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Abstract—Shapelets, also known as motifs, are time series
sequences that have the property of discriminating between
time series classes. Lately, shapelets studies have gained a lot
of momentum due to their interpretable nature. As opposed to
traditional time series classifiers, shapelet-based learners provide
a visual representation of the pattern that triggers the classifica-
tion decision. One of the most challenging issues of shapelet-based
classifiers is the generation of a large number of shapelet outputs.
To the best of our knowledge, this is the first effort that addresses
the high numerosity problem of mined shapelets issue by mining
the minimal set of discriminative shapelets for time series data.
We propose a new shapelet mining learner, 1DCNN, that has
the property of learning shapelets of different lengths using a
black-box neural network model. 1DCNN optimizes the entire
classification schema by learning the shapes of the representative
patterns. Our proposed model uses network pruning to sparsify
the network and keep only the most discriminative shapelets
without compromising the classification accuracy. We validated
our model using 59 real-world time series datasets from the UCR
repository. Our experimental results show the effectiveness and
efficiency of our approach in comparison with other competing
baselines models. For fairness purposes, we did not compare
1DCNN with ensemble based approaches that encapsulates many
learners. Our results show that the performance of our model is
superior to all other baselines pertaining to the shapelet-based
classifier category, with up to 95% less Floating Points Operations
per Second (FLOPs) required by the network.

Index Terms—Shapelet Mining Algorithm, Time Series Clas-
sification, One-dimensional convolutional neural network.

I. INTRODUCTION

Time series classification is a pervasive problem in real-

world applications from various domains such astronomy,

aerospace, and meteorology [1][2][3]. Given the need to accu-

rately classify time series data, a number of well-established

baselines have been proposed in the literature to tackle the

problem that evolved from simple similarity-based estimators

[4] that works on raw time series data with some pre-defined

similarity measures (such as Euclidean distance and Dynamic

Time Warping [5]), to more complex methods that involve

either dimensionality and noise reduction of the input space

or a data transformation to another domain (such as frequency

domain) [6]. Deep learning models have shown to be promis-

ing for computer vision application [7] [8]. Motivated by this

fulfillment, we propose a new shapelet mining algorithm that

combines the efficiency of black-box deep learning models

for time series classification and network pruning for the

mining of the minimal interpretable shapelets. Our novelty

comes into two-folds: (1) designed a network topology that

allows the learning of shapelets of different size in parallel, (2)

we generalized two-dimensional convolutional networks tradi-

tionally used in image data for the case of one-dimensional

time series input data, and to mine the minimal number of

shapelets needed for classification. This is first attempt to

learn the minimal number of various lengths shapelets for time

series data that are traditionally user-set parameters fed to the

learning model. In a nutshell, 1DCNN model aims to correctly

classify the test instance as well as generate few interpretable

pattern for domain-expert to visually examine.

Problem Formalism: Assume that a feature space rep-
resented by a mutually exclusive set of classes C =
{C1, C2, . . . , CM}. A shapelet-based miner, or expert, predicts
the class of a data sample x ∈ C as e(x, S) = j using a set of
shapelets S = {S1, S2, . . . , Sk} such that j ∈ {1, . . . ,M} and
k ∈ {1, . . . ,K}. Shapelets minimization consists of finding
a subset S

′ ⊆ S such that the number of covered elements∣∣⋃
Si∈S′ Si

∣∣ is minimized.
The rest of the paper is organized as follows: in Sec-

tion II we review the related works; Section III defines the

architecture of the proposed 1DCNN method, followed by

the pruning strategy in Section IV. Section V explains the

experimental setup, followed by a discussion of the results of

our experiments presented in Section VI. Finally, Section VII

concludes the paper and shows directions for future works.
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II. RELATED WORK

Time series classifiers can be grouped under 5 main

branches: (1) similarity-based techniques, (2) interval-based,

(3) dictionary-based, (4) Shapelets Mining and, (5) deep

leaning ensemble. Similarity and interval based classifiers are

the most simple approaches. The similarity-based methods use

an instance based learner (such as k-Nearest Neighbor(kNN)

classifier) coupled with a distance measure to compare time

series [9]. While interval-based methods create a new feature

space by extracting features from random time series intervals

statistics [10][11][12], dictionary-based classifiers are inspired

by the bag-of-words (BOW) model from natural language pro-

cessing field [13]. The methods first transform the input time

series into representative word distributions and then feed them

to an instance based learner[6]. Shapelets mining algorithms

have gained interest lately due to their interpretability and

efficiency.

Shapelets, also known as motifs, are discriminative time

series segments that have the property of modeling unique

patterns appearing in one (or a subset of) class(es) of the

multi-class classification problem. Traditional shapelets min-

ing approaches, such as Shapelet Decision Tree [14] and

Shapelet Transform [15], consist of extracting sub-series from

the training set and selecting only the sub-sequences with

high discriminatory power. The latter approaches have a time

complexity of O(n2.T 4) (where n is the number of classes

and T is the length of the time series) which makes it hard to

adopt for large-scale datasets. Fast Shapelet is another variant

that was designed to reduce the time complexity to O(n.T 2)
by compromising accuracy [16]. Grabocka et al. [17] proposed

the second approach of shapelets mining which formalizes an

optimization problem that jointly learns the shapelets from the

training data and minimizes their incurred error [17].

The first attempt to use a neural network approach for classi-

fying univariate time series data, as appeared in [8], consisted

of a relatively simple four-layered Multi-Layer Perceptron

(MLP) where each layer of the network is a fully-connected

layer of 500 neurons with a ReLU activation function. MLP

achieved the worst performance level compared to all state-of-

the-art univariate time series classifiers. Fully Convolutional

Neural Network (FCN) models were the second attempt to

approach the univariate time series classification problem [8].

FCN architecture is composed of three convolution blocks,

used as feature extractors, each of which is composed of a

two-dimensional kernel followed by batch normalization [18]

and ReLU activation function. FCN achieved the best accuracy

levels in the deep learning classifiers category; however, the

two-dimensional kernels of the network are not interpretable

since the input is in a one-dimensional space. Residual network

(ResNet), also proposed by [8], is the deepest architecture that

extends traditional neural networks by adding a shortcut con-

nection between each consecutive residual block that enables

the flow of the gradient directly to the next layer. ResNet

model achieves results with same statistical significance of

four other baselines (FCN [8], COTE [4], MCNN [19], and

Fig. 1. Analogy of two-dimensional CNN for image segementation and
1DCNN for time series data

BOSS [6]). This finding suggests that with deeper network

architecture, ResNet is more prone to overfitting.

Another reason for low performance in deeper architecture

is the significant redundancy that has been demonstrated,

which is mainly caused by the overwhelming amount of

parameters in deep neural networks. An over-parameterized

model not only wastes memory and computation, but also

leads to a serious overfitting problem. Therefore, reducing the

number of parameters has been studied by many researchers

in this field. However, there is little work directly addressing

the optimization of the number of neurons. Most previous

works on improving network architectures fall into two main

categories; one concentrates on the high-level architectural

design and the other focuses on low-level weight pruning.

Exhaustive search shapelet mining algorithm has the highest

time complexity of O(n2.T 4), followed by similarity-based

approaches with O(nk+nT ). Learning Shapelets and 1DCNN

have both a complexity of O(n.T 2.l), while Fast Shapelet

algorithm complexity is O(n.T 2) (where n is the number of

instances, l is the number of classes, T is the length of the

time series instances). In this paper, we propose a new mining

model that pertains to both deep learning and shapelet mining

methods. The idea is to approach the classification problem

from an optimization perspective by leveraging convolutional

neural network models, that have shown to have compelling

efficiency for semantic image segmentation, without compro-

mising the model interpretability which is captured through

the mined shapelets.

III. NETWORK ARCHITECTURE

The 1DCNN model is the core of shapelet-based and

prediction-based queries. The general network architecture

consists of a four-layered convolutional neural network. The

original convolution neural networks, initially designed for

image processing, takes a two-dimensional image input that

is convolved with a three-dimensional (tensor) kernel in the

next layer. In analogy with traditional CNN, our input is a one-

dimensional time series followed by a two-dimensional/matrix

kernel in the convolution layer. Figure 1-a illustrates the anal-
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ogy of the traditional two-dimensional convolutional network

and our proposed 1DCNN model in Figure 1-b. Following the

same line of thoughts as [6], we hypothesize that a dataset can

have discriminative shapelets of different lengths all of which

can contribute with independent information to the classifica-

tion. As a matter of fact, we considered three shapelet sizes in

the same model. Our model architecture is shown in Figure 3

where the first layer represents the input time series data matrix

that is passed to the convolutional layer. The former convolves

the same matrix three times using filter matrices of different

sizes and pass it to the fully connected layer after applying

a max-pooling and non-linear activation function. The max-

pooling operation preserves only the convolution operation that

led to the maximum sum when sliding the kernel over the time

series. In other terms, the only similarity between shapelet and

the best alignment in the time series is taken into consideration

for the classification. Figure 2 illustrates the idea behind one-

dimensional convolution and max pooling operations in the

context of shapelets. A candidate shapelet is overlaid over

the input time series and shifted to the right along the time

dimension until all the possible alignments are considered. The

result of each convolution operation between the shapelet and

the time series segments is recorded in a convolution vector

that is then passed to the max-pooling layer which keeps the

element with the maximum value in the vector. In Figure 2

9 is the maximum element of the convolutional vector that

represents the fourth alignment. The concatenation of the max

convolution elements of all the kernels represents the new

feature space input for the fully connected layer

Fig. 2. (a) Illustration of the convolution process of the candidate shapelet
(shown in dotted line) over the input time series (shown in solid line) and
the max pooling operation and (b) the best candidate shapelet alignment that
resulted

Finally the last layer consists of the softmax function that

produces probability likelihoods of a time series instance be-

longing to a particular class. The basic convolution operations

are defined in Equation 1.

y = W � x+ b

h = ReLU(y) = max(0, y)

s = max(h)

(1)

where � is the convolution operation. We train our 1DCNN

with backpropagation in conjunction with Adaptive Moment

Estimation (Adam) [20] optimization algorithm. Algorithm 1

shows the full mini-batch gradient descent algorithm that we

used.

Fig. 3. 1DCNN General Architecure for a four-class time series classification
problem

The model architecture has a fixed number of kernels that

have three different lengths. The number of kernels in each of

the convolution units is set to 300.

As mentioned earlier, we designed our model to be able

to capture patterns of different-length following our initial

hypothesis that states that a dataset can have more than one op-

timal pattern size as shown in [17]. The second assumption of

variable 1DCNN is that patterns should be proportional to the

initial time series size. The idea is that shapelet lengths should

be proportional to the time series lengths in the database and

should not be set to a fixed length for all prediction problems.

In other terms, for shorter time series of size 100, shapelets of

size 12 are good candidates to capture discriminate patterns,

while the same size could be too small for time series of

length 1,000. For the latter dataset, shapelets of length 12 could

capture very granular micro-behaviors that could represent

noise. The statement is especially true in our case since we

do not use any dimensionality reduction pre-processing step

on the raw time series. We used the same shapelets lengths

window suggested in [17]: leni ∈ {0.3, 0.5, 0.7} x time series

size (where i ∈ [1, 3]). Figure 4-(b) illustrate the variable

kernel size (width) with respect to the dataset time series size

in Figure 4-(a).

As a result, another indirect size variability that affects

the network topology occurs in the concatenation and fully

connected layers (third layer in Figure 3) due to the variation

in size (length and width) of the former convolution layer

(second layer in Figure 3). The number of the input neurons

equals the number of max-pooling operations which equates

the length of the kernels x 3 (since there are three parallel

convolution blocks). In this case, the number of neurons on

the fully connected layer is 900 (300 kernels * 3 layers).
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Algorithm 1 1DCNN mini-batch Gradient Descent Algorithm

Input: Dataset D , learning rate α, len1 size of the first

kernels, len2 size of the second kernels, len3 size of the third

kernels,number of epochs ep , mini-batch size nm

Output: The trained network

1: iteration ← 0

2: while iteration < ep do
3: � Propagate the input (Forward Pass)

4: for j = 1,..., nm do
5: for i in [len1, len2, len3] do
6: Ij = Wlen � x+ θ
7: Hj = ReLU(Ij)
8: Oj = maxPool(Hj)
9: yhatj = Softmax(Oj)

10: Lossij = − 1
N

∑m
c=1 yhatj log(pj)

11: end for
12: � Backpropagate the errors (Backward Pass)

13: for i in [len1, len2, len3] do
14: Wi = ADAM(

∑nm

1 Lossj ,Wi, α, β1, β2)
15: end for
16: end for
17: iteration ← iteration+ 1
18: end while
19: return network

IV. NETWORK PRUNING

Network pruning is used in this application to reduce the

number of shapelets learned by the model. The resulting

pruned model is a more robust network having a better

generalization capability. In addition, the pruned model re-

tains the exact number of shapelets necessary to keep the

same performance levels of the original unpruned model.

The proposed pruning methods are a four-steps procedure, as

illustrated in Figure 5, that takes the original trained model

(M) as an input. The first step of the procedure is to measure

the importance of all the (initial 900) shapelets/kernels of the

unpruned model using a weighting heuristic. The second step

of the pruning procedure consists of deleting the r% least

important shapelets in the network and then fine-tuning the

new network (Mpruned1). The later step consists of using the

weights of (M) as a weight initialization for the new model

(Mpruned1) before training it on the same train data. Finally,

the above three steps are repeated until the maximum sparsity

level (K%) is reached.

We used the Average Percentage of Zeros (APoZ) as the

pruning criterion to measure the shapelets’ importance of the

intermediate models. APoZ criteria was proposed by Hu et.al

in [21] and it stems from the idea that since a large portion of

zero activation function outputs exists in a neural networks, a

network can be pruned by trimming the neurons that did not

highly contribute to the decision.

APoZ is formally defined as the percentage of neurons

that did not fire (have zero activation) after applying the

ReLU function. In addition to pointing the most discriminative

Fig. 4. (a) Example of input time series used to size the convolutional layer
kernels in (b) and fixed-sized kernels

shapelets in the network, APoZ is also a general measure of

redundancy in the model due to the overwhelming amount of

parameters in the network which is generally the cause of an

overfit model and inaccurate queries. The canonical form of

the APoZ measure is shown in Equations 2 and 3.

APoZi
c = APoZ(Oi

c) =

∑
kN

∑
jMf(O

(i)
c,j(k))

N ∗M (2)

{
f(.) = 0, if O

(i)
c,j(k) = 0

f(.) = 1, if O
(i)
c,j(k)! = 0

(3)

where Oi
c is the output of the c-th channel in the i-th layer,

M is the dimension of the feature map, N is the number of

data points, and f(.) is an indicator function that evaluates

to 1 in case the output of the activation is zero as shown in

Equation 3.

V. EXPERIMENTAL SETUP

A. Datasets

The performance of different variants of the original and

pruned 1DCNN methodology and other baselines are evaluated

on 59 datasets from the UCR Machine Learning repository

[22] that are available on UCR 1 website. The datasets

originate from different sources and domains such as human

motion data, sensor data, simulated, and medial sequences.

The first columns of Table I presents the metadata of the

datasets used in this study (dataset name, dataset size, time

series length, and the number of classes). The fourth column

of the table (K %) shows the optimal sparsity percentage

1https://www.cs.ucr.edu/˜eamonn/time series data/
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Fig. 5. Model Pruning protocol

level that we experimentally found for each dataset. We used

the same default train and test split that was provided for

comparability purposes. We performed z-normalization of the

train and test sets prior to classification as shown in eq. 4.

Znorm =
x− x̂train

σtrain
(4)

where x̂train and σtrain are the mean and standard deviation

of the training set respectively.

B. Parameters Setting

In this section, we will specify the user-defined input

parameters of the algorithm. The learning rate of the algorithm

has been set to a default value of α = 0.001 and the number

of epochs used to train 1DCNN variants is ep = 3000 to avoid

premature training leading to underfitting.

We used a mini-batch size of nm=64, and the kernel lengths

are set to {30%,50%,70%} of the time series length in the

database. The percentage pruning at the end of each training

cycle was set to r = 5% the total percentage of pruning was

set to 95%. In other terms, for every time series database,

we tested 20 models including the original model to find the

optimal network.

In addition, in order to speed up the learning process, we

used batch normalization [18] of the kernels before applying

ReLU as the activation function for non-linearity of our model

and a categorical cross-entropy cost function as defined in

Eq. 5 (labels are provided in one-hot representation). We used

the softmax function to map the non-normalized output of the

model to a probability distribution over the number of classes

the time series database contains. We trained our network with

Adam optimizer with default parameters (β1=0.9, β2=0.999

and ε=1e-8). We also imposed a learning rate reduction

once the learning plateaus and there is no improvement for

TABLE I
UCR DATASETS METADATA AND OPTIMAL K% SPARSITY

ID Dataset Name L K % DS Size TS Length
1 Adiac 37 35 781 176

2 ArrowHead 3 40 211 251

3 Beef 5 75 60 470

4 BeetleFly 2 80 40 512

5 BirdChicken 2 30 40 512

6 Car 4 75 120 577

7 ChlorineConcentration 3 70 4307 166

8 Coffee 2 95 56 286

9 Computers 2 55 500 720

10 Cricket X 12 60 780 300

11 Cricket Y 12 55 780 300

12 Cricket Z 12 40 780 300

13 DiatomSizeReduction 4 30 322 345

14 DPOutlineAgeGroup 3 95 539 80

15 DPOutlineCorrect 2 50 876 80

16 ECG200 2 70 200 96

17 ECGFiveDays 2 80 884 136

18 FaceAll 14 85 2250 131

19 FaceFour 4 75 112 350

20 FacesUCR 14 65 2250 131

21 50words 50 65 905 270

22 FISH 7 75 350 463

23 Gun Point 2 60 200 150

24 Haptics 5 25 463 1092

25 Herring 2 60 128 512

26 InlineSkate 7 90 650 1882

27 InsectWingbeatSound 11 65 2200 256

28 Lighting2 2 65 121 637

29 Lighting7 7 45 143 319

30 MedicalImages 10 80 1141 99

31 MPOutlineAgeGroup 3 90 554 80

32 MoteStrain 2 40 1272 84

33 NIFatalECG Thorax1 42 65 3765 750

34 NIFatalECG Thorax2 42 85 3765 750

35 OliveOil 4 45 60 570

36 OSULeaf 6 85 442 427

37 Plane 7 80 210 144

38 PPOutlineCorrect 2 85 891 80

39 PPTW 6 85 605 80

40 ScreenType 3 90 750 720

41 ShapesAll 60 50 1200 512

42 SonyAIBORSurface 2 75 621 70

43 SonyAIBORSurfaceII 2 55 980 65

44 SwedishLeaf 15 80 1125 128

45 Symbols 6 85 1020 398

46 synthetic control 6 75 600 60

47 ToeSegmentation1 2 45 268 277

48 ToeSegmentation2 2 40 166 343

49 Trace 4 95 200 275

50 TwoLeadECG 2 95 1162 82

51 Two Patterns 4 70 5000 128

52 WGLibraryAll 8 70 4478 945

53 WGLibrary X 8 65 4478 315

54 WGLibrary Y 8 40 4478 315

55 WGLibrary Z 8 80 4478 315

56 wafer 2 95 7164 152

57 WordsSynonyms 25 50 905 270

58 Worms 5 35 258 900

59 yoga 2 70 3300 426
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Fig. 6. Validation Accuracy with respect to K% Sparsity and sparsity curves for the three convolutional blocks corresponding to the three shapelets lengths
for : wafer, Lighting2, Gun Point, ScreenType, ShapesAll, SonyAIBORobotSurface, SonyAIBORobotSurfaceII, SwedishLeaf, Symbols, synthetic control,
ToeSegmentation1, and ToeSegmentation2.
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5 consecutive epochs. Since random initialization is doing

poorly leading to networks converging more slowly and to-

wards ultimately poorer local minima, we tried to warm the

initialization of the network weights and convolutional block

kernels, we used Xavier initializer [23]. More details about

the model are shown in Table II.

L (y, ŷ) = −yj

N∑
j=1

log(ŷj)[yi ∈ Ci] (5)

We used Tensorflow framework [24] coupled with Keras

library [25] to implement our proposed network.

VI. EXPERIMENTAL RESULTS

The contribution of the proposed model is its potential use

for (1) prediction-based and (2) shapelet-based querying. In

this section, we will discuss two types of experiments that we

conducted. The first category aims to quantitatively show the

efficiency and robustness of the algorithm for prediction-based

querying purposes. The second category of experiments aims

to qualitatively show the superiority of the model in mining

shapelets for the sake of shapelet-based querying. As discussed

in section 4, mining accurate shapelets that are truly modeling

one subset class of the time series database is achieved through

iterative pruning and fine-tuning of the network.

TABLE II
ORIGINAL AND PRUNED 1DCNN NETWORKS PARAMETER. OUR MODEL

USES THE FOLLOWING VALUES: I=30, J=50, K=70. THE WEIGHT

INITIALIZATIONS ARE GLOROT NORMAL AND THE ACTIVATION FUNCTION

IS RELU.

Network 1DCNN 1DCNN K%pruned

Conv Layers
0.3 * TS length, pool

0.5 * TS length, pool

0.7 * TS length, pool

0.3 * TS length, pool

0.5 * TS length, pool

0.7 * TS length, pool

FC Layers
TS length, 300

TS length, 300

TS length, 300

TS length, i% * 300

TS length, j% * 300

TS length, k% * 300

Iterations 3,000 3.000

Batch 64 64

Optimizer Adam Adam

One of the prominent measures of success of the pruning

is the declining average percentage of zero activation from

one pruning iteration to the next iteration. APoZ is a relative

measure indirectly proportional to the number of remaining

unpruned shapelets in the model, as shown in Equations 2

and 3. Since it is a normalized measure, it is fair to compare

the values of APoZ from two different models. Figure 8

shows the distribution of the APoZ values of models from

the two extremes, the original unpruned model (in orange)

and a model pruned with the maximal percentage of pruned

shapelets 95% (in purple). The first observation that can be

made is that the mean of the distribution of the pruned

model is more than three standard deviations away from the

mean of the original unpruned model. This suggests that

there is a statistically significant difference between the two

means. The shift of the pruned distribution to the bottom

values is indicative of the significant drop in the network

redundancy. Also, the diminishing width (standard deviation)

of the distribution was diminished from the original unpruned

to the pruned APoZ distributions which are indicative that the

weak neurons are vanishing, a proof of the benefit gained from

weight initialization as discussed in section IV. The second

observation that can be made is that the original unpruned

model follows a bimodal distribution having the first mode

peak at 0.63 and another mode at 0.45. This suggests that

the at the end of the training of the original model there

are two families of shapelets, the ones with high contribution

to the network decision and the ones with low support. in

other terms, there still exists room of improvement of the

original network based on the wide and binomial nature of

the distribution of its APoZ values. The 95%-sparsely pruned

network follows a balanced Gaussian distribution with a clear

mode of 0.41. Simply put, more than half of the shapelets

are significantly contributing to the model by having non-zero

activations.

It is important to understand that an optimally pruned

model has a good balance of simplicity (fewer parameters)

and good accuracy levels, a crucial pre-requisite for precise

querying. Figure 6 shows the learning curves of a subset

of twelve datasets. In this context, the model complexity

represents the sparsity level (K) of the 1DCNN algorithm.

Ideally, a good K parameter is the one where the model

sparsity is maximized without compromising accuracy. The

vertical line in Figure 6 shows a good cut-off point for the

learning curves. Upon the completion of all experiments, we

noticed that there are three categories of learning curves. The

first category of learning curves is characterized by a model

that is equally accurate regardless of its sparsity level. The

wafer dataset is a good example of this pattern. Maintaining

the same accuracy level of the original unpruned model with

reduced complexity is the desired outcome since the model

complexity is drastically reduced, making the model more

robust and with better ability to generalize and produce more

accurate shapelets. The second family of learning curves shows

a pattern of accuracy improvement as the network is sparsified.

The lightining2 dataset shows a maximum improvement of 6%

from the original network accuracy at sparsity level 65%. This

category of datasets is benefiting from the network sparsity

by reaching unprecedented accuracy levels. This behavior

suggests that unimportant shapelets were not simply ignored

(by zeroing out their activations) but rather hindering the

maximal learning potential of the model. Finally, the last

learning curve behavior, which is the most intuitive one, is

accuracy levels having a downward trend with increasing spar-

sity (model simplicity). Gun Point dataset shows an example

of this behavior where the accuracy starts dropping starting

from the K =60% mark where the model starts deteriorating

and indicating it is too simple to accurately solve the query.

Figure 6 also shows the decreasing percentage of shapelets

from each of the three-length categories as the model is being
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a. b.

Fig. 7. (a) Floating Points Operations per Second (FLOPs) with respect to network sparsity and (b) Floating Point Operations with the three shapelets lengths
categories with respect to the network sparsity

Fig. 8. APOZ values before and after pruning for the Coffee Dataset

pruned. It is clear that there is no shapelet category length that

is superior over another category. All three lengths of shapelets

are grasping important discriminative patterns, although, the

shortest shapelet lengths (in blue) show more resistance to

the pruning in the range of K =[40,60] for the three datasets.

This could be explained that the shortest shapelets are more

prone to model highly granular noise that is falsely deemed

as important. The fourth column of Table I (K ) shows the

optimal sparsity percentage level corresponding to the vertical

sweet spot line in Figure 6. The table does not show any

particular correlations between the number of classes, dataset

size, time series length with the optimal sparsity level. This

means that network pruning is a data-driven process and there

is no size fits all K parameter.

Another common way of quantifying the complexity of

the neural network is to measure the floating-point operations

(addition, subtraction, multiplication, or division) per second

(FLoPs) required by the model. A prominent benefit of net-

work pruning is the reduction of the number of convolutional

feature maps and as therefore the total estimated floating-

point operations (FLoPs). Figure 7-a shows the FLoPs for each

model with different sparsity levels and their corresponding ac-

curacy. The optimal K in this dataset (ChlorineConcentration)

has been identified as 70%. Having a 70% pruned model saves

almost half (≈ 42%) of the total operations required by the

original unpruned model. It is also worth mentioning that the

FLoPs are highly dependent on the shapelet lengths that exist

in the network. In the case where longer lengths shapelets are

pruned on a higher rate than other smaller lengths shapelets,

the FLoPs are reduced with a higher rate as well. Figure 7-b

illustrates the FLoPs operations required by each convolutional

layer as the network is being sparsified. To further illustrate

the idea, we can clearly see from Figure 7-b that the first

convolutional block has a smaller negative slope compared to

the second and third convolutional layers. The linear scale of

the figure realistically illustrates the rate of change for each

shapelet’s length.

We compared our proposed 1DCNN models, pruned with

the optimal sparsity levels found experimentally, to all the

three baseline models pertaining to the shapelets classifiers

category: Fast Shapelets[16], Learning Shapelets [17], and

Shapelet Transforms [15]. The blue area of figure 9 illustrates

the area where our model is outperforming the baseline coun-

terpart. Every point in the figure represents one of the datasets

defined in Table I. The more points are in the diagonal, the less

significant is the difference in performance between the two

baselines. Considering the total number of datasets, our model

is more accurate than all the three baselines. It is particularly

outperforming FS and LS baselines with a (54 wins/5 losses)

and (35 wins/24 losses) respectively. Furthermore, we can see

that the points in the blue area are more scattered and far

from the diagonal which suggests that there is an important

magnitude difference. It is important to note that in addition

to the fact that 1DCNN is more accurate than all the other
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Fig. 9. Accuracy results obtained from pruned 1DCNN classifier with optimal K parameter, in comparison with: FS, LS and ST classifiers.

learners in the shapelets, it produces significantly less amount

of shapelets than its counterparts, which is the goal of the

model.

The second byproduct of our model in the mined shapelets

that are the basis of shapelet-based querying. So far, we have

assessed the performance of the 1DCNN model based solely

quantitatively through FLoP, accuracy, and APOZ measures.

To ensure that the mined shapelets are equally precise, we

conducted another experiment to quantify the degree of close-

ness of the mined shapelet pattern to the original time series

instances in the database. To do so we used Dynamic Time

Warping to measure the shape differences.

Fig. 10. Dynamic Time Warping Distances of the two most discriminative
shapelets for each class with respect to all instances.

Dynamic time warping (DTW) is a standard elastic measure

for assessing the dissimilarity between two time series [26].

Due to its effectiveness in finding an optimal match between

two sequences, DTW has been used in many different domains

such as shape interpolation [2] [27] and time series matching

for incomplete medical data [28]. DTW works by warping

the time series in the time domain in such a way that the

final warping cost is minimal. The canonical form of DTW is

shown in Equation 6. M and N represent the lengths of the

input time series x and y. Initially the D matrix is initialized

to D0,0 = 0 and Di,j to Di,j = inf . The cost function f in

Eq. 6 is usually chosen to be the square of the differences

between the time series xi and yj .

Di,j = f(xi, yj) +min{Di,j−1, Di−1,j , Di−1,j−1}
s.t : i ∈ (1,M), j ∈ (1, N)

(6)

In this context, we used DTW to compute the distance

between the mined shapelets and all the instances in the time

series database. This step is useful to show the mined shapelet

relative closeness to a subset of classes and distantness to

another subset of classes. For the sake of simplicity, we

showed an example of output from the FISH dataset that has

7 classes. We used the pruned model at optimal 75% sparsity

level and the APOZ heuristic to sort the mined shapelets in

the model and selected the two most discriminative shapelets

for 2 distinct classes. Figure 10 shows a plot of distances

between the two most significant shapelets. The dashed line

shows the separation between the orange class instances and

the rest of the database instances. Figure 11 shows the two

most discriminative shapelets overlaid on top of their optimal

positions on instances belonging to two different classes of

the Gun Point dataset. Visually, the red shapelet corresponds

to a pattern of the first class of the dataset. Similarly, the

purple shapelet corresponds a pattern of the second class of

the problem. The visual observations are in line with the DTW

distances shown in the figure (the distance is smaller to the

class the shapelet represents).

VII. CONCLUSION

In this work, we proposed a new shapelet mining learner,

1DCNN, that leverage the use of convolutional neural net-

work from the image processing field to learn interpretable
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Fig. 11. Most Discriminative Shapelets for Gun Point dataset binary classes

shapelets of different lengths. This is the first attempt to mine

the minimal set of shapelets needed for an optimal model

accuracy. Our model optimizes the entire classification schema

by learning the shapes of the representative patterns and then

use a pruning mechanism that iteratively trims unimportant

shapelets from the model, leaving only a fraction of shapelets

without compromising prediction accuracy. We have shown

experimentally that our method is superior to all other baseline

models pertaining to the shapelet category group. In addition,

our pruned models are more compact and robust delivering

highly accurate predictions with up to 95% less Floating Points

Operations per Second (FLOPs) required by the network. Now

that we omited the need of number of shapelets as a user-

defined parameter, a natural future work direction that we

would like to address is the automatic parameter setting for

shapelet lengths.
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