85

0.90

0.95

1.00

En
er

gy
 w

rt
to

 b
as

el
in

e

Workloads

 Baseline RT-85 RT-65 CDAR-85 CDAR-65

1097

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

In the normal condition, the normal DDR3 still has to use the worst-
case timing parameters. For the RT-65, we assume that it can be aware
of the DRAM temperature and is profiled at 65 ⁰C for the normal
condition. By removing the timing margin of tRAS from 85 ⁰C to 65 ⁰C,
RT-65 achieves an average 6.4% performance improvement over the
baseline.

Since our proposed CDAR-65 can modulate timing parameters
adaptively through the in-situ detection circuits with temperature
variations in the normal condition, the system performance is improved
by 12.6% over the baseline. The CDAR-65 showed a performance
improvement of 9.4% and 5.4% over the RT-85 and RT-65,
respectively. The CDAR-65 outperformed the RT architecture because
of the unexploited timing margins by the static profiling method. If the
DRAM temperature is 45 ⁰C or even below [16], most DRAM cells
have tRET greater than 780ms [13] therefore can retain more charge on
their capacitor. In this case, a more aggressive reduction of tRAS could
make for restoring these cells in our CDAR architecture.

C. Impact on DRAM Energy
Fig. 13 compares the energy consumption of different architectures on
the 20 workloads. At 85 ⁰C, the RT-85 showed a 4.6% energy reduction
as compared to the baseline. The CDAR-85 reduced energy by 2.8%
than baseline. The CDAR-85 consumed more energy than the RT-85
since the detection circuits of CDAR-85 would cause additional energy
overhead. In the normal-case condition, the RT-65 showed an energy
reduction of 8.5%. The proposed CDAR-65 can save energy by 18.2%
compared to the baseline. As compared with RT-85/-65, CDAR-65 can
reduce energy consumption by 14.3%/10.6%.

D. Area Overhead of Detection Circuits
We evaluated the area overhead of our detection circuits in a DRAM
chip since the DRAM is very cost-sensitive. The detection circuits
contain two parts: bitline detectors and the TDC block. Based on the
size of detectors (see Fig. 8) and the transistor sizes of SA circuits from
[20], the area of bitline detectors is about 9.13% of the area of the SA
circuits. Considering the sense amplifier circuits occupy 8%~15% of
the DRAM die area [26], our detectors cause up to 1.37% area
overhead. Besides, according to the synthesis results of our TDC block
with a 65nm process, the TDC block takes an extra 0.38% area
overhead of a DRAM die. Thus, the proposed detection circuits increase
the DRAM die area by 1.11%~1.75%.

V. CONCLUSION
In this paper, we proposed CDAR-DRAM, an architecture that
adaptively adjusts refresh rate and relaxes restore timing based on in-
situ detecting of the bitline voltage. Unlike prior profiling methods to
collect data retention time under the static worst-case condition, the
CDAR-DRAM adopted in-situ skewed-inverter-based detection
circuits to estimate the retention time of cells during runtime without
stalling normal DRAM operations. Based on the proposed adaptive
refresh and restore scheme, the CDAR-DRAM can dynamically adjust
the refresh rate and restore time for different cells. The proposed
CDAR-DRAM can reduce the pessimistic timing margins that are
preserved for the worst-case temperature in a rare case and a small
number of weak cells. Experimental results show that in a typical
temperature range, CDAR-DRAM can improve the system
performance by 9.4% and saves energy by 14.3% for an 8-core system
as compared with the state-of-art architecture.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation
of China (No. 61774104), the National Key Research and Development
Program of China (No. 2018YFB2202004), and US National Science
Foundation (1453142 and 1919147).

REFERENCE

[1] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, "RAIDR: Retention-aware
intelligent DRAM refresh," in ISCA, Jun. 2012, pp. 1-12.

[2] Micron Technology, “4Gb: x4, x8, x16 DDR3 SDRAM,” 2011.
[3] D. Lee et al., "Tiered-latency DRAM: A low latency and low cost DRAM

architecture," in HPCA, 2013, pp. 615-626.
[4] Y. Wang et al., "Reducing DRAM Latency via Charge-Level-Aware

Look-Ahead Partial Restoration," in MICRO, 2018, pp. 298-311.
[5] H. Hassan et al., "ChargeCache: Reducing DRAM latency by exploiting

row access locality," in HPCA, 2016, pp. 581-593.
[6] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, "Restore truncation for

performance improvement in future DRAM systems," in HPCA, 2016, pp.
543-554.

[7] U. Kang et al., “Co-architecting controllers and DRAM to enhance
DRAM process scaling,” in The memory forum, 2014.

[8] I. Bhati, Z. Chishti, S. Lu, and B. Jacob, "Flexible auto-refresh: Enabling
scalable and energy-efficient DRAM refresh reductions," in ISCA, 2015,
pp. 235-246.

[9] A. Agrawal, A. Ansari, and J. Torrellas, "Mosaic: Exploiting the spatial
locality of process variation to reduce refresh energy in on-chip eDRAM
modules," in HPCA, 2014, pp. 84-95.

[10] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
DRAM refresh-power through critical data partitioning,” in Proc.
ASPLOS, 2011.

[11] R. K. Venkatesan, S. Herr, and E. Rotenberg, "Retention-aware
placement in DRAM (RAPID): software methods for quasi-non-volatile
DRAM," in HPCA, 2006, pp. 155-165.

[12] K. Kim and J. Lee, "A New Investigation of Data Retention Time in Truly
Nanoscaled DRAMs," IEEE Electron Device Letters, vol. 30, no. 8, pp.
846-848, Aug. 2009.

[13] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” ACM SIGARCH Computer
Architecture News, 41(3), 60-71. 2013.

[14] M. Patel, J. S. Kim, and O. Mutlu “The Reach Profiler (REAPER)
Enabling the Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions,” ACM SIGARCH Computer Architecture News,
45(2), 255-268. 2017.

[15] A. Das, H. Hassan, and O. Mutlu "VRL-DRAM: Improving DRAM
Performance via Variable Refresh Latency," in DAC, 2018, pp. 1-6.

[16] D. Lee et al., "Adaptive-latency DRAM: Optimizing DRAM timing for
the common-case," in HPCA, 2015, pp. 489-501.

[17] W. Shin, J. Yang, J. Choi, and L. Kim, "NUAT: A non-uniform access
time memory controller," in HPCA, 2014, pp. 464-475.

[18] K. Chandrasekar et al., "Exploiting expendable process-margins in
DRAMs for run-time performance optimization," in DATE, 2014, pp. 1-
6.

[19] H. Luo et al., "CLR-DRAM: a low-cost DRAM architecture enabling
dynamic capacity-latency trade-off,” in ISCA, 2020, pp. 666-679.

[20] Rambus, “DRAM power model (2010),” http://www.rambus.com/energy.
[21] PTM, “Predictive technology model,” http://ptm.asu.edu.
[22] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens,

"Towards variation-aware system-level power estimation of DRAMs: An
empirical approach," in DAC, 2013, pp. 1-8.

[23] Y. Kim, W. Yang, and O. Mutlu, "Ramulator: A Fast and Extensible
DRAM Simulator," in IEEE Computer Architecture Letters, vol. 15, no.
1, pp. 45-49, 1 Jan.-June 2016.

[24] C. K. Luk, et al., “Pin: building customized program analysis tools with
dynamic instrumentation, ” ACM sigplan notices, 40(6), 190-200. 2005.

[25] K. Chandrasekar et al., “DRAMPower: Open-source DRAM Power &
Energy Estimation Tool,” http://www.es.ele.tue.nl/drampower/, 2012.

[26] T. Vogelsang, "Understanding the energy consumption of dynamic
random access memories," in MICRO, 2010, pp. 363-374.

[27] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a
simultaneous multithreading processor,” in ASPLOS-IX, 2000.

[28] N. El-Sayed, et al., “Temperature management in data centers: Why some
(might) like it hot”, in Technical Report, CSRG-615, 2012.

1098

Authorized licensed use limited to: Seoul National University. Downloaded on July 22,2022 at 05:04:36 UTC from IEEE Xplore. Restrictions apply.

