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Abstract—Forecasting the occurrence of solar flares is a typical
21st century rare-event classification task. Over the past two
decades, many studies have implemented various techniques and
approaches for classification of strong and weak solar flares.
The release of the recent flare forecasting benchmark dataset,
named SWAN-SF, has opened the door for taking advantage
of multivariate time series (MVTS) of pre-flare magnetic fields’
activity in order to potentially achieve higher performance and
increase the robustness of the new forecasting models. In this
study, we take a new approach and explore the effectiveness
of imaging algorithms on the time series. We convert MVTS
data into multi-channel image data using Gramian Angular
Fields (GAF) and Markov Transition Fields (MTF) to explore
the proven strength of deep neural networks in the Image
Processing domain, on flares’ MVTS data. Inspired by GAF,
we propose another imaging matrix that our experiments show
that it significantly improves the performance of the CNN, by
120% in terms of TSS and 440% in terms of HSS2. Finally, we
juxtapose two approaches to tackle the flare forecasting problem:
one, to utilize a time-series specific Support Vector Classifier for
classification of flares, and the other, to train a Convolutional
Neural Network (CNN) on the derived images using GAF, MTF,
and our modified GAF.

Index Terms—multivariate, time series, forecasting, imaging,
flare

I. INTRODUCTION

Solar flares are sudden bursts of electromagnetic radiations

from the Sun when the magnetic fields generated by constantly

moving electrically charged gases on the surface tangle, stretch

and twist. Since 1974, X-ray flares have been automatically de-

tected and classified by the National Oceanic and Atmospheric

Administration’s (NOAA) constellation of GOES satellites in

the 1-8 Angstrom wavelength range. Based on the peak soft

X-ray flux in this range, flares are logarithmically classified

into the five classes of A, B, C, M, and X, from weaker

to stronger. Strong solar flares occasionally releases large

expulsions of plasma and magnetic field, called coronal mass

ejections (CME), which can reach the Earth in as little as

15-18 hours. Strong CMEs can potentially cause geomagnetic

storm with direct impact on the well-being of astronauts

during spacewalk missions, the GPS system, and consequently

the GPS-based positioning industries, and the power grid

system, and consequently the electronic infrastructures [1].

(Y. Chen, A. Ji, and P. A. Babajiyavar are co-first authors.)(Corresponding
author: Yang Chen)
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Fig. 1. An example of a multivariate time series from SWAN-SF and the
derived images using three different imaging algorithms.

The damage was estimated to be $1-$2 trillion (for the United

States) during the first year alone [2]. It was estimated in

2012 that the probability of such an extreme event to occur

within the next decade is ∼ 12% [3]. The severity of such

events and the fact that simple remedies (e.g., rescheduling

a spacewalk, or injecting reserve power in the power grid

system) can significantly reduce the damage, has made the

solar flare forecasting an outstanding interdisciplinary research

topic.

II. BACKGROUND

Researchers over the past two decades have implemented

various techniques and approaches for classification of strong

and weak solar flares. From a sample of such studies, [4]

used the classical approach of logistic regression to build

a classifier that distinguishes between the X-, M-, and C-

class flares using only 3 predictive parameters. Using the

Poisson statistics technique, [5] calculated the probabilities

for the same three flare magnitudes. Taking into account the

conditional independence among the magnetic field parameters

of active regions, [6] built their short-term prediction model
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using a Bayesian network. Support Vector Machines have also

been used as a more advanced classifier in [7] on 25 different

predictive parameters, and in [8] combined with k-nearest

neighbors algorithm, using only 2 predictive parameters. More

advanced approaches have also been carried out. For instance,

[9] developed a deep neural network, named Deep Flare

Net, to learn the patterns from the 79 extracted (magnetic-

field) parameters. In contrast, [10] employed the convolutional

neural networks to automatically learn the flaring patterns from

the magnetograms, instead of manually calculating them.

While there seems to be an array of interesting avenues

proposed for tackling the flare forecasting challenge, unfor-

tunately, comparing the reported forecasting performances of

those models is not feasible. The reasons as identified in

[11] can be summarized as follows: (1) employing different

sampling strategies, (2) the evaluation of models are carried

out on the datasets which are not publicly available nor

their exact creation and integration methodologies are well

documented, (3) the minor or major differences in the problem

formulation (e.g., probabilistic versus categorical classifica-

tion, or multi-class versus binary task), and (4) the use of

different preprocessing strategies on the data. Each of these

decisions changes the difficulty of the task in hand, which in

turn renders the numerical comparison of the reported scores

meaningless. The benchmark dataset we employ in this study

(see Section III) is intended to remedy this very problem. In

the absence of a shared experimental setting and comparable

results, based on our rigorous analysis of many such studies we

conclude that a reliable method that takes on the binary flare-

forecasting problem with a single model (i.e., no ensemble)

achieves the true skill statistic (TSS) of ≈0.6 while keeping

a similar Heidke skill score (HSS2) (e.g., in [7], [12]). That

said, the reader should note that even that does not set a fair

bar for our experiments to be compared against. Because (1)

those models have not been evaluated on the same dataset as

ours (SWAN-SF), and (2) their classifier, i.e., SVM, targeted

single-point data and not time series data as ours do.

Our study approaches the problem from a new angle in

which the (multivariate) time series of flaring and non-flaring

active regions are transformed to (multi-channel) images. This

transformation in fact, takes our problem to the Image Process-

ing domain where we can benefit from the widely accepted

superiority of deep neural networks [13] to the classical

machine learning algorithms in many applications. While one

could expect data loss when raw data in the form of real values

are transformed to unsigned 8 bit integers, experiments in this

study were found to not have had a significant effect from this

transformation. The two main imaging techniques we put to

the test are the Gramian Angular Fields (GAF) and Markov

Transition Fields (MTF) transformations [14].

The intention behind converting the multivariate time series

of SWAN-SF data is to experiment whether a state-of-the-art

CNN can discover patterns in the data that classical machine

learning techniques may have missed. A cursory examination

of the dataset would reveal, even to a casual observer, that

the data is imbalanced and largely belong to the weak classes
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Fig. 2. Counts of the five flare classes across the five partitions. (The numbers
correspond to v0.7 of SWAN-SF data, and may vary in the most recent
version.)

of flares (C, B, and Q) and this research is set to explore

whether a CNN can better identify those fewer flaring classes

with greater flux in observations that could potentially trigger

coronal mass ejections. [15] is one such research, although

with a different objective, in which the time series data were

subjected to GAF transformation and the authors showed that

deep neural networks have surpassed the performance of the

classical machine learning models in identifying the minority

classes. Similar results were obtained by [16] and [17] wherein

the time series data were transformed into GAF images before

subjecting it to a CNN model for classification. [18] claims an

accuracy of 90.7% outperforming Long Short-Term Memory

(LSTM) model when the time series data of currency exchange

rate was remodeled as GAF images and fed to a neural

network based on LeNet-5. Power load consumption time

series data of individual customers that exhibits fluctuations

quite frequently, when transformed into Recurrence Plots [19]

and further subjected to a CNN have shown promising results

in [20]. Yet another successful experimentation on imaging

data for classification has been demonstrated by [21] which has

implemented a Recurrent Neural Network (RNN) integrated

with MTF proving better results than the baseline classical

machine learning model. Results observed in aforementioned

works and the fact that this technique has not been tried before

on solar data are the encouraging factors for the authors to

adopt a non-traditional approach to this problem.

III. DATASET

A. SWAN-SF Benchmark Dataset

Solar flares are understood to be dynamical phenomenon

which have clear pre-flare and post-flare phases [22]. However,

many studies utilize point-in-time measurements, e.g., [7],

[12], [23], to predict flares’ behavior in the future. To expand

the horizon of flare forecasting, and for the reasons discussed

in Section II, a recent study generated a large collection

of multivariate time series data of flares’ magnetic fields
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extracted from solar photospheric vector magnetograms in

Space weather HMI Active Region Patch (SHARP) series

[24]. The benchmark dataset, named Space Weather ANalytics

for Solar Flares (SWAN-SF), is meant to serve as a testbed

for flare forecasting models [25]. It is hoped that using this

dataset some significant improvements in the performance and

robustness of the forecasting models be achieved. This bench-

mark dataset is made openly available on Harvard Dataverse

repository [26].

As illustrated in Fig. 2, SWAN-SF dataset is made up of

five temporally non-overlapping partitions covering the period

from May 2010 through August 2018. Each partition contains

approximately an equal number of X- and M-class flares. The

data points are slices of physical (magnetic field) parameters

of multivariate time series, in a sliding fashion. That is, for a

particular flare with a unique id, k equal-length multivariate

time series are collected from a fixed period of time (24

hrs) throughout the history of that flare. SWAN-SF originally

contains a collection of 82 physical parameters derived from

the vector magnetic field data. The feature ranking process

carried out by [7] ranked the top 5 features (physical parame-

ters) to be ‘TOTUSJH’, ‘TOTBSQ’, ‘TOTPOT’, ‘TOTUSJZ’,

‘ABSNJZH’ (for definition of the features see Table 1 in

[25]). As this study focuses on the effectiveness of three

imaging algorithms, we limit our experiments to only these

five features.

B. Preprocessing

From the 5 partitions of the SWAN-SF dataset, the first

is utilized for training the classifier and the second is used

for evaluation of the models. Missing data are imputed using

linear interpolation and to further ensure that no feature

intrinsically influences the model, the dataset is re-scaled

to the range [−1, 1]. As evident from Fig. 2, SWAN-SF is

highly imbalanced and dominated by instances corresponding

to the majority classes, i.e., B, C, and Q instances. The

primary motivation in flare forecasting is to predict flares of

stronger classes which are just a handful when compared.

Such a significant imbalance in the dataset would affect any

classifier by injecting a bias towards the majority classes. This

class imbalance in SWAN-SF has been explored and analyzed

before in [11]. Inspired by their observations, the technique of

undersampling while preserving the climatology of the original

dataset is applied on the training dataset. In this undersampling

method, the number of instances of the majority classes and

the minority classes (X and M) become equal while the ratio

of the individual classes in turn are preserved from the original

dataset to maintain the climatology of flares. We utilized the

Python package named MVTS-Data Toolkit [27] in order to

facilitate the preprocessing of the data.

C. Derived Image Dataset

From the multivariate time series instances of SWAN-SF,

we create several image datasets, using six different imaging

transformations (with abbreviations GASF, GADF, GASFr,

GADFr, MTF, and RP). In the following, we briefly explain

these algorithms and how the image datasets are derived from

the time series data.

Gramian Angular Fields (GAF) and Markov Transition

Fields (MTF) are imaging algorithms that encode a uni-

variate time series into an image with preserving temporal

dependencies between observations [14]. To briefly review

how GAF works, let X = {x1, x2, · · · , xn} be a given

time series of length n. The first step in GAF algorithm is

to normalize X by transforming its values into the interval

[−1, 1]. This guarantees that the polar coordinate system can

represent a time series in the Cartesian coordinate system with

angular bounds [0, π]. Let X̃ = {x̃1, x̃2, · · · , x̃n} denote the

normalized time series. In the next step, X̃ is transformed into

the polar coordinate system using Eq. 1. Encoding a time series

into its polar coordinates has two primary advantages. First,

the entire encoding process is bijective as cos(φ) is monotonic

when φ ∈ [0, π]. Second, the polar coordinate system preserves

temporal dependency by using the radial coordinate r.{
φi = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

ri =
ti
n , ti = 1, 2, · · · , n (1)

There are two different Gramian Angular Matrices, as de-

fined in Eq. 2: the Gramian Angular Summation Field (GASF)

and the Gramian Angular Difference Field (GADF). These

matrices preserve absolute temporal relationships between the

observations since time increases with the direction from

upper-left to bottom-right. The main diagonal contains the

original value/angular information.

GASF =

⎡
⎣cos(φ1 + φ1) cos(φ1 + φ2) · · · cos(φ1 + φn)
cos(φ2 + φ1) cos(φ2 + φ2) · · · cos(φ2 + φn)

· · · · · · · · · · · ·
cos(φn + φ1) cos(φn + φ2) · · · cos(φn + φn)

⎤
⎦

GADF =

⎡
⎣sin(φ1 − φ1) sin(φ1 − φ2) · · · sin(φ1 − φn)
sin(φ2 − φ1) sin(φ2 − φ2) · · · sin(φ2 − φn)

· · · · · · · · · · · ·
sin(φn − φ1) sin(φn − φ2) · · · sin(φn − φn)

⎤
⎦
(2)

To help the reader better picture these transformations, we

chose three MVTS instances of X, C, and Q flare classes,

and illustrated their corresponding derived GASF and GADF

images for the top-five features. These time series and the

images are depicted in Fig. 3.

Inspired by GAF’s definition, and noting that neither of

GASF or GADF utilize the radial coordinate and preserve the

temporal information solely by encoding the angular coordi-

nate, we propose two other matrices. Based on the assump-

tion that the time series observations closer to one another

have stronger correlations than those temporally farther apart,

we derive the new matrices by multiplying (element-wise)

GASF/GADF matrices by W ∈ R
2, the matrix of weights, as

shown in Eq. 3. In this equation, i and j are indices of time

series observations, and n is the length of the time series. This

weighting approach is consistent with our above-mentioned

assumption as it gives higher weights to closer observations.
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Fig. 3. Three examples of multivariate time series with top five parameters and derived images using five imaging algorithms, including GASF, GADF, MTF,
GASFr and GADFr . The three multivariate time series instances are flares of X-class, C-class and Q-class.
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We denote the modified matrices as GASFr and GADFr

where the subscript r highlights the additional use of the radial

coordinate. Images generated by GASFr and GADFr with

three instances are illustrated in Fig. 3.

W = [(1− | i− j

n
|)], 1 ≤ i, j ≤ n (3)

The second imaging algorithm, MTF, as formulated by

Eq. 4, is similar to the Stochastic Matrix [28]. This is used

to capture the transitions of a Markov Chain describing a

sequence of possible states that a time series goes through. In

such transitions, the probability of each state solely depends

on its previous state.

M =

⎡
⎢⎢⎢⎢⎣

wi,j|x1∈qi,x1∈qj
· · · wi,j|x1∈qi,xn∈qj

wi,j|x2∈qi,x1∈qj
· · · wi,j|x2∈qi,xn∈qj

...
. . .

...

wi,j|xn∈qi,x1∈qj
· · · wi,j|xn∈qi,xn∈qj

⎤
⎥⎥⎥⎥⎦ (4)

Given a time series X , and q as the number of bins, M is

a q × q matrix computed by discretizing the time series data

into q quantile bins. Along the temporal axis, for every i and j
time stamps, the corresponding data are presented in qi and qj
bins. In this matrix, each element Mi,j denotes the probability

of transition qi → qj . As MTF captures the probability of

time series transitioning between different states during its

life cycle, the periodicity of the signal emerges as patterns in

an MTF matrix. To show an example, we illustrated the five

features of three different MVTS samples of X, C, and Q flare

classes. The MTF matrices are illustrated in Fig. 3. In the case

of TOTBSQ of the chosen M-class flare (red dotted time series

in the second row), the feature appears to be monotonically

decreasing over time which has given rise to the patterns of

squares along the diagonal in the corresponding MTF plot.

If the time series were to be periodic, the pattern would have

been found to be repeated across the MTF image. On the other

hand, ABSNJZH appears to be noisy varying between a small

range over time, which is captured in the corresponding MTF

image by smaller square shapes.

Another popular imaging algorithm is the Recurrence Plots

which captures the recurrences of observations in the time

series [19]. But as it is not the nature of the time series of

SWAN-SF to have a clear periodic pattern, it may not be

effective for our classification purpose. Therefore, in this study

we do not consider this algorithm in our experiments.

All the above-mentioned imaging algorithms transform uni-

variate time series into single-channel images. In SWAN-SF

however, the data points are multivariate time series. For a

multivariate time series with k parameters, we first derive the

k images, one per feature, and then convert them into one k-

channel image. The width and height of the generated images

is equal to the fixed length of the time series, i.e., 60. Since we

only work with the top 5 features, each MVTS of SWAN-SF

turn into a 3D tensor of shape (5, 60, 60).
For all these transformations we utilize the Pyts Python

package [29].

IV. METHODOLOGY

To properly evaluate the effectiveness of using imaging al-

gorithms on the time series for the purpose of flare forecasting

we draw the reader’s attention to a few points: (1) A set of

baseline experiments are needed in which the classification

task should be carried out on the time series data. The reported

forecasting performances should be then compared with that

of CNN on the derived images. (2) Since CNN automatically

extracts the features (from images), in order to have a fair

comparison, the baseline classifier may not depend on any

(manual) feature extraction step. That is, it should be able

to take in the multivariate time series in their raw form, and

not their potentially important features, such as their statistical

moments. Otherwise, the strength or weakness of the baseline

model could always be attributed to how well those features

were chosen or optimized, and therefore makes the comparison

depend on more variables than just the data format (time series

versus images). Lastly, (3) the baseline model’s algorithm

should be somewhat comparable with that of CNN in terms

of its learning process.

To address these three concerns we choose our baseline

classifier to be the time-series specific support vector classifier

(T-SVC) [30]. T-SVC is an implementation of SVM that

utilizes the dynamic time warping (DTW) distance measure

as the positive definite kernels for time series, and therefore,

it does not depend on the extracted features in the tabular form.

Regarding the third concern, CNN algorithms, and deep neural

networks in general, with the help of their several transforma-

tions separate the feature space using multiple hyperplanes.

The SVM family of classifiers, when equipped with the kernel

trick, works similar to a 2-layer neural network. And a 1-

layer neural network with the Hinge loss is simply a linear

SVM. Therefore, T-SVC and CNN have comparable learning

processes.

A. Models

Support Vector Machine (SVM) in general, and T-SVC in

particular, fall into the general category of kernel methods. The

biggest advantage of using SVM is that we can generate non-

linear decision boundaries by using methods that are designed

for linear classifiers. As for the SVM model, there exists a

basic set of hyperparameters: the soft margin constant, C,

and the parameters on which the kernel function depends

(including width of a Gaussian kernel and the degree of a

polynomial kernel). The first hyperparameter, C, acts as a

regularization parameter in our SVM classifier. It controls the

influence of each individual support vector and allows some

instances to be misclassified to improve the generalization

of the model and consequently the robustness. Larger values

of C encourage smaller margins if the decision function is

better at correctly classifying all the training samples. Another

important hyperparameter in the tuning process is γ which

is the free parameter of the Gaussian Radial Basis Function

(RBF) kernel. The γ parameter defines how far the influence

of a single training example reaches. Larger values of γ have
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smaller variances which imply that the support vectors do not

have wide-spread influence.

Convolutional Neural Network (CNN) is a class of deep

neural networks that have become dominant in various com-

puter vision tasks. The key characteristic of CNN is that

it automatically learns the spatial features from images by

stacking an array of layers, such as the convolutional layers,

ReLu layers, pooling layers, and fully connected layers. In this

study, we use LeNet-5 [31] which is a CNN-based architecture

that comprises of seven layers including three convolutional

layers, two pooling layers, two fully connected layers, and

a Rectified Linear Unit (ReLU) as the activation function.

The cross entropy loss function is utilized for calculating

the difference between the estimated and the actual labels

of the training data. The computed loss accompanied by a

back-propagation algorithm facilitates the weight adjustments

within the network. Supporting factors, such as learning rate

and the choice of an optimizer, help boost the performance of

the neural network.

B. Metrics

Our approach toward the flare forecasting problem is in fact

a rare-event classification task. A proper evaluation of models’

performance in the presence of scarce (imbalanced) data

requires special treatment [32]. Choosing the right evaluation

metric is certainly one of them. From years of exploration,

domain experts have come to agree on the effectiveness of

two metrics, namely the true skill statistic (TSS) [33] and

the updated Heidke skill score (HSS2) [34], [35]. As shown

in Eq. 5, TSS is simply the difference between the probability

of detection, i.e., true-positive rate, and the probability of

false alarm, i.e., false-positive rate. There, P = tp+fn and

N = fp+ tn are the numbers of the positive and negative

instances, respectively. This measure ranges from −1 to +1,

where −1 indicates that the model has misclassified all the

instances, 0 means that the model has no forecasting skill, and

+1 represents a perfect model that correctly assigns labels to

all instances.

TSS =
tp

P
− fp

N
(5)

HSS2, as formulated in Eq. 6, quantifies the model’s per-

formance by comparing it to a model that classifies instances

randomly. Similar to TSS, HSS2 ranges within the interval

[−1, 1], with 0 indicating that there is no difference between

the model’s performance and a random guess. The positive

values indicate how better than random the model performs.

Decreasing negative values reflect a higher similarity to a

model that misclassifies all instances.

HSS2 =
2 · ((tp · tn)− (fn · fp))

P · (fn+ tn) +N · (tp+ fp)
(6)

For the evaluation of our models, since we preserve the

balance ratio of the data in all experiments, we report both

TSS and HSS2.

V. EXPERIMENTS AND RESULTS

We now put the main thesis of this study to the test. That

is, to evaluate the effectiveness of imaging algorithms for

classification of multivariate time series. We conduct a series

of experiments and compare the results, as explained below.

We first train T-SVC on partition 1 of SWAN-SF and LeNet-

5 on the images derived from the same partition using each of

the imaging algorithms GASF, GADF, and MTF. To remedy

the class-imbalance issue, as discussed in Section III, we

undersample the training dataset. Then we test each model

on partition 2 of the dataset and compare their performances

in terms of TSS and HSS2. Note that although the class

frequencies in the training data is made balanced, we leave the

imbalance ratio in partition 2 untouched so that the results are

comparable with an operational forecasting model. We repeat

this comparison on each of the top 5 features individually

followed by an experiment involving all those features.

Another group of experiments are conducted to evaluate the

effectiveness of our proposed imaging matrices, GASFr and

GADFr. Similar to the first group of experiments, we conduct

this for each of the top 5 features and for a combination of

them as well.

In each scenario, we tune the hyperparameters of the

classifiers using the grid-search approach and find the optimal

settings based on the highest and the most consistent TSS and

TSS values of the estimated labels. As a result, T-SVC model

is built with its two hyperparameters C and γ set to 1000 and

0.0001, respectively, equipped with ‘sigmoid’ kernel. Similarly

for LeNet-5, we conclude the learning rate to be initialized at

10e−4, and use Stochastic Gradient Descent as the optimizer.

We halt the training process at 500 epochs.

From the results shown in Fig. 4, performance of T-SVC

clearly stands out with TSS at close to 0.8, compared to

LeNet-5 with GASF, GADF, or MTF. Looking at the reported

HSS2 of the same experiments in Fig. 5, although T-SVC

barely reaches 0.3, it still outperforms LeNet-5 in all 6 cases.

Fig. 4 and Fig. 5 also show that LeNet-5 performs best on

images derived by the MTF imaging algorithm. One reason

for this superiority is that MTF is a measure of probability of

transition between states of a time series. Therefore, it may

capture the patterns and fluctuations more distinctly than GAF.

This can be visually spotted in Fig. 1 as the MTF images are

more distinct than those generated using GAF.

Finally, we compare the forecasting performance of LeNet-

5 on GAF- and GAFr-derived images. Fig. 6 shows that

incorporating the radial coordinate in GASF made a significant

improvement. In fact, GASFr resulted in an over 120%
(on average TSS) improvement in LeNet-5’s classification

performance (an increase from 0.21 to 0.48). An even more

dramatic performance boost is measured by HSS2, shown

in Fig. 7, with an over 440% increase (from 0.07 to 0.38).

GADFr has also made some improvements, as shown in the

same plots, but not consistently and not nearly as significantly.

Comparing Figs. 4 and 5 with 6 and 7 also reveals some

interesting points. While in terms of TSS, GASFr does not
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Fig. 4. TSS comparison of T-SVC and LeNet-5 on images generated by
GASF, GADF and MTF.
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Fig. 5. HSS comparison of T-SVC and LeNet-5 on images generated by
GASF, GADF and MTF.

seem to have strong enough discriminating features for LeNet-

5 that the raw time series provide for T-SVC, it comes on top

when HSS2 is the measure of comparison. T-SVC performs

on average 0.38% better than LeNet-5, in terms of TSS, when

GASFr is used, but LeNet-5 outperforms that by ≈ 60% boost

on average, in terms of HSS2.

All in all, the results indicate that the imaging algorithm can

capture the important characteristics of time series data while

allowing a powerful family of classifiers, i.e., CNNs, to be

tried and evaluated for the outstanding task of flare forecasting.

VI. CONCLUSION AND FUTURE WORK

In order to approach the flare forecasting problem from

a new angle, we converted the multivariate time series of

SWAN-SF dataset into multi-channel images using several

different imaging algorithms. To evaluate the effectiveness of

such transformations of data on our forecasting problem, we

employed T-SVC classifier for classification of time series and

LeNet-5 for classification of the derived images. The image

classifier was intentionally chosen to be rather simple so that

it remains comparable with the SVM-based classifier we em-

ployed. The analyses of the results showed no improvements in

classification of flaring and non-flaring instances when derived

images were used.

Looking into the lossy nature of these imaging algorithms,

we identified the main reason as to why the derived image

data were not nearly as promising as the multivariate time

series data were. As seen in III-C, since radial information

is not encoded into the imaging algorithms, MVTS instances

cannot be reconstructed from the image without data loss.

Fig. 6. TSS comparison of LeNet-5 on images generated by GASF and
GASFr .

Fig. 7. HSS comparison of LeNet-5 on images generated by GADF and
GADFr .

Based on our findings, we modified one of those algorithms

and achieved a significant improvement in the classification of

flares, compared to the existing imaging algorithms. Although

the performance is not comparable to what T-SVC achieved on

the time series data, we consider the significant improvement

seen as a proof of concept that we would like to further

explore in our future work. Our weighting mechanism that

resulted in the improvement was mathematically simple with

no interpretable or data-driven justification. This implies that a

more appropriate weighting function may result in an imaging

algorithm more effective at capturing the time series features.

Exploiting the advantages of complex CNNs is one of the

avenues we would like to explore. In that case, we must replace

T-SVC with a deep neural network that takes in multivariate

time series so that the model still remain comparable in

complexity, and the superiority of one model over the other

does not influence the results.

We hope that our new approach opens new doors to more

effective ways of tackling the outstanding challenge of flare

forecasting.
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