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Abstract—Shapelets, also known as motifs, are time series
sequences that have the property of discriminating between
time series classes. Lately, shapelets studies have gained a lot
of momentum due to their interpretable nature. As opposed to
traditional time series classifiers, shapelet-based learners provide
a visual representation of the pattern that triggers the classifica-
tion decision. One of the most challenging issues of shapelet-based
classifiers is the generation of a large number of shapelet outputs.
To the best of our knowledge, this is the first effort that addresses
the high numerosity problem of mined shapelets issue by mining
the minimal set of discriminative shapelets for time series data.
We propose a new shapelet mining learner, /DCNN, that has
the property of learning shapelets of different lengths using a
black-box neural network model. IDCNN optimizes the entire
classification schema by learning the shapes of the representative
patterns. Our proposed model uses network pruning to sparsify
the network and keep only the most discriminative shapelets
without compromising the classification accuracy. We validated
our model using 59 real-world time series datasets from the UCR
repository. Our experimental results show the effectiveness and
efficiency of our approach in comparison with other competing
baselines models. For fairness purposes, we did not compare
1DCNN with ensemble based approaches that encapsulates many
learners. Our results show that the performance of our model is
superior to all other baselines pertaining to the shapelet-based
classifier category, with up to 95% less Floating Points Operations
per Second (FLOPs) required by the network.

Index Terms—Shapelet Mining Algorithm, Time Series Clas-
sification, One-dimensional convolutional neural network.

I. INTRODUCTION

Time series classification is a pervasive problem in real-
world applications from various domains such astronomy,
aerospace, and meteorology [1][2][3]. Given the need to accu-
rately classify time series data, a number of well-established
baselines have been proposed in the literature to tackle the
problem that evolved from simple similarity-based estimators
[4] that works on raw time series data with some pre-defined
similarity measures (such as Euclidean distance and Dynamic
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Time Warping [5]), to more complex methods that involve
either dimensionality and noise reduction of the input space
or a data transformation to another domain (such as frequency
domain) [6]. Deep learning models have shown to be promis-
ing for computer vision application [7] [8]. Motivated by this
fulfillment, we propose a new shapelet mining algorithm that
combines the efficiency of black-box deep learning models
for time series classification and network pruning for the
mining of the minimal interpretable shapelets. Our novelty
comes into two-folds: (1) designed a network topology that
allows the learning of shapelets of different size in parallel, (2)
we generalized two-dimensional convolutional networks tradi-
tionally used in image data for the case of one-dimensional
time series input data, and to mine the minimal number of
shapelets needed for classification. This is first attempt to
learn the minimal number of various lengths shapelets for time
series data that are traditionally user-set parameters fed to the
learning model. In a nutshell, IDCNN model aims to correctly
classify the test instance as well as generate few interpretable
pattern for domain-expert to visually examine.

Problem Formalism: Assume that a feature space rep-
resented by a mutually exclusive set of classes C =
{C1,Cs,...,Cur}. A shapelet-based miner, or expert, predicts
the class of a data sample x: € C as e(x,S) = j using a set of
shapelets S = {S1,S2, ..., S} suchthat j € {1,..., M} and
k € {1,...,K}. Shapelets minimization consists of finding
a subset S C S such that the number of covered elements
’USiES/ Si| is minimized.

The rest of the paper is organized as follows: in Sec-
tion II we review the related works; Section III defines the
architecture of the proposed 1DC'NN method, followed by
the pruning strategy in Section IV. Section V explains the
experimental setup, followed by a discussion of the results of
our experiments presented in Section VI. Finally, Section VII
concludes the paper and shows directions for future works.
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II. RELATED WORK

Time series classifiers can be grouped under 5 main
branches: (1) similarity-based techniques, (2) interval-based,
(3) dictionary-based, (4) Shapelets Mining and, (5) deep
leaning ensemble. Similarity and interval based classifiers are
the most simple approaches. The similarity-based methods use
an instance based learner (such as k-Nearest Neighbor(kNN)
classifier) coupled with a distance measure to compare time
series [9]. While interval-based methods create a new feature
space by extracting features from random time series intervals
statistics [10][11][12], dictionary-based classifiers are inspired
by the bag-of-words (BOW) model from natural language pro-
cessing field [13]. The methods first transform the input time
series into representative word distributions and then feed them
to an instance based learner[6]. Shapelets mining algorithms
have gained interest lately due to their interpretability and
efficiency.

Shapelets, also known as motifs, are discriminative time
series segments that have the property of modeling unique
patterns appearing in one (or a subset of) class(es) of the
multi-class classification problem. Traditional shapelets min-
ing approaches, such as Shapelet Decision Tree [14] and
Shapelet Transform [15], consist of extracting sub-series from
the training set and selecting only the sub-sequences with
high discriminatory power. The latter approaches have a time
complexity of O(n?.T%) (where n is the number of classes
and T is the length of the time series) which makes it hard to
adopt for large-scale datasets. Fast Shapelet is another variant
that was designed to reduce the time complexity to O(n.T?)
by compromising accuracy [16]. Grabocka et al. [17] proposed
the second approach of shapelets mining which formalizes an
optimization problem that jointly learns the shapelets from the
training data and minimizes their incurred error [17].

The first attempt to use a neural network approach for classi-
fying univariate time series data, as appeared in [8], consisted
of a relatively simple four-layered Multi-Layer Perceptron
(MLP) where each layer of the network is a fully-connected
layer of 500 neurons with a ReLLU activation function. MLP
achieved the worst performance level compared to all state-of-
the-art univariate time series classifiers. Fully Convolutional
Neural Network (FCN) models were the second attempt to
approach the univariate time series classification problem [8].
FCN architecture is composed of three convolution blocks,
used as feature extractors, each of which is composed of a
two-dimensional kernel followed by batch normalization [18]
and ReLU activation function. FCN achieved the best accuracy
levels in the deep learning classifiers category; however, the
two-dimensional kernels of the network are not interpretable
since the input is in a one-dimensional space. Residual network
(ResNet), also proposed by [8], is the deepest architecture that
extends traditional neural networks by adding a shortcut con-
nection between each consecutive residual block that enables
the flow of the gradient directly to the next layer. ResNet
model achieves results with same statistical significance of
four other baselines (FCN [8], COTE [4], MCNN [19], and
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Fig. 1. Analogy of two-dimensional CNN for image segementation and
IDCNN for time series data

BOSS [6]). This finding suggests that with deeper network
architecture, ResNet is more prone to overfitting.

Another reason for low performance in deeper architecture
is the significant redundancy that has been demonstrated,
which is mainly caused by the overwhelming amount of
parameters in deep neural networks. An over-parameterized
model not only wastes memory and computation, but also
leads to a serious overfitting problem. Therefore, reducing the
number of parameters has been studied by many researchers
in this field. However, there is little work directly addressing
the optimization of the number of neurons. Most previous
works on improving network architectures fall into two main
categories; one concentrates on the high-level architectural
design and the other focuses on low-level weight pruning.

Exhaustive search shapelet mining algorithm has the highest
time complexity of O(n%.T%), followed by similarity-based
approaches with O(nk+nT). Learning Shapelets and IDCNN
have both a complexity of O(n.72.l), while Fast Shapelet
algorithm complexity is O(n.T?) (where n is the number of
instances, [ is the number of classes, 7' is the length of the
time series instances). In this paper, we propose a new mining
model that pertains to both deep learning and shapelet mining
methods. The idea is to approach the classification problem
from an optimization perspective by leveraging convolutional
neural network models, that have shown to have compelling
efficiency for semantic image segmentation, without compro-
mising the model interpretability which is captured through
the mined shapelets.

III. NETWORK ARCHITECTURE

The IDCNN model is the core of shapelet-based and
prediction-based queries. The general network architecture
consists of a four-layered convolutional neural network. The
original convolution neural networks, initially designed for
image processing, takes a two-dimensional image input that
is convolved with a three-dimensional (tensor) kernel in the
next layer. In analogy with traditional CNN, our input is a one-
dimensional time series followed by a two-dimensional/matrix
kernel in the convolution layer. Figure 1-a illustrates the anal-
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ogy of the traditional two-dimensional convolutional network
and our proposed IDCNN model in Figure 1-b. Following the
same line of thoughts as [6], we hypothesize that a dataset can
have discriminative shapelets of different lengths all of which
can contribute with independent information to the classifica-
tion. As a matter of fact, we considered three shapelet sizes in
the same model. Our model architecture is shown in Figure 3
where the first layer represents the input time series data matrix
that is passed to the convolutional layer. The former convolves
the same matrix three times using filter matrices of different
sizes and pass it to the fully connected layer after applying
a max-pooling and non-linear activation function. The max-
pooling operation preserves only the convolution operation that
led to the maximum sum when sliding the kernel over the time
series. In other terms, the only similarity between shapelet and
the best alignment in the time series is taken into consideration
for the classification. Figure 2 illustrates the idea behind one-
dimensional convolution and max pooling operations in the
context of shapelets. A candidate shapelet is overlaid over
the input time series and shifted to the right along the time
dimension until all the possible alignments are considered. The
result of each convolution operation between the shapelet and
the time series segments is recorded in a convolution vector
that is then passed to the max-pooling layer which keeps the
element with the maximum value in the vector. In Figure 2
9 is the maximum element of the convolutional vector that
represents the fourth alignment. The concatenation of the max
convolution elements of all the kernels represents the new
feature space input for the fully connected layer

Candidate
Shapelet

(a) Convolution (b)

Vector Output ~ Max Pooling

Best Shapelet
. ﬂ alignment
. armax_[5]
: 6
J— Input Time [4] ——

time

magnitude
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i
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Fig. 2. (a) Illustration of the convolution process of the candidate shapelet
(shown in dotted line) over the input time series (shown in solid line) and
the max pooling operation and (b) the best candidate shapelet alignment that
resulted

Finally the last layer consists of the softmax function that
produces probability likelihoods of a time series instance be-
longing to a particular class. The basic convolution operations
are defined in Equation 1.

h = ReLU(y) = max(0,y)

s = max(h)

)]

where ® is the convolution operation. We train our IDCNN
with backpropagation in conjunction with Adaptive Moment
Estimation (Adam) [20] optimization algorithm. Algorithm 1
shows the full mini-batch gradient descent algorithm that we
used.
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Fig. 3. 1DCNN General Architecure for a four-class time series classification
problem

The model architecture has a fixed number of kernels that
have three different lengths. The number of kernels in each of
the convolution units is set to 300.

As mentioned earlier, we designed our model to be able
to capture patterns of different-length following our initial
hypothesis that states that a dataset can have more than one op-
timal pattern size as shown in [17]. The second assumption of
variable IDCNN is that patterns should be proportional to the
initial time series size. The idea is that shapelet lengths should
be proportional to the time series lengths in the database and
should not be set to a fixed length for all prediction problems.
In other terms, for shorter time series of size 100, shapelets of
size 12 are good candidates to capture discriminate patterns,
while the same size could be too small for time series of
length 1,000. For the latter dataset, shapelets of length 12 could
capture very granular micro-behaviors that could represent
noise. The statement is especially true in our case since we
do not use any dimensionality reduction pre-processing step
on the raw time series. We used the same shapelets lengths
window suggested in [17]: len; € {0.3,0.5,0.7} x time series
size (where ¢ € [1,3]). Figure 4-(b) illustrate the variable
kernel size (width) with respect to the dataset time series size
in Figure 4-(a).

As a result, another indirect size variability that affects
the network topology occurs in the concatenation and fully
connected layers (third layer in Figure 3) due to the variation
in size (length and width) of the former convolution layer
(second layer in Figure 3). The number of the input neurons
equals the number of max-pooling operations which equates
the length of the kernels x 3 (since there are three parallel
convolution blocks). In this case, the number of neurons on
the fully connected layer is 900 (300 kernels * 3 layers).
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Algorithm 1 1DCNN mini-batch Gradient Descent Algorithm
Input: Dataset &, learning rate «, len; size of the first
kernels, lensy size of the second kernels, lens size of the third
kernels,number of epochs ep , mini-batch size n,,

Output: The trained network

1: iteration < 0
2: while ¢teration < ep do
3: > Propagate the input (Forward Pass)

4: for j = 1,..., n,, do

5: for i in [leny,lensg,lens] do

6: Ij=Wen®a+0

7: Hj :ReLU(I])

8: O; = maxPool(Hj)

9: Yhat;, = Softmax(0;)

10: Lossij = = Yooe1 Ynat, Log(p;)

11: end for

12: > Backpropagate the errors (Backward Pass)
13: for i in [leny,lensg,lens] do

14: W, = ADAM( Tm LOSSj, W;, a, 61, 52)
15: end for

16: end for

17: iteration < iteration + 1

18: end while
19: return network

IV. NETWORK PRUNING

Network pruning is used in this application to reduce the
number of shapelets learned by the model. The resulting
pruned model is a more robust network having a better
generalization capability. In addition, the pruned model re-
tains the exact number of shapelets necessary to keep the
same performance levels of the original unpruned model.
The proposed pruning methods are a four-steps procedure, as
illustrated in Figure 5, that takes the original trained model
(M) as an input. The first step of the procedure is to measure
the importance of all the (initial 900) shapelets/kernels of the
unpruned model using a weighting heuristic. The second step
of the pruning procedure consists of deleting the r% least
important shapelets in the network and then fine-tuning the
new network (M,,neq1). The later step consists of using the
weights of (M) as a weight initialization for the new model
(My,-uneq1) before training it on the same train data. Finally,
the above three steps are repeated until the maximum sparsity
level (K%) is reached.

We used the Average Percentage of Zeros (APoZ) as the
pruning criterion to measure the shapelets’ importance of the
intermediate models. APoZ criteria was proposed by Hu et.al
in [21] and it stems from the idea that since a large portion of
zero activation function outputs exists in a neural networks, a
network can be pruned by trimming the neurons that did not
highly contribute to the decision.

APoZ is formally defined as the percentage of neurons
that did not fire (have zero activation) after applying the
ReLU function. In addition to pointing the most discriminative
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shapelets in the network, APoZ is also a general measure of
redundancy in the model due to the overwhelming amount of
parameters in the network which is generally the cause of an
overfit model and inaccurate queries. The canonical form of
the APoZ measure is shown in Equations 2 and 3.

LS EN S FO0) (K)
o N x M

APoZ! = APoZ(0!) )

where O is the output of the c-th channel in the i-th layer,
M is the dimension of the feature map, /N is the number of
data points, and f(.) is an indicator function that evaluates
to 1 in case the output of the activation is zero as shown in
Equation 3.

V. EXPERIMENTAL SETUP
A. Datasets

The performance of different variants of the original and
pruned IDCNN methodology and other baselines are evaluated
on 59 datasets from the UCR Machine Learning repository
[22] that are available on UCR ' website. The datasets
originate from different sources and domains such as human
motion data, sensor data, simulated, and medial sequences.
The first columns of Table I presents the metadata of the
datasets used in this study (dataset name, dataset size, time
series length, and the number of classes). The fourth column
of the table (J# %) shows the optimal sparsity percentage

Thttps://www.cs.ucr.edu/"eamonn/time_series_data/
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level that we experimentally found for each dataset. We used
the same default train and test split that was provided for
comparability purposes. We performed z-normalization of the
train and test sets prior to classification as shown in eq. 4.

xr — i’train

Znorm - (4)

Otrain

where T¢,4in and o;,qin are the mean and standard deviation
of the training set respectively.

B. Parameters Setting

In this section, we will specify the user-defined input
parameters of the algorithm. The learning rate of the algorithm
has been set to a default value of o = 0.001 and the number
of epochs used to train IDCNN variants is ep = 3000 to avoid
premature training leading to underfitting.

We used a mini-batch size of n,,,=64, and the kernel lengths
are set to {30%,50%,70%} of the time series length in the
database. The percentage pruning at the end of each training
cycle was set to r = 5% the total percentage of pruning was
set to 95%. In other terms, for every time series database,
we tested 20 models including the original model to find the
optimal network.

In addition, in order to speed up the learning process, we
used batch normalization [18] of the kernels before applying
ReLU as the activation function for non-linearity of our model
and a categorical cross-entropy cost function as defined in
Eq. 5 (labels are provided in one-hot representation). We used
the softmax function to map the non-normalized output of the
model to a probability distribution over the number of classes
the time series database contains. We trained our network with
Adam optimizer with default parameters (51=0.9, [$2=0.999
and e=le-8). We also imposed a learning rate reduction
once the learning plateaus and there is no improvement for
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TABLE I
UCR DATASETS METADATA AND OPTIMAL K% SPARSITY
ID Dataset Name L | % | DS Size | TS Length
1 | Adiac 37 35 781 176
2 | ArrowHead 3 40 211 251
3 | Beef 5 75 60 470
4 | BeetleFly 2 80 40 512
5 | BirdChicken 2 30 40 512
6 | Car 4 75 120 577
7 | ChlorineConcentration 3 70 4307 166
8 | Coffee 2 95 56 286
9 | Computers 2 55 500 720
10 | Cricket_X 12 60 780 300
11 | Cricket Y 12 55 780 300
12 | Cricket_Z 12 40 780 300
13 | DiatomSizeReduction 4 30 322 345
14 | DPOutlineAgeGroup 3 95 539 80
15 | DPOutlineCorrect 2 50 876 80
16 | ECG200 2 70 200 96
17 | ECGFiveDays 2 80 884 136
18 | FaceAll 14 85 2250 131
19 | FaceFour 4 75 112 350
20 | FacesUCR 14 65 2250 131
21 | 50words 50 65 905 270
22 | FISH 7 75 350 463
23 | Gun_Point 2 60 200 150
24 | Haptics 5 25 463 1092
25 | Herring 2 60 128 512
26 | InlineSkate 7 90 650 1882
27 | InsectWingbeatSound 11 65 2200 256
28 | Lighting2 2 65 121 637
29 | Lighting7 7 45 143 319
30 | Medicallmages 10 80 1141 99
31 | MPOutlineAgeGroup 3 90 554 80
32 | MoteStrain 2 40 1272 84
33 | NIFatalECG_Thorax1 42 65 3765 750
34 | NIFatalECG_Thorax2 | 42 85 3765 750
35 | OliveOil 4 45 60 570
36 | OSULeaf 6 85 442 427
37 | Plane 7 80 210 144
38 | PPOutlineCorrect 2 85 891 80
39 | PPTW 6 85 605 80
40 | ScreenType 3 90 750 720
41 | ShapesAll 60 50 1200 512
42 | SonyAIBORSurface 2 75 621 70
43 | SonyAIBORSurfacell 2 55 980 65
44 | SwedishLeaf 15 80 1125 128
45 | Symbols [§ 85 1020 398
46 | synthetic_control 6 75 600 60
47 | ToeSegmentationl 2 45 268 277
48 | ToeSegmentation2 2 40 166 343
49 | Trace 4 95 200 275
50 | TwoLeadECG 2 95 1162 82
51 | Two_Patterns 4 70 5000 128
52 | WGLibraryAll 8 70 4478 945
53 | WGLibrary_X 8 65 4478 315
54 | WGLibrary_Y 8 40 4478 315
55 | WGLibrary_Z 8 80 4478 315
56 | wafer 2 95 7164 152
57 | WordsSynonyms 25 50 905 270
58 | Worms 5 35 258 900
59 | yoga 2 70 3300 426
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Fig. 6. Validation Accuracy with respect to K% Sparsity and sparsity curves for the three convolutional blocks corresponding to the three shapelets lengths
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ToeSegmentationl, and ToeSegmentation?2.
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5 consecutive epochs. Since random initialization is doing
poorly leading to networks converging more slowly and to-
wards ultimately poorer local minima, we tried to warm the
initialization of the network weights and convolutional block
kernels, we used Xavier initializer [23]. More details about
the model are shown in Table II.

N
Ly, §) = —y; Y _log(y;)lyi € Ci]

Jj=1

®)

We used Tensorflow framework [24] coupled with Keras
library [25] to implement our proposed network.

VI. EXPERIMENTAL RESULTS

The contribution of the proposed model is its potential use
for (1) prediction-based and (2) shapelet-based querying. In
this section, we will discuss two types of experiments that we
conducted. The first category aims to quantitatively show the
efficiency and robustness of the algorithm for prediction-based
querying purposes. The second category of experiments aims
to qualitatively show the superiority of the model in mining
shapelets for the sake of shapelet-based querying. As discussed
in section 4, mining accurate shapelets that are truly modeling
one subset class of the time series database is achieved through
iterative pruning and fine-tuning of the network.

TABLE II
ORIGINAL AND PRUNED 1DCNN NETWORKS PARAMETER. OUR MODEL
USES THE FOLLOWING VALUES: 1=30, J=50, K=70. THE WEIGHT
INITIALIZATIONS ARE GLOROT NORMAL AND THE ACTIVATION FUNCTION

1S RELU.

Network 1DCNN 1IDCNN_K %pruned
0.3 * TS length, pool | 0.3 * TS length, pool
Conv Layers | 0.5 * TS length, pool | 0.5 * TS length, pool
0.7 * TS length, pool | 0.7 * TS length, pool
TS length, 300 TS length, i% * 300
FC Layers TS length, 300 TS length, j% * 300
TS length, 300 TS length, k% * 300

Iterations 3,000 3.000

Batch 64 64
Optimizer Adam Adam

One of the prominent measures of success of the pruning
is the declining average percentage of zero activation from
one pruning iteration to the next iteration. APoZ is a relative
measure indirectly proportional to the number of remaining
unpruned shapelets in the model, as shown in Equations 2
and 3. Since it is a normalized measure, it is fair to compare
the values of APoZ from two different models. Figure 8
shows the distribution of the APoZ values of models from
the two extremes, the original unpruned model (in orange)
and a model pruned with the maximal percentage of pruned
shapelets 95% (in purple). The first observation that can be
made is that the mean of the distribution of the pruned
model is more than three standard deviations away from the
mean of the original unpruned model. This suggests that
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there is a statistically significant difference between the two
means. The shift of the pruned distribution to the bottom
values is indicative of the significant drop in the network
redundancy. Also, the diminishing width (standard deviation)
of the distribution was diminished from the original unpruned
to the pruned APoZ distributions which are indicative that the
weak neurons are vanishing, a proof of the benefit gained from
weight initialization as discussed in section IV. The second
observation that can be made is that the original unpruned
model follows a bimodal distribution having the first mode
peak at 0.63 and another mode at 0.45. This suggests that
the at the end of the training of the original model there
are two families of shapelets, the ones with high contribution
to the network decision and the ones with low support. in
other terms, there still exists room of improvement of the
original network based on the wide and binomial nature of
the distribution of its APoZ values. The 95%-sparsely pruned
network follows a balanced Gaussian distribution with a clear
mode of 0.41. Simply put, more than half of the shapelets
are significantly contributing to the model by having non-zero
activations.

It is important to understand that an optimally pruned
model has a good balance of simplicity (fewer parameters)
and good accuracy levels, a crucial pre-requisite for precise
querying. Figure 6 shows the learning curves of a subset
of twelve datasets. In this context, the model complexity
represents the sparsity level (K) of the 1IDCNN algorithm.
Ideally, a good K parameter is the one where the model
sparsity is maximized without compromising accuracy. The
vertical line in Figure 6 shows a good cut-off point for the
learning curves. Upon the completion of all experiments, we
noticed that there are three categories of learning curves. The
first category of learning curves is characterized by a model
that is equally accurate regardless of its sparsity level. The
wafer dataset is a good example of this pattern. Maintaining
the same accuracy level of the original unpruned model with
reduced complexity is the desired outcome since the model
complexity is drastically reduced, making the model more
robust and with better ability to generalize and produce more
accurate shapelets. The second family of learning curves shows
a pattern of accuracy improvement as the network is sparsified.
The lightining2 dataset shows a maximum improvement of 6%
from the original network accuracy at sparsity level 65%. This
category of datasets is benefiting from the network sparsity
by reaching unprecedented accuracy levels. This behavior
suggests that unimportant shapelets were not simply ignored
(by zeroing out their activations) but rather hindering the
maximal learning potential of the model. Finally, the last
learning curve behavior, which is the most intuitive one, is
accuracy levels having a downward trend with increasing spar-
sity (model simplicity). Gun_Point dataset shows an example
of this behavior where the accuracy starts dropping starting
from the J#'=60% mark where the model starts deteriorating
and indicating it is too simple to accurately solve the query.
Figure 6 also shows the decreasing percentage of shapelets
from each of the three-length categories as the model is being
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Fig. 8. APOZ values before and after pruning for the Coffee Dataset

pruned. It is clear that there is no shapelet category length that
is superior over another category. All three lengths of shapelets
are grasping important discriminative patterns, although, the
shortest shapelet lengths (in blue) show more resistance to
the pruning in the range of .%#=[40,60] for the three datasets.
This could be explained that the shortest shapelets are more
prone to model highly granular noise that is falsely deemed
as important. The fourth column of Table I (J#") shows the
optimal sparsity percentage level corresponding to the vertical
sweet spot line in Figure 6. The table does not show any
particular correlations between the number of classes, dataset
size, time series length with the optimal sparsity level. This
means that network pruning is a data-driven process and there
is no size fits all JZ" parameter.

Another common way of quantifying the complexity of
the neural network is to measure the floating-point operations
(addition, subtraction, multiplication, or division) per second
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(FLoPs) required by the model. A prominent benefit of net-
work pruning is the reduction of the number of convolutional
feature maps and as therefore the total estimated floating-
point operations (FLoPs). Figure 7-a shows the FLoPs for each
model with different sparsity levels and their corresponding ac-
curacy. The optimal Z” in this dataset (ChlorineConcentration)
has been identified as 70%. Having a 70% pruned model saves
almost half (= 42%) of the total operations required by the
original unpruned model. It is also worth mentioning that the
FLoPs are highly dependent on the shapelet lengths that exist
in the network. In the case where longer lengths shapelets are
pruned on a higher rate than other smaller lengths shapelets,
the FLoPs are reduced with a higher rate as well. Figure 7-b
illustrates the FLoPs operations required by each convolutional
layer as the network is being sparsified. To further illustrate
the idea, we can clearly see from Figure 7-b that the first
convolutional block has a smaller negative slope compared to
the second and third convolutional layers. The linear scale of
the figure realistically illustrates the rate of change for each
shapelet’s length.

We compared our proposed 1IDCNN models, pruned with
the optimal sparsity levels found experimentally, to all the
three baseline models pertaining to the shapelets classifiers
category: Fast Shapelets[16], Learning Shapelets [17], and
Shapelet Transforms [15]. The blue area of figure 9 illustrates
the area where our model is outperforming the baseline coun-
terpart. Every point in the figure represents one of the datasets
defined in Table I. The more points are in the diagonal, the less
significant is the difference in performance between the two
baselines. Considering the total number of datasets, our model
is more accurate than all the three baselines. It is particularly
outperforming FS and LS baselines with a (54 wins/5 losses)
and (35 wins/24 losses) respectively. Furthermore, we can see
that the points in the blue area are more scattered and far
from the diagonal which suggests that there is an important
magnitude difference. It is important to note that in addition
to the fact that IDCNN is more accurate than all the other

Authorized licensed use limited to: Georgia State University. Downloaded on July 22,2022 at 05:29:42 UTC from IEEE Xplore. Restrictions apply.



Accuracy comparison between 1DCNN and FS

0
Wins: 35 Y Bt *ﬁ
0.9 {Loss: 5 0.9 {Loss: 24 ,’ 0.9 | Loss: 28 e ‘1
Tie: 0 Tie: 0 'y.’ Tie: 2 ®, ° "‘; *%
0.8 0.8 - /i‘ * 0.8 » % .®
" o de ol @
Y 4 o ®Q”® o
0.7 0.7 o ° 0.7 ° > ee g
o & e .
206 306 2 e 506 * g8
£ g L ee . e o
g os g os ’,': 3 os ’,4
< < » h 4
2 04 4 G

0
Wins: 54

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1DCNN Accuracy

o
S

o
W

°
Y

°
=

°
o

Accuracy comparison between 1DCNN and LS

00 01 02 03 04 05 06 07 08 09
1DCNN Accuracy

1.0

0
Wins: 29

Accuracy comparison between 1DCNN and ST

00 01 02 03 04 05 06 07 08 09
1DCNN Accuracy

1.0

Fig. 9. Accuracy results obtained from pruned IDCNN classifier with optimal .#" parameter, in comparison with: FS, LS and ST classifiers.

learners in the shapelets, it produces significantly less amount
of shapelets than its counterparts, which is the goal of the
model.

The second byproduct of our model in the mined shapelets
that are the basis of shapelet-based querying. So far, we have
assessed the performance of the IDCNN model based solely
quantitatively through FLoP, accuracy, and APOZ measures.
To ensure that the mined shapelets are equally precise, we
conducted another experiment to quantify the degree of close-
ness of the mined shapelet pattern to the original time series
instances in the database. To do so we used Dynamic Time
Warping to measure the shape differences.
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Fig. 10. Dynamic Time Warping Distances of the two most discriminative
shapelets for each class with respect to all instances.

Dynamic time warping (DTW) is a standard elastic measure
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for assessing the dissimilarity between two time series [26].
Due to its effectiveness in finding an optimal match between
two sequences, DTW has been used in many different domains
such as shape interpolation [2] [27] and time series matching
for incomplete medical data [28]. DTW works by warping
the time series in the time domain in such a way that the
final warping cost is minimal. The canonical form of DTW is
shown in Equation 6. M and N represent the lengths of the
input time series  and y. Initially the D matrix is initialized
to Doo = 0 and D, ; to D; ; = inf. The cost function f in
Eq. 6 is usually chosen to be the square of the differences
between the time series x; and y;.

D f(xi,y;) + min{D; j_1, D13, Di—1 -1}

st:ie(1,M),5€(1,N)

(A

(6)

In this context, we used DTW to compute the distance
between the mined shapelets and all the instances in the time
series database. This step is useful to show the mined shapelet
relative closeness to a subset of classes and distantness to
another subset of classes. For the sake of simplicity, we
showed an example of output from the FISH dataset that has
7 classes. We used the pruned model at optimal 75% sparsity
level and the APOZ heuristic to sort the mined shapelets in
the model and selected the two most discriminative shapelets
for 2 distinct classes. Figure 10 shows a plot of distances
between the two most significant shapelets. The dashed line
shows the separation between the orange class instances and
the rest of the database instances. Figure 11 shows the two
most discriminative shapelets overlaid on top of their optimal
positions on instances belonging to two different classes of
the Gun_Point dataset. Visually, the red shapelet corresponds
to a pattern of the first class of the dataset. Similarly, the
purple shapelet corresponds a pattern of the second class of
the problem. The visual observations are in line with the DTW
distances shown in the figure (the distance is smaller to the
class the shapelet represents).

VII. CONCLUSION

In this work, we proposed a new shapelet mining learner,
IDCNN, that leverage the use of convolutional neural net-
work from the image processing field to learn interpretable
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Fig. 11. Most Discriminative Shapelets for Gun_Point dataset binary classes

shapelets of different lengths. This is the first attempt to mine
the minimal set of shapelets needed for an optimal model
accuracy. Our model optimizes the entire classification schema
by learning the shapes of the representative patterns and then
use a pruning mechanism that iteratively trims unimportant
shapelets from the model, leaving only a fraction of shapelets
without compromising prediction accuracy. We have shown
experimentally that our method is superior to all other baseline
models pertaining to the shapelet category group. In addition,
our pruned models are more compact and robust delivering
highly accurate predictions with up to 95% less Floating Points
Operations per Second (FLOPs) required by the network. Now
that we omited the need of number of shapelets as a user-
defined parameter, a natural future work direction that we
would like to address is the automatic parameter setting for
shapelet lengths.

ACKNOWLEDGMENT

This project has been supported in part by funding from
the funding from Division of Advanced Cyberinfrastructure
within the Directorate for Computer and Information Science
and Engineering, the Division of Astronomical Sciences within
the Directorate for Mathematical and Physical Sciences, and
the Division of Atmospheric and Geospace Sciences within
the Directorate for Geosciences, under NSF award 1931555.
It was also supported in part by funding from the Heliophysics
Living With a Star Science Program, under NASA award
NNXI15AF39G.

REFERENCES

[11 S. E Boubrahimi, B. Aydin, P. Martens, and R. Angryk, “On the
prediction of >100 MeV solar energetic particle events using GOES
satellite data,” in Big Data. 1EEE, 2017.

S. F. Boubrahimi, B. Aydin, M. A. Schuh, D. Kempton, R. A. Angryk,
and R. Ma, “Spatiotemporal interpolation methods for solar event
trajectories,” APJs, vol. 236, no. 1, p. 23, 2018.

S. F. Boubrahimi, B. Aydin, D. Kempton, S. S. Mahajan, and R. Angryk,
“Filling the gaps in solar big data: Interpolation of solar filament event
instances,” in BDCloud 2016. 1EEE, 2016, pp. 97-104.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification
with cote: the collective of transformation-based ensembles,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 9, pp.
2522-2535, 2015.

D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359-370.

P. Schifer, “The boss is concerned with time series classification in the
presence of noise,” Data Mining and Knowledge Discovery, vol. 29,
no. 6, pp. 1505-1530, 2015.

[2]

[5]

[6]

502

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

[28]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 international
Jjoint conference on neural networks (IJCNN). 1EEE, 2017, pp. 1578—
1585.

S. F. Boubrahimi, R. Ma, B. Aydin, S. M. Hamdi, and R. Angryk,
“Scalable knn search approximation for time series data,” in 2018 24th
International Conference on Pattern Recognition (ICPR). 1EEE, 2018,
pp- 970-975.

M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework
to classify time series,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 11, pp. 2796-2802, 2013.

M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local autopatterns,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 476-509, 2016.

J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: The hierarchical vote collective of transformation-based ensem-
bles,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 12, no. 5, p. 52, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

L. Ye and E. Keogh, “Time series shapelets: a new primitive for
data mining,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009, pp.
947-956.

J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform
for time series classification,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 289-297.

T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm
for discovering time series shapelets,” in proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 668-676.
J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learn-
ing time-series shapelets,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 392-401.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural net-
works for time series classification,” arXiv preprint arXiv:1603.06995,
2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
arXiv preprint arXiv:1810.07758, 2018.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249-256.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in /2th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265-283.
A. Gulli and S. Pal, Deep Learning with Keras. Packt Publishing Ltd,
2017.

E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” KIS, vol. 7, no. 3, pp. 358-386, 2005.

S. F. Boubrahimi, B. Aydin, D. Kempton, and R. Angryk, “Spatio-
temporal interpolation methods for solar events metadata,” in /[EEE Big
Data 2016. 1EEE, 2016, pp. 3149-3157.

P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli, “Matching
incomplete time series with dynamic time warping: an algorithm and
an application to post-stroke rehabilitation,” Artificial intelligence in
medicine, vol. 45, no. 1, pp. 11-34, 2009.

Authorized licensed use limited to: Georgia State University. Downloaded on July 22,2022 at 05:29:42 UTC from IEEE Xplore. Restrictions apply.



