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Abstract—As one of the primary tasks in data mining, outlier
detection serves a significant role in data quality enhancement
for the scientific model prediction and revealing the abnormal
hidden patterns from large scale trajectory datasets. In this paper,
we introduce a versatile framework for detecting local trajectory
outliers using spatial and temporal features of moving objects.
Our local outlier detection consists of three phases. First, we
divide the raw trajectory into trajectory segments by using a
time-based partition strategy and extracting trajectory features
from spatial attributes for each trajectory segment. Second, we
create template trajectory segments based on a clustering schema.
Finally, we compute the abnormal score, which measures the
dissimilarity among the query and template trajectory segments,
and thus determine the outlying trajectory segments according
to the overall distribution of the abnormal score. To show the
effectiveness of our approach, we conduct two case studies on
the real-life solar active region and Coronal Mass Ejection
(CME) trajectory datasets. Our results show that our local outlier
detection method can successfully detect the reporting errors and
anomalous phenomenon in both of our case studies.

I. INTRODUCTION

With the proliferation of mainstream location-based services

and surveillance equipment, unprecedented amounts of spatio-

temporal trajectory data became available for large-scale an-

alytics tasks. Spatio-temporal trajectory [1] can be defined as

the moving objects changing spatial location over time. This

complex, often semi-structured, data type has a lot to offer for

many pattern recognition tasks in various scientific domains.

The presence of outliers makes these pattern recognition tasks

challenging as they introduce discordance into the data. In this

regard, two main reasons emerge so as to identify outliers:

Separating outliers, by improving data accuracy, can improve

the performance of predictive modeling and identify rarely

occurring, often neglected, data instances can be the main

recognition task. In recent years, a variety of outlier detection

techniques of spatio-temporal trajectory data emerged and

gained increasing interest in various application fields [2]–

[4]. Lee et al. proposed a partition and detect framework by

using the hybrid of distance-based and density-based approach

[2] where the raw trajectory is partitioned by a two-level

partition strategy with a minimum description length (MDL)

principle. It identifies the outlying sub-trajectories based on

their densities. This approach is computationally expensive

and may not be suitable for large-scale datasets. Ge et al. [3]

proposed an outlier detection method, called TOP-EYE, which

continuously calculates the outlying score of the trajectory.

This method utilizes the grid-based partition strategy and

detects the outlying trajectory by calculating the similarity

score between the summarized trajectory and query trajectory.

Moreover, Shen et al. [4] detected globally outlying trajec-

tories based on a knowledge-driven approach. This method

defines abnormal moving behaviors for vehicle trajectories.

Then, it calculates a suspicion score of anomalous events for

each trajectory and explores global anomaly trajectories by

ranking top-N suspicious events. A recent survey on trajectory

outlier analysis techniques is also available in [5].

In this work, we propose a framework that aims to detect

local outliers in terms of evolving spatial features of trajecto-

ries and segments. This framework has three phases. Firstly,

we break up the raw trajectory – by utilizing a temporal

partitioning strategy, into several trajectory segments without

losing spatial or temporal information from the raw trajectory.

For each trajectory segment, we generate summary features

(e.g., distance displacement, velocity, acceleration). In the

second stage, we cluster the spatio-temporal summary features

of trajectory segments and thus generate centroids of each

cluster, i.e., the template trajectory segments. In the final

stage, we calculate an abnormal score (AB score), which is

the weighted sum of the distance between template trajectory

segments and query trajectory segments. Finally, we determine

Fig. 1: Evolution of a large CME trajectory. The CME originated
from a X9.4 solar flare (30˝ off the west limb of the Sun) on 6
November 1997. The figures are composite images as seen by the
LASCO/SOHO [6]. Courtesy of SOHO/LASCO consortium
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the outlying trajectory segments, i.e., local outliers, with an

empirical threshold based on the AB score distributions.

We also conducted two outlier detection case studies on

two real-life datasets from solar astronomy domain to show

the effectiveness of our framework. These are solar active

region and coronal mass ejection (CME) trajectory datasets.

Both of these are critical for space weather forecasting, which

can have serious implications for human life [7]. An example

CME event and its evolution as a spatio-temporal trajectory is

shown in Fig. 1.

The rest of the paper is structured as follows. In Section

II, we describe the general framework, partitioning strategy,

and clustering approach for detecting the local outliers from

the spatio-temporal trajectories. In Section III, we conduct two

case studies on real-life datasets from solar physics domain,

to demonstrate the effectiveness of our work. In Section IV,

we provide our concluding remarks and discuss future work.

II. GENERAL FRAMEWORK

A spatio-temporal trajectory is defined as a sequence of

chronologically ordered time-geometry pairs and denoted by

TR “ txt1, g1y, xt2, g2y, . . . , xtj , gjyu where t1 ă t2 ă ¨ ¨ ¨ ă
tj , and tj represents timestamp or time interval, gj repre-

sent d-dimensional spatial objects [8]. Formally, the outlying

trajectory [9] is defined as the trajectory or sub-trajectory

which is significantly different from the majority trajectories

in the dataset. In our work, the local outlier in trajectory

is the outlying trajectory segments with the descriptive sum-

mary features significantly deviating from the other trajectory

segments (ts). In Fig. 2, a schematic diagram illustrates the

workflow of our local outlier detection framework. Firstly,

each TR object is represented as the k trajectory segments

tts1, ts2, . . . , tsku and segments are converted to predeter-

mined summary features. Secondly, we generate template

summary features of ts by applying a clustering schema to the

summary features of trajectory segments. In the final phase,

the outlying trajectory segments, denoted as ots, is determined

by the overall distribution of abnormal scores. We will discuss

each phase step by step in the following subsections.

A. Temporal Partitioning Strategy and Feature Extraction

It is ideal to partition the raw trajectory which has consis-

tent, periodic sampling interval into k trajectory segments with

an equi-length time interval. However, in real-life applications,

the sampling interval can be inconsistent and non-periodic due

to the limitations of recording equipment or the preferences

of data collectors. Both periodic and non-periodic sampling

interval scenarios need to be taken into account when imple-

menting the partition strategy. Algorithm 1 shows the parti-

tion algorithm in our framework. For the TR with periodic

sampling, we first apply linear interpolation for the trajectory

whose sampling interval if there are any missing values. We

consider the sampling interval ΔT as the basic time bin width

and use ΔT ˚n as the partition time bin width. We also apply

linear spatial interpolation to estimate the approximate spatial

data for a trajectory whose time interval is not consistent.

Algorithm 1 Temporal partitioning algorithm

Input: Trajectory – TR “ txt1, g1y, . . . , xtj , gjyu
k, n, minp

Output: Trajectory as a set of trajectory segments –

TR “ tts1, ts2, . . . , tsku
1: if TR has periodic sampling then
2: if tj .end´tj .start

ΔT ‰ j then
3: Estimate TR spatial location by using

4: linear interpolation

5: end if
6: time bin width “ ΔT ˚ n
7: Partition TR at time bin width
8: return TR “ tts1, ts2, . . . , tsku
9: else if TR has non-periodic sampling then

10: for i “ k to 1 do
11: time bin width “ tj .end´tj .start

k
12: Partition TR at time bin width
13: if minpnumber of xtj , gjy in each

14: time binq ě minp then
15: return TR “ tts1, ts2, . . . , tsku
16: end if
17: end for
18: end if

Fig. 3 shows an example partition process for a periodically

sampled trajectory (sampling interval is ΔT ). Note here that

partitioning schema accounts for missing geometry records,

which is often the case for trajectory datasets, using a spatio-

temporal interpolation procedure (see g6, g7, and g8 are not

recorded in Fig. 3).

For the TR with non-periodic sampling intervals, we use the

lifespan of trajectory divided into k segments to find a near-

optimal time-bin width and ensure that there exists sufficient

number of time-geometry pairs in the segment. The minimum

number of time-geometry pairs is denoted as minp and is

given as parameter to temporal partitioning procedure. Fig. 4

shows an example partition process illustration for an arbitrary

trajectory sampled at nonuniform time intervals.

Thus, each TR in the dataset is partitioned into a col-

lection of consecutive trajectory segments and denoted by

TR “ tts1, ts2, ..., tsku and each segment, tsk, contains

multiple time-geometry pairs, xtj , gjy, denoted by tsk “
xtm, gmy, . . . , xtn, gn ą where tm ă tm`1 ă tn. For each

trajectory segment, tsk, we extract application-dependent de-

scriptive features. These are spatial features that reflect the

spatio-temporal characteristics of the segment during the time

period from tm to tn. These can include, but are not lim-

ited to total distance covered, average velocity, or average

acceleration. The vectors of spatial features representing the

characteristic of tsk will be used for clustering segments in

the next phase. These features do not necessarily have to be

spatial and can be any time-dependent feature, but for the

context of local trajectory outlier detection, we consider only

spatial features.
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Fig. 2: Overall workflow of the local trajectory outlier detection framework. Our method starts with partitioning and feature extraction, then
determines the outliers based on cluster centers serving as templates. The segments are ranked using the abnormal score, which effectively
checks the dissimilarity.

Fig. 3: A TR “ xt1, g1y, xt2, g2y, ......, xt9, g9y with periodic sampling interval T , (1) we estimate the approximate spatial location (the
dash-dot) during rt5, t9s by using linear interpolation and (2) partition the TR at ΔT ˚ 2, thus TR “ ts1, ts2, ..., ts4 and each tsk contains
three xtj , gjy pairs.

Fig. 4: A TR “ xt1, g1y, xt2, g2y, ......, xt9, g9y with a nonuniform time interval, (1) we set the minimum number of xtj , gjy pairs in each
time bin is minp “ 3 and get t9.end´t1.start

3
as the partition time bin width duringrt1, t9s based on the partition algorithm. (2) partition

the TR at t9.end´t1.start
3

, thus TR “ tts1, ts2, ts3u and each tsk contains minimum three xtj , gjy pairs.

B. Trajectory Segments Clustering and Template Generation

The goal in this phase is to generate template trajectory

segments by applying a clustering algorithm to the extracted

features from segments. For simplicity, we will use the

centroid-based K-means++ clustering algorithm; however, any

clustering algorithm can be used as part of the framework.

K-means [10] is a widely used unsupervised learning model

that aims to divide the dataset into K non-overlapping groups.

It assigns the observation to the nearest centroid of clusters

based on a distance measure and minimizes the inter-cluster

variance. Each cluster centroid is the mean of observations

in each cluster. K-means++ [11] is an extension of K-means

with an improved centroid initialization strategy. K-means++

initializes the first centroid from the dataset, and selects

the remaining centroids by calculating the probabilities with

respect to the squared distances from the existing centroid or

centroids. Another consideration for more robust clustering

in K-means++ algorithm is finding a suitable K. While

the number of clusters should not significantly impact our

overall outlier detection procedure, to obtain the optimal K
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for the clusters, we use the empirical Elbow method [12]

and Silhouette Analysis [13] as the evaluation method. The

Elbow method measures the inter-cluster variance namely

inertia by calculating Sum Square Error (SSE) [12] for each

candidate value K. The goal is to empirically find the K value

which substantially reduces SSE from K ´ 1, but does not

significantly improve for K ` 1. Silhouette Analysis [13] is

another method to evaluate cluster quality. It measures the

cohesion within the cluster and separation outside the cluster.

The optimal K is obtained by selecting the K resulting in

the maximum Silhouette coefficient [13]. We apply the K-

means++ clustering to the summary feature vectors of overall

trajectory segments extracted from the first phase. Each cluster

will ideally represent the trajectory segments with similar

movement characteristics and the centroid of each cluster re-

flects the mean feature vectors of the corresponding trajectory

segments. We will use the centroid as the template feature,

which essentially is the prototype trajectory segment.

C. Dissimilarity Comparison

To quantify the similarity among the template and query

trajectory segments, we introduce the abnormal score (AB

score) which is the weighted sum of the Euclidean distance

between the query trajectory segments tsi and each template

trajectory segment, i.e., the centroid cj .

ABi “
Kÿ
j“1

wj ˚ distptsi, cjq (1)

Where K is the number of clusters we select from the

second phase, and wj is calculated as the ratio between the

number of trajectory segments in each cluster and the total

number of trajectory segments in the datasets.

wj “ Number of trajectory segments in cj
Total number of trajectory segments

(2)

The AB score indicates how far the tsi is to the set of

template trajectory segments. The templates essentially show

the movement trends for each cluster using the summary

features. The lower AB score shows that the query tsi is closer

to sufficiently large number of the trajectory segments. While

the higher AB score shows that the summary features of the

query largely deviates from the majority of the segments in the

dataset. In the case of significantly high AB scores, tsi is more

likely to be an outlying trajectory segment, which requires us

to set a threshold.

ots“
#

True if ABi ě threshold

False if ABi ă threshold
(3)

We determine this AB score threshold of outlying trajectory

segments again empirically as it is mostly domain-dependent.

This is done by analyzing the distribution of the AB score in

this study but it can also be done by individually checking

borderline cases. Finally, the tsi with the AB score above the

threshold is marked as the local outlier.

TABLE I: Spatial Features used in two experiments

No. Spatial Feature Formula

1 Lon. Displacement tsi.xend ´ tsi.xstart

2 Lat. Displacement tsi.yend ´ tsi.ystart

3
Displacement Vector

Magnitude
} �tsi}

4
Displacement Vector

Direction
tan´1p tsi.yend ´ tsi.ystart

tsi.xend ´ tsi.xstart
q

5
Average Velocity

(height)

tsi.heightend ´ tsi.heightstart

tsi.timeend ´ tsi.timestart

6
Average Acceleration

(height)

d2pgm`1.height ´ gm.heightq
dptm`1 ´ tmq2

7
Time-normalized

Cumulative
Angle Displacement

řn
m“1 minpΔα%360˝,´Δα%360˝q
tsi.timeend ´ tsi.timestart

,

where Δα “ gm`1.angle ´ gm.angle

III. EVALUATION

In this section, we conduct two case studies on two real-

life datasets from solar astronomy domain: (1) the solar

active region trajectory dataset from National Oceanic and

Atmospheric Administration (NOAA), and (2) Coronal Mass

Ejection (CME) events trajectory dataset from NASA / God-

dard Space Flight Center. Our case studies are performed

primarily to demonstrate the effectiveness of our local outlier

detection framework.

We retrieved the solar active region trajectory dataset from

[14]. In this dataset, heliographic longitudes and latitudes of

the solar active region centroids are reported daily along with

additional non-spatial metadata. The solar active regions are

collected between January 1996 to August 2019. There are

4,795 trajectories with at least two daily observations and a

total of 45,319 time-geometry pairs.

We obtained the CME dataset from [15] between January

1996 to March 2019, and use the height and angle as spa-

tial attributes in sky-plane coordinate system. The angle is

the position angle (in degrees) with respect to Sun’s center

from observer’s field of view, while the height represents the

distance between the Sun’s corona and the CME in RSun,

which is the radius of the Sun (approx. 695,700 kms). We

disregarded the faint CMEs with less than ten records. In

the end, we have 16,509 CME trajectories and 372,048 time-

geometry pairs records in this experiment. CME locations are

recorded in non-periodic time intervals, time cadence ranging

from tens of seconds to several hours.

A. Solar Active Region Trajectory

The time-geometry pairs of solar active regions are reported

daily (ΔT “ 24 hours). Due to this relatively low-frequency

in reporting, we set n=1 as the input parameter in the temporal

partition algorithm (meaning only one time interval with start

and end geometries will constitute a segment). Each trajectory

is partitioned into multiple ts and each ts contains two time-

geometry pairs. In the end, we have 40,758 trajectory segments
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after initial preprocessing, interpolation, and temporal parti-

tion. For each ts, we generate four normalized vector-based

spatial features, namely, longitudinal displacement, latitudinal

displacement, displacement vector magnitude, and displace-

ment vector direction, shown in Table I (features 1 through

4). We chose K “ 3 as the number of the clusters based

on the elbow method and mean Silhouette score shown in

Fig. 5. Based on the given features and the empirical K value,

we clustered the trajectory segments into three clusters. The

summary statistics for each cluster is shown in Table II. A

strong majority („99.5%) of the solar active region trajectory

segments are clustered into Cluster 0, which has an average

longitudinal displacement of `13.33˝ and these segments

barely change their latitudes and vector direction. This is the

expected movement of solar active regions, caused by the

solar rotation (covering 180˝ in 13-14 days). The segments in

Cluster 1 and Cluster 2 represent the minority (both totalling

„0.5%), whose spatio-temporal features are vastly different

from the ones in Cluster 0 (e.g. dramatic changes (over ˘100˝)

in vector direction). Note here that while Cluster 1 and 2

represent rather anomalous movement behaviors, the aim of

the clustering step is not to find outlier clusters, and outlying

trajectory segments are found by the next step using the AB

score.

Fig. 5: Sum of squared errors for the Elbow method (on the left)
and Mean Silhouette Score (on the right) for determining number of
clusters (K) for solar active region trajectory segments. We selected
K “ 3.

TABLE II: The summary statistics for three solar active region
trajectory segment clusters. The count is the number of trajectory
segments in each cluster, mean and std is the average value and the
standard deviation of four spatial features in the cluster.

Cluster 0 Lon. Lat. Disp. Vector Disp. Vector

count=40,586 displacement (deg) displacement (deg) Magnitude Direction

mean 13.33 0.01 13.38 0.06

std 1.95 1.22 2.01 4.75

Cluster 1 Lon. Lat. Disp. Vector Disp. Vector

count=140 displacement (deg) displacement (deg) Magnitude Direction

mean -3.72 -0.82 3.89 -168.49

std 13.39 4.16 14.00 8.56

Cluster 2 Lon. Lat. Disp. Vector Disp. Vector

count=32 displacement (deg) displacement (deg) Magnitude Direction

mean -16.59 10.19 25.22 156.13

std 28.81 20.48 31.38 34.00

In the dissimilarity comparison phase, we use the AB score

discussed in II-C and obtain the abnormal score distribution

for the trajectory segments, shown in Fig. 6a. We find that over

99% of the AB scores are below 0.1, hence, in this case, we set

the threshold as 0.1 and get 354 outlying trajectory segments

namely, the local outliers. In Fig. 6b, the light blue movement

vectors (in the background) represent the normal ts, while

red, yellow, and green vectors represent the ots that come

from corresponding clusters (0, 1, and 2 respectively). We can

see that the magnitudes of normal ts, which are essentially

uniform and move from the east to the west-limb (east-west

direction is reversed for solar coordinates) with slight direction

changes (generally ď ˘2˝). Among the ots, we can see that

the majority moving direction of ots from Cluster 0 is the

same with normal ts, but with anomalous magnitudes, and the

ones from Cluster 1 (yellow) and Cluster 2 (green) shows the

anomalous behavior in both moving direction and magnitude;

i.e., the opposite direction to solar rotation and unexpected

lengths compared to the normal ts. In our previous work [16],

we showed that there are around 60 anomalous NOAA active

region trajectories (global) between 2010 and 2018, which

are caused by the erroneous location reporting. The detected

outliers in this case study include all of the previous reporting

errors, which verifies the reliability of our outlier detection

methodology.

B. Coronal Mass Ejection (CME) trajectory

Our second case study is on coronal mass ejections (CMEs).

The sampling interval (time cadence) of CME trajectories

is non-uniform and vastly irregular (from seconds to several

hours mostly due to the cadence of LASCO instrument on-

board SOHO spacecraft [17]). To this end, we use the temporal

partition algorithm for non-periodic sampling. In this case,

we are interested in three spatial features: average velocity,

average acceleration, and cumulative angle displacement, de-

scribed in Table I (features 5 to 7). Hence, in the partitioning

phase, we set input parameters k “ 15 and minp “ 3 to

ensure the minimum number of time-geometry records in each

ts is three. After trajectory segmentation, we generate 55,976

trajectory segments with three summary features (features are

then normalized). Based on the elbow method and Silhouette

Analysis, we choose K “ 3 for K-means clustering (scores

shown in Fig. 7) and create three clusters. About „72% of

segments belong to Cluster 0, while „23% and „5% of them

belong to Clusters 1 and 2, respectively. In this case, based

on the distribution of AB scores shown in Fig. 8a, we select

top-1% AB score as the threshold for outlying segments (ots).

Fig. 8b shows the distribution of three summary features of

normal ts and ots from each cluster. It is worth to notice

that compared to the summary features of normal ts, the red

ots from Cluster 0 shows very slow CMEs (low-velocity),

the orange ones from Cluster 1 represents very fast CMEs,

and the purple ots with large angle change is from Cluster

2. To better illustrate the movement characteristics among the

normal ts and ots in CME datasets, we create the height-angle

plots of ts on the polar coordinate plane and corresponding

summary statistics are shown in Fig. 9. We randomly choose

0.1% percent of normal ts for improving the visibility and
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(a) (b)

Fig. 6: (a) The distribution of AB scores for solar active region trajectory segments and (b) 2D scatter plot of movement vectors (each
showing daily movement) for normal ts (in blue) and outliers (in red, yellow and green).

Fig. 7: Sum of squared errors for the Elbow method (on the left)
and Mean Silhouette Score (on the right) for determining number of
clusters (K) for CME trajectory segments. We selected K “ 3.

10% of ots from each cluster to demonstrate their outlying

spatio-temporal characteristics. We can see that, ots in the

Fig. 9b represents the slower CME segments compared to

normal ts in Fig. 9a. Similarly, the faster ts is identified

as the ots in the Cluster 1 in Fig. 9c. In addition, ts in

Fig. 9d shows the zigzag movement patterns which indicates

an anomalous moving behavior for a CME (or a reporting

error) of ts compared to normal ts.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed a framework for detecting local

outliers from the spatio-temporal trajectory datasets. We intro-

duced a temporal partition algorithm for the trajectories with

both periodic and non-periodic recording intervals. By doing

that, we aimed to keep the spatial and temporal data intact

and to extract the summary features for trajectory segments

used in the clustering phase. The template trajectory segments

generated by clustering schema indicate the representative

moving characteristics in the overall trajectory segments. We

also introduced the AB score, which can robustly quantify

the dissimilarity between the majority and/or minority moving

characteristics of the trajectory segments.

Our outlier detection case studies on solar active region and

CME trajectory datasets demonstrate that we can successfully

identify the local outliers in these real-life dataset using a

simple threshold for AB score. Detailed local outlier detection

results show these outliers are most likely the results of

either a reporting error or an anomalous movement in these

trajectories. Solar active regions and CMEs are essential input

data for space weather prediction and modeling. We believe

that quality assessments of these event reports, which are often

taken for granted, can seriously impact the large-scale solar

flare or eruption prediction models.

In the future work, we plan to analyze the impact of different

clustering algorithms and distance metrics and extend our work

to network-based trajectory datasets.
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