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Abstract. Clustering is an essential unsupervised learning method.
While the clustering of discrete data is a reasonably solved problem,
sequential data clustering, namely time series data, is still an ongoing
problem. Sequential data such as time series is widely used due to its
abundance of detailed information. Often, normalization is applied to
amplify the similarity of time series data. However, by applying normal-
ization, measurement values, which is an important aspect of similarity,
are removed, impairing the veracity of comparison. In this paper, we
introduce a tiered clustering method by adding the value characteristic
to the clustering of normalized time series. As such, two clustering meth-
ods are implemented. First, the Distance Density Clustering algorithm
is applied to normalized time series data. After obtaining the first-tier
results, we apply a traditional hierarchical clustering of a summarized
time series value to further partition clusters.
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1 Introduction

The majority of data used in traditional data analysis are discrete point data,
either an instantaneous point value (i.e., point in time) or a summarized point
value (i.e., average). While point data is efficient to store and process, the obvious
drawback is the lack of rich details. On the other hand, sequential data contains
much more details on the process of a recorded event. Time series is a special
type of sequential data, it is ordered and evenly spaced sequential values. Time
series is extensively applied in various real-world applications.

Clustering is an important part of exploratory data mining; essentially, it is
the partitioning of data to have high within-cluster similarity and low between-
cluster similarity. A clustering process can be an independent procedure to gain
insight into the distribution of a dataset or as a pre-process or subroutine
for other data mining tasks, such as rule discovery, indexing, summarization,
anomaly detection, and classification [6]. The application of clustering is very
diverse; it can be applied in fields such as pattern recognition, machine learning,
bioinformatics, and more.

Cluster analysis is a reasonably well-studied problem in the data mining com-
munity. The clustering of time series, however, is a relatively newer facet. Due
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to the high dimensionality of time series data, the distribution can be difficult
to comprehend. The predetermination of cluster parameter settings is already a
difficult task with discrete data. The global parameter used for partitioning can
be even more complicated to identify for time series data, as it is near impossi-
ble to visualize the respective position and correlation of time series. Therefore
cluster algorithms with minimal parameter settings are more beneficial, making
the study of the effect of different hierarchical structures of a time series dataset
an important aspect to consider.

Previous work on solar flares has shown that profiles could be used to iden-
tify the otherwise unnoticeable distinction amongst time series data [12]. A key
application of time series profiles is prediction. If distinct trend profiles can be
identified prior to the occurrence of an event, then predictions can be made as
new measurements come in, near realtime. Another possible application of time
series cluster profiles is identifying possible sub-classes within existing identified
classes. If different profiles within an existing class can be found, this would
insinuate the existence of physical sub-classes within the current definitions.
Both applications may be hard to achieve using discrete point values, whereas
the adoption of time series data and shape-based analysis could set the stage in
this direction.

The issue with using normalized time series data to generate cluster profiles is
that in the process of normalization, certain aspects of time series characteristics
are lost. There are three aspects of time series similarity: range value similarity,
duration similarity, and shape similarity [12]. By normalization, the shape sim-
ilarity is amplified while sacrificing value similarity. Therefore, even though the
shape similarity is much more apparent and that clustering algorithms can build
clusters of more similar time series, accuracy did not improve when compared
to clustering with data that is not normalized. In this paper, we extend the nor-
malized cluster profiles by adding another layer of value-based clustering, in the
hope of combining two types of similarity and generating better results.

The rest of this paper is organized as follows: Sect.2 presents the related
work. Section 3 discusses the applied clustering methods and how they produce
tiered cluster results. Section 4 briefly discuss the solar pre-flare time series data
used in our experiments. Section5 presents the results and analysis. Finally,
Sect. 6 summarizes this paper.

2 Background

2.1 Distance Measure

Real-world events are complex and detailed, often times when we evaluate events
on summarized values we trade preciseness for efficiency. With the improved
storage and processing capabilities, sequential data has gained more popularity.
Time series is a popular type of sequential data, it is a sequence of measurements
that are equally spaced in time. Since real-world events are complex and often
affected by a multitude of unforeseeable external factors, it is highly probable to
observe differences for both duration and measurements for time series describing
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the same class of events. Therefore the similarity determination for time series
is not a trivial problem.

There are two main types of similarity measure, lock-step and elastic. The
traditional lock-step similarity measure L, norm refers to the Minkowski dis-
tance raised to the power of p. Minkowski distance is most commonly used with
L, where p = 1 (Manhattan distance), and with L, where p = 2 (Euclidean
distance). Euclidean distance is the straight-line distance. When applied to time
series, assuming we are working with equal length time series, Euclidean distance
will always be made based on a one-to-one mapping where the i-th element in
one sequence is always mapped to the i-th element in the compared sequence.
Comparatively, elastic measures allow one-to-many as well as one-to-one map-
pings [9]. Originally used in the field of speech recognition, the Dynamic Time
Warping (DTW) algorithm is one of the most widely used elastic similarity mea-
surement [1-3,7]. DTW enables computers to find an optimal match between two
given sequences under certain constraints, and it allows a flexibility in sequential
similarity comparisons.

Euclidean and DTW distances [5] of given time series ) and C are shown
in Eq. 1 and 2, respectively, where time series Q: @ = {q1, 92, ..., ¢y ..., qn }, and
time series C: C' = {c1,¢2,...,¢j,s oo, Cm }-

Dist(Euclidean) =

Dist(DTW) = min{W(Q,C)} (2)

When Euclidean distance is used for time series data, the total distance is the
sum of distances between each of the one-to-one mapping between elements ¢;
and ¢;. In the case of DTW, however, a n x m distance matrix is first constructed
containing all possible distances for each ¢; and ¢; pairing. Then each optimum
step is chosen to form the optimal path, among the numerous warping paths of
W = wq,wsa, ..., Wk, ..., wg, the path that minimizes the mapping between time
series () and C|, represented as min{W}, is considered as the optimal warping
path.

At each step of the DTW algorithm, several choices are presented, and the
allowed possibilities is referred to as the step pattern. The ability to choose a
minimal step translates to data point mapping, and this choice gives the ability
and effectiveness in finding shape similarities in time series data. Equation 3 is
considered as one of the most basic and commonly used step patterns. Here the
cumulative distance D(Q;,C;) is the sum of the current distance d(g;,c;) and
the minimum distance from the adjacent elements.

d(Qi, Cj-1)
D(QZ,C]) = d(qi,cj) —I—mm d(Qz’—lacj—l) (3)

d(Qi—lv Cj)
For both clustering and cluster representation, an effective time series aver-
aging technique is required. Here we use the time series averaging technique
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DTW Barycenter Averaging (DBA) [8]. Instead of dividing the summation, as is
with traditional averaging, DBA considers shape by using DTW to minimize the
Within Group Sum of Squares (WGSS). Simply put, given a time series set of
S ={51,82,...,S,}, the time series C' = {cy1, ca, ..., ¢t} is considered an average
of S if it minimizes:

WGSS(C) = znj dtw(C, S,)? (4)
k=1

2.2 Time Series Similarity

In different applications, the similarity of time series can vary. The three key
elements of time series similarity are range value similarity, duration similarity,
and shape similarity [12]. Shown in Fig. 1, the range value similarity is demon-
strated by sub-figure (a) and (c), it refers to the absolute range value of time
series, this similarity signifies the vertical comparability of two given time series.
The duration similarity is demonstrated by sub-figure (a) and (b), it refers to
the time series measurement duration, this similarity reveals the horizontal com-
parability of two given time series. Demonstrated by sub-figure (b) and (c), the
shape similarity focuses more on the contour of the given time series.

1 TN\=1OO T\/\L 1 T\/\/

0 50 0 50 0 500
(a) (b) (c)

[
>

Fig. 1. Time series similarity: (a) and (c) demonstrate range value similarity; (a) and
(b) demonstrate duration similarity; (b) and (c) demonstrate shape similarity.

The similarity of time series is highly contextual and has broad applicability.
Therefore, certain aspects of similarity could be deemed more significant under
certain circumstances. However, all three elements of similarity should be fulfilled
for two time series to be considered truly similar. Therefore, for unsupervised
learning, we have to consider which similarity feature is applied to for clusters.

2.3 Normalization Methods

Normalization is often used to scale data so that the data will fall within a spec-
ified range. In addition, time series normalization can also be used to shift and
scale data to eliminate the effect of gross value influences. Evidently, normal-
ization is not suitable for all time series data; it is more useful when the values
are on different range or when the value differences are substantial enough for
certain details to be overlooked. The four most commonly applied normalization
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techniques for time series data are Offset Translation, Amplitude Scaling, Trend
Removal, and Smoothing. When a certain normalization is applied, the same
normalization is applied to all the time series in the dataset.

Offset Translation. Offset translation is the vertical shift of time series; it was
originally used in signal processing when sequences are similar in shape but are
within different ranges.

ts = ts — mean(ts) (5)

Here the mean value is independently computed for each time series and is
the average over all the values in that specific time series. The translation of the
offset can be useful for similarity comparisons. However, an immediate drawback
of this operation is that the range values would be eliminated since the value
differences are removed. This, however, can be made up for in the second stage
of our tiered clustering process.

Amplitude Scaling. Amplitude is another term from signal processing; it mea-
sures how far and in which direction a variable differs from a defined baseline.
Scaling of a signal’s amplitude means changing the strength of the signal. With
time series data, we remove the different amplitudes in hopes of finding similarity
by excluding the strength of the physical parameters.

ts = (ts — mean(ts))/std(ts) (6)

Shown in Eq. 6, amplitude scaling is achieved by first moving time series by
its mean and then normalized by the standard deviation. Which means that
offset translation is included in amplitude scaling. In fact, when std(ts) = 1, the
two methods are identical.

Trend Removal. Trend removal is mostly applied in prediction models. Trends
represent long-term movements in sequences. Trends can be distracting when
attempting to identify patterns in sequential data, and therefore, it is often
justified to remove them for revealing possible oscillations. To this end, the
regression line of the time series needs to be identified and then subtracted from
the time series. Unlike offset translation and amplitude scaling, trend removal
is not a straightforward operation. In practice, there could be various types of
trends or even multiple trends. In our experiments, we only considered the simple
linear trend and the logarithmic trend.

Smoothing. Smoothing is performed with a moving window on the time series
to obtain the average values of each data point with those of its neighbors. While
it can eliminate some irregular movements, it can be sensitive to outliers and
also invalidates data at the beginning and the end of any time series.

In the solar flare dataset for our experiments, the time series are relatively
short in length (i.e., 60 data points) and is also noisy in nature. For a smoothing
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window to be effective, the size is often relatively large. Therefore, an effective
smoothing would excessively shorten the time series we are working with, ren-
dering the result ineffective. For this reason, smoothing is not included in our
experiments.

3 Tiered Clustering

Time series data is very domain-specific, meaning the data from one area could
be processed in an entirely different way as the data from another field. There-
fore, we use a tiered cluster method to encompass more dimensions of similarity.
In this section, we present the cluster algorithms applied in our tiered clustering
method, namely Distance Density Clustering (DDC) and Hierarchical Agglom-
erative Clustering (HAC).

3.1 Distance Density Clustering

The Distance Density Clustering (DDC) method [10] was specifically developed
for time series clustering, and has shown promising results. Here we use it to
cluster normalized time series. DDC is divisive in structure, meaning that per-
formance generally increases as more clusters are introduced. In the extreme case
of each event forming its own cluster, the method degenerates to a k-Nearest
Neighbors algorithm with £ = 1 (i.e., INN), where each instance of testing data
is compared to all the existing training data, and assigned the label of its single
closest neighbor. While setting k to 1 can drastically improve the classification
accuracy, conceptually, INN is a memorization process and not a generalization
process. Memorization processes are inherently less powerful in real-world appli-
cations, as a comparison against the entire historical archive is unrealistic in
most circumstances.

While many existing clustering algorithms can be applied to time series,
either with data summarization or effective distance measures, the effect is often
limited. DDC typically generates more intuitive results for time series cluster-
ing [10], the main steps of which are shown in Algorithm 1. Initially, through
majority voting, the furthest time series is identified and is used as the initial
cluster seed. The furthest time series is the time series that is the furthest from
the most number of other time series. Then the distances between all instances
and the cluster seed are computed and sorted. The most significant increase in
the sorted distances is considered as a virtual sparse region and is used to divide
the dataset. Then new cluster seeds are identified, and the cluster assignment is
re-balanced based on time series similarity. This process is iterated until no more
clusters can be found, or the process has reached a user-defined threshold, such
as a certain number of clusters have been generated. Finally, all the identified
cluster seeds and their respective cluster elements are obtained.
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Algorithm 1. Distance Density Clustering Algorithm

Require:
E = {e1,...,en} is the time series events to be clustered
Cr-1 ={c1,...,ck—1} is the set of cluster seeds

k is number of seeds
Ly, is the cluster set of events based on the number of groups

1: Li—1 < Cluster(Cr—1)

2: ar[l,2,....,k — 1] = DistSort(Li—1)

3: walueli] < maz(ar[2] — ar[l],...,ar[k — 1] — ar[k — 2])
4: if ar[n] — ar[n — 1] == max(value[i]) then

5: location[i]| = n

6: end if

7: if theni — max(value[l, ...,k — 1])

8: l(il,ig) <—l(’i),(cil,01‘2) — C;

9: end if

10: return L, = {1,2,...,41,42,....,n} < Cr{(c1,C2, ..., Ciy, Cigy.orsCn) }
11: for e; € E do

12: (cl,Chy ey ) = DBA(C1,C2y eay Ciy s Cigy wvvy Chim1)
13: UpdateCluster DBA(Cy)

14: end for

15: return C}, = {c, ...,c}} as set of cluster seeds

16: return L, = {l(e) |=1,2,...,n} set of cluster labels of F

3.2 Hierarchical Agglomerative Clustering

Hierarchical clustering algorithm separates data into different levels that have a
top to bottom ordering, which forms a corresponding tree structure. There are
two types of hierarchical clustering, agglomerative, also known as Agglomerative
Nesting (AGNES), and divisive, also known as Divisive Analysis (DIANA) [4].
AGNES is a bottom-up approach, where each event is assigned as its own cluster,
and based on a specific linking mechanism, the most similar clusters are joint to
form a new cluster. This process is repeated until all events are joint together.
DIANA is a top-down approach, where all events start as a single cluster and
are then partitioned to form two least similar clusters. This process is repeated
until each event forms its own cluster. Both AGNES and DIANA are based on
distance for measuring similarity.

In an agglomerative structure, clusters are joint based on the similarity
between elements or clusters. When comparing the similarity of clusters, various
measures can be adopted. The cluster merging method is called linkage. The
most commonly used linkage measures use nearest, furthest, or average distance
for cluster distance measurement, which corresponds to single link, complete
link, and average link.

Both the DDC and the HAC are hierarchical in structure, but they form
clusters based on different concepts. DDC takes advantage of a virtual spar-
sity split to form clusters, whereas HAC is purely based on distance/similarity
split. Furthermore, HAC is a greedy approach and DDC is not. In our proposed
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Algorithm 2. Hierarchical Agglomerative Clustering

Require:
set X of objectives {z1,...,xn}
similarity function dist(c1,c2)
1: fori=1ton do

. C; = {.’EZ}

3: end for
C=A{ci,...,cn}
l=n+1

4: while C.size > 1 do
(Cmint, Cmin2) = min_dist(c;, c;) for all ¢;,¢; in C
remove Cmini and Cminz from C
C — {cminh cminQ}
l=1+1
5: end while

clustering structure we take advantage of both cluster algorithms to focus on dif-
ferent aspects of similarity. We use DDC to focus on the shape similarity before
using HAC to partition the data based on range similarity.

4 SWAN-SF Dataset

In this study, we use the Space Weather ANalytics for Solar Flares (SWAN-
SF) [11], which is a benchmark dataset of multivariate time series (MVTS),
spanning over a 9year period (2010-2018). Essentially, the goal is to predict
the most significant solar flare within the next 24 h with the 12 h of before-flare
time series measurements for multiple parameters. For reference, 9 of the most
interesting parameters are picked by domain experts and listed in Table 1. There
are a total of 5 classes of solar flares, listed from quiet to the most powerful, FQ
(flare-quiet), B class, C class, M class, and X class, and each time series is labeled
with the most significant (largest) flare within the 24 h observation period. The
most impactful flares are M and X class flares; therefore, in this paper, we are
specifically focusing on the clustering of classes C, M, and X flares. This dataset
can be considered as an MVTS dataset with 3 class labels, and the meaning of
specific parameters should not interfere with the presented method.

The measurements of solar flares cannot be clustered in a straight forward
manner. While the duration of each event is the same, the range value similar-
ity and the shape similarity can be challenging to be identified simultaneously.
This is partly due to the vast variation of the strength of solar flare measure-
ments. When the value of different events differs substantially, the shape details
could become hard to distinct. In a previous study, shape-intuitive clusters were
generated by clustering the normalized time series [12]; however, the accuracy
performance was not improved despite the shape emphasis. This side effect of
normalization can be eliminated by the actual value of different events. In this
study, we are considering both the effect of shape similarity as well as the mea-
surement values.
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Table 1. Nine parameters selected by domain experts of which solar pre-flare time

series are evaluated.

Keyword Description
1| MEANJZD | Mean vertical current density
2| MEANJZH | Mean current helicity
3  R_VALUE | Sum of flux near polarity inversion line
4 | SAVNCPP | Sum of the modulus of the net current per polarity
5| SHRGT45 | Fraction of area with shear angle >45°
6 | TOTFZ Sum of z-component of Lorentz force
7| TOTUSJH | Total unsigned current helicity
8  TOTUSJZ | Total unsigned vertical current
9 | USFLUX | Total unsigned flux

5 Experimental Results

In consideration of fairness and to eliminate performance randomness, a balanced
5-fold cross-validation on the curated dataset of a total of 300 C, M, and X class
instances was implemented. Cross-validation is a statistical evaluation method
used to evaluate machine learning models where data is limited. The testing
data is never included in the training process to avoid bias, and the training and
testing are repeated for each data fold to ensure stability.

1e+13
CMX=1:4:4 CMX=0:1:1 CMX=0:0:7

se+12{ 4, |
oe+00] I

—-5e+12:

(a) Normalized clus- (b) Sub-cluster 1 (c¢) Sub-cluster 2 (d) Sub-cluster 3
ter

Fig. 2. (a) shows one of the clusters generated by the DDC algorithm, (b), (c¢), and
(d) are the sub-clusters generated by HAC.

First, we show in detail the advantage of applying a tiered clustering of
normalized time series data with DDC and HAC. After processing normalized
time series data with DDC, we apply HAC on each DDC generated cluster.
Starting from the bottom of the dendrogram, when the branch ratio first exceeds
the third quartile, we cut the dendrogram and obtain the corresponding clusters.
The importance of both the shape and the measurement value is shown in Fig. 2.
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Fig. 3. Performance of different clustering approaches demonstrated by 9 parameters
of solar pre-flare data. The x-axis is the increase of cluster numbers, and the y-axis
is the corresponding accuracy value. Three cluster structures are shown, UN DDC is
unnormalized DDC results, N DDC is normalized DDC results, and N DDC&HAC
being normalized time series with DDC and HAC results.

A DDC generated DDC cluster is presented in Fig.2(a), with the orange
line being X-class flares, the yellow line being M-class flares, and blue being
C-class flares, the time series average is the dark line. While this is not a pure
cluster, the shape after normalization for all three classes is actually quite similar.
Figure 2(b), (c), and (d) are the sub-clusters generated by HAC from the original
cluster, here the actual value is taken into account. The ratio of classes C, M,
and X is written above each sub-cluster. The third sub-cluster contains 7 X-
class flares, the first and second are more assorted. However, considering both
the shape similarity as well as the value similarity, it would be difficult even for
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a human to distinguish the first and second sub-clusters just by the time series
alone.

The overall performance of one fold is shown in Fig. 3, other folds are com-
parable in performance, but omitted for simplicity. Here the number of HAC are
generically performed with dendrogram branch ratio, in practice HAC can be
fine-tuned for different data or different parameters. For each parameter, the pro-
gression of accuracy improvement for each clustering method is demonstrated
in relation to the number of clusters in Fig.3(a)—(i). Different normalizations
are all included in the figures. The unnormalized time series DDC results are
referred to as “UN DDC”, normalized DDC results are referred to as “N DDC”,
and normalized tiered clustering results from both DDC and HAC is referred
to as “N DDC&HAC”. The UN DDC accuracy results are overlapping with N
DDC accuracy results. As concluded in the previous work [12], although the
clustering of normalized time series generated more intuitive clusters, it did not
improve the accuracy performance. This was partly due to the information loss
in the normalization process. Therefore, when both the shape and the value
information is considered, we see a general improvement in the tiered clustering
structure with DDC and HAC, especially when the number of clusters increase.

6 Conclusion

Normalization is effective in finding shape similarities when the value differences
are significant. However, in the process of normalization, measurement value
information is lost. In this paper, we extend the clustering of normalized time
series by reintroducing value information using hierarchical clustering. This way,
we can take into account both the shape information as well as the value informa-
tion embedded in the original time series measurements. We would like to note
that this tiered clustering is not suited to all time series data, but an alternative
method for time series data that may have extreme range value differences. This
method could also be helpful in identifying new sub-classes within established
data class in the future.

References

1. Sakoe, H.: Dynamic-programming approach to continuous speech recognition. In:
1971 Proceedings of the International Congress of Acoustics, Budapest (1971)

2. Myers, C., Rabiner, L.: A level building dynamic time warping algorithm for con-
nected word recognition. IEEE Trans. Acoust. Speech Signal Process. 29(2), 284
297 (1981)

3. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358-386 (2005)

4. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.)
Data Mining and Knowledge Discovery Handbook, pp. 321-352. Springer, Boston
(2005). https://doi.org/10.1007/0-387-25465-X_15



Author Proof

12

10.

11.

12.

R. Ma and R. Angryk

Miiller, M.: Dynamic time warping. In: Miiller, M. (ed.) Information Retrieval
for Music and Motion, pp. 69-84. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74048-3_4

Chig, M., Banerjee, S., Hassanien, A.E.: Clustering time series data: an evolu-
tionary approach. In: Abraham A., Hassanien AE., de Leon F. de Carvalho A.P.,
Snésel V. (eds.) Foundations of Computational, IntelligenceVolume 6, vol. 206, pp.
193-207. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01091-
09

Jeong, Y.-S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for
time series classification. Pattern Recogn. 44(9), 2231-2240 (2011)

Petitjean, F., Ketterlin, A., Gancarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recogn. 44(3), 678693
(2011)

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Disc. 26(2), 275-309 (2013)

Ma, R., Angryk, R.: Distance and density clustering for time series data. In: 2017
IEEE International Conference on Data Mining Workshops (ICDMW), pp. 25-32.
IEEE (2017)

Aydin, B., et al.: Multivariate time series dataset for space weather data analytics
(manuscript submitted for publication). Sci. Data (2019)

Ma, R., Ahmadzadeh, A., Boubrahimi, S.F., Georgoulis, M.K., Angryk, R.: Solar
pre-flare classification with time series profiling. In: 2019 IEEE International Con-
ference on Big Data (Big Data). IEEE (2019)



