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Abstract—Forecasting the occurrence of solar flares is a typical
21st century rare-event classification task. Over the past two
decades, many studies have implemented various techniques and
approaches for classification of strong and weak solar flares.
The release of the recent flare forecasting benchmark dataset,
named SWAN-SF, has opened the door for taking advantage
of multivariate time series (MVTS) of pre-flare magnetic fields’
activity in order to potentially achieve higher performance and
increase the robustness of the new forecasting models. In this
study, we take a new approach and explore the effectiveness
of imaging algorithms on the time series. We convert MVTS
data into multi-channel image data using Gramian Angular
Fields (GAF) and Markov Transition Fields (MTF) to explore
the proven strength of deep neural networks in the Image
Processing domain, on flares’ MVTS data. Inspired by GAF,
we propose another imaging matrix that our experiments show
that it significantly improves the performance of the CNN, by
120% in terms of TSS and 440% in terms of HSS2. Finally, we
juxtapose two approaches to tackle the flare forecasting problem:
one, to utilize a time-series specific Support Vector Classifier for
classification of flares, and the other, to train a Convolutional
Neural Network (CNN) on the derived images using GAF, MTF,
and our modified GAF.

Index Terms—multivariate, time series, forecasting, imaging,
flare

I. INTRODUCTION

Solar flares are sudden bursts of electromagnetic radiations
from the Sun when the magnetic fields generated by constantly
moving electrically charged gases on the surface tangle, stretch
and twist. Since 1974, X-ray flares have been automatically de-
tected and classified by the National Oceanic and Atmospheric
Administration’s (NOAA) constellation of GOES satellites in
the 1-8 Angstrom wavelength range. Based on the peak soft
X-ray flux in this range, flares are logarithmically classified
into the five classes of A, B, C, M, and X, from weaker
to stronger. Strong solar flares occasionally releases large
expulsions of plasma and magnetic field, called coronal mass
ejections (CME), which can reach the Earth in as little as
15-18 hours. Strong CMEs can potentially cause geomagnetic
storm with direct impact on the well-being of astronauts
during spacewalk missions, the GPS system, and consequently
the GPS-based positioning industries, and the power grid
system, and consequently the electronic infrastructures [1].

(Y. Chen, A. Ji, and P. A. Babajiyavar are co-first authors.)(Corresponding
author: Yang Chen)
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Fig. 1. An example of a multivariate time series from SWAN-SF and the
derived images using three different imaging algorithms.

The damage was estimated to be $1-$2 trillion (for the United
States) during the first year alone [2]. It was estimated in
2012 that the probability of such an extreme event to occur
within the next decade is ~ 12% [3]. The severity of such
events and the fact that simple remedies (e.g., rescheduling
a spacewalk, or injecting reserve power in the power grid
system) can significantly reduce the damage, has made the
solar flare forecasting an outstanding interdisciplinary research
topic.

II. BACKGROUND

Researchers over the past two decades have implemented
various techniques and approaches for classification of strong
and weak solar flares. From a sample of such studies, [4]
used the classical approach of logistic regression to build
a classifier that distinguishes between the X-, M-, and C-
class flares using only 3 predictive parameters. Using the
Poisson statistics technique, [5] calculated the probabilities
for the same three flare magnitudes. Taking into account the
conditional independence among the magnetic field parameters
of active regions, [6] built their short-term prediction model
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using a Bayesian network. Support Vector Machines have also
been used as a more advanced classifier in [7] on 25 different
predictive parameters, and in [8] combined with k-nearest
neighbors algorithm, using only 2 predictive parameters. More
advanced approaches have also been carried out. For instance,
[9] developed a deep neural network, named Deep Flare
Net, to learn the patterns from the 79 extracted (magnetic-
field) parameters. In contrast, [10] employed the convolutional
neural networks to automatically learn the flaring patterns from
the magnetograms, instead of manually calculating them.

While there seems to be an array of interesting avenues
proposed for tackling the flare forecasting challenge, unfor-
tunately, comparing the reported forecasting performances of
those models is not feasible. The reasons as identified in
[11] can be summarized as follows: (1) employing different
sampling strategies, (2) the evaluation of models are carried
out on the datasets which are not publicly available nor
their exact creation and integration methodologies are well
documented, (3) the minor or major differences in the problem
formulation (e.g., probabilistic versus categorical classifica-
tion, or multi-class versus binary task), and (4) the use of
different preprocessing strategies on the data. Each of these
decisions changes the difficulty of the task in hand, which in
turn renders the numerical comparison of the reported scores
meaningless. The benchmark dataset we employ in this study
(see Section III) is intended to remedy this very problem. In
the absence of a shared experimental setting and comparable
results, based on our rigorous analysis of many such studies we
conclude that a reliable method that takes on the binary flare-
forecasting problem with a single model (i.e., no ensemble)
achieves the true skill statistic (1'S.S) of ~0.6 while keeping
a similar Heidke skill score (HSS2) (e.g., in [7], [12]). That
said, the reader should note that even that does not set a fair
bar for our experiments to be compared against. Because (1)
those models have not been evaluated on the same dataset as
ours (SWAN-SF), and (2) their classifier, i.e., SVM, targeted
single-point data and not time series data as ours do.

Our study approaches the problem from a new angle in
which the (multivariate) time series of flaring and non-flaring
active regions are transformed to (multi-channel) images. This
transformation in fact, takes our problem to the Image Process-
ing domain where we can benefit from the widely accepted
superiority of deep neural networks [13] to the classical
machine learning algorithms in many applications. While one
could expect data loss when raw data in the form of real values
are transformed to unsigned 8 bit integers, experiments in this
study were found to not have had a significant effect from this
transformation. The two main imaging techniques we put to
the test are the Gramian Angular Fields (GAF) and Markov
Transition Fields (MTF) transformations [14].

The intention behind converting the multivariate time series
of SWAN-SF data is to experiment whether a state-of-the-art
CNN can discover patterns in the data that classical machine
learning techniques may have missed. A cursory examination
of the dataset would reveal, even to a casual observer, that
the data is imbalanced and largely belong to the weak classes
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Fig. 2. Counts of the five flare classes across the five partitions. (The numbers
correspond to v0.7 of SWAN-SF data, and may vary in the most recent
version.)

of flares (C, B, and Q) and this research is set to explore
whether a CNN can better identify those fewer flaring classes
with greater flux in observations that could potentially trigger
coronal mass ejections. [15] is one such research, although
with a different objective, in which the time series data were
subjected to GAF transformation and the authors showed that
deep neural networks have surpassed the performance of the
classical machine learning models in identifying the minority
classes. Similar results were obtained by [16] and [17] wherein
the time series data were transformed into GAF images before
subjecting it to a CNN model for classification. [18] claims an
accuracy of 90.7% outperforming Long Short-Term Memory
(LSTM) model when the time series data of currency exchange
rate was remodeled as GAF images and fed to a neural
network based on LeNet-5. Power load consumption time
series data of individual customers that exhibits fluctuations
quite frequently, when transformed into Recurrence Plots [19]
and further subjected to a CNN have shown promising results
in [20]. Yet another successful experimentation on imaging
data for classification has been demonstrated by [21] which has
implemented a Recurrent Neural Network (RNN) integrated
with MTF proving better results than the baseline classical
machine learning model. Results observed in aforementioned
works and the fact that this technique has not been tried before
on solar data are the encouraging factors for the authors to
adopt a non-traditional approach to this problem.

III. DATASET
A. SWAN-SF Benchmark Dataset

Solar flares are understood to be dynamical phenomenon
which have clear pre-flare and post-flare phases [22]. However,
many studies utilize point-in-time measurements, e.g., [7],
[12], [23], to predict flares’ behavior in the future. To expand
the horizon of flare forecasting, and for the reasons discussed
in Section II, a recent study generated a large collection
of multivariate time series data of flares’ magnetic fields
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extracted from solar photospheric vector magnetograms in
Space weather HMI Active Region Patch (SHARP) series
[24]. The benchmark dataset, named Space Weather ANalytics
for Solar Flares (SWAN-SF), is meant to serve as a testbed
for flare forecasting models [25]. It is hoped that using this
dataset some significant improvements in the performance and
robustness of the forecasting models be achieved. This bench-
mark dataset is made openly available on Harvard Dataverse
repository [26].

As illustrated in Fig. 2, SWAN-SF dataset is made up of
five temporally non-overlapping partitions covering the period
from May 2010 through August 2018. Each partition contains
approximately an equal number of X- and M-class flares. The
data points are slices of physical (magnetic field) parameters
of multivariate time series, in a sliding fashion. That is, for a
particular flare with a unique id, £ equal-length multivariate
time series are collected from a fixed period of time (24
hrs) throughout the history of that flare. SWAN-SF originally
contains a collection of 82 physical parameters derived from
the vector magnetic field data. The feature ranking process
carried out by [7] ranked the top 5 features (physical parame-
ters) to be ‘TOTUSJH’, “TOTBSQ’, “TOTPOT’, “TOTUSJZ’,
‘ABSNJZH’ (for definition of the features see Table 1 in
[25]). As this study focuses on the effectiveness of three
imaging algorithms, we limit our experiments to only these
five features.

B. Preprocessing

From the 5 partitions of the SWAN-SF dataset, the first
is utilized for training the classifier and the second is used
for evaluation of the models. Missing data are imputed using
linear interpolation and to further ensure that no feature
intrinsically influences the model, the dataset is re-scaled
to the range [—1,1]. As evident from Fig. 2, SWAN-SF is
highly imbalanced and dominated by instances corresponding
to the majority classes, i.e., B, C, and Q instances. The
primary motivation in flare forecasting is to predict flares of
stronger classes which are just a handful when compared.
Such a significant imbalance in the dataset would affect any
classifier by injecting a bias towards the majority classes. This
class imbalance in SWAN-SF has been explored and analyzed
before in [11]. Inspired by their observations, the technique of
undersampling while preserving the climatology of the original
dataset is applied on the training dataset. In this undersampling
method, the number of instances of the majority classes and
the minority classes (X and M) become equal while the ratio
of the individual classes in turn are preserved from the original
dataset to maintain the climatology of flares. We utilized the
Python package named MVTS-Data Toolkit [27] in order to
facilitate the preprocessing of the data.

C. Derived Image Dataset

From the multivariate time series instances of SWAN-SF,
we create several image datasets, using six different imaging
transformations (with abbreviations GASF, GADF, GASF,.,
GADF,, MTF, and RP). In the following, we briefly explain
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these algorithms and how the image datasets are derived from
the time series data.

Gramian Angular Fields (GAF) and Markov Transition
Fields (MTF) are imaging algorithms that encode a uni-
variate time series into an image with preserving temporal
dependencies between observations [14]. To briefly review
how GAF works, let X {x1,29, -+ ,2,} be a given
time series of length n. The first step in GAF algorithm is
to normalize X by transforming its values into the interval
[—1, 1]. This guarantees that the polar coordinate system can
represent a time series in the Cartesian coordinate system with
angular bounds [0, 7]. Let X = {&),45,---,4,} denote the
normalized time series. In the next step, X is transformed into
the polar coordinate system using Eq. 1. Encoding a time series
into its polar coordinates has two primary advantages. First,
the entire encoding process is bijective as cos(¢) is monotonic
when ¢ € [0, 7. Second, the polar coordinate system preserves
temporal dependency by using the radial coordinate 7.

{@ = arccos(i;), -1 <a; < 1,4; € X 0

t; —
Ti= t;i=1,2,---,n

There are two different Gramian Angular Matrices, as de-
fined in Eq. 2: the Gramian Angular Summation Field (GASF)
and the Gramian Angular Difference Field (GADF). These
matrices preserve absolute temporal relationships between the
observations since time increases with the direction from
upper-left to bottom-right. The main diagonal contains the
original value/angular information.

cos(p1 + ¢1)  cos(d1 + p2) cos(p1 + ¢n) ]
GASF — |cos(é2+¢1)  cos(¢2+¢2) cos(d2 + ¢n)
cos(én + ¢1)  cos(¢pn + d2) cos(¢n + én) |
sin(¢1 — ¢1)  sin(¢1 — $2) sin(¢1 — én)
GADF — |5n(é2 —¢1)  sin(¢2 — ¢2) sin(¢p2 — én)
sin(¢n — ¢1)  sin(¢n — $2) sin(dn — én) |
(2)

To help the reader better picture these transformations, we
chose three MVTS instances of X, C, and Q flare classes,
and illustrated their corresponding derived GASF and GADF
images for the top-five features. These time series and the
images are depicted in Fig. 3.

Inspired by GAF’s definition, and noting that neither of
GASF or GADF utilize the radial coordinate and preserve the
temporal information solely by encoding the angular coordi-
nate, we propose two other matrices. Based on the assump-
tion that the time series observations closer to one another
have stronger correlations than those temporally farther apart,
we derive the new matrices by multiplying (element-wise)
GASF/GADF matrices by W € R?, the matrix of weights, as
shown in Eq. 3. In this equation, ¢ and j are indices of time
series observations, and n is the length of the time series. This
weighting approach is consistent with our above-mentioned
assumption as it gives higher weights to closer observations.
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Fig. 3. Three examples of multivariate time series with top five parameters and derived images using five imaging algorithms, including GASF, GADF, MTF,
GASF, and GADF,.. The three multivariate time series instances are flares of X-class, C-class and Q-class.
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We denote the modified matrices as GASF, and GADF,

where the subscript r highlights the additional use of the radial

coordinate. Images generated by GASF, and GADF, with

three instances are illustrated in Fig. 3.

i—j
n

W=[(1-| N,1<i,j<n 3)

The second imaging algorithm, MTF, as formulated by
Eq. 4, is similar to the Stochastic Matrix [28]. This is used
to capture the transitions of a Markov Chain describing a
sequence of possible states that a time series goes through. In
such transitions, the probability of each state solely depends
on its previous state.

wiaj‘zleqi,mleqj wivj|m1€q1,wn6q_7'

w":]‘ngqi,,wleq]' wla]leGQi,anQj

“4)

w; w; 4
“]Hn@u‘meq]- 1J|wn€q1wmnEq]-

Given a time series X, and ¢ as the number of bins, M is
a ¢ X g matrix computed by discretizing the time series data
into ¢ quantile bins. Along the temporal axis, for every ¢ and j
time stamps, the corresponding data are presented in ¢; and g;
bins. In this matrix, each element M; ; denotes the probability
of transition ¢; — ¢;. As MTF captures the probability of
time series transitioning between different states during its
life cycle, the periodicity of the signal emerges as patterns in
an MTF matrix. To show an example, we illustrated the five
features of three different MVTS samples of X, C, and Q flare
classes. The MTF matrices are illustrated in Fig. 3. In the case
of TOTBSQ of the chosen M-class flare (red dotted time series
in the second row), the feature appears to be monotonically
decreasing over time which has given rise to the patterns of
squares along the diagonal in the corresponding MTF plot.
If the time series were to be periodic, the pattern would have
been found to be repeated across the MTF image. On the other
hand, ABSNJZH appears to be noisy varying between a small
range over time, which is captured in the corresponding MTF
image by smaller square shapes.

Another popular imaging algorithm is the Recurrence Plots
which captures the recurrences of observations in the time
series [19]. But as it is not the nature of the time series of
SWAN-SF to have a clear periodic pattern, it may not be
effective for our classification purpose. Therefore, in this study
we do not consider this algorithm in our experiments.

All the above-mentioned imaging algorithms transform uni-
variate time series into single-channel images. In SWAN-SF
however, the data points are multivariate time series. For a
multivariate time series with k& parameters, we first derive the
k images, one per feature, and then convert them into one k-
channel image. The width and height of the generated images
is equal to the fixed length of the time series, i.e., 60. Since we
only work with the top 5 features, each MVTS of SWAN-SF
turn into a 3D tensor of shape (5, 60, 60).

For all these transformations we utilize the Pyts Python
package [29].
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IV. METHODOLOGY

To properly evaluate the effectiveness of using imaging al-
gorithms on the time series for the purpose of flare forecasting
we draw the reader’s attention to a few points: (1) A set of
baseline experiments are needed in which the classification
task should be carried out on the time series data. The reported
forecasting performances should be then compared with that
of CNN on the derived images. (2) Since CNN automatically
extracts the features (from images), in order to have a fair
comparison, the baseline classifier may not depend on any
(manual) feature extraction step. That is, it should be able
to take in the multivariate time series in their raw form, and
not their potentially important features, such as their statistical
moments. Otherwise, the strength or weakness of the baseline
model could always be attributed to how well those features
were chosen or optimized, and therefore makes the comparison
depend on more variables than just the data format (time series
versus images). Lastly, (3) the baseline model’s algorithm
should be somewhat comparable with that of CNN in terms
of its learning process.

To address these three concerns we choose our baseline
classifier to be the time-series specific support vector classifier
(T-SVC) [30]. T-SVC is an implementation of SVM that
utilizes the dynamic time warping (DTW) distance measure
as the positive definite kernels for time series, and therefore,
it does not depend on the extracted features in the tabular form.
Regarding the third concern, CNN algorithms, and deep neural
networks in general, with the help of their several transforma-
tions separate the feature space using multiple hyperplanes.
The SVM family of classifiers, when equipped with the kernel
trick, works similar to a 2-layer neural network. And a 1-
layer neural network with the Hinge loss is simply a linear
SVM. Therefore, T-SVC and CNN have comparable learning
processes.

A. Models

Support Vector Machine (SVM) in general, and T-SVC in
particular, fall into the general category of kernel methods. The
biggest advantage of using SVM is that we can generate non-
linear decision boundaries by using methods that are designed
for linear classifiers. As for the SVM model, there exists a
basic set of hyperparameters: the soft margin constant, C,
and the parameters on which the kernel function depends
(including width of a Gaussian kernel and the degree of a
polynomial kernel). The first hyperparameter, C, acts as a
regularization parameter in our SVM classifier. It controls the
influence of each individual support vector and allows some
instances to be misclassified to improve the generalization
of the model and consequently the robustness. Larger values
of C' encourage smaller margins if the decision function is
better at correctly classifying all the training samples. Another
important hyperparameter in the tuning process is « which
is the free parameter of the Gaussian Radial Basis Function
(RBF) kernel. The ~y parameter defines how far the influence
of a single training example reaches. Larger values of v have
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smaller variances which imply that the support vectors do not
have wide-spread influence.

Convolutional Neural Network (CNN) is a class of deep
neural networks that have become dominant in various com-
puter vision tasks. The key characteristic of CNN is that
it automatically learns the spatial features from images by
stacking an array of layers, such as the convolutional layers,
ReLu layers, pooling layers, and fully connected layers. In this
study, we use LeNet-5 [31] which is a CNN-based architecture
that comprises of seven layers including three convolutional
layers, two pooling layers, two fully connected layers, and
a Rectified Linear Unit (ReLU) as the activation function.
The cross entropy loss function is utilized for calculating
the difference between the estimated and the actual labels
of the training data. The computed loss accompanied by a
back-propagation algorithm facilitates the weight adjustments
within the network. Supporting factors, such as learning rate
and the choice of an optimizer, help boost the performance of
the neural network.

B. Metrics

Our approach toward the flare forecasting problem is in fact
a rare-event classification task. A proper evaluation of models’
performance in the presence of scarce (imbalanced) data
requires special treatment [32]. Choosing the right evaluation
metric is certainly one of them. From years of exploration,
domain experts have come to agree on the effectiveness of
two metrics, namely the true skill statistic (T'SS) [33] and
the updated Heidke skill score (HSS2) [34], [35]. As shown
in Eq. 5, T'SS is simply the difference between the probability
of detection, i.e., true-positive rate, and the probability of
false alarm, i.e., false-positive rate. There, P = tp+ fn and
N = fp+tn are the numbers of the positive and negative
instances, respectively. This measure ranges from —1 to +1,
where —1 indicates that the model has misclassified all the
instances, 0 means that the model has no forecasting skill, and
+1 represents a perfect model that correctly assigns labels to
all instances.

TSS:t—p—@

P N

HSS2, as formulated in Eq. 6, quantifies the model’s per-
formance by comparing it to a model that classifies instances
randomly. Similar to 7'S'S, HSS2 ranges within the interval
[—1,1], with 0 indicating that there is no difference between
the model’s performance and a random guess. The positive
values indicate how better than random the model performs.
Decreasing negative values reflect a higher similarity to a
model that misclassifies all instances.

2-(p-tn) = (fn-fp))
P-(fn+tn)+N-(tp+ fp)
For the evaluation of our models, since we preserve the

balance ratio of the data in all experiments, we report both
TSS and HSS2.

®)

HSS2 = (6)
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V. EXPERIMENTS AND RESULTS

We now put the main thesis of this study to the test. That
is, to evaluate the effectiveness of imaging algorithms for
classification of multivariate time series. We conduct a series
of experiments and compare the results, as explained below.

We first train T-SVC on partition 1 of SWAN-SF and LeNet-
5 on the images derived from the same partition using each of
the imaging algorithms GASF, GADEF, and MTF. To remedy
the class-imbalance issue, as discussed in Section III, we
undersample the training dataset. Then we test each model
on partition 2 of the dataset and compare their performances
in terms of T'S'S and HSS2. Note that although the class
frequencies in the training data is made balanced, we leave the
imbalance ratio in partition 2 untouched so that the results are
comparable with an operational forecasting model. We repeat
this comparison on each of the top 5 features individually
followed by an experiment involving all those features.

Another group of experiments are conducted to evaluate the
effectiveness of our proposed imaging matrices, GASF, and
GADF,.. Similar to the first group of experiments, we conduct
this for each of the top 5 features and for a combination of
them as well.

In each scenario, we tune the hyperparameters of the
classifiers using the grid-search approach and find the optimal
settings based on the highest and the most consistent 7°.5.S and
T'SS values of the estimated labels. As a result, T-SVC model
is built with its two hyperparameters C' and -y set to 1000 and
0.0001, respectively, equipped with ‘sigmoid’ kernel. Similarly
for LeNet-5, we conclude the learning rate to be initialized at
10e —4, and use Stochastic Gradient Descent as the optimizer.
We halt the training process at 500 epochs.

From the results shown in Fig. 4, performance of T-SVC
clearly stands out with 7°'SS at close to 0.8, compared to
LeNet-5 with GASF, GADF, or MTF. Looking at the reported
HSS2 of the same experiments in Fig. 5, although T-SVC
barely reaches 0.3, it still outperforms LeNet-5 in all 6 cases.

Fig. 4 and Fig. 5 also show that LeNet-5 performs best on
images derived by the MTF imaging algorithm. One reason
for this superiority is that MTF is a measure of probability of
transition between states of a time series. Therefore, it may
capture the patterns and fluctuations more distinctly than GAF.
This can be visually spotted in Fig. 1 as the MTF images are
more distinct than those generated using GAF.

Finally, we compare the forecasting performance of LeNet-
5 on GAF- and GAF,-derived images. Fig. 6 shows that
incorporating the radial coordinate in GASF made a significant
improvement. In fact, GASF, resulted in an over 120%
(on average 7'SS) improvement in LeNet-5’s classification
performance (an increase from 0.21 to 0.48). An even more
dramatic performance boost is measured by H.SS2, shown
in Fig. 7, with an over 440% increase (from 0.07 to 0.38).
GADF, has also made some improvements, as shown in the
same plots, but not consistently and not nearly as significantly.

Comparing Figs. 4 and 5 with 6 and 7 also reveals some
interesting points. While in terms of 7SS, GASF, does not
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Fig. 4. TSS comparison of T-SVC and LeNet-5 on images generated by
GASF, GADF and MTFE.
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Fig. 5. HSS comparison of T-SVC and LeNet-5 on images generated by
GASF, GADF and MTE.

seem to have strong enough discriminating features for LeNet-
5 that the raw time series provide for T-SVC, it comes on top
when HSS2 is the measure of comparison. T-SVC performs
on average 0.38% better than LeNet-5, in terms of 7'S'S, when
GASF, is used, but LeNet-5 outperforms that by &~ 60% boost
on average, in terms of H.SS2.

All in all, the results indicate that the imaging algorithm can
capture the important characteristics of time series data while
allowing a powerful family of classifiers, i.e., CNNs, to be
tried and evaluated for the outstanding task of flare forecasting.

VI. CONCLUSION AND FUTURE WORK

In order to approach the flare forecasting problem from
a new angle, we converted the multivariate time series of
SWAN-SF dataset into multi-channel images using several
different imaging algorithms. To evaluate the effectiveness of
such transformations of data on our forecasting problem, we
employed T-SVC classifier for classification of time series and
LeNet-5 for classification of the derived images. The image
classifier was intentionally chosen to be rather simple so that
it remains comparable with the SVM-based classifier we em-
ployed. The analyses of the results showed no improvements in
classification of flaring and non-flaring instances when derived
images were used.

Looking into the lossy nature of these imaging algorithms,
we identified the main reason as to why the derived image
data were not nearly as promising as the multivariate time
series data were. As seen in III-C, since radial information
is not encoded into the imaging algorithms, MVTS instances
cannot be reconstructed from the image without data loss.
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Based on our findings, we modified one of those algorithms
and achieved a significant improvement in the classification of
flares, compared to the existing imaging algorithms. Although
the performance is not comparable to what T-SVC achieved on
the time series data, we consider the significant improvement
seen as a proof of concept that we would like to further
explore in our future work. Our weighting mechanism that
resulted in the improvement was mathematically simple with
no interpretable or data-driven justification. This implies that a
more appropriate weighting function may result in an imaging
algorithm more effective at capturing the time series features.
Exploiting the advantages of complex CNNs is one of the
avenues we would like to explore. In that case, we must replace
T-SVC with a deep neural network that takes in multivariate
time series so that the model still remain comparable in
complexity, and the superiority of one model over the other
does not influence the results.

We hope that our new approach opens new doors to more
effective ways of tackling the outstanding challenge of flare
forecasting.
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