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Abstract—As one of the primary tasks in data mining, outlier
detection serves a significant role in data quality enhancement
for the scientific model prediction and revealing the abnormal
hidden patterns from large scale trajectory datasets. In this paper,
we introduce a versatile framework for detecting local trajectory
outliers using spatial and temporal features of moving objects.
Our local outlier detection consists of three phases. First, we
divide the raw trajectory into trajectory segments by using a
time-based partition strategy and extracting trajectory features
from spatial attributes for each trajectory segment. Second, we
create template trajectory segments based on a clustering schema.
Finally, we compute the abnormal score, which measures the
dissimilarity among the query and template trajectory segments,
and thus determine the outlying trajectory segments according
to the overall distribution of the abnormal score. To show the
effectiveness of our approach, we conduct two case studies on
the real-life solar active region and Coronal Mass Ejection
(CME) trajectory datasets. Our results show that our local outlier
detection method can successfully detect the reporting errors and
anomalous phenomenon in both of our case studies.

I. INTRODUCTION

With the proliferation of mainstream location-based services
and surveillance equipment, unprecedented amounts of spatio-
temporal trajectory data became available for large-scale an-
alytics tasks. Spatio-temporal trajectory [1] can be defined as
the moving objects changing spatial location over time. This
complex, often semi-structured, data type has a lot to offer for
many pattern recognition tasks in various scientific domains.
The presence of outliers makes these pattern recognition tasks
challenging as they introduce discordance into the data. In this
regard, two main reasons emerge so as to identify outliers:
Separating outliers, by improving data accuracy, can improve
the performance of predictive modeling and identify rarely
occurring, often neglected, data instances can be the main
recognition task. In recent years, a variety of outlier detection
techniques of spatio-temporal trajectory data emerged and
gained increasing interest in various application fields [2]-
[4]. Lee et al. proposed a partition and detect framework by
using the hybrid of distance-based and density-based approach
[2] where the raw trajectory is partitioned by a two-level
partition strategy with a minimum description length (MDL)
principle. It identifies the outlying sub-trajectories based on
their densities. This approach is computationally expensive
and may not be suitable for large-scale datasets. Ge et al. [3]
proposed an outlier detection method, called TOP-EYE, which
continuously calculates the outlying score of the trajectory.
This method utilizes the grid-based partition strategy and
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detects the outlying trajectory by calculating the similarity
score between the summarized trajectory and query trajectory.
Moreover, Shen et al. [4] detected globally outlying trajec-
tories based on a knowledge-driven approach. This method
defines abnormal moving behaviors for vehicle trajectories.
Then, it calculates a suspicion score of anomalous events for
each trajectory and explores global anomaly trajectories by
ranking top-N suspicious events. A recent survey on trajectory
outlier analysis techniques is also available in [5].

In this work, we propose a framework that aims to detect
local outliers in terms of evolving spatial features of trajecto-
ries and segments. This framework has three phases. Firstly,
we break up the raw trajectory — by utilizing a temporal
partitioning strategy, into several trajectory segments without
losing spatial or temporal information from the raw trajectory.
For each trajectory segment, we generate summary features
(e.g., distance displacement, velocity, acceleration). In the
second stage, we cluster the spatio-temporal summary features
of trajectory segments and thus generate centroids of each
cluster, i.e., the template trajectory segments. In the final
stage, we calculate an abnormal score (AB score), which is
the weighted sum of the distance between template trajectory
segments and query trajectory segments. Finally, we determine
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Fig. 1: Evolution of a large CME trajectory. The CME originated
from a X9.4 solar flare (30° off the west limb of the Sun) on 6
November 1997. The figures are composite images as seen by the
LASCO/SOHO [6]. Courtesy of SOHO/LASCO consortium
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the outlying trajectory segments, i.e., local outliers, with an
empirical threshold based on the AB score distributions.

We also conducted two outlier detection case studies on
two real-life datasets from solar astronomy domain to show
the effectiveness of our framework. These are solar active
region and coronal mass ejection (CME) trajectory datasets.
Both of these are critical for space weather forecasting, which
can have serious implications for human life [7]. An example
CME event and its evolution as a spatio-temporal trajectory is
shown in Fig. 1.

The rest of the paper is structured as follows. In Section
II, we describe the general framework, partitioning strategy,
and clustering approach for detecting the local outliers from
the spatio-temporal trajectories. In Section III, we conduct two
case studies on real-life datasets from solar physics domain,
to demonstrate the effectiveness of our work. In Section 1V,
we provide our concluding remarks and discuss future work.

II. GENERAL FRAMEWORK

A spatio-temporal trajectory is defined as a sequence of
chronologically ordered time-geometry pairs and denoted by
TR = {<t1,gl>, <152,gg>7 ey <tjygj>} where t] <ty <--- <
t;, and t; represents timestamp or time interval, g; repre-
sent d-dimensional spatial objects [8]. Formally, the outlying
trajectory [9] is defined as the trajectory or sub-trajectory
which is significantly different from the majority trajectories
in the dataset. In our work, the local outlier in trajectory
is the outlying trajectory segments with the descriptive sum-
mary features significantly deviating from the other trajectory
segments (ts). In Fig. 2, a schematic diagram illustrates the
workflow of our local outlier detection framework. Firstly,
each T'R object is represented as the k trajectory segments
{ts1,tsa,...,ts;} and segments are converted to predeter-
mined summary features. Secondly, we generate template
summary features of ¢s by applying a clustering schema to the
summary features of trajectory segments. In the final phase,
the outlying trajectory segments, denoted as ots, is determined
by the overall distribution of abnormal scores. We will discuss
each phase step by step in the following subsections.

A. Temporal Partitioning Strategy and Feature Extraction

It is ideal to partition the raw trajectory which has consis-
tent, periodic sampling interval into £ trajectory segments with
an equi-length time interval. However, in real-life applications,
the sampling interval can be inconsistent and non-periodic due
to the limitations of recording equipment or the preferences
of data collectors. Both periodic and non-periodic sampling
interval scenarios need to be taken into account when imple-
menting the partition strategy. Algorithm 1 shows the parti-
tion algorithm in our framework. For the T'R with periodic
sampling, we first apply linear interpolation for the trajectory
whose sampling interval if there are any missing values. We
consider the sampling interval AT as the basic time bin width
and use AT «n as the partition time bin width. We also apply
linear spatial interpolation to estimate the approximate spatial
data for a trajectory whose time interval is not consistent.

Algorithm 1 Temporal partitioning algorithm
Input: Trajectory — TR = {{t1, 1), -..,{tj,9;)}
k, n, minp
Output: Trajectory as a set of trajectory segments —
TR = {ts1,tS2,...,tSk}
1if T R has gerlodlc sampling then
2. tj en tj start ;é _] then
3 Estlmate TR spatial location by using
4: linear interpolation
5: end if
6
7
8
9

time_bin_width = AT =n
Partition TR at time_bin_width
return TR = {ts1,tS2,...,tSk}
. else if T'R has non-periodic sampling then
10: for i =k to1do

tj.end—t;.start

11: time_bin_width =

12: Partition T'R at time_bin_width
13: if min(number of (t;,g;) in each
14: time bin) > minp then

15: return TR = {tsy,tsa,...,ts;}
16: end if

17: end for

18: end if

Fig. 3 shows an example partition process for a periodically
sampled trajectory (sampling interval is AT’). Note here that
partitioning schema accounts for missing geometry records,
which is often the case for trajectory datasets, using a spatio-
temporal interpolation procedure (see gg, g7, and gg are not
recorded in Fig. 3).

For the T'R with non-periodic sampling intervals, we use the
lifespan of trajectory divided into k segments to find a near-
optimal time-bin width and ensure that there exists sufficient
number of time-geometry pairs in the segment. The minimum
number of time-geometry pairs is denoted as minp and is
given as parameter to temporal partitioning procedure. Fig. 4
shows an example partition process illustration for an arbitrary
trajectory sampled at nonuniform time intervals.

Thus, each TR in the dataset is partitioned into a col-
lection of consecutive trajectory segments and denoted by
TR = {tsi,tss,...,ts;} and each segment, ts;, contains
multiple time-geometry pairs, (t;,g;», denoted by ts; =
oy Gm s -+ s {tny gn > where t,, < t41 < t,. For each
trajectory segment, tsj, we extract application-dependent de-
scriptive features. These are spatial features that reflect the
spatio-temporal characteristics of the segment during the time
period from t¢,, to t,. These can include, but are not lim-
ited to total distance covered, average velocity, or average
acceleration. The vectors of spatial features representing the
characteristic of ts; will be used for clustering segments in
the next phase. These features do not necessarily have to be
spatial and can be any time-dependent feature, but for the
context of local trajectory outlier detection, we consider only
spatial features.
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Fig. 2: Overall workflow of the local trajectory outlier detection framework. Our method starts with partitioning and feature extraction, then
determines the outliers based on cluster centers serving as templates. The segments are ranked using the abnormal score, which effectively
checks the dissimilarity.
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Fig. 3: A TR = {t1,91),{t2,92), ...... ,{t9, goy with periodic sampling interval T", (1) we estimate the approximate spatial location (the

dash-dot) during [¢5, t9] by using linear interpolation and (2) partition the TR at AT 2, thus TR = ts1,t$2, ..., ts4 and each tsy, contains
three {t;, g;) pairs.

ts, = {<t,, g,>,<t,, g,>.<t;, g,>.<t,, 9,>} Partition time bin width =

)3

(tg.end b t1 start

Fig. 4: ATR = {t1,91),{t2,92), ... ,{t9, g9y with a nonuniform time interval, (1) we set the minimum number of {{;, g;) pairs in each
time bin is minp = 3 and get W as the partition time bin width during[t1, 9] based on the partition algorithm. (2) partition
the TR at Ww, thus TR = {ts1,ts2,ts3} and each ts; contains minimum three (t;, g;) pairs.

B. Trajectory Segments Clustering and Template Generation  variance. Each cluster centroid is the mean of observations
in each cluster. K-means++ [11] is an extension of K-means
with an improved centroid initialization strategy. K-means++
initializes the first centroid from the dataset, and selects
the remaining centroids by calculating the probabilities with
respect to the squared distances from the existing centroid or
centroids. Another consideration for more robust clustering
in K-means++ algorithm is finding a suitable K. While
the number of clusters should not significantly impact our
overall outlier detection procedure, to obtain the optimal K

The goal in this phase is to generate template trajectory
segments by applying a clustering algorithm to the extracted
features from segments. For simplicity, we will use the
centroid-based K-means++ clustering algorithm; however, any
clustering algorithm can be used as part of the framework.
K-means [10] is a widely used unsupervised learning model
that aims to divide the dataset into K non-overlapping groups.
It assigns the observation to the nearest centroid of clusters
based on a distance measure and minimizes the inter-cluster
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for the clusters, we use the empirical Elbow method [12]
and Silhouette Analysis [13] as the evaluation method. The
Elbow method measures the inter-cluster variance namely
inertia by calculating Sum Square Error (SSE) [12] for each
candidate value K. The goal is to empirically find the K value
which substantially reduces SSE from K — 1, but does not
significantly improve for K + 1. Silhouette Analysis [13] is
another method to evaluate cluster quality. It measures the
cohesion within the cluster and separation outside the cluster.
The optimal K is obtained by selecting the K resulting in
the maximum Silhouette coefficient [13]. We apply the K-
means++ clustering to the summary feature vectors of overall
trajectory segments extracted from the first phase. Each cluster
will ideally represent the trajectory segments with similar
movement characteristics and the centroid of each cluster re-
flects the mean feature vectors of the corresponding trajectory
segments. We will use the centroid as the template feature,
which essentially is the prototype trajectory segment.

C. Dissimilarity Comparison

To quantify the similarity among the template and query
trajectory segments, we introduce the abnormal score (AB
score) which is the weighted sum of the Euclidean distance
between the query trajectory segments ts; and each template
trajectory segment, i.e., the centroid c;.

K
AB; = Z wj * dist(ts;, ¢j) (D
j=1
Where K is the number of clusters we select from the
second phase, and w; is calculated as the ratio between the
number of trajectory segments in each cluster and the total
number of trajectory segments in the datasets.

_ Number of trajectory segments in c;

Wi = Total number of trajectory segments @

The AB score indicates how far the ts; is to the set of
template trajectory segments. The templates essentially show
the movement trends for each cluster using the summary
features. The lower AB score shows that the query ts; is closer
to sufficiently large number of the trajectory segments. While
the higher AB score shows that the summary features of the
query largely deviates from the majority of the segments in the
dataset. In the case of significantly high AB scores, ts; is more
likely to be an outlying trajectory segment, which requires us
to set a threshold.

True if AB; > threshold
ots = 3)
False if AB; < threshold

We determine this AB score threshold of outlying trajectory
segments again empirically as it is mostly domain-dependent.
This is done by analyzing the distribution of the AB score in
this study but it can also be done by individually checking
borderline cases. Finally, the ts; with the AB score above the
threshold is marked as the local outlier.

TABLE I: Spatial Features used in two experiments

No. Spatial Feature Formula

1 Lon. Displacement tSi-Tend — tSi-Tstart

2 Lat. Displacement t5i-Yend — tSi-Ystart

Displacement Vector

Magnitude Nesil

4 Displacement Vector tan—1 1Si-Yend — Si-Ystart

Direction t8i.Tend — tSi-Tstart

Average Velocity ts;.heightena — tsi-heightsiart

(height)

ts;.timeecnq — tSi.timestart

Average Acceleration d?(gm 1 1.height — gm.height)

(height) d(tmi1 — tm)2
Time-normalized —1 min(Aa%360°, —Aa%360°)
7 Cumulative ’

ts;.timeepq — tsi.timestart
where

Angle Displacement a = gm+1.angle — gm.angle

III. EVALUATION

In this section, we conduct two case studies on two real-
life datasets from solar astronomy domain: (1) the solar
active region trajectory dataset from National Oceanic and
Atmospheric Administration (NOAA), and (2) Coronal Mass
Ejection (CME) events trajectory dataset from NASA / God-
dard Space Flight Center. Our case studies are performed
primarily to demonstrate the effectiveness of our local outlier
detection framework.

We retrieved the solar active region trajectory dataset from
[14]. In this dataset, heliographic longitudes and latitudes of
the solar active region centroids are reported daily along with
additional non-spatial metadata. The solar active regions are
collected between January 1996 to August 2019. There are
4,795 trajectories with at least two daily observations and a
total of 45,319 time-geometry pairs.

We obtained the CME dataset from [15] between January
1996 to March 2019, and use the height and angle as spa-
tial attributes in sky-plane coordinate system. The angle is
the position angle (in degrees) with respect to Sun’s center
from observer’s field of view, while the height represents the
distance between the Sun’s corona and the CME in Rgyn,
which is the radius of the Sun (approx. 695,700 kms). We
disregarded the faint CMEs with less than ten records. In
the end, we have 16,509 CME trajectories and 372,048 time-
geometry pairs records in this experiment. CME locations are
recorded in non-periodic time intervals, time cadence ranging
from tens of seconds to several hours.

A. Solar Active Region Trajectory

The time-geometry pairs of solar active regions are reported
daily (AT = 24 hours). Due to this relatively low-frequency
in reporting, we set n=1 as the input parameter in the temporal
partition algorithm (meaning only one time interval with start
and end geometries will constitute a segment). Each trajectory
is partitioned into multiple ¢s and each ¢s contains two time-
geometry pairs. In the end, we have 40,758 trajectory segments

5685



after initial preprocessing, interpolation, and temporal parti-
tion. For each s, we generate four normalized vector-based
spatial features, namely, longitudinal displacement, latitudinal
displacement, displacement vector magnitude, and displace-
ment vector direction, shown in Table I (features 1 through
4). We chose K = 3 as the number of the clusters based
on the elbow method and mean Silhouette score shown in
Fig. 5. Based on the given features and the empirical K value,
we clustered the trajectory segments into three clusters. The
summary statistics for each cluster is shown in Table II. A
strong majority (~99.5%) of the solar active region trajectory
segments are clustered into Cluster 0, which has an average
longitudinal displacement of +13.33° and these segments
barely change their latitudes and vector direction. This is the
expected movement of solar active regions, caused by the
solar rotation (covering 180° in 13-14 days). The segments in
Cluster 1 and Cluster 2 represent the minority (both totalling
~0.5%), whose spatio-temporal features are vastly different
from the ones in Cluster O (e.g. dramatic changes (over 100°)
in vector direction). Note here that while Cluster 1 and 2
represent rather anomalous movement behaviors, the aim of
the clustering step is not to find outlier clusters, and outlying
trajectory segments are found by the next step using the AB
score.

Mean Silhouette Score

Sum of Squared Error

~

- L_‘_«\\
3 A T3 "

3 5 3 3 5 3
Number of K Number of K

Fig. 5: Sum of squared errors for the Elbow method (on the left)
and Mean Silhouette Score (on the right) for determining number of
clusters (K) for solar active region trajectory segments. We selected
K =3.

TABLE II: The summary statistics for three solar active region
trajectory segment clusters. The count is the number of trajectory
segments in each cluster, mean and std is the average value and the
standard deviation of four spatial features in the cluster.

Cluster 0 Lon. Lat. Disp. Vector | Disp. Vector
count=40, 586 | displacement (deg) | displacement (deg) | Magnitude Direction
mean 13.33 0.01 13.38 0.06
std 1.95 1.22 2.01 4.75
Cluster 1 Lon. Lat. Disp. Vector | Disp. Vector
count=140 displacement (deg) | displacement (deg) | Magnitude Direction
mean -3.72 -0.82 3.89 -168.49
std 13.39 4.16 14.00 8.56
Cluster 2 Lon. Lat. Disp. Vector | Disp. Vector
count=32 displacement (deg) | displacement (deg) | Magnitude Direction
mean -16.59 10.19 25.22 156.13
std 28.81 20.48 31.38 34.00

In the dissimilarity comparison phase, we use the AB score
discussed in II-C and obtain the abnormal score distribution

for the trajectory segments, shown in Fig. 6a. We find that over
99% of the AB scores are below 0.1, hence, in this case, we set
the threshold as 0.1 and get 354 outlying trajectory segments
namely, the local outliers. In Fig. 6b, the light blue movement
vectors (in the background) represent the normal ts, while
red, yellow, and green vectors represent the ots that come
from corresponding clusters (0, 1, and 2 respectively). We can
see that the magnitudes of normal ¢s, which are essentially
uniform and move from the east to the west-limb (east-west
direction is reversed for solar coordinates) with slight direction
changes (generally < £2°). Among the ots, we can see that
the majority moving direction of ots from Cluster 0 is the
same with normal ¢s, but with anomalous magnitudes, and the
ones from Cluster 1 (yellow) and Cluster 2 (green) shows the
anomalous behavior in both moving direction and magnitude;
i.e., the opposite direction to solar rotation and unexpected
lengths compared to the normal ¢s. In our previous work [16],
we showed that there are around 60 anomalous NOAA active
region trajectories (global) between 2010 and 2018, which
are caused by the erroneous location reporting. The detected
outliers in this case study include all of the previous reporting
errors, which verifies the reliability of our outlier detection
methodology.

B. Coronal Mass Ejection (CME) trajectory

Our second case study is on coronal mass ejections (CMEs).
The sampling interval (time cadence) of CME trajectories
is non-uniform and vastly irregular (from seconds to several
hours mostly due to the cadence of LASCO instrument on-
board SOHO spacecraft [17]). To this end, we use the temporal
partition algorithm for non-periodic sampling. In this case,
we are interested in three spatial features: average velocity,
average acceleration, and cumulative angle displacement, de-
scribed in Table I (features 5 to 7). Hence, in the partitioning
phase, we set input parameters k& = 15 and minp = 3 to
ensure the minimum number of time-geometry records in each
ts is three. After trajectory segmentation, we generate 55,976
trajectory segments with three summary features (features are
then normalized). Based on the elbow method and Silhouette
Analysis, we choose K = 3 for K-means clustering (scores
shown in Fig. 7) and create three clusters. About ~72% of
segments belong to Cluster 0, while ~23% and ~5% of them
belong to Clusters 1 and 2, respectively. In this case, based
on the distribution of AB scores shown in Fig. 8a, we select
top-1% AB score as the threshold for outlying segments (ots).
Fig. 8b shows the distribution of three summary features of
normal ¢s and ots from each cluster. It is worth to notice
that compared to the summary features of normal t¢s, the red
ots from Cluster 0 shows very slow CMEs (low-velocity),
the orange ones from Cluster 1 represents very fast CMEs,
and the purple ots with large angle change is from Cluster
2. To better illustrate the movement characteristics among the
normal ¢s and ots in CME datasets, we create the height-angle
plots of ¢s on the polar coordinate plane and corresponding
summary statistics are shown in Fig. 9. We randomly choose
0.1% percent of normal ts for improving the visibility and
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Fig. 6: (a) The distribution of AB scores for solar active region trajectory segments and (b) 2D scatter plot of movement vectors (each
showing daily movement) for normal ¢s (in blue) and outliers (in red, yellow and green).
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Fig. 7: Sum of squared errors for the Elbow method (on the left)
and Mean Silhouette Score (on the right) for determining number of
clusters (K) for CME trajectory segments. We selected K = 3.

10% of ots from each cluster to demonstrate their outlying
spatio-temporal characteristics. We can see that, ots in the
Fig. 9b represents the slower CME segments compared to
normal ts in Fig. 9a. Similarly, the faster ¢s is identified
as the ots in the Cluster 1 in Fig. 9c. In addition, ¢s in
Fig. 9d shows the zigzag movement patterns which indicates
an anomalous moving behavior for a CME (or a reporting
error) of ts compared to normal ts.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed a framework for detecting local
outliers from the spatio-temporal trajectory datasets. We intro-
duced a temporal partition algorithm for the trajectories with
both periodic and non-periodic recording intervals. By doing
that, we aimed to keep the spatial and temporal data intact
and to extract the summary features for trajectory segments
used in the clustering phase. The template trajectory segments
generated by clustering schema indicate the representative
moving characteristics in the overall trajectory segments. We
also introduced the AB score, which can robustly quantify
the dissimilarity between the majority and/or minority moving
characteristics of the trajectory segments.

Our outlier detection case studies on solar active region and
CME trajectory datasets demonstrate that we can successfully
identify the local outliers in these real-life dataset using a
simple threshold for AB score. Detailed local outlier detection
results show these outliers are most likely the results of
either a reporting error or an anomalous movement in these
trajectories. Solar active regions and CMEs are essential input
data for space weather prediction and modeling. We believe
that quality assessments of these event reports, which are often
taken for granted, can seriously impact the large-scale solar
flare or eruption prediction models.

In the future work, we plan to analyze the impact of different
clustering algorithms and distance metrics and extend our work
to network-based trajectory datasets.
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