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In-memory-computing (IMC) SRAM architecture has gained significant attention as it 
achieves high energy efficiency for computing a convolutional neural network (CNN) 
model [1]. Recent works investigated the use of analog-mixed-signal (AMS) hardware 
for high area and energy efficiency [2, 3]. However, AMS hardware output is well known 
to be susceptible to process, voltage, and temperature (PVT) variations, limiting the 
computing precision and ultimately the inference accuracy of a CNN. We reconfirmed, 
through the simulation of a capacitor-based IMC SRAM macro that computes a 256D 
binary dot product, that the AMS computing hardware has a significant root-mean-square 
error (RMSE) of 22.5% across the worst-case voltage, temperature (Fig. 16.1.1 top left) 
and 3-sigma process variations (Fig. 16.1.1 top right). On the other hand, we can 
implement an IMC SRAM macro using robust digital logic [4], which can virtually 
eliminate the variability issue (Fig. 16.1.1 top). However, digital circuits require more 
devices than AMS counterparts (e.g., 28 transistors for a mirror full adder [FA]). As a 
result, a recent digital IMC SRAM shows a lower area efficiency of 6368F2/b (22nm, 4b/4b 
weight/activation) [5] than the AMS counterpart (1170F2/b, 65nm, 1b/1b) [3]. In light of 
this, we aim to adopt approximate arithmetic hardware to improve area and power 
efficiency and present two digital IMC macros (DIMC) with different levels of 
approximation (Fig. 16.1.1 bottom left). Also, we propose an approximation-aware 
training algorithm and a number format to minimize inference accuracy degradation 
induced by approximate hardware (Fig. 16.1.1 bottom right). We prototyped a 28nm test 
chip: for a 1b/1b CNN model for CIFAR-10 and across 0.5-to-1.1V supply, the DIMC with 
double-approximate hardware (DIMC-D) achieves 2569F2/b, 932-2219TOPS/W, 475-
20032GOPS, and 86.96% accuracy, while for a 4b/1b CNN model, the DIMC with the 
single-approximate hardware (DIMC-S) achieves 3814F2/b, 458-990TOPS/W (normalized 
to 1b/1b), 405-19215GOPS (normalized to 1b/1b), and 90.41% accuracy.  
 

Figure 16.1.2 (left) shows the architecture of the proposed DIMC-D macro integrating 
256×64 bitcells (DIMC-S has the same architecture except having 4b CPRS signals). We 
can store a 16k binary weight matrix in the macro, and by providing 256 bit-serial input 
activations from the left side of the macro, we can perform a binary vector-matrix dot-
product in one cycle. Each of the 256-bitcell columns of the macro integrates 256 binary 
multiply cells, 16 approximate compressors, one 16-input adder tree, and one 11b shift 
accumulator. The 16 compressors count the number of 1’s in the results of the 256 
binary multiplications (MBL [0:255]) and generate 3b results (CPRS [0:2]). The adder 
tree sums up the outputs of the compressors. Finally, the shift accumulator accumulates 
the partial-sum of each cycle in a pipelined manner if input activations are bit-serial multi-
bit values.  
 

To improve the area efficiency of digital arithmetic hardware, we optimized the 
compressor and FA circuits. We designed three compressor circuits [6]. They are: exact 
(Fig. 16.1.2 center top), single-approximate (center middle), and double-approximate 
compressor (center bottom). The approximate compressors use interleaved AND and 
OR gates to replace FAs. While an AND gate can potentially cause -1 and an OR can 
cause +1 error, some of those errors can cancel each other. The double-approximate 
(single-approximate) compressor requires 55% (40%) fewer transistors than the exact 
counterpart, yet it exhibits the worst-case RMSE error of 6.76% (4.03%) over PVT 
variations (Fig. 16.1.2 right). The the worst-case RMSE of DIMC is smaller than that of 
AMS hardware (22.5%, Fig. 16.1.1 top), but the error still needs to be addressed to 
improve CNN accuracy.  
 

Also, we have designed a custom 12T FA using pass-gate logic (Fig. 16.1.3 left) and a 
ripple-carry-adder (RCA) based on those FAs (Fig. 16.1.3 bottom right). The pass-gate 
logic has the well-known Vt drop problem. Therefore, we identified all nodes in a FA that 
do not have full-swing signals (marked in red in Fig. 16.1.3 top left). Then, we inserted 
inventers to ensure that the number of series-connected pass-gates is less than two. 
The inverters modify the RCA logic, and to keep the logic correct, we also made a second 
version of the 12T FA, which has A_bar and B_bar instead of A and B as inputs 
(schematic difference marked in red in Fig. 16.1.3 bottom left) and employed them 
accordingly in the RCA. The 12T FA consumes 1.764μm2 (2250F2) (Fig. 16.1.3 top right). 
Through the area optimizations, each 256-bitcell column of DIMC-D having binary 
multipliers, compressors, adder tree, and shift-accumulator uses 4336 transistors, 
yielding device efficiency of 16.94T/b (Fig. 16.1.1 bottom left).  
 

The optimized approximate arithmetic hardware negatively affects CNN accuracy. We 
benchmarked our approximate hardware using a VGG-like 1b/1b weight/activation CNN 
model (128C3-128C3-P2-256C3-256C3-P2-512C3-512C3-P2-FC1024-FC1024-FC10, 

128C3: 128 features 3×3 convolution, P2: 2×2 pooling, FC1024: 1024 fully-connected) 
for CIFAR-10. Using the conventional training model, the version using double (single)-
approximate hardware achieves a poor accuracy of 25.2% (50.9%), while the exact 
hardware achieves 89.6%. To compensate for the inaccuracy induced by the approximate 
hardware, we developed an approximation-aware training algorithm. In this algorithm, 
the forward path performs the vector-matrix multiplication using a bitwise operation 
considering the approximate hardware. Gradient calculations are performed using full 
accuracy for training. We then benchmarked the approximate hardware for the newly 
trained VGG-like 1b/1b CNN model and CIFAR-10. The double approximate version 
achieved higher accuracy of 86.9%, and the single approximate version achieved 89.0% 
— close to the exact hardware (Fig. 16.1.4 top left). 
 

Interestingly, even with the approximation-aware training, the approximate hardware still 
results in lower accuracy for a multi-bit activation CNN model (Fig. 16.1.4 bottom right) 
because multi-bit activation tends to require more accurate hardware [3]. Specifically, 
multi-bit activations are often Gaussian distributed and thus MSBs are sparse and suffer 
from approximate errors. To improve the accuracy of a multi-bit activation CNN, we 
propose a new number format called multi-bit XNOR (MB-XNOR). Conventionally, in a 
1b-weight neural network, each weight and activation represents +1 or -1 and XNOR 
realizes bitwise multiplication. If we use the 2’s complement format for activations, 
however, the binary weight also needs to be in 2’s complement and can represent only 
-1 or 0. We found that this results in large degradation to CNN accuracy. Therefore, we 
extended the format of the binary weight to represent an N-bit activation bN-1bN-2…b0 = 

∑i bi × 2i, where bi is +1 or -1. This format cannot represent 0, which disallows some of 
the activation functions such as ReLU. However, we can still use other popular activations 
such as hyperbolic tangent (tanh) (Fig. 16.1.4 top right) and leaky ReLU.  
 

We confirmed that the proposed MB-XNOR format improves the accuracy of a multi-bit 
activation CNN model. We investigated the improvement both in SNR (signal-to-noise 
ratio) simulation and via CNN accuracy measurement.  SNR is formulated as: 
SNR = ∑y2

true / ∑(ytrue-yapprox)
2, where ytrue is the ground truth of the dot product between 

a 256D Gaussian-distributed input vector quantized to 1-to-4b and a 256D binomial-
distributed weight vector. yapprox is the same dot product but computed with approximate 
hardware. The DIMC-D macro with the 4b input activations in the MB-XNOR fomat yields 
a 0.15 higher SNR than 2’s complement (Fig. 16.1.4 bottom left). The CNN accuracy 
measurement confirms the same improvement: DIMC-S using the MB-XNOR 
successfully increases the CNN accuracy by 5.4% (Fig. 16.1.4 bottom right). Despite 
that DIMC-D also benefits from the MB-XNOR format, the accuracy with multi-bit 
activations is still lower than that with binary activations, making DIMC-D suitable for 
only a 1b/1b weight/activation CNN model. 
 

We prototype the DIMC test chip in 28nm (Fig. 16.1.7). The 16kb DIMC-D (DIMC-S) 
takes 0.033mm2 (0.049mm2), implying an area efficiency of 2569F2/b (3814F2/b). We 
measured the macros at 0.5-1.1V at 25°C. DIMC-D achieves 932-2219TOPS/W and 475-
20032GOPS; DIMC-S 458-990TOPS/W and 405-19215GOPS (normalized to 1b/1b for 
comparison) (Fig. 16.1.5 top left). We also measured the energy efficiency and 
throughput across five chips at the nominal voltage 0.9V (Fig. 16.1.5 top right), the 
energy efficiency across supply voltage at 25% and 50% input toggle rates (Fig. 16.1.5 
bottom left). The power breakdown is shown in Fig. 16.1.5 bottom right. The SRAM 
mode takes 340ns (256 cycles at 752MHz) to update in total 16kb weights at 0.9V. Figure 
16.1.6 shows the comparison to the recent work. The proposed DIMC macros achieve 
the high area efficiency, while maintaining the-state-of-the-art throughput, energy-
efficiency and CNN accuracy.  
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Figure 16.1.1: Voltage and temperature (top left) and process (top right) variations 
affect AMS computing hardware’s accuracy. Approximate hardware improves the 
area efficiency of DIMC SRAM (bottom left). The custom training and number format 
improves CNN accuracy for CIFAR-10 (bottom right).

Figure 16.1.2: Proposed DIMC architecture (left). Three compressor schematics and 
the corresponding transistor count (middle). The RMSE of 256D binary dot product 
utilizing three types of compressors (right).

Figure 16.1.3: Two 12T-FA schematics with either regular inputs or inverter-buffered 
inputs (left). Layout of the 12T FA circuits (top right). Schematics of 4b RCA (middle 
right) and digital arithmetic hardware of one column (bottom right).

Figure 16.1.4: CIFAR-10 accuracy of conventional training and approximation-aware 
training (top left). Tanh activation quantized to 3b in the MB-XNOR format (top right). 
The MB-XNOR format offers better SNR (bottom left) and CIFAR-10 accuracy (bottom 
right) compared with 2’s complement.

Figure 16.1.5: Measurement results. Energy-efficiency and throughput across 
different supply voltages (top left). Multi-chip measurements at 0.9V supply (top 
right). Energy-efficiency at 25% and 50% toggle rates (TR) (bottom left). Power 
breakdown of two proposed DIMC macros (bottom right).

Figure 16.1.6: Comparison with recent IMC SRAMs using AMS or digital arithmetic 
hardware.
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Figure 16.1.7: Die micrograph and area breakdown.
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