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Abstract—Outlier detection has become one of the core tasks
in spatio-temporal data mining. It plays an essential role in
data quality improvement for the machine learning models and
recognizing the anomalous patterns, which may remarkably
deviate from expected patterns among the trajectory datasets. In
this work, we propose a clustering-based technique to detect local
outliers in trajectory datasets by utilizing spatial and temporal
attributes of moving objects. This local outlier detection involves
three phases. In the first phase, we apply a temporal partition
procedure to divide the raw trajectory into multiple trajectory
segments and extract trajectory features from spatial and tem-
poral attributes for each trajectory segment. Then, we generate
template features of trajectory segments by applying a clustering
schema in the second phase. Finally, we use the abnormal score
— a novel dissimilarity measure, which quantifies the disparity
among the query and template trajectory segments in terms
of trajectory features and hence determines the local outliers
based on the distribution of abnormal score. To demonstrate the
effectiveness of our method, we conduct three case studies on
the real-life spatio-temporal trajectory datasets from the solar
astroinformatics domain (i.e., solar active regions, coronal mass
ejections, polarity inversion lines (PIL)). Our experimental results
show that our local outlier detection approach can effectively
discover the erroneous reports from the reporting module and
abnormal phenomenon in various spatio-temporal trajectory
datasets.

I. INTRODUCTION

As the volume of mainstream location-based services and
surveillance equipment increases, unprecedented amounts of
spatio-temporal trajectory data became available for large-
scale analytics tasks. A spatio-temporal trajectory [1] can be
defined as the moving object changing its spatial location over
time. This complex, often semi-structured, data type has a
lot to offer for many data mining tasks in various scientific
domains. The presence of outliers, which are often noisy
data points caused by measurement errors or data collection
practices, makes these spatio-temporal data mining tasks chal-
lenging as they introduce discordance into the data. In this
regard, two main reasons emerge so as to identify outliers:
Filtering and potentially correcting outliers can improve the
performance of predictive modeling by improving data accu-
racy, and identifying rarely occurring, often neglected, data
instances can lead to the discoveries and be the main goal.

Spatio-temporal outliers can be broadly classified into three
categories [2]: (1) outlying spatio-temporal data points which
are significantly different than others in the same neighbor-
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hood (2) spatio-temporal raster outliers representing regional
anomalies and (3) trajectory outliers which represent anoma-
lous local or global movements. The first class often represents
the significant divergences of location-based characteristics for
spatio-temporal data points [3]. The second category of out-
liers are concerned with group anomalies from a sequence of
tracked spatial raster data [4], [5]. Third category is interested
in finding either local [6] or global [7] spatial and temporal
characteristics that are significantly different from the majority
of the dataset. Our work is in the intersection of the second
and the third categories, in that we find local trajectory outliers
from spatio-temporal trajectory datasets. We consider the local
outliers to be trajectory segments which have significantly
different spatial and temporal characteristics than the majority
of trajectory segments.

To find the local outliers, we introduce a generic framework
that targets the evolving spatial and non-spatial features of
trajectories and segments. There are three phases. In the
first phase, we apply a temporal partitioning strategy and
divide the raw trajectory into several trajectory segments while
maintaining spatial or temporal information from the raw
trajectory. For each trajectory segment, we generate spatial
and non-spatial summary features (e.g., distance displacement,
velocity, acceleration). Secondly, we cluster these tabulated
summary features of trajectory segments and generate the
template trajectory segments from the centroids of clusters. In
the final phase, we compute a relative outlier score for each
segment, which is the weighted sum of the distance between
template trajectory segments and query trajectory segments.
In effect, we determine the outlying trajectory segments,
i.e., local outliers, with an empirical threshold based on our
anomaly score distributions.

As we have mentioned earlier, spatio-temporal trajectory
outlier detection algorithms have broad application areas from
fraud detection to traffic outliers or from epidemiology to
surveillance [8]. It is also common to see the outlier detection
algorithms applied to scientific domains for rare event detec-
tion or detecting noise. Our research group is heavily invested
in solar astroinformatics, which has rich trajectory datasets
with different types of spatial extents —vectors or raster [9]-
[11] (See Fig. la for the evolving coronal mass ejection in
the sky-plane and Fig. 1b for polarity inversion line rasters
from active regions). The datasets, while rich in information,
is often curated by human investigators and derived from
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or poorly managed with faulty processes. This eventually
reduces the data quality and deteriorates the effectiveness of
data mining applications. Our ultimate goal is to create a
set of automated processes, which can identify anomalous
solar event trajectories on-the-fly, as they are detected, while
potentially helping us detect and predict rarely occurring, but
highly impactful extreme space weather events.

To demonstrate the effectiveness of our outlier detection
method, we conducted three case studies on three real-life
datasets represented by different spatial data types (i.e., vector
data and raster data) from solar astronomy domain. The three
datasets are solar active region, coronal mass ejection (CME)
trajectory datasets and polarity inversion line (PIL) evolution
datasets. All of them are pivotal for space weather forecasting,
which can have serious implications for human life [12].

The rest of the paper is organized as follows. In Section. II,
we discuss related work on trajectory outlier detection. In
Section III, we formulate the local trajectory outlier problem
and present our detection methodology. In Section IV, we
conduct three case studies on real-life datasets, to demonstrate
the effectiveness of our work. In Section V, we provide our
concluding remarks and possible future work.

II. RELATED WORK

There are a number of spatio-temporal outlier detection
approaches presented in the literature in the last two decades.
See [2], [8], [15] and references therein for recent studies. Our
work is closely related to finding outliers from a sequence of
spatial objects, where the time-evolving spatial and non-spatial
characteristics are evaluated.

Point-based spatio-temporal outlier detection techniques of-
ten work by finding the clusters and determining those points
that do not conform to the discovered clusters, preferably
with spatial and spatio-temporal neighborhood constraints [3],
[16]. Global trajectory outlier detection methods are somewhat
similar in that they compute pairwise similarities among
trajectories and identify trajectories that are spatially distant
from the others. A region-based approach is presented by Bu
et al. [7] which finds trajectories that are located in distant
spatial regions when compared to the rest of the trajectories.

Moreover, Lee et al. proposed a partition and detect frame-
work by using the hybrid of distance-based and density-based
approach [6] where the raw trajectory is partitioned by a two-
level partition strategy with a minimum description length
(MDL) principle. It identifies the outlying sub-trajectories
based on their densities. This approach computationally ex-
pensive which may not be suitable for large-scale datasets.
Ge et al. [17] proposed an outlier detection method, called
TOP-EYE, which continuously calculates the outlying score
of the trajectory. This method utilizes the grid-based partition
strategy and detects the outlying trajectory by calculating the
similarity score between the summarized trajectory and query
trajectory. Mao et al. introduced a two-phase grouping-based
trajectory fragment detection method for sub-trajectories and
evolutionary objects [18]. Shen et al., on the other hand,
predefined seven anomalous event assumptions for vehicle
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Fig. 1: (a) Evolution of a large CME trajectory. The CME originated
from a X9.4 solar flare (30° off the west limb of the Sun) on 6
November 1997. The figures are composite images as seen by the
LASCO/SOHO [13]. Courtesy of SOHO/LASCO consortium. (b)
Evolution of PIL trajectory for HARP AR 4698 (from [14]. The
red lines are the PILs we detected from HARP pipeline [10] from
21-Oct-2014 to 23-Oct-2014.

trajectories [19]. Then, their method calculates a suspicion
score which considers circling behavior from each trajectory
and finally discovers globally outlying trajectories by ranking
and getting top-N suspicious events.

Our local outlier detection method provides a more generic
framework, which uses templates from clustering-derived tra-
jectory features and computes dissimilarities with a novel
abnormality score. Similar to the hybrid distance-density based
framework in [6], our method partitions the trajectories, but
also allows for any user-provided spatial characteristics to be
able to handle multi-type trajectories. Based on the dissimi-
larity to templates, we calculate an abnormal score, which is
similar to outlying scores in [17]; however, instead of creating
a continuous outlying score from the entire trajectory, we
calculate the outlying behavior for partitions of the trajectories.
Both [18] and our method make use of descriptive features.
However, we use a temporal partitioning strategy and different
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grouping methodology. In comparison with [19], we employ a
data-driven approach to explore the pattern from the trajectory
dataset and focus on identifying local outliers.

Our method is novel with extensibility potential and hence
fills a niche for local outlier detection from trajectory datasets,
especially for those with extended geometric and raster-based
spatial counterparts.
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Fig. 2: Overall workflow of the local trajectory outlier detection
method. Our method starts with partitioning and feature extraction,
then determines the local outliers based on cluster centers serving
as templates. The trajectory segments are ranked using the abnormal
score, which effectively checks the dissimilarity.

III. LOCAL TRAJECTORY OUTLIER DETECTION
A. Problem Formulation

An outlier is an anomalous data instance which is signifi-
cantly different from the majority of the instances in the same
dataset. The local outliers in spatio-temporal trajectory datasets
are similar, where a trajectory segment is often considered
an outlier if there is significant local or global differences
with most other trajectory segments in terms of a dissimilarity
measure.

A spatio-temporal trajectory is defined as a sequence of
chronologically ordered time-object pairs and denoted by
TR = {{t1,s01), {t2,502),...,{tj,s0;)} where t; < to <

< tj, and t; represents a timestamp or time interval,
so; represent d-dimensional spatial objects [20]. A trajectory
segment, denoted as ts; is a subset of trajectory segment
containing one or more time-object {¢;, so;) pairs.

Formally, given a dataset of spatio-temporal trajectories
TRs and N trajectory segments derived from these trajecto-
ries, the goal of our local trajectory outlier detection algorithm
is to find outlying trajectory segments, which are significantly
different from the rest of the trajectory segments in the dataset
based on a set of spatio-temporal feature functions F
{f1, f2, ..., fx}. Each f; € F is a user-defined feature function
that describes and encodes the spatio-temporal information in
a ts. We determine the dissimilarity using abnormality score
(AB) calculated using the template trajectory segments and
user-defined functions in F. The template trajectory segments,
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Fig. 3: The graphical illustration of temporal partitioning methods for
the trajectory object TR = (t1, s01), {t2, $02), ...... ,{tg, s09) (a) For
TR with an equi-length sampling interval AT": we interpolate the ap-
proximate so (see the dashed enclosure) during [¢s5, to] and partition
the T'R into segments spanning 2 AT interval, as {¢s1,ts2, ..., ts4}
and each s contains three (t;, so; ) pairs. (b) For T'R with a non-
periodic sampling interval: we set the minimum number of objects
in each time bin is minp = 3 and determine partition time bin
width as M based on minp. Next, we partition the T'R
into fo-end={1-st97t Jenoth intervals ensuring there are at least minp
(= 3) object pairs in each segment — ts

which are computed using the centroids of the clustering, rep-
resent the summary characteristics of the trajectory segments
in the dataset.

In Fig. 2, a schematic diagram illustrates the workflow
of our local trajectory outlier detection method. First, each
TR object is represented as the k trajectory segments
{ts1,ts2,...,ts5} by using temporal partition approach and
trajectory segments are converted to a tabulated form using the
spatio-temporal feature functions in F. Second, we generate
templates of ¢s by applying a clustering schema to the sum-
mary features of trajectory segments. In the final phase, the
outlying trajectory segments, denoted as ots, are determined
by an abnormal score threshold based on the overall distribu-
tion. We will discuss each phase in the following subsection.

B. Method

1) Temporal Partitioning and Feature Extraction: It is
often preferable to partition the raw trajectory which has
consistent, periodic sampling interval into k trajectory seg-
ments with an equi-length time interval. However, in the real-
life applications, the sampling interval, denoted as AT, can
be inconsistent and non-periodic due to the limitations of
recording equipment or the preferences of data collectors.
Both periodic and non-periodic sampling interval scenarios
need to be taken into account when implementing the partition
strategy. Algorithm 1 shows the partitioning algorithm in our
framework.
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Algorithm 1 Temporal partitioning algorithm

Input: Trajectory — TR = {(t1,s01),...,{t;,s0;)}, k, n,
minp

Output: Trajectory as a set of segments —

TR = {ts1,...,ts}

1: if TR has genodlc sampling then

5 if tJ en t] start = ] then

3 Estlmate TR spatial location by using
4 linear interpolation

5: end if
6
7

8

9

time_bin_width = AT *n
Partition T'R at time_bin_width
: return TR = {ts1,tSa,...,ts;}
. else if TR has non-periodic sampling then

10: for i =k to 1 do
tj.end—t;.start

11: time_bin_width =

12: Partition T'R at time_bin_width

13: if min(number of {t;,so;) in each
14: time bin) > minp then

15: return TR = {ts1,ts0,...,tsk}
16: end if

17: end for

18: end if

For the T'R with periodic sampling interval, we first apply
linear interpolation to fill the missing values. We consider
the sampling interval AT as the unit time bin width and
use n * AT (i.e., n is the scaling factor determined by the
lifespan of the trajectory segment) as the partition time bin
width. We also apply linear spatial interpolation to estimate
the approximate spatial location for a trajectory whose time
interval is not consistent or missing locations. Fig. 3a shows
an example partitioning process for a periodically sampled tra-
jectory (sampling interval is AT"). Note here that partitioning
schema accounts for missing spatial objects records, which is
often the case for trajectory datasets, using a spatio-temporal
interpolation procedure (see sog, so7, and sog are not recorded
in Fig. 3a).

For the T'R with non-periodic sampling intervals, we use
the lifespan of trajectory divided into £k (i.e., k is a variable
depend on temporal partition algorithm) trajectory segments
to find a near-optimal partition time bin width and ensure
that there exists sufficient number of time-object pairs in
the trajectory segment. The minimum number of time-object
pairs is denoted as minp and is given as a parameter to
temporal partitioning procedure. This procedure is applied
to each trajectory separately. Fig. 3b shows an example of
partition process illustration for an arbitrary trajectory sampled
at nonuniform time intervals.

In the end, each T'R in the dataset is partitioned into
a collection of successive trajectory segments and denoted
by TR = {ts1,tsq,...,ts;} and each segment, ¢sy, con-
tains multiple time-object pairs, {t;, so;), denoted by ts; =
{{tim, 80m), ..., {tn,s0ny}. For each trajectory segment, ts;,
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we create a feature vector a; = {a1,as, ....a,}, where each
descriptive feature a, is found by using the feature function
— fr(ts;). This is to extract application-dependent descriptive
features using the feature functions in F. These may be spatial
or non-spatial features that reflect the spatial, temporal, or
spatio-temporal characteristics of the trajectory segment during
the time period from start time ¢, to end time ¢,,. These can
include, but are not limited to total distance covered, average
velocity, average acceleration, or total area of the binary spatial
raster. The vectors of spatial and non-spatial features (a;)
representing the characteristic of ¢s; will be used for clustering
trajectory segments and creating templates, which we will
explain in the next phase.

2) Trajectory Segments Clustering and Template Genera-
tion : In this phase, we will generate template trajectory
segments by applying a clustering algorithm to the extracted
features from segments. While, any clustering algorithm can
be used for this task, we will use the distance-based K-
means++ clustering algorithm. K-means [21] is a widely used
unsupervised learning model that aims to partition the dataset
into K non-overlapping groups. It assigns the observation to
the closest cluster centroid based on a distance measure and
minimizes the inter-cluster variance. Each cluster centroid is
the mean of observations in each cluster. K-means++ [22] is an
extension of K-means with an improved centroid initialization
strategy. K-means++ initializes the first centroid from the
dataset and selects the remaining centroids by calculating
the probabilities with respect to the squared distances from
the existing centroid(s). We apply the K-means++ clustering
to the feature vectors of all trajectory segments extracted
from the first phase. Each cluster is designed to represent the
trajectory segments with similar movement characteristics and
the cluster centroid reflects the mean feature vectors of the
corresponding trajectory segments. We use the centroid as the
template feature, which essentially is the femplate trajectory
segment.

3) Dissimilarity Comparison: To quantify the similarity
among the femplate and query trajectory segments, we intro-
duce the abnormal score (AB score) which is the weighted
sum of the Euclidean distances between the query trajectory
segments ts, and each femplate trajectory segment, i.e., the
centroid c;.

K
AB, = Z w; * dist(tsq, cj), (1)
j=1
where K is the number of clusters we select from the second
phase, and w; is calculated as the ratio between the number
of trajectory segments in each cluster and the total number of
trajectory segments in the datasets.

Number of trajectory segments in c;

w; = 2
7 Total number of trajectory segments @

The AB score indicates how far the query trajectory segment
tsq is to the set of template trajectory segments w.r.t. sum-
mary features. The templates outline the movement trends or
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temporal characteristics for segments in each cluster using the
summary features. The lower AB score shows that ts, is closer
to sufficiently large number of the trajectory segments. While
the higher AB score shows that the summary features of the
query trajectory segment ts, largely deviates from the majority
of the segments in the dataset. In the case of significantly
high AB scores, ts, is more likely to be an outlying trajectory
segment ots, which requires us to set a threshold.

True if AB; > abyy,
ots =
False

if AB; < abyy,
We determine this AB score threshold of outlying trajectory
segments again empirically as it is mostly domain-dependent.
While a top-k approach or top-R% approach can be used, we
chose to keep it as a threshold for simplicity.

3)

IV. CASE STUDIES AND EVALUATION

In this section, we conduct three case studies on three real-
life datasets from solar astronomy domain: (1) the solar active
region trajectory dataset from NOAA [9], (2) Coronal Mass
Ejection (CME) events trajectory dataset from NASA [11], and
(3) Polarity Inversion Line (PIL) evolution trajectory dataset
detected from HMI Active Region Patches (HARP) [10]. To
understand the impact of number of clusters, we also analyzed
the detected outliers under different clustering hyperparame-
ters in Section IV-B. Our case studies are performed primarily
to demonstrate that our outlier detection method can efficiently
work on both vector and raster spatial data types and show its
effectiveness under various clustering settings.

A. Case Studies

1) Solar Active Region Trajectory: The solar active region
trajectory dataset is retrieved from [9]. In this dataset, heli-
ographic longitudes and latitudes of the solar active region
centroids are reported daily along with additional non-spatial
metadata. The solar active regions are collected between 1996
to 2019 covering approximately two solar cycles. There are
4,795 trajectories with at least two daily observations and a
total of 45,319 time-object pairs. The time-object pairs of solar
active regions are reported daily (AT = 24 hours). Due to this
relative low-frequency in reporting, we set n=1 as the input
parameter in the temporal partition algorithm (meaning only
one time interval with start and end geometries will constitute
a segment). Each trajectory is partitioned into multiple ts
and each ts contains two time-object pairs. In the end, we
have 40,758 trajectory segments after initial preprocessing,
interpolation, and temporal partition. For each s, we generate
four normalized spatial vector-based features, namely, longi-
tudinal displacement, latitudinal displacement, displacement
vector magnitude, and displacement vector direction, shown
in Table I (AR features). We chose K = 3 as the number of
the clusters. Based on the given features and the empirical
K value, we clustered the trajectory segments into three
clusters. The summary statistics for each cluster is shown in
Table II. A strong majority (~99.5%) of the solar active region
trajectory segments are clustered into Cluster 0, which has
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an average longitudinal displacement of +13.33° and these
segments barely change their latitudes and direction. This is
the expected daily movement of solar active regions, caused by
the solar rotation (covering 180° in 13-14 days). The segments
in Cluster 1 and Cluster 2 represent the minority (both totalling
~0.5%), whose spatio-temporal features are vastly different
from the ones in Cluster O (e.g. dramatic changes (over +100°)
in vector direction). Note here that while Cluster 1 and 2
represent rather anomalous movement behaviors, the aim of
the clustering step is not to find outlier clusters, and outlying
trajectory segments are found by the next step using the AB
score.

In the dissimilarity comparison phase, we use the AB score
discussed in Sec. III-B3 and obtain the AB distribution of
segments, shown in Fig. 4a. We find that over 99% of the AB
scores are below 0.1, and we empirically set the threshold as
0.1 and get 354 outlying segments. In Fig. 4b, the light blue
movement vectors (in the background) represent the normal ts,
while purple, yellow, and green vectors represent the ots that
come from corresponding clusters (0, 1, and 2 respectively).
We can see that the magnitudes of normal ¢s, which are essen-
tially uniform and move from the east to the west-limb (east-
west direction is reversed for solar coordinates) with slight
direction changes (generally < +2°). Among the ots, we can
see that the majority moving direction of ots from Cluster 0
is the same with normal ts, but with anomalous magnitudes.
The outliers from Cluster 1 (yellow) and Cluster 2 (green)
shows the anomalous behavior in both moving directions and
magnitudes; i.e., the opposite direction to solar rotation and
unexpected magnitudes compared to the normal ts. In our
previous work [23], we showed that there are around 60
anomalous NOAA active region trajectories (this was a global
outlier detection) between 2010 and 2018, which are caused by
the erroneous location reporting. The detected outliers in this
case study include all of the previous reporting errors, which
verifies the results of our outlier detection methodology.

2) Coronal Mass Ejection (CME) Trajectory: We obtained
the CME movement dataset from [11] between January 1996
to March 2019, and use the height and angle as spatial
attributes in sky-plane coordinate system. The angle is the
position angle (in degrees) with respect to Sun’s center from
observer’s field of view, while the height represents the dis-
tance between the Sun’s corona and the CME in Rg,, (the
radius of the Sun — approx. 695,700 kms). We disregarded
the faint CMEs with less than ten records. In the end, we
have 16,509 CME trajectories and 372,048 time-object pairs
records in this case study. The sampling interval of CME
trajectories is non-uniform and vastly irregular (from seconds
to several hours mostly due to the cadence of LASCO instru-
ment onboard SOHO spacecraft [24]). To this end, we use the
temporal partition algorithm for non-periodic sampling. We are
interested in three spatial features: average velocity, average
acceleration, and cumulative angle displacement, described in
Table I (features marked as CME). Hence, in the partitioning
phase, we set input parameters k¥ = 15 and minp = 3 to
ensure the minimum number of time-object records in each
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TABLE I: Spatial and temporal features used in the case studies. Dataset column shows the experiment (AR for solar active regions, CME

for coronal mass ejections and PIL for polarity inversion line experiments)

Dataset Feature Formula
AR Longitudinal Displacement ts;. Tend — tSi-Tstart
AR Latitudinal Displacement tSi-Yend — tSi-Ystart
AR Displacement Vector Magnitude [z
. . . 1 t3i~yend - tsi-ystart
AR Displacement Vector Direction tan
T e }fts%mendt* t}']/si-'mzttart
CME Average Velocity (w.r.t. height) Si- ez'g end — 053 'ezg start
tsi.timeenqg — tsi.timestart
d? .height — .height
CME Average Acceleration (w.r.t. height) (50m +1-heig so,; cight)
. d(tm+1 — tm)
H o __ o
CME Time-normalized Cumulative Zim=1 n1}11(Aa%360 L A2 7360 )
Angle Displacement tsi.timeepng — ts;.timestart
where Aav = 50y, +1.angle — som.angle
PIL Size Change tS;.S1z€enq — tS;.Siz€start
PIL Change in Region of Polarity tsi. Area(RoPlcna) - tsi.Area(RoPIstart)
Inversion to Total Area Ratio ts;. Area(Totaleng)  ts;.Area(Totalstart)
PIL Field Flux Change ts; . fluxenqg — ts;. fluTstart

TABLE II: The summary statistics for three solar active region trajectory segment clusters. The count is the number of trajectory segments
in each cluster, mean and std is the average value and the standard deviation of four spatial features in the cluster.

Cluster 0 Lon. Lat. Disp. Vector | Disp. Vector
count=40, 586 | displacement (deg) | displacement (deg) | Magnitude Direction
mean 13.33 0.01 13.38 0.06
std 1.95 1.22 2.01 4.75
Cluster 1 Lon. Lat. Disp. Vector | Disp. Vector
count=140 displacement (deg) | displacement (deg) | Magnitude Direction
mean -3.72 -0.82 3.89 -168.49
std 13.39 4.16 14.00 8.56
Cluster 2 Lon. Lat. Disp. Vector | Disp. Vector
count=32 displacement (deg) | displacement (deg) | Magnitude Direction
mean -16.59 10.19 25.22 156.13
std 28.81 20.48 31.38 34.00
100
AB_Score < 0.1
s AB_Score >= 0.1 Cluster 0
0.741 23 AB_Score >= 0.1 Cluster 1
s AB_Score >= 0.1 Cluster 2
0.61 20
g 0.49 g =
n 0.494 o
< [9]
a =
2o g
E % -25
& 0.25 | -
=50
0.124
=75
0.0 — ‘ : ‘ ; ; ; ‘
0.00 005 010 015 020 025 030 035 040 g = = = 53 = P 2 To6
Abnormal Score Cluster = 3 Longitude (degree)
(@ (b)

Fig. 4: (a) The AB distribution active region trajectory segments and (b) 2D scatter plot of movement vectors (each showing daily movement)
for normal ¢s (in blue) and outliers (in purple, yellow and green).
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Fig. 5: (a) The AB distribution for CME trajectory segments and (b) 3D scatter of spatial features of normal t¢s (in blue) and ots instances

(in purple, orange and green) from each cluster.

(a)
Fig. 6: The movement characteristics of (a) 55 normal ts, (b) 6 outlying trajectory segments (ots) of Cluster 0, (c) 28 ots of Cluster 1, (d)
22 ots of Cluster 2.

ts is three. After applying trajectory segmentation procedure,
we generate 55,976 trajectory segments with three summary
features (features are then range normalized). We choose
K = 3 for K-means clustering and create three clusters.
About ~72% of segments belong to Cluster 0, while ~23%
and ~5% of them belong to Clusters 1 and 2, respectively.
In this case, based on the distribution of AB scores shown
in Fig. 5a, we select AB score threshold (ab;;,) as 0.076
for outlying segments (ots). Fig. 5b shows the distribution
of three summary features of normal ¢s and ots from each
cluster. It is worth to notice that compared to the summary
features of normal t¢s, the green ots from Cluster O shows very
slow CMEs (low-velocity), the orange ones from Cluster 1
represents very fast CMEs, and the purple ots with large angle
change is from Cluster 2. To better illustrate the movement
characteristics among the normal ¢s and ots in CME datasets,
we create the height-angle plots of ts on the polar coordinate
plane and corresponding summary statistics are shown in
Fig. 6. We randomly choose 0.1% percent of normal ts for
improving the visibility and 10% of ots from each cluster to
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demonstrate their outlying spatio-temporal characteristics. We
can see that, ots in the Fig. 6b represents the slower CME
segments compared to normal ¢s in Fig. 6a. Similarly, the
faster ¢s is identified as the ots in the Cluster 1 in Fig. 6c. In
addition, ¢s in Fig. 6d shows the zigzag movement patterns
which indicates an anomalous movement (or more probably
reporting error) for a CME of ts compared to normal ts.

3) Polarity Inversion Line (PIL) Trajectory: The third case
study is on PIL evolution dataset. We extracted the metadata
of detected PILs from magnetogram patches [10] in year 2012
with 3hr cadence (AT = 3h). The spatial extent of this
trajectory dataset is in raster format and we generated four
basic attributes which we used for creating our descriptive
features. These are (1) the size of PILs, which represent
the count of cylindrical equal area pixels for PILs (a pixel
roughly covers approximate 131,400 km? area), (2) the region
of polarity inversion (RoPI) which are the extended regions
where the magnetic field strength is inverted; (3) the area of
active region patch as calculated by its bounding box, and (4)
the unsigned flux around the region of polarity inversion. We
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