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Abstract—Outlier detection has become one of the core tasks
in spatio-temporal data mining. It plays an essential role in
data quality improvement for the machine learning models and
recognizing the anomalous patterns, which may remarkably
deviate from expected patterns among the trajectory datasets. In
this work, we propose a clustering-based technique to detect local
outliers in trajectory datasets by utilizing spatial and temporal
attributes of moving objects. This local outlier detection involves
three phases. In the first phase, we apply a temporal partition
procedure to divide the raw trajectory into multiple trajectory
segments and extract trajectory features from spatial and tem-
poral attributes for each trajectory segment. Then, we generate
template features of trajectory segments by applying a clustering
schema in the second phase. Finally, we use the abnormal score
– a novel dissimilarity measure, which quantifies the disparity
among the query and template trajectory segments in terms
of trajectory features and hence determines the local outliers
based on the distribution of abnormal score. To demonstrate the
effectiveness of our method, we conduct three case studies on
the real-life spatio-temporal trajectory datasets from the solar
astroinformatics domain (i.e., solar active regions, coronal mass
ejections, polarity inversion lines (PIL)). Our experimental results
show that our local outlier detection approach can effectively
discover the erroneous reports from the reporting module and
abnormal phenomenon in various spatio-temporal trajectory
datasets.

I. INTRODUCTION

hood (2) spatio-temporal raster outliers representing regional

anomalies and (3) trajectory outliers which represent anoma-

lous local or global movements. The first class often represents

the significant divergences of location-based characteristics for

spatio-temporal data points [3]. The second category of out-

liers are concerned with group anomalies from a sequence of

tracked spatial raster data [4], [5]. Third category is interested

in finding either local [6] or global [7] spatial and temporal

characteristics that are significantly different from the majority

of the dataset. Our work is in the intersection of the second

and the third categories, in that we find local trajectory outliers

from spatio-temporal trajectory datasets. We consider the local

outliers to be trajectory segments which have significantly

different spatial and temporal characteristics than the majority

of trajectory segments.

To find the local outliers, we introduce a generic framework

that targets the evolving spatial and non-spatial features of

trajectories and segments. There are three phases. In the

first phase, we apply a temporal partitioning strategy and

divide the raw trajectory into several trajectory segments while

maintaining spatial or temporal information from the raw

trajectory. For each trajectory segment, we generate spatial

and non-spatial summary features (e.g., distance displacement,

velocity, acceleration). Secondly, we cluster these tabulated

summary features of trajectory segments and generate the

template trajectory segments from the centroids of clusters. In

the final phase, we compute a relative outlier score for each

segment, which is the weighted sum of the distance between

template trajectory segments and query trajectory segments.

In effect, we determine the outlying trajectory segments,

i.e., local outliers, with an empirical threshold based on our

anomaly score distributions.

As we have mentioned earlier, spatio-temporal trajectory

outlier detection algorithms have broad application areas from

fraud detection to traffic outliers or from epidemiology to

surveillance [8]. It is also common to see the outlier detection

algorithms applied to scientific domains for rare event detec-

tion or detecting noise. Our research group is heavily invested

in solar astroinformatics, which has rich trajectory datasets

with different types of spatial extents –vectors or raster [9]–

[11] (See Fig. 1a for the evolving coronal mass ejection in

the sky-plane and Fig. 1b for polarity inversion line rasters

from active regions). The datasets, while rich in information,

is often curated by human investigators and derived from

As the volume of mainstream location-based services and

surveillance equipment increases, unprecedented amounts of

spatio-temporal trajectory data became available for large-

scale analytics tasks. A spatio-temporal trajectory [1] can be

defined as the moving object changing its spatial location over

time. This complex, often semi-structured, data type has a

lot to offer for many data mining tasks in various scientific

domains. The presence of outliers, which are often noisy

data points caused by measurement errors or data collection

practices, makes these spatio-temporal data mining tasks chal-

lenging as they introduce discordance into the data. In this

regard, two main reasons emerge so as to identify outliers:

Filtering and potentially correcting outliers can improve the

performance of predictive modeling by improving data accu-

racy, and identifying rarely occurring, often neglected, data

instances can lead to the discoveries and be the main goal.

Spatio-temporal outliers can be broadly classified into three

categories [2]: (1) outlying spatio-temporal data points which

are significantly different than others in the same neighbor-
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or poorly managed with faulty processes. This eventually

reduces the data quality and deteriorates the effectiveness of

data mining applications. Our ultimate goal is to create a

set of automated processes, which can identify anomalous

solar event trajectories on-the-fly, as they are detected, while

potentially helping us detect and predict rarely occurring, but

highly impactful extreme space weather events.

To demonstrate the effectiveness of our outlier detection

method, we conducted three case studies on three real-life

datasets represented by different spatial data types (i.e., vector

data and raster data) from solar astronomy domain. The three

datasets are solar active region, coronal mass ejection (CME)

trajectory datasets and polarity inversion line (PIL) evolution

datasets. All of them are pivotal for space weather forecasting,

which can have serious implications for human life [12].

The rest of the paper is organized as follows. In Section. II,

we discuss related work on trajectory outlier detection. In

Section III, we formulate the local trajectory outlier problem

and present our detection methodology. In Section IV, we

conduct three case studies on real-life datasets, to demonstrate

the effectiveness of our work. In Section V, we provide our

concluding remarks and possible future work.

II. RELATED WORK

There are a number of spatio-temporal outlier detection

approaches presented in the literature in the last two decades.

See [2], [8], [15] and references therein for recent studies. Our

work is closely related to finding outliers from a sequence of

spatial objects, where the time-evolving spatial and non-spatial

characteristics are evaluated.

Point-based spatio-temporal outlier detection techniques of-

ten work by finding the clusters and determining those points

that do not conform to the discovered clusters, preferably

with spatial and spatio-temporal neighborhood constraints [3],

[16]. Global trajectory outlier detection methods are somewhat

similar in that they compute pairwise similarities among

trajectories and identify trajectories that are spatially distant

from the others. A region-based approach is presented by Bu

et al. [7] which finds trajectories that are located in distant

spatial regions when compared to the rest of the trajectories.

Moreover, Lee et al. proposed a partition and detect frame-

work by using the hybrid of distance-based and density-based

approach [6] where the raw trajectory is partitioned by a two-

level partition strategy with a minimum description length

(MDL) principle. It identifies the outlying sub-trajectories

based on their densities. This approach computationally ex-

pensive which may not be suitable for large-scale datasets.

Ge et al. [17] proposed an outlier detection method, called

TOP-EYE, which continuously calculates the outlying score

of the trajectory. This method utilizes the grid-based partition

strategy and detects the outlying trajectory by calculating the

similarity score between the summarized trajectory and query

trajectory. Mao et al. introduced a two-phase grouping-based

trajectory fragment detection method for sub-trajectories and

evolutionary objects [18]. Shen et al., on the other hand,

predefined seven anomalous event assumptions for vehicle

(a)

(b)

Fig. 1: (a) Evolution of a large CME trajectory. The CME originated
from a X9.4 solar flare (30˝ off the west limb of the Sun) on 6
November 1997. The figures are composite images as seen by the
LASCO/SOHO [13]. Courtesy of SOHO/LASCO consortium. (b)
Evolution of PIL trajectory for HARP AR 4698 (from [14]. The
red lines are the PILs we detected from HARP pipeline [10] from
21-Oct-2014 to 23-Oct-2014.

trajectories [19]. Then, their method calculates a suspicion

score which considers circling behavior from each trajectory

and finally discovers globally outlying trajectories by ranking

and getting top-N suspicious events.

Our local outlier detection method provides a more generic

framework, which uses templates from clustering-derived tra-

jectory features and computes dissimilarities with a novel

abnormality score. Similar to the hybrid distance-density based

framework in [6], our method partitions the trajectories, but

also allows for any user-provided spatial characteristics to be

able to handle multi-type trajectories. Based on the dissimi-

larity to templates, we calculate an abnormal score, which is

similar to outlying scores in [17]; however, instead of creating

a continuous outlying score from the entire trajectory, we

calculate the outlying behavior for partitions of the trajectories.

Both [18] and our method make use of descriptive features.

However, we use a temporal partitioning strategy and different
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grouping methodology. In comparison with [19], we employ a

data-driven approach to explore the pattern from the trajectory

dataset and focus on identifying local outliers.

Our method is novel with extensibility potential and hence

fills a niche for local outlier detection from trajectory datasets,

especially for those with extended geometric and raster-based

spatial counterparts.

Fig. 2: Overall workflow of the local trajectory outlier detection
method. Our method starts with partitioning and feature extraction,
then determines the local outliers based on cluster centers serving
as templates. The trajectory segments are ranked using the abnormal
score, which effectively checks the dissimilarity.

III. LOCAL TRAJECTORY OUTLIER DETECTION

A. Problem Formulation

An outlier is an anomalous data instance which is signifi-

cantly different from the majority of the instances in the same

dataset. The local outliers in spatio-temporal trajectory datasets

are similar, where a trajectory segment is often considered

an outlier if there is significant local or global differences

with most other trajectory segments in terms of a dissimilarity

measure.

A spatio-temporal trajectory is defined as a sequence of

chronologically ordered time-object pairs and denoted by

TR “ txt1, so1y, xt2, so2y, . . . , xtj , sojyu where t1 ă t2 ă
¨ ¨ ¨ ă tj , and tj represents a timestamp or time interval,

soj represent d-dimensional spatial objects [20]. A trajectory

segment, denoted as tsi is a subset of trajectory segment

containing one or more time-object xtj , sojy pairs.

Formally, given a dataset of spatio-temporal trajectories

TRs and N trajectory segments derived from these trajecto-

ries, the goal of our local trajectory outlier detection algorithm

is to find outlying trajectory segments, which are significantly

different from the rest of the trajectory segments in the dataset

based on a set of spatio-temporal feature functions F “
tf1, f2, ..., fku. Each fi P F is a user-defined feature function

that describes and encodes the spatio-temporal information in

a ts. We determine the dissimilarity using abnormality score

(AB) calculated using the template trajectory segments and

user-defined functions in F . The template trajectory segments,

(a)

(b)

Fig. 3: The graphical illustration of temporal partitioning methods for
the trajectory object TR “ xt1, so1y, xt2, so2y, ......, xt9, so9y (a) For
TR with an equi-length sampling interval ΔT : we interpolate the ap-
proximate so (see the dashed enclosure) during rt5, t9s and partition
the TR into segments spanning 2˚ΔT interval, as tts1, ts2, ..., ts4u
and each tsk contains three xtj , sojy pairs. (b) For TR with a non-
periodic sampling interval: we set the minimum number of objects
in each time bin is minp “ 3 and determine partition time bin
width as t9.end´t1.start

3
based on minp. Next, we partition the TR

into t9.end´t1.start
3

-length intervals ensuring there are at least minp
(“ 3) object pairs in each segment – tsk

which are computed using the centroids of the clustering, rep-

resent the summary characteristics of the trajectory segments

in the dataset.

In Fig. 2, a schematic diagram illustrates the workflow

of our local trajectory outlier detection method. First, each

TR object is represented as the k trajectory segments

tts1, ts2, . . . , tsku by using temporal partition approach and

trajectory segments are converted to a tabulated form using the

spatio-temporal feature functions in F . Second, we generate

templates of ts by applying a clustering schema to the sum-

mary features of trajectory segments. In the final phase, the

outlying trajectory segments, denoted as ots, are determined

by an abnormal score threshold based on the overall distribu-

tion. We will discuss each phase in the following subsection.

B. Method

1) Temporal Partitioning and Feature Extraction: It is

often preferable to partition the raw trajectory which has

consistent, periodic sampling interval into k trajectory seg-

ments with an equi-length time interval. However, in the real-

life applications, the sampling interval, denoted as ΔT , can

be inconsistent and non-periodic due to the limitations of

recording equipment or the preferences of data collectors.

Both periodic and non-periodic sampling interval scenarios

need to be taken into account when implementing the partition

strategy. Algorithm 1 shows the partitioning algorithm in our

framework.
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Algorithm 1 Temporal partitioning algorithm

Input: Trajectory – TR “ txt1, so1y, . . . , xtj , sojyu, k, n,

minp
Output: Trajectory as a set of segments –

TR “ tts1, . . . , tsku
1: if TR has periodic sampling then
2: if tj .end´tj .start

ΔT ‰ j then
3: Estimate TR spatial location by using

4: linear interpolation

5: end if
6: time bin width “ ΔT ˚ n
7: Partition TR at time bin width
8: return TR “ tts1, ts2, . . . , tsku
9: else if TR has non-periodic sampling then

10: for i “ k to 1 do
11: time bin width “ tj .end´tj .start

k
12: Partition TR at time bin width
13: if minpnumber of xtj , sojy in each

14: time binq ě minp then
15: return TR “ tts1, ts2, . . . , tsku
16: end if
17: end for
18: end if

For the TR with periodic sampling interval, we first apply

linear interpolation to fill the missing values. We consider

the sampling interval ΔT as the unit time bin width and

use n ˚ ΔT (i.e., n is the scaling factor determined by the

lifespan of the trajectory segment) as the partition time bin

width. We also apply linear spatial interpolation to estimate

the approximate spatial location for a trajectory whose time

interval is not consistent or missing locations. Fig. 3a shows

an example partitioning process for a periodically sampled tra-

jectory (sampling interval is ΔT ). Note here that partitioning

schema accounts for missing spatial objects records, which is

often the case for trajectory datasets, using a spatio-temporal

interpolation procedure (see so6, so7, and so8 are not recorded

in Fig. 3a).

For the TR with non-periodic sampling intervals, we use

the lifespan of trajectory divided into k (i.e., k is a variable

depend on temporal partition algorithm) trajectory segments

to find a near-optimal partition time bin width and ensure

that there exists sufficient number of time-object pairs in

the trajectory segment. The minimum number of time-object

pairs is denoted as minp and is given as a parameter to

temporal partitioning procedure. This procedure is applied

to each trajectory separately. Fig. 3b shows an example of

partition process illustration for an arbitrary trajectory sampled

at nonuniform time intervals.

In the end, each TR in the dataset is partitioned into

a collection of successive trajectory segments and denoted

by TR “ tts1, ts2, ..., tsku and each segment, tsk, con-

tains multiple time-object pairs, xtj , sojy, denoted by tsk “
txtm, somy, . . . , xtn, sonyu. For each trajectory segment, tsi,

we create a feature vector ai “ ta1, a2, ....anu, where each

descriptive feature ar is found by using the feature function

– frptsiq. This is to extract application-dependent descriptive

features using the feature functions in F . These may be spatial

or non-spatial features that reflect the spatial, temporal, or

spatio-temporal characteristics of the trajectory segment during

the time period from start time tm to end time tn. These can

include, but are not limited to total distance covered, average

velocity, average acceleration, or total area of the binary spatial

raster. The vectors of spatial and non-spatial features (ai)
representing the characteristic of tsi will be used for clustering

trajectory segments and creating templates, which we will

explain in the next phase.

2) Trajectory Segments Clustering and Template Genera-
tion : In this phase, we will generate template trajectory

segments by applying a clustering algorithm to the extracted

features from segments. While, any clustering algorithm can

be used for this task, we will use the distance-based K-

means++ clustering algorithm. K-means [21] is a widely used

unsupervised learning model that aims to partition the dataset

into K non-overlapping groups. It assigns the observation to

the closest cluster centroid based on a distance measure and

minimizes the inter-cluster variance. Each cluster centroid is

the mean of observations in each cluster. K-means++ [22] is an

extension of K-means with an improved centroid initialization

strategy. K-means++ initializes the first centroid from the

dataset and selects the remaining centroids by calculating

the probabilities with respect to the squared distances from

the existing centroid(s). We apply the K-means++ clustering

to the feature vectors of all trajectory segments extracted

from the first phase. Each cluster is designed to represent the

trajectory segments with similar movement characteristics and

the cluster centroid reflects the mean feature vectors of the

corresponding trajectory segments. We use the centroid as the

template feature, which essentially is the template trajectory

segment.

3) Dissimilarity Comparison: To quantify the similarity

among the template and query trajectory segments, we intro-

duce the abnormal score (AB score) which is the weighted

sum of the Euclidean distances between the query trajectory

segments tsq and each template trajectory segment, i.e., the

centroid cj .

ABq “
Kÿ
j“1

wj ˚ distptsq, cjq, (1)

where K is the number of clusters we select from the second

phase, and wj is calculated as the ratio between the number

of trajectory segments in each cluster and the total number of

trajectory segments in the datasets.

wj “ Number of trajectory segments in cj
Total number of trajectory segments

(2)

The AB score indicates how far the query trajectory segment

tsq is to the set of template trajectory segments w.r.t. sum-

mary features. The templates outline the movement trends or
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temporal characteristics for segments in each cluster using the

summary features. The lower AB score shows that tsq is closer

to sufficiently large number of the trajectory segments. While

the higher AB score shows that the summary features of the

query trajectory segment tsq largely deviates from the majority

of the segments in the dataset. In the case of significantly

high AB scores, tsq is more likely to be an outlying trajectory

segment ots, which requires us to set a threshold.

ots“
#

True if ABi ě abth

False if ABi ă abth
(3)

We determine this AB score threshold of outlying trajectory

segments again empirically as it is mostly domain-dependent.

While a top-k approach or top-R% approach can be used, we

chose to keep it as a threshold for simplicity.

IV. CASE STUDIES AND EVALUATION

In this section, we conduct three case studies on three real-

life datasets from solar astronomy domain: (1) the solar active

region trajectory dataset from NOAA [9], (2) Coronal Mass

Ejection (CME) events trajectory dataset from NASA [11], and

(3) Polarity Inversion Line (PIL) evolution trajectory dataset

detected from HMI Active Region Patches (HARP) [10]. To

understand the impact of number of clusters, we also analyzed

the detected outliers under different clustering hyperparame-

ters in Section IV-B. Our case studies are performed primarily

to demonstrate that our outlier detection method can efficiently

work on both vector and raster spatial data types and show its

effectiveness under various clustering settings.

A. Case Studies

1) Solar Active Region Trajectory: The solar active region

trajectory dataset is retrieved from [9]. In this dataset, heli-

ographic longitudes and latitudes of the solar active region

centroids are reported daily along with additional non-spatial

metadata. The solar active regions are collected between 1996

to 2019 covering approximately two solar cycles. There are

4,795 trajectories with at least two daily observations and a

total of 45,319 time-object pairs. The time-object pairs of solar

active regions are reported daily (ΔT “ 24 hours). Due to this

relative low-frequency in reporting, we set n=1 as the input

parameter in the temporal partition algorithm (meaning only

one time interval with start and end geometries will constitute

a segment). Each trajectory is partitioned into multiple ts
and each ts contains two time-object pairs. In the end, we

have 40,758 trajectory segments after initial preprocessing,

interpolation, and temporal partition. For each ts, we generate

four normalized spatial vector-based features, namely, longi-

tudinal displacement, latitudinal displacement, displacement

vector magnitude, and displacement vector direction, shown

in Table I (AR features). We chose K “ 3 as the number of

the clusters. Based on the given features and the empirical

K value, we clustered the trajectory segments into three

clusters. The summary statistics for each cluster is shown in

Table II. A strong majority („99.5%) of the solar active region

trajectory segments are clustered into Cluster 0, which has

an average longitudinal displacement of `13.33˝ and these

segments barely change their latitudes and direction. This is

the expected daily movement of solar active regions, caused by

the solar rotation (covering 180˝ in 13-14 days). The segments

in Cluster 1 and Cluster 2 represent the minority (both totalling

„0.5%), whose spatio-temporal features are vastly different

from the ones in Cluster 0 (e.g. dramatic changes (over ˘100˝)

in vector direction). Note here that while Cluster 1 and 2

represent rather anomalous movement behaviors, the aim of

the clustering step is not to find outlier clusters, and outlying

trajectory segments are found by the next step using the AB

score.

In the dissimilarity comparison phase, we use the AB score

discussed in Sec. III-B3 and obtain the AB distribution of

segments, shown in Fig. 4a. We find that over 99% of the AB

scores are below 0.1, and we empirically set the threshold as

0.1 and get 354 outlying segments. In Fig. 4b, the light blue

movement vectors (in the background) represent the normal ts,

while purple, yellow, and green vectors represent the ots that

come from corresponding clusters (0, 1, and 2 respectively).

We can see that the magnitudes of normal ts, which are essen-

tially uniform and move from the east to the west-limb (east-

west direction is reversed for solar coordinates) with slight

direction changes (generally ď ˘2˝). Among the ots, we can

see that the majority moving direction of ots from Cluster 0

is the same with normal ts, but with anomalous magnitudes.

The outliers from Cluster 1 (yellow) and Cluster 2 (green)

shows the anomalous behavior in both moving directions and

magnitudes; i.e., the opposite direction to solar rotation and

unexpected magnitudes compared to the normal ts. In our

previous work [23], we showed that there are around 60

anomalous NOAA active region trajectories (this was a global

outlier detection) between 2010 and 2018, which are caused by

the erroneous location reporting. The detected outliers in this

case study include all of the previous reporting errors, which

verifies the results of our outlier detection methodology.

2) Coronal Mass Ejection (CME) Trajectory: We obtained

the CME movement dataset from [11] between January 1996

to March 2019, and use the height and angle as spatial

attributes in sky-plane coordinate system. The angle is the

position angle (in degrees) with respect to Sun’s center from

observer’s field of view, while the height represents the dis-

tance between the Sun’s corona and the CME in RSun (the

radius of the Sun – approx. 695,700 kms). We disregarded

the faint CMEs with less than ten records. In the end, we

have 16,509 CME trajectories and 372,048 time-object pairs

records in this case study. The sampling interval of CME

trajectories is non-uniform and vastly irregular (from seconds

to several hours mostly due to the cadence of LASCO instru-

ment onboard SOHO spacecraft [24]). To this end, we use the

temporal partition algorithm for non-periodic sampling. We are

interested in three spatial features: average velocity, average

acceleration, and cumulative angle displacement, described in

Table I (features marked as CME). Hence, in the partitioning

phase, we set input parameters k “ 15 and minp “ 3 to

ensure the minimum number of time-object records in each
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TABLE I: Spatial and temporal features used in the case studies. Dataset column shows the experiment (AR for solar active regions, CME
for coronal mass ejections and PIL for polarity inversion line experiments)

Dataset Feature Formula
AR Longitudinal Displacement tsi.xend ´ tsi.xstart

AR Latitudinal Displacement tsi.yend ´ tsi.ystart

AR Displacement Vector Magnitude } �tsi}
AR Displacement Vector Direction tan´1p tsi.yend ´ tsi.ystart

tsi.xend ´ tsi.xstart
q

CME Average Velocity (w.r.t. height)
tsi.heightend ´ tsi.heightstart

tsi.timeend ´ tsi.timestart

CME Average Acceleration (w.r.t. height)
d2psom`1.height ´ som.heightq

dptm`1 ´ tmq2

CME
Time-normalized Cumulative

Angle Displacement

řn
m“1 minpΔα%360˝,´Δα%360˝q
tsi.timeend ´ tsi.timestart

,

where Δα “ som`1.angle ´ som.angle

PIL Size Change tsi.sizeend ´ tsi.sizestart

PIL
Change in Region of Polarity
Inversion to Total Area Ratio

tsi.AreapRoPIendq
tsi.AreapTotalendq ´ tsi.AreapRoPIstartq

tsi.AreapTotalstartq
PIL Field Flux Change tsi.f luxend ´ tsi.f luxstart

TABLE II: The summary statistics for three solar active region trajectory segment clusters. The count is the number of trajectory segments
in each cluster, mean and std is the average value and the standard deviation of four spatial features in the cluster.

Cluster 0 Lon. Lat. Disp. Vector Disp. Vector

count=40,586 displacement (deg) displacement (deg) Magnitude Direction

mean 13.33 0.01 13.38 0.06

std 1.95 1.22 2.01 4.75

Cluster 1 Lon. Lat. Disp. Vector Disp. Vector

count=140 displacement (deg) displacement (deg) Magnitude Direction

mean -3.72 -0.82 3.89 -168.49

std 13.39 4.16 14.00 8.56

Cluster 2 Lon. Lat. Disp. Vector Disp. Vector

count=32 displacement (deg) displacement (deg) Magnitude Direction

mean -16.59 10.19 25.22 156.13

std 28.81 20.48 31.38 34.00

(a) (b)

Fig. 4: (a) The AB distribution active region trajectory segments and (b) 2D scatter plot of movement vectors (each showing daily movement)
for normal ts (in blue) and outliers (in purple, yellow and green).
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(a) (b)

Fig. 5: (a) The AB distribution for CME trajectory segments and (b) 3D scatter of spatial features of normal ts (in blue) and ots instances
(in purple, orange and green) from each cluster.

(a) (b) (c) (d)

Fig. 6: The movement characteristics of (a) 55 normal ts, (b) 6 outlying trajectory segments (ots) of Cluster 0, (c) 28 ots of Cluster 1, (d)
22 ots of Cluster 2.

ts is three. After applying trajectory segmentation procedure,

we generate 55,976 trajectory segments with three summary

features (features are then range normalized). We choose

K “ 3 for K-means clustering and create three clusters.

About „72% of segments belong to Cluster 0, while „23%

and „5% of them belong to Clusters 1 and 2, respectively.

In this case, based on the distribution of AB scores shown

in Fig. 5a, we select AB score threshold (abth) as 0.076

for outlying segments (ots). Fig. 5b shows the distribution

of three summary features of normal ts and ots from each

cluster. It is worth to notice that compared to the summary

features of normal ts, the green ots from Cluster 0 shows very

slow CMEs (low-velocity), the orange ones from Cluster 1

represents very fast CMEs, and the purple ots with large angle

change is from Cluster 2. To better illustrate the movement

characteristics among the normal ts and ots in CME datasets,

we create the height-angle plots of ts on the polar coordinate

plane and corresponding summary statistics are shown in

Fig. 6. We randomly choose 0.1% percent of normal ts for

improving the visibility and 10% of ots from each cluster to

demonstrate their outlying spatio-temporal characteristics. We

can see that, ots in the Fig. 6b represents the slower CME

segments compared to normal ts in Fig. 6a. Similarly, the

faster ts is identified as the ots in the Cluster 1 in Fig. 6c. In

addition, ts in Fig. 6d shows the zigzag movement patterns

which indicates an anomalous movement (or more probably

reporting error) for a CME of ts compared to normal ts.

3) Polarity Inversion Line (PIL) Trajectory: The third case

study is on PIL evolution dataset. We extracted the metadata

of detected PILs from magnetogram patches [10] in year 2012

with 3hr cadence (ΔT “ 3h). The spatial extent of this

trajectory dataset is in raster format and we generated four

basic attributes which we used for creating our descriptive

features. These are (1) the size of PILs, which represent

the count of cylindrical equal area pixels for PILs (a pixel

roughly covers approximate 131,400 km2 area), (2) the region

of polarity inversion (RoPI) which are the extended regions

where the magnetic field strength is inverted; (3) the area of

active region patch as calculated by its bounding box, and (4)

the unsigned flux around the region of polarity inversion. We
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