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Abstract

We present a case study of solar flare forecasting by means of metadata feature time series, by treating it as a prominent
class-imbalance and temporally coherent problem. Taking full advantage of pre-flare time series in solar active regions is
made possible via the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, a partitioned collection
of multivariate time series of active region properties comprising 4075 regions and spanning over 9 yr of the Solar
Dynamics Observatory period of operations. We showcase the general concept of temporal coherence triggered by the
demand of continuity in time series forecasting and show that lack of proper understanding of this effect may spuriously
enhance models’ performance. We further address another well-known challenge in rare-event prediction, namely, the
class-imbalance issue. The SWAN-SF is an appropriate data set for this, with a 60:1 imbalance ratio for GOES M- and
X-class flares and an 800:1 imbalance ratio for X-class flares against flare-quiet instances. We revisit the main remedies for
these challenges and present several experiments to illustrate the exact impact that each of these remedies may have on
performance. Moreover, we acknowledge that some basic data manipulation tasks such as data normalization and cross
validation may also impact the performance; we discuss these problems as well. In this framework we also review the
primary advantages and disadvantages of using true skill statistic and Heidke skill score, two widely used performance
verification metrics for the flare-forecasting task. In conclusion, we show and advocate for the benefits of time series versus

point-in-time forecasting, provided that the above challenges are measurably and quantitatively addressed.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar physics (1476); Classification (1907)

1. Introduction

Data collected for addressing real-world problems are almost
never clean and ready to use, no matter how carefully a
screening process was carried out. Inevitably, there are some
challenges inherited, either by the nature of the studied subject
or by the data collection strategy, that should be identified,
understood, and dealt with accordingly. Class imbalance and
temporal coherence are two of such challenges that are present
in many nonlinear dynamical systems such as earthquake
prediction, fraud detection, and weather forecasting. This study
revisits their impact in another natural manifestation of these
issues, namely, solar flare prediction.

Solar flares are sudden and substantial enhancements of
radiation spanning over the entire electromagnetic spectrum,
including its high-energy part (extreme-ultraviolet, X-rays,
~-rays). They occur at local scales in the Sun and pose a threat
to humans and equipment in space. Since 1974, X-ray flares are
automatically detected and classified by the National Oceanic
and Atmospheric Administration’s (NOAA) GOES satellites in
the 1-8 A wavelength range. Based on peak soft X-ray flux in
this range, flares are logarithmically classified as A, B, C, M,
and X, from weaker to stronger, starting from 10°8Wm™2
Therefore, an X-class flare is generally 10 times stronger, in
terms of peak flux, than an M-class flare and 100 times stronger
than a C-class flare. Within each class there is a subclass
denomination from 1 to 9." When the X-ray background level
is high, as typically occurs at times of elevated solar activity,
A- and B-class flares are often difficult or impossible to discern,
while C-class flares and above are mostly detected, particularly

4 https: //www.nasa.gov/mission_pages /sunearth /news /X-class-flares.html

above level C2 (Wagner 1988; Veronig et al. 2004;
Aschwanden & Freeland 2012). The most intense flares,
namely, the M and X classes, are commonly targeted for
prediction owing to their potentially adverse space weather
ramifications. In spite of more than 20 yr of research and
meaningful advances, flare prediction remains a largely
outstanding problem (e.g., Leka et al. 2018).

Some of the major challenges the flare-forecasting research-
ers are up against are rooted in the rarity of the events of
interest, the high dimensionality of observational data, and the
dynamic behavior of the Sun. Below we briefly review these
challenges and a number of relevant studies.

Extreme Class Imbalance. The frequency distribution of the
peak X-ray fluxes of solar flares is a robust power law with a
dynamical range spanning several orders of magnitude. A
common interpretation of flares views them as stochastic
manifestations of self-organized criticality (see, e.g., the
comprehensive review of Aschwanden et al. 2016, and
numerous references therein).

A statistical analysis of the flares reported by the NOAA
during solar cycle 23 (1996-2008) shows that around 50% of
active regions produce at least one C-class flare, with
approximately 10% of them producing at least one M-class
flare and less than 2% producing at least one X-class flare
(Georgoulis 2012b). Solar cycle 24 (2009 to present),
according to the data set created by Angryk et al. (2020),
exhibits a weaker major flare crop at a similar number of active
regions to solar cycle 23, further highlighting the importance of
effectively treating class imbalance.

Point-in-time versus Time Series Forecasting. Solar flare
forecasting has been humanity’s first attempt toward space
weather forecasting. As such, numerous magnetic properties
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and forecast methods have been proposed since the early 1990s
(see, e.g., Georgoulis 2012a; Barnes et al. 2016, for
nonexhaustive reviews), while studies facilitating several
predictive properties were performed by many others (see,
e.g., Leka & Barnes 2003b, 2007; Qahwaji & Colak 2007;
Barnes & Leka 2008; Welsch et al. 2009; Georgoulis 2012b;
Bobra & Couvidat 2015). The first comprehensive comparison
between multiple flare prediction methods was undertaken by
Barnes et al. (2016), while comparative evaluations between
operational and pre-operational methods were implemented by
Leka et al. (2019a, 2019b) and Park et al. (2020).

A quick perusal of the voluminous literature, however, will
show that the majority of these methods correspond to point-in-
time forecasting, namely, to using the instantaneous value of
one or more parameters in order to produce a binary or
probabilistic flare forecast over a preset forecast horizon. But
flares are an inherently dynamical phenomenon, with clear pre-
flare and post-flare phases, characterized by certain evolu-
tionary trends (e.g., Benz 2008; Fletcher et al. 2011). Because
of this, time series of candidate flare forecast parameters should
be used, rather than isolated points in time. Quite likely, the
level of difficulty in assimilating time series of predictive
parameters in flare forecasting was the main reason for utilizing
(possibly over)simplified point-in-time forecasts in many cases.
This compromise, however, may have hampered further
progress: early works, as well as recent ranking efforts of
predictive flare parameters, show that previous flare history is a
significant factor to consider (Leka & Barnes 2003b; Barnes &
Leka 2008; Falconer et al. 2012; Campi et al. 2019; Leka et al.
2019b; Park et al. 2020), hinting toward the need to study the
pre-flare temporal evolution in terms of both parameter time
series and flare history.

Nonrepresentative Data Sets. While there is no shortage of
ground- and space-based telescopes mapping the magnetic field
of the Sun’s photosphere over the past 30 yr (Cacciani et al.
1990; Balasubramaniam & West 1991; Scherrer et al.
1995, 2012; Lites 1996; Mickey et al. 1996; Spirock et al.
2001; Tsuneta et al. 2008), and new instruments are just about
to be commissioned (Rimmele et al. 2020; Solanki et al. 2020),
it is clear that (i) the temporal span of space-based vector
magnetographic data is still limited to one solar cycle and (ii)
training forecast methods on certain parts of a solar cycle is not
necessarily optimal for forecasting other parts of the same and/
or different cycles, due to the continuously modulating
background of magnetic activity (see, e.g., the discussion on
varying flare occurrence, or climatology, in McCloskey et al.
2018; Leka et al. 2019b). This heterogeneity, coupled with
random undersampling for majority-class events, causes the
sampled subsets of data to become nonrepresentative of the
overall flare population. Therefore, in many cases, the
performance of forecasting models may critically depend on
the sampling strategy.

Each of the challenges mentioned above requires a proper
treatment. Some correspond to the data collection phase, some
to the cleaning and preprocessing phase, and some to the
learning phase. While many studies have revisited these
challenges (to name a few in geo- and space science domains,
see Woodcock 1976; Bloomfield et al. 2012; Camporeale
2019), there is an obvious emphasis by interested communities
on the performance of forecast models. Less obvious, however,
is that this emphasis often comes at the expense of the models’
robustness. Typical forecast metrics used for performance
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verification in flare-forecasting models are the true skill statistic
(TSS) and realizations of the Heidke skill score (HSS; HSS2)—
see Section 5. Recent works with apparently high, but perhaps
not particularly robust, performance include Hamdi et al.
(2017) (TSS = 0.8 or even > 0.9 for a 24 hr prediction of flares
greater than M1.0) and Nishizuka et al. (2017) (TSS > 0.9 for
similar forecast settings). In other well-cited studies (for a
comparison, see the reports in Bobra & Couvidat 2015; Barnes
et al. 2016), the highest TSS that maintains a similar HSS2
varies around ~0.6. We therefore understand that without a
major change in the learning process, exceedingly high TSS
values may simply be a result of suboptimal preprocessing.
Some factors crucial to a model’s performance verification are
preprocessing steps, sampling strategies, and the choice of
performance evaluation metrics. A model’s performance varies
when any of these factors undergoes changes. However, a
robust model is impacted only minimally relative to others as a
result of these changes. That is, a robust model is less prone to
overfitting, a known phenomenon that describes a model that is
too closely fit to a limited set of data points and therefore does
not generalize well. Throughout this study, we frequently draw
a comparison between robustness and performance regarding
different practices.

The rest of this paper is organized as follows: In Section 2,
we first briefly introduce the SWAN-SF, the data set we run our
experiments on. This data set allows us to showcase the
concept of the class imbalance (Section 2.2) and temporal
coherence (Section 2.3) of data. We also discuss data
normalization (Section 2.4) and hyperparameter tuning
(Section 2.5) of models. Section 3 then discusses the choice
of the forecast data set from the SWAN-SF, while in Section 4
we present some of the major treatments regarding class-
imbalance (Section 4.3) and temporal-coherence (Section 4.4)
issues. Before presenting our experiments and the results, we
briefly review in Section 5 the performance verification metrics
we use. In Section 6, we discuss the details and results of a
number of experiments we designed for examining the above-
mentioned challenges and illustrate the impact of the corresp-
onding treatments. We conclude in Section 7 by listing the key
lessons learned from these experiments.

2. Benchmark Data Set and Challenges

In this section, we briefly discuss the SWAN-SF benchmark
data set of Angryk et al. (2020) and the major issues intrinsic to
this and similar data sets. If not properly treated, these issues
may well lead to overestimation of the forecasts’ performance.

2.1. SWAN-SF Benchmark Data Set

Multiple flare prediction studies (Bloomfield et al. 2012;
Bobra & Couvidat 2015; Barnes et al. 2016) and the European
Union FLARECAST project (Benvenuto et al. 2018; Florios
et al. 2018; Campi et al. 2019) emphasize machine learning for
flare prediction, but they use point-in-time measurements.
Given different periods of observation and partitioning/
sampling strategies, we are unable to determine whether the
potential differences in accuracy or skill score values in these
studies reflect the intrinsic stochasticity in flare occurrence, the
specific preprocessing and sampling strategies carried out, the
implementation of machine-learning models, or perhaps a
combination of the above. This is the core reason behind the
development of the Space Weather Analytics for Solar Flares
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Figure 1. Stacked bar plot of multivariate time series populations for each of
the five flare classes across different partitions of the SWAN-SF benchmark
data set. Flare classes X, M, C, and B are taken and validated from GOES
classification, while N denotes flare-quiet and GOES A-class instances. The
annotated populations are stemming from the current time series slicing
strategy of the SWAN-SF with a 1 hr step size, a 12 hr observation window,
and a 24 hr prediction window. The sliced multivariate time series are labeled
with the class of the strongest reported flare, if any, within the respective
prediction window.

(SWAN-SF) benchmark data set, composed entirely of multi-
variate time series. Its purpose is to facilitate unbiased flare
forecasting and hopefully make strides toward nonincremental
future improvements in forecasting.

The data points of the SWAN-SF benchmark data set are
labeled by five different flare classes, namely, GOES X, M, C,
B, and a nonflaring class denoted by N. Therefore, N includes
flare-quiet instances and GOES A-class events. We hereafter
omit GOES from the above classes, for brevity. This data set
comprises five temporally segmented partitions and is designed
in such a way that each partition includes approximately the
same number of X- and M-class flares (Figure 1). The data set
contains various time series parameters derived from solar
photospheric magnetograms along with NOAA’s flare history
of active regions. Magnetograms and their metadata are
provided by the Solar Dynamics Observatory’s (Pesnell et al.
2012) HMI Active Region Patches (HARP) data product
(Hoeksema et al. 2014). The magnetic field parameters are
physics based and were originally taken by the Space weather
HMI Active Region Patches (SHARP) data product (Bobra
et al. 2014)), but they were recalculated for validation purposes
and enhanced with parameters not present in SHARPs (see
Table 1 in Angryk et al. 2020).

The data points in this data set are time series slices of
parameters extracted from solar active regions in a sliding
fashion. That is, for a particular flare with a unique ID, k equal-
length multivariate time series are collected from a fixed period
of time in the pre-flare history. This is called the observation
window, T,,s. Denoting s; as the starting point of the ith slice of
the multivariate time series, the (i + 1)th slice starts at s; + T,
where 7 is the step size in the sliding process. Each of the
extracted multivariate time series is assigned a label,
determined by the class of the strongest flare recorded during
a fixed-size temporal window that follows 7,,s. This window is
the prediction window, Tpyreq, and starts precisely at the end of
Tobs. In the SWAN-SF, Ty, and Tpeq span over 12 and 24 hr,
respectively, with 7= 1 hr. Placing the prediction window right
after the observation window implies a zero latency (i.e., a
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finite time before a given forecast comes into effect) in our
tests, for simplicity.

2.2. Class Imbalance of Data

We characterize a data set as class imbalanced when the
population of one or more data classes are significantly smaller
than those of the majority classes. The data points of the
smaller group are called the minority instances. If forecasting is
intended for them, they are also called positive instances.
Conversely, the other group’s data points are called the
majority, or negative, instances, in case minority instances are
the forecast targets. The SWAN-SF benchmark data set
exhibits extreme class imbalance: the imbalance ratios for
each partition of the data set and for using GOES M- and
X-class flares as the minority class are annotated in Figure 1.

Class imbalance is a well-known concept in the machine
learning and statistics communities (Kubat & Matwin et al.
1997; Japkowicz & Stephen 2002; Ganganwar 2012; Krawczyk
2016) but has also been addressed in many other domains,
including atmospheric sciences and flare forecasting (Woodcock
1976; Bloomfield et al. 2012; Jolliffe & Stephenson 2012; Bobra
& Couvidat 2015). However, the complexity of the forecasting
problem sometimes causes this important issue to go relatively
unnoticed, resulting in a large variance in the reported
performance of the models, as we briefly pointed out in the
Introduction.

The class-imbalance issue can be roughly explained as
follows: classification models, in general, aim to optimize their
cost functions by minimizing the total number of misclassifica-
tions. Given the significantly higher density of the majority
class, a correct classification on the decision boundary, where
two or more classes overlap, is typically accompanied by
multiple misclassified majority instances. The support vector
machine (SVM) classifier (Vapnik 1963), for example,
calculates an optimal hyperplane that makes this separation
(Burges 1998; Ben-Hur & Weston 2010). Due to the imbalance
between the classes, a hyperplane that is (ideally) supposed to
pass through the decision boundary will be shifted farther into
the region of the minority class (classifying almost all the data
points as the majority class) to reduce the total number of
incorrect classifications. This results in higher true negatives
(i.e., correct classification of CBN-class flares) and lower true
positives (i.e., correct classification of XM-class flares as per
the example of Figure 1). In other words, a model in a class-
imbalanced space always tends to favor the majority class. This
is of particular concern because flare-forecasting research
focuses on the minority, rather than majority, instances.

Another angle to this problem is the determination of
appropriate performance measures. Many well-known perfor-
mance metrics are significantly impacted by class imbalance
(Hossin & Sulaiman 2015), including accuracy, precision (but
not recall), and hence the FI-score. This is mainly because
these measures ignore the number of misclassifications. For
instance, a naive model that classifies all instances as the
negative (majority) class may result in a very high (often
asymptotic to 1.0) accuracy, while learning very little or
nothing about the minority class. In Section 5, we review some
popular metrics used in flare forecasting. Furthermore, in
Section 4.3 we discuss the classical approaches to tackle the
class-imbalance issue.
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Figure 2. Twelve consecutive time series slices for the parameter Total Unsigned Current Helicity (TOTUSJH) corresponding to an M1.0-class flare associated with
NOAA AR 11875 (HARP 3291). Each time series spans over 12 hr of observation, with a 12-minute cadence. The blue interval segments Tg and Ty, for example,
show the domain of time series g and to, respectively, with 7 representing the slicing step size, i.e., 1 hr. The vertical spacing of each time series slice along the y-axis

has been added manually to make different time series discernible.

2.3. Temporal Coherence of Data

The sliding observation window mentioned in Section 2.1 is
crucial for operational prediction on real-time data. Indeed, a
continuous and uninterrupted observation is needed for training
a forecast model. This continuity dictates the existence of
partially overlapping slices of multivariate time series and,
therefore, nonindependent data points. A characteristic example
is provided in Figure 2, where 12 consecutive 12 hr slices of
the parameter Total Unsigned Current Helicity (TOTUSJH),
extracted from an active region with HARP number 3291, are
visualized. From this example, one clearly notices that a
physical parameter of an active region may not be expected to
behave significantly differently from a slice to its adjacent one.
Any two adjacent time series are identical for a period of 11 hr,
and that accounts for more than 90% (precisely, % = 0.92) of
each time series’ length. Of course, this is not specific to the
particular parameter used in the example but is a characteristic
inherited from the 1 hr time-stepped slicing methodology.

Let us now look at the example of Figure 2 more closely:
these very similar slices, identical for 11 hr, will appear as a
cluster of data points in the multidimensional feature space,
located close to each other. This clustering is apparent in
Figure 3, where we plot the mean versus the standard deviation
of the TOTUSJH slices of Figure 2 for the same active region
(red/darker circles) and compare them with assorted means and
standard deviations from different active regions on the same
parameter (blue/lighter circles). For an adequate comparison,
in terms of flare label and solar cycle phase, all blue instances
correspond to the same flare label (M1.0) and partition
(partition 3). As expected, the mean values of the time series
sampled from the same active region (red/darker circles) are
confined to a very narrow subspace, i.e., limited to the interval
(2300, 2400) (G*m™ ") of the mean dimension. Any forecast
method treating this as a potentially useful pattern in the data is
erring in this case, because this “pattern” is simply a by-product
of the slicing strategy used to create the benchmark data.
Classification algorithms are generally designed to decipher
such issues. To avoid misleading them by introducing artificial
clusters, nonetheless, data points from the same active region
(such as the red points of Figure 3) should not be considered as
entirely distinct and independent.
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Figure 3. Standard deviation (o) vs. mean (u) of parameter TOTUSJH, for two
different groups: one (red/darker circles) extracted from the consecutive slices
of Figure 2, and another (blue/lighter circles) from a randomly selected set of
time series slices for different active regions. Both groups correspond to M1.0-
class flare labels and stem from Partition 3 of the SWAN-SF. The apparent
clustering of red circles is due to the temporal coherence of consecutive time
series.

The above discussion, as the reader may have already
noticed, can be traced back to the well-known assumption that
random variables must be independent and identically
distributed (i.i.d.) for the models to make sense. Although
this practice may not look like a challenge, it is easily
overlooked on multiclass, multivariate time series data.
Randomly sampling and shuffling the instances is often
assumed to tackle the problem, but, as our example showed,
this may not always be the case. More importantly, when such
clusters are allowed to exist in both the training and validation
sets, the high performance on the unseen data (of the
validation set) may convince researchers that the classifier
was able to generalize the learned patterns and forecast flares.
Such a superficial performance is exemplified in Experiment
D of Section 6. It is also important to note that as the
dimensionality of the feature space increases (by including
more statistical features), spotting such clusters becomes more
and more difficult; in high-dimensional data, it is very likely
that many dimensions are irrelevant but they mask the
existing clusters (Parsons et al. 2004).

While this concept is generally known as the independence
of random variables, we prefer to use our term, temporal
coherence, for two reasons: first, while the typical solution for
preserving the independence between data points is random
sampling, this action does not resolve the issue in this special
case. Second, we would like to avoid the generality of the term
“independence” and instead point to the direct cause of the
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issue, i.e., the temporal overlap. We therefore refer to a data set
as temporally coherent’ if (a) it comprises partially identical
samples and (b) this overlap is caused by the slicing
methodology used to create the data set, regardless of its
nature, or the topic of study.

Looking at the consecutive slices shown in Figure 2, it is
evident that the two conditions of temporal coherence are
satisfied in the SWAN-SF because (a) the temporally close time
series are partially identical, i.e., #; and #;, | are identical within
an 11 hr interval out of the 12 hr they each span over, and (b)
this is caused by the slicing of parameter time series designed
to ensure both continuity and detailed coverage, by allowing a
time step much smaller than the observational window (i.e.,
1 hr vs. 12 hr). Therefore, the SWAN-SF can be described as a
temporally coherent data set, and the independence of data
points should not be presumed. Note that we use the term
“partially identical” (instead of ‘“similar”) to emphasize that
what defines the temporal coherence is the temporal overlap
and not the correlation between time series’ values. The former
is often a by-product of the slicing methodology in the data
preparation process, whereas “similarity”” generally refers to the
homogeneity among observations.

2.4. Data Normalization

The ranges of all feature vectors of a data set are typically
transformed into a unified range before the training phase starts.
This preprocessing step is called normalization and is mainly
performed because it allows models to distinguish between
different patterns and structures independent of the physical
units and dynamical ranges of each parameter. The simplicity
of this concept often leads to overlooking the variable impact of
different ways of normalization (Al Shalabi & Shaaban 2006;
Yu et al. 2009). Regardless of which transformation function
one may use (e.g., linear, nonlinear, or data-driven), normal-
ization can be done “locally” or “globally.” A global normal-
ization takes into account the global statistics, i.e., min and max
of each feature/parameter over the entire data set, whereas a
local transformation may consider local extrema of different
subsets (e.g., partitions, or training and testing sets) to
normalize each of those subsets separately. Although it is
common practice to apply global normalization, for the
SWAN-SF and similar data sets this should be put to the test
owing to the modulating event occurrence rate throughout solar
cycle 24. In such cases, a global normalization could impact
some features negatively by transforming their values into a too
narrow or too wide range. We illustrate this in Experiment E in
Section 6.4, by showing the significantly different performance
levels using different normalization strategies.

2.5. Hyperparameter Tuning

Temporal coherence affects also the way we tune the
hyperparameters of our models. Any supervised learning model
requires optimization of its hyperparameters in a data-driven
manner. Since the hyperparameters should remain optimal over
the entire data set (including the incoming data points, for an
operational model), the training and validation sets must each
be representative of the entire data set. In our data set, because
of the temporal coherence, random sampling does not produce
such subsets (see Experiment D of Section 6.3, which examines

> The concept is here introduced in the context of data manipulation, not to be
confused with “temporal coherence” met in optics or elsewhere.
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the impact of temporal coherence). Hence, the tuning process
remains confined to the partitions. In Section 4.4, while
discussing a remedy for temporal coherence, we review the use
of NOAA AR number that addresses this issue. However, it is
still very likely that a model highly optimized on one partition
corresponding to a particular phase of a solar cycle performs
better than one that is optimized globally (Barnes et al. 2016;
Leka et al. 2019a). We believe that hyperparameter tuning is a
problem yet to be thoroughly investigated since at this point it
is rather clear to us that flare forecasting has a dynamic
behavior, for which ensemble models, which can be trained
differently for different periods of a solar cycle, may be
more appropriate (see, e.g., Guerra et al. 2015; Murray 2018;
Guerra et al. 2020).

3. Derived Forecast Data Set

To use the SWAN-SF benchmark data set, two general
approaches might be taken. One is to preprocess the time series
and feed them directly to supervised models for prediction.
The other is to extract a set of statistical features describing
the time series and then train the supervised models on these
descriptors. We choose the second approach in order to carry
out our experiments without having to deal with the high
dimensionality of the original data type, i.e., time series.

3.1. Feature Extraction

SWAN-SF is designed to rely entirely on time series
forecasting of solar flares, if so desired. In a wealth of studies
on flare forecast, only a relative minority of them have attempted
to use time series (e.g., Leka & Barnes 2003a, 2003b; Barnes &
Leka 2006; Welsch et al. 2009; Reinard et al. 2010; Cinto et al.
2020a). More recently, several studies moved toward time series
forecasting (Ahmadzadeh et al. 2019b; Hostetter et al. 2019; Ma
et al. 2020; Ji et al. 2020; Chen et al. 2020). In spite of a number
of efforts, reports on which time series parameters perform better
than others are not necessarily compelling. Since it is not the
focus of this work to determine which time series characteristics
will perform well, without loss of generality and in the interest of
simplicity, we choose a limited set of four descriptive statistics
of the time series for our experiments, namely, median, standard
deviation, skewness, and kurtosis—previous studies cited above
have also used them. Additionally, to allow comparison (at least
partially) between point-in-time (such as Bobra & Couvidat
2015) and time series forecasting, and hence assess the potential
benefits of using time series, we consider a point-in-time feature,
namely, last value. This is precisely the last value of each time
series. Except for the last experiment, where fully fledged time
series forecasting is attempted, all other experiments exercise
point-in-time forecasting using last value.

Prior to computing these statistical features, the data set
requires a minimal preprocessing owing to some missing
values, corresponding to <0.01% of the data. Preprocessing
proceeds by first filling the missing values by linear
interpolation and then using zero-one data transformation to
normalize the data for our experiments. The obtained data set
of extracted features has a dimensionality of 120, resulting
from computing the five above-mentioned statistics (namely,
the four descriptive statistics of the time series and their last
value) on 24 of the physical parameters of the SWAN-SF
benchmark data set. For several of these preprocessing steps,



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 254:23 (15pp), 2021 June

we employed the open-source Python package MVTS-Data
Toolkit (Ahmadzadeh et al. 2020).

3.2. Dichotomization of the Problem

To place the focus of our study on the challenges discussed
in Section 2, we set up a simplified bi-categorical setting; we
carry out experiments on binary-class data by merging X and
M classes into a superclass called XM and, similarly, the
classes C, B, and N into another superclass, denoted by CBN.
The former becomes our minority (positive) class, while the
latter constitutes our majority (negative) class.

4. Model and Treatments of Issues

In this section, we discuss some of the challenges in training
machine-learning models, caused directly or indirectly by the
two most important characteristics of our data set, namely,
class imbalance and temporal coherence. In Section 4.1, we
first justify why we use SVMs for analyzing the impact of
different remedies for these two issues. Then, in Section 4.2,
for those unfamiliar with this classifier, we present a high-level
discussion on how it discriminates between different classes. In
Sections 4.3 and 4.4, we review the basic remedies for the
class-imbalance and temporal-coherence issues, respectively.

4.1. Control for Learning Algorithms

Without loss of generality and for keeping our focus on the
above-mentioned issues, we control for the learning algorithms
by limiting our experiments to one classifier, namely, SVMs.
The generality is preserved because, first, the issue of temporal
coherence can only be dealt with at the data level, during
preprocessing, and does not involve the classifier. The class-
imbalance issue, however, can be addressed either at the data
level or at the algorithm level, or even both. Among different
data-driven strategies (e.g., sampling and feature selection) or
algorithm-driven strategies (one-class learning, cost-sensitive
learning, ensemble learning), only cost-sensitive learning
depends on the choice of the classifier (Ali et al. 2013). In
cost-sensitive learning the class-imbalance issue is tackled by
customization of the cost function so that it takes into account
the imbalance ratio when penalizing misclassification. But even
in this subset of remedies, although different classifiers may be
impacted differently by the class-imbalance issue, they all will
be impacted regardless (He & Garcia 2009; Krawczyk 2016).
Therefore, the remainder of this paper can be reproduced
with any other classifier without any change on the presented
analyses.

4.2. SVM Classifier

SVMs are discriminative, supervised classifiers introduced
by Vapnik (1963). The concept behind SVM is deeply rooted
in the theory of statistical learning. The objective is to find an
optimal d-dimensional hyperplane that separates the classes of
data points, where d is the number of features, determining the
dimensionality of the feature space. Such a hyperplane is said
to be optimal if the average distance between the plane and all
the data points on the decision boundary (i.e., the support
vectors) iS maximum, meaning that the two classes are best
segregated. For more elaborate, multicategorical studies, a
combination of multiple binary SVMs can be employed to
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classify the data (see, e.g., Dietterich & Bakiri 1995; Hastie &
Tibshirani 1997).

The SVM classifier owes its popularity primarily to its
efficient learning of nonlinear decision surfaces, thanks to its
support vectors and the transformation functions (kernels).
Different kernels can be used to provide better transformations
of data into new feature spaces where the data points are
potentially more accurately separable. One of the most popular
kernels is radial basis function (RBF; Cristianini & Shawe-
Taylor 2000) and was found to be more effective than other
kernels for this study (see Section 6). Like any function, kernels
have one or more variables that need to be specified a priori.
For RBF, these are the desired smoothness of the decision
surface and the radius of influence of support vectors on
forming the decision surface, C and ~, respectively. All kernels
share the smoothness C as a trade-off between performance and
simplicity of the decision surface. The a priori specification of
SVM hyperparameters C and +y is the required hyperparameter
tuning in this case (see also Burges 1998, for a tutorial).
Although this step is crucial for training an accurate and robust
model and needs to be carefully carried out on every variation
of the preprocessed data, in this study we only tune the
hyperparameters once (on the entire data set) and utilize their
optimal values for all experiments. This simplification is made
because, again, we are interested not in finding the best models
but in highlighting the advantages and disadvantages of
utilizing different preprocessing and pretraining practices.

4.3. Treatments of Class Imbalance

In Section 2, we discussed the class-imbalance issue and
pointed to the SWAN-SF as an extremely class-imbalanced
data set. In the following, we review some of the simplest, but
effective, approaches for dealing with this issue. Later in
Section 6, we verify these approaches and, using several
experiments, compare the impact that each of these treatments
has on the robustness of the trained models.

4.3.1. Undersampling and Oversampling

A simple approach for tackling class imbalance in model
training is to enforce class balance by either undersampling
(that is, taking out instances from the majority class) or
oversampling (that is, replicating instances of the minority
class). This can achieve a nearly 1:1 balance ratio between the
negative and positive samples in the training phase. This
solution, however, comes at a cost: when undersampling, we
leave out a significant portion of the data during training,
preventing the model from taking full advantage of the entire
data collection. When oversampling, on the other hand, we add
replicates of the existing instances, causing the model to
memorize the patterns (hence overfitting), rather than general-
izing. Bearing in mind the potential negative impacts caused by
either of these practices, some studies recommend under-
sampling over oversampling (Drummond et al. 2003). That
said, one should decide about employing these models only by
trial and error on their specific data sets. It is crucial to note that
a series of more advanced, synthetic sampling techniques
aiming to mitigate these impacts are long-standing (see, e.g.,
Chawla et al. 2002, and references therein). The key unknown
with such methods, however, is the reliability of the generated
samples, i.e., the difficulty of assessing how well the synthetic
data align with the actual distributions. In our experiments, we
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Table 1
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Variations of Undersampling (US) and Oversampling (OS) Approaches Applied to Partition 3 of the SWAN-SF Data Set, Showing the Population of Classes (A) and

Expansion/Shrinkage Factors (OJ) in Each Scenario

Method X M C B N Method Description
A 160 1152 3350 108 22236

US1 A 160 1152 171 5 1135 Preserves climatology in subclass level
O (1.00) (1.00) (0.05) (0.05) (0.05)

us2 A 160 160 106 106 106 X-based undersampling; enforces a subclass balance
O (1.00) 0.14) 0.03) 0.98) (0.00)

US3 A 1152 1152 768 768 768 M-based undersampling; enforces a subclass balance
| (7.20) (1.00) 0.23) (7.11) (0.03)

OS1 A 3133 22560 3350 108 22236 Preserves climatology in subclass level
O (19.58) (19.58) (1.00) (1.00) (1.00)

082 A 1225 8824 3350 108 6592 Similar to OS1, but it suppresses N
O (7.66) (7.66) (1.00) (1.00) (0.30)

0S3 A 5025 5025 3350 3350 3350 C-based oversampling; enforces a subclass balance
O 31.41) (4.36) (1.00) (31.02) 0.15)

0S4 A 33354 33354 22236 22236 22236 N-based oversampling; enforces a subclass balance
O (208.46) (28.95) (6.64) (205.89) (1.00)

Note. In the header, the initial population of each class is shown (A). Methods US1, US2, and US3 are compared in Experiment F of Section 6.5. US2 and OS3 are
used in Experiments A and B of Section 6.2, respectively. These quantities tabulated here do not represent the number of unique flare instances in this time period, but

the number of data points collected by means of a sliding observation window with a 12 hr observation window and a 24 hr forecast window.

restrict ourselves to the simpler strategies because they (1)
establish lower bounds for the performance boost that can be
obtained by sampling and (2) exhibit the sampling nuances
more clearly in the absence of complex assumptions that are
embedded in advanced synthetic sampling strategies.

While both undersampling and oversampling, in their
simplest settings, seem fairly straightforward and easy to
implement, one should be particularly careful when applying
them to a multiclass data, such as the flare prediction data set.
This holds despite the fact that we later (in Section 3.2) convert
our data set to a bi-categorical class problem. The concern is
that different possibilities exist depending on whether a balance
at subclass level is also desired (i.e., |[X|=|M| and |C|=
|B| =|N|). In case of undersampling, therefore, we need to
decide which minority subclasses should be considered the
“base” class. Letting X be the base class, we must first
undersample from M-class flares to balance X and M classes
and then undersample from the majority class (CBN). This
yields a balanced data set at both superclass and subclass
levels. For convenience, we call this undersampling method an
X-based undersampling, since the population of X class is
preserved. Similarly, other sampling methods can be intro-
duced. Some examples of different sampling methods on the
SWAN-SF data set are shown in Table 1.

A quick look in Table 1 shows that the choice of the
sampling method plays a critical role in tackling the
classification problem. Each sampling method has to contort
the flare climatology (namely, the mean occurrence frequency
of flares in the time span of the data set) in order to achieve a
desired balance. This change affects the distribution of samples
in the feature space by making the decision boundary either
denser or sparser. A denser decision boundary makes it more
difficult for the classification’s hyperplane to separate the
positive and negative instances correctly. Conversely, a sparser
decision boundary presents an easier classification problem,
i.e., with fewer misclassifications. In the bi-categorical case
(XM vs. CBN), the decision boundary will most likely be
where C and M classes overlap. Knowing, for example, that
from the two superclasses the C- and M-class instances are

more similar to one another (than C to X, or M to B and N), it is
expected that the classification problem will become somewhat
easier if the chosen sampling strategy reduces the populations
of either of these two classes. A good example of this situation
is the oversampling method OS3 in Table 1. There, X-class
flares are replicated more than M-class flares (by a factor of
31.41 vs. 4.36), while the number of C-class flares is kept
unchanged. The decision boundary, therefore, becomes sparser
than it was in the unsampled data, with relatively more X- and
B-class instances reducing the overall likelihood for misclassi-
fication in the training phase, hence having an easier problem in
hand. Similarly for undersampling methods, both US2 and US3
yield denser decision boundaries than US1. That the sampling
method US1 indeed simplifies the flare-forecasting problem is
verified in Experiment F of Section 6.5 and illustrated in
Figure 5.

Looking at Table 1, it is also important to note that in order
to achieve a particular balance sometimes both undersampling
and oversampling should take place simultaneously. For
example, in US3, while C- and N-class instances are under-
sampled, X- and B-class instances are replicated roughly over 7
times, to produce the desired balance. The opposite also takes
place in OS2 and OS3 methods, where N-class instances are
undersampled while others are oversampled.

4.3.2. Misclassification Weighting

Another known remedy for the class-imbalance problem is
penalizing misclassification of each class differently. The
SVM, like most machine-learning algorithms, can incorporate
different weights in its cost function. For details on how this is
implemented mathematically, we refer the interested reader to
Ben-Hur & Weston (2010). In this study, wherever we use
misclassification weighting, we adjust the weights using the
formula w; = kf—;, where n is the total sample size, n; is the

sample size of class J» and k represents the number of classes.
To give an example, in a bi-categorical data set with two
classes, A and B, where |A| = 100 and |B| =900, the weights

1000 100 _ (56

would be WA:2><100:5 and WB = 5000
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Therefore, misclassification of the minority instances (i.e., A)
will be penalized 5 times more than that in the balance case,
whereas for the majority instances this weight actually reduces
the penalty by about one-half. The impact of this approach on
tackling the class-imbalance issue is compared with the
previously listed solutions in Experiment C of Section 6.2.

4.4. Treatment of Temporal Coherence

Temporal coherence, as discussed in Section 2.3, appears to
be due to the way the data were collected and manifests itself
invariably when splitting the data into the training, validation,
and testing sets. To obtain a more reliable analysis on the
performance and robustness of models, we often repeat this
splitting process several times to verify how susceptible a
model is to overfitting, and whether it has generalized well or
instead memorized the patterns. This practice is called cross
validation (Stone 1974; Geisser 1975). Cross validation is a
family of statistical techniques, typically used to determine the
generalization power of a model. In this process, a subset of the
data, named a validation set, is used for validation of the
trained model to ensure its generalization over memorization.
This subset must have no intersection with either the training
set or the test set (which is reserved only for the final
evaluation). There are a number of different cross-validation
techniques such as k-fold, leave-p-out, stratified, or purely
random (Burman 1989). Random sampling is an important part
of these techniques. Disregarding the temporal coherence of the
data and thus using random sampling in order to obtain the
validation set may result in an artificial boost in performance
and, more importantly, obscure the evidence of overfitting, i.e.,
the significant difference between the performance in the
training and the validation phase.

To avoid this pitfall, we customize the cross-validation
technique such that it selects training and testing samples from
different time-segmented partitions of the data set. This, in fact,
is the main reason why the SWAN-SF data set is structured in
multiple nonoverlapping partitions. By choosing the training
and testing samples from different partitions of SWAN-SF, we
prevent the model from being tested on time series that are
partially identical to some of those it was trained on.
Experiment D of Section 6.3, puts this to test.

In addition to the above cross-validation practice, one could
use the NOAA AR numbers or HARPNUMs (i.e., unique
identifiers of HARP series). This approach is already proposed
in the literature (e.g., Bobra & Couvidat 2015; Florios et al.
2018; Campi et al. 2019), and it restricts random sampling to
different tracked active regions, rather than different slices of
multivariate time series possibly extracted by the same active
regions. NOAA identifies and tracks active regions on the
Sun’s photosphere assigning NOAA AR numbers whenever
possible. This is a valid treatment of temporal coherence;
however, definitive HARPs often include multiple NOAA
active regions or, in case of near real-time HARPs, different
HARPs can be merged. In these cases, one needs to filter or
untangle these complex active regions to properly tackle the
temporal coherence in training, testing, and validating.
Such actions are beyond the scope of the current study;
therefore, we simply draw different, random samples from
different partitions.
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5. Verification Measures

For a comprehensive analysis of different measures and their
interpretations, we encourage the interested reader to consult
Jolliffe & Stephenson (2012). In this section, however, we only
briefly review the two metrics we equipped our experiments
with, namely, TSS and HSS2, and justify why we did so.

TSS (Hanssen & Kuipers 1965) measures the difference
between the probability of detection (i.e., true-positive rate), %,

and the probability of false alarm (i.e., false-positive rate), f;”,
where p=1tp+fn and n=fp + 1t are the numbers of the
positive and negative instances, respectively. In other words,
TSS = % — % It ranges from —1 to +1, where —1 indicates

that the model is wrong in all of its predictions, 0 means that
the model has no skill and reflects the success of random-guess
models (i.e., models that randomly assign labels to the
instances), and +1 represents a perfect model that correctly
assigns labels to all instances.

Advantage: The strengths of TSS can be summarized as
follows: (1) TSS=0 if and only if #p-tn=fp-fn, and this
simple rule equates three seemingly different models, models
that only assign positive labels, models that only assign
negative labels, and random-guess models. (2) TSS includes all
four elements of the confusion matrix, i.e., #p, fp, tn, and fn. (3)
It is unbiased to the imbalance ratio (Bloomfield et al. 2012).
That is, given a fixed model (i.e., with an unchanging
performance), regardless of the imbalance ratio, it returns a
constant value representing its performance.

Disadvantage: Using TSS has a drawback as well. Statistical
models whose differences between true-positive rate and false-
positive rate are the same are not always equally good. To give
a numerical example, we can calculate TSS on two models’
performance: suppose we have 5100 instances and model A
gives the confusion matrix [tp = 80, fn = 20, fp =0, tn = 5000]
and model B returns [tp =90, fn = 10, fp =500, tn = 4500].
While according to TSS A and B perform equally good, i.e.,
TSS(A) =TSS(B) =0.8, model A does not misclassify any
minority instance (fp =0), whereas in B, for every correct
prediction of the minority instances (#p), it makes, on average,
~5.5 incorrect predictions of that class (fp).

The updated Heidke skill score (HSS2; Balch 2008) is the
other metric that quantifies the performance of a model by
comparing it to the random-guess model. This is formulated as

_2pm) = Grip) - Gimilar to TSS, HSS2 ranges within the
p(n+m)+n(p + fp) . o ) .
interval [ — 1, 1], with O indicating that there is no difference

between the model’s performance and a random guess. Any
other positive value indicates how much better than random the
model of interest performs. Decreasing negative values reflect a
higher similarity to a model that misclassifies all instances. The
lower bound of HSS2 approaches —1, as the imbalance ratio
approaches 1:1.

Advantage: HSS2 returns 0 in all cases that TSS returns 0.
Therefore, it has the first two advantages of TSS while
evaluating performance from a different angle. As per the
numerical example given above that showed a shortcoming of
TSS, HSS2 strongly favors model A over B. Precisely, HSS2
(A)=0.89 puts A much higher than B in terms of their
performance, where HSS2(B) =0.23. Disadvantage: Unlike
TSS, HSS2 is biased to imbalance ratio.

A key point in assessing metrics’ appropriateness, especially
in the context of rare-event classification, is their biases to
the class-imbalance ratio. To highlight this, we present a
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Figure 4. Comparison of several metrics’ bias to the class-imbalance ratio, with

the (unbiased) TSS metric in filled blue circles. For a model that correctly

predicts 75% of positive instances and 25% of negative instances, behavior of

the performance metrics is monitored as the class imbalance transforms from

(» =0, n=200) to (p =200, n = 0), with a step size of 10 for p and n.

comparative test designed as follows: assuming that a model
correctly predicts 75% of positive instances and 25% of
negative instances, we monitor the behavior of a few
performance metrics as we gradually change the negative-to-
positive, class-imbalance ratio from 200:0 to 0:200, with a step
size of 10. In addition to TSS and HSS2, we include a few
other popular metrics as well to emphasize the unique feature
of TSS. These metrics are FI-score, HSS1, Gilbert’s success
ratio, and Doolittle index (see their definitions in Jolliffe &
Stephenson 2012). Looking at the results illustrated in Figure 4,
HSS1 and Fl-score metrics imply that the performance
deteriorates as the imbalance ratio changes, which is spurious
because the model’s performance is assumed to remain
unchanged throughout all 21 trials. Meanwhile, HSS2,
Gilbert’s success ratio, and Doolittle index show an improve-
ment in performance as the imbalance ratio decreases (toward
the center), which is also an artifact of their susceptibility to the
class-imbalance change. Among many similar metrics, TSS is
one of the few that remains unbiased to this change while being
informative (e.g., recall that there is another metric that is
also unbiased but carries much less information about the
performance and cannot be used as a stand-alone measure).

Concluding from the above discussion, in all experiments
carried out in Section 6, we invariably provide TSS and show
HSS2 only if the class-imbalance ratio remains unchanged.
These two metrics have already been reported in many flare-
forecasting studies with the same justification (e.g., Barnes &
Leka 2008; Wilks 2011; Bobra & Couvidat 2015). Also
critically important to keep in mind is that a higher TSS value
does not necessarily imply a better forecast model under the
class-imbalance condition, as it may be coupled with a very
low HSS2, and hence a lack of robustness. In case of class
balance, TSS and HSS2 (and the original HSS1) have identical
values.

We conclude this section by mentioning that on the topic of
flare forecasting several studies have extensively discussed the
different aspects of the verification process. We avoid repeating
them here but refer the interested reader to Barnes & Leka
(2008), Bloomfield et al. (2012), Jolliffe & Stephenson (2012),
Leka et al. (2019b), and Cinto et al. (2020b).
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6. Experiments and Results

In this section, we present the experiments conducted to
showcase the challenges discussed previously in the frame of
the overarching flare-forecasting task. We reiterate that the
objective of this study is not to achieve a robust model with
high performance but to compare models trained differently.
Therefore, although any new preprocessing of the data (e.g.,
using different normalization, data splits, or sampling techni-
ques) requires retuning of the hyperparameters, without loss of
generality we rely on our pretuned hyperparameters for SVM,
that is, C = 1000, v=0.01, with an RBF kernel. These are the
results of our pretuning of the hyperparameters using a grid
search, by training the SVM on partitions 1, 2, and 3 and
validating it on partitions 4 and 5. We compare the models’
performance mainly using the TSS values achieved.

Throughout Experiments Z, A, B, C, D, E, and F, we utilize
last-value of the time series as the single feature. In the last
experiment (Experiment G), however, we use our four
descriptive statistics, namely, median, standard deviation,
skewness, and kurtosis, to compare their discriminative power
against last-value of the time series. This allows comparing
time series with point-in-time forecasting. It is beyond the
scope of this work to optimize solutions using more statistical
features, so a more thorough feature selection process is
deferred for future studies.

6.1. Baseline

To establish a baseline for the experiments, a model first
needs to learn from the available data without any special
treatment in the data input process or the model configuration.
With this in mind, we start with Experiment Z.

Experiment Z: Baseline. This corresponds to the straightfor-
ward training of the SVM on all instances of one SWAN-SF
partition and testing on another. We try this on all possible
partition pairs, resulting in 20 different trials, to expose a
possible variable performance for different partition choices.
The results are shown in Figure 5 (top plot; line with “V”
markers, under label “None”). The baseline TSS values across
all partition pairs have a mean pirssz = 0.18, with a standard
deviation OTSS(2) = 0.11.

6.2. Impact of Class-imbalance Issue

Experiments A, B, and C compare the three different
sampling approaches discussed in Section 4.3 in tackling the
class-imbalance problem. The experiments share a common
setup: the SVM is independently trained and tested on all
permutations of partition pairs. We reiterate that each sampling
method is only applied during the training phase, as modulating
the sampling of the test set distorts reality and does not reflect
the true operational performance of the model. To gauge the
confidence of a model’s performance when a sampling method
is employed, we repeat the experiment 10 times and report the
mean and standard deviation values of the achieved TSS.

Experiment A: Undersampling. In the training phase, the
model takes in a subset of a training partition generated by an
X-based undersampling method (US2 from Table 1). This
enforces a 1:1 balance not only in the superclass level (i.e.,
|XM| = |CBN]) but also in the subclass level (i.e., |X| = M|
and |C| = |B|=|N]). The trained model is then tested against
all other partitions. In the top plot in Figure 5 (line with “[J”
markers, under label “Undersampling”), the consistent and
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Figure 5. Performance of SVM (by means of TSS/HSS2), trained and tested on partition pairs of the SWAN-SF benchmark data set. Error bars show the standard
deviation of individual TSS/HSS2 values, produced after 10 times of repeating each experiment. The TSS value corresponding to each partition pair is written above
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significant impact of this remedy is evident, when compared to
the baseline. We obtain a mean TSS prssu)=0.61 with
standard deviation orsg) = 0.05, to be compared with 0.18
and 0.11, respectively, of the baseline Experiment Z.

Experiment B: Oversampling. Here we apply a C-based
oversampling method (OS3 in Table 1) that also enforces a 1:1
balance in the subclass level. As shown in the top panel of
Figure 5 (line with “A” markers, under label “Oversampling”),
we obtain a mean TSS firgsz) = 0.52 with standard deviation
orss = 0.07. Notice that undersampling and oversampling
give similar TSS values, with a difference within applicable
uncertainties.

Experiment C: Misclassification Weighting. We use the
imbalance ratio of the superclasses as the weights (as discussed
in Section 4.3.2). For instance, when working with Partition 3,
since the majority-to-minority ratio is 20:1, we set the
misclassification weights as follows: wxy =20 and wepy = 1.
The top panel of Figure 5 (line with “°*” markers, under label
“Misclassification Weights”) shows that misclassification
weighting typically scores near the top of the achieved TSS
values (urssc) = 0.60 and orsg(c) = 0.09), albeit within uncer-
tainties from undersampling (yirss(a) = 0.61) and oversampling
(trsse) = 0.52) remedies. This said, it is worth pointing out that
this remedy is probably better suited toward producing more
robust forecast models because it allows a data-driven tunability
of applicable weights.

6.3. Impact of Temporal Coherence

In Section 2.3, we discussed the theoretical impact of random
sampling, embedded in many cross-validation methods, on a
temporally coherent data set. The following experiment is
designed to quantify this impact.

Experiment D: Data Splits. This time, the SVM is trained
and tested on two randomly chosen subsets of the same
partition, with no overlap between the subsets, while preserving
the climatology of the flares in each of them. More accurately,
this is a stratified, k-fold cross validation using a random
subsampling method with k£ = 10. The results are juxtaposed to
those obtained by training SVM on one partition and testing
it on another. In both scenarios, we equipped SVM with
misclassification weights, to eliminate the need for an
additional sampling layer. Therefore, the only determining
factor is whether the instances are sampled from the same
partition or not.

The second panel of Figure 5 illustrates this comparison.
When SVM is trained and tested on a single partition (line with
“°” markers, under label “unifold”), performance is boosted
significantly with TSS averaging at jiggp,) = 0.92, with a
standard deviation of orsg(p,) = 0.03. Training and testing on
different partitions (line with “A” markers, under label
“multifold”) show firgqp, 1 = 0.60, with a standard deviation
orss,) = 0.09. Subscripts u and m here correspond to unifold
and multifold training/testing, respectively. The remarkable
difference between the two scenarios is because the forecast
models in unifold trials are both trained and tested on a
temporally coherent data set. Although for the unifold scenario
the training and testing sets are nonoverlapping, random
sampling does not properly treat the temporal coherence, and
consequently the models show such a high performance. Such
results are occasionally misinterpreted as evidence of models’
robustness because of the consistency between the training and
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testing results. However, as discussed in Sections 2.3 and 4.4,
they are indications of overfitting due to memorization.

6.4. Impact of Normalization: Global and Local

Experiment E: Normalization. As we train and test SVM on
a pair of partitions, we transform the feature space to a
normalized space using a zero-one normalization method. This
can be done either by means of features’ extrema of both
partitions or by taking into account the extrema of each
partition separately. We refer to the former as global normal-
ization and to the latter as local normalization. It is worth
noting that data normalization is an important preprocessing
step in data cleaning, which needs a rigorous analysis of the
data, including finding the outliers and obtaining the statisti-
cally meaningful extrema for each of the features. The current
experiment only aims to compare the performance of the two
normalization approaches for different partitions, hence phases
of the solar cycle.

A comparison of different performances, shown in the third
panel of Figure 5, reflects the significant changes in
performance due to the continuously modulating magnetic
activity during the 11 yr solar cycle. Mean TSS values of the
global (line with “°,” under label “Global”’) and local (line with
“A,” under label “Local”) normalizations are fiygg,) = 0.60
and firgg,) = 0.27, respectively. The relatively high standard
deviation of orss(g) = 0.26 in the case of local normalization,
compared to0 Orss(g,) = 0.09 for the global normalization,
implies that the local normalization is generally inconsistent
between the training and the testing partitions. Statistically,
higher performance is achieved when global normalization is
applied, although in some cases the opposite happens,
according to TSS, HSS2, or both. Also, jiyge ) = 0.13,
MHSSZ(Eg) = 024, and OHSS2(E) — 011, UHSSz(Eg) = 0.06.

It is interesting to discuss the model performance for some
specific partition pairs. For the local normalization instances, it
seems that Partition 4 (which spans over the period from 2014
March through 2015 March) lays out a unique set of extrema
with representative features for all partitions, which results in
achieving a slightly better performance than global normal-
ization. In contrast, Partition 2 (2012 February through 2013
October) seems to be holding the most restrictive range of
values. A potential justification for this difference could be the
presence of more extreme outliers in Partition 2, which
corresponds to solar maximum, compared to Partition 4, which
corresponds to the decay phase of solar cycle 24. This suggests
that a careful outlier detection process in the data cleaning
phase could also improve, or otherwise affect, the overall
performance of forecast models.

While additional investigation of this effect is clearly
warranted, one gathers that performance may be optimized
when training and testing take place during similar levels of
solar activity, when local normalization and global normal-
ization converge on similar normalized values. This, however,
is hardly tenable in operational settings, when forecast models
perform on an always unknown day-by-day solar activity level.

6.5. Impact of Sampling

In Section 4.3, we showed that there are multiple variants of
oversampling and undersampling strategies, a subset of which
are listed in Table 1. We also presented how this affects flare
distributions in each partition of the SWAN-SF benchmark.
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Below, we test how different undersampling methods impact
models’ performance in terms of their TSS values, across
different partitions. Testing different oversampling methods
would essentially teach us similar lessons.

Experiment F: Different Undersampling Methods. We use
all undersampling methods listed in Table 1, namely, USI,
US2, and US3, in the training phase. Then we test the trained
models against all other partitions. All three undersampling
methods yield a 1:1 balance in the superclass level (i.e.,
|XM| = |CBN|). However, US1 preserves the climatology of
flares in the subclass level, while US2 and US3 additionally
enforce a 1:1 balance in the subclass level as well. US2 and
US3 reduce the flare populations based on the number of
X-class and M-class flares, respectively. We further employ
global normalization only to keep the experiments’ conditions
constant. Our results are shown in Figure 5, the fourth panel
from the top. From them, one sees a relatively similar,
consistent performance, although the climatology-preserving
undersampling, i.e., US1 (line with “°,” under label “US1”)
seems to give a statistically higher performance compared to
the other two methods. This is largely because in both US2 and
US3 the number of flare-quiet instances are substantially
reduced to meet the required criterion of 1:1 balance in the
subclass level. As discussed in Section 4.3, this takes away
many easy-to-predict instances from the models and makes the
problem more challenging, hence the lower performance for
US2 and US3.

Concluding form this experiment, it becomes clear that
different undersampling and oversampling methods give non-
identical performances, and if one prefers to use undersampling
or oversampling over misclassification weighting strategy, we
recommend the climatology-preserving class balancing for better
robustness on the SWAN-SF (and, apparently, similar bench-
mark data sets).

6.6. Impact of Time Series Features

We reserve the last experiment for presenting the benefit of
using time series, rather than point-in-time values, for
forecasting. To simulate the point-in-time effect, we employ
the last value statistic that returns the last record of each time
series of the SWAN-SF, converting a multivariate time series to
a vector of last values.

Experiment G: SVM with Other Statistical Features. SVM is
trained and tested on different partition pairs, using three sets of
statistics extracted from the time series. These statistics sets are
(1) {last value}, (ii) {standard deviation}, and (iii) {median,
standard deviation, skewness, kurtosis}. In all three cases,
misclassification weighting is used as a class-imbalance
remedy. As the box plot in the bottom plot of Figure 5 shows,
standard deviation (line with “[J” markers, under label
“[stdev]”) results in a statistically better performance than last
value (line with “°” markers, under label “[last_value]”), while
the third set (line with “V” markers, under label “[median,
stdev, skewness, kurtosis]”) seems to outperform standard
deviation. This is a good indication that different characteristics
of time series carry important, nonredundant information that
may improve the reliability of a forecast model.

This said, note that HSS2 does not subscribe to such
differences. This is a good example illustrating why the choice
of metric must be specific to the objective of the task. Our
interpretation of the apparent improvement here relies solely on
how TSS reflects success. HSS2, on the other hand, does not
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show any significant improvement among the three choices.
Therefore, if the objective of a task is more aligned with what
HSS2 measures, then the three approaches taken in this
experiment are very similar, within the margin of error. To
improve HSS2 as well as TSS, more time needs to be invested
on tuning the SVM’s hyperparameters. For the reasons
mentioned at the beginning of Section 6, we did not tune
SVM separately for each experiment. Also note that the utilized
statistics are only chosen as a result of their general descriptive
power and are not the outcome of a rigorous feature selection
process. Finding a set of statistical features that optimally
distinguish between metadata time series of flaring and
nonflaring active regions is in itself a challenging task and
goes beyond the scope of this work.

7. Summary, Conclusions, and Future Work

Working with multiclass, high-dimensional data is certainly
challenging. From time to time and despite several revisions of
these challenges, they tend to be overlooked by domain
experts, understandably so, as the complexity of the original
flare-forecasting problem may overshadow the challenges in
the preprocessing of the data. We used the SWAN-SF
benchmark data set as a reference in order to highlight some
of the challenges. We pointed attention to an interesting
characteristic of such data sets, which we called temporal
coherence, inherited from the sampling and slicing methodol-
ogies. We also revisited the problem of class imbalance in flare
forecasting and the impact of different remedies addressing this
problem. In the context of temporally coherent, class-
imbalanced data, we designed several different, nonoverlap-
ping experiments showcasing these challenges and common
preprocessing tasks to tackle them, in terms of normalization,
sampling, and cross validation. Below, we summarize our key
points and conclusions:

1. On Normalization: A global normalization of parameters
(i.e., over both training and testing partitions) is preferred
over a local normalization (i.e., separately over training
and testing partitions). However, since the variance of the
physical parameters changes significantly from one
partition to another, following the changes within a solar
cycle, a universal normalization (i.e., over the entire five
partitions) should be avoided. In other words, the choice
of the extrema should take into account the phase of the
solar cycle in order to achieve the optimal forecasting
capability. This said, we realize that the unavoidable local
normalization in operational settings may have an impact
on performance. In addition, our approach ignores the
actual values of metadata parameters, some of which
have also shown flare predictive ability in numerous
previous studies cited in the Introduction.

2. On Class Imbalance: The class-imbalance problem needs
to be dealt with properly, i.e., using simple or synthetic
sampling approaches, weighting, or other means. Regard-
ing sampling, any methodology applies only to the
training set: altering the climatology of flares in the test
and validation sets leads to unrealistic and overly
optimistic performance that cannot be reproduced in
operational settings. We recommend treating the class-
imbalance problem by means of misclassification weight-
ing, if the cost function of the utilized model allows.
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3. On Temporal Coherence: Any random sampling
employed for splitting data into training, validation, and
test sets must take into account the temporal coherence of
data that comes into play when the slicing time step is
smaller than the observation window in time series
forecasting. This is on top of fulfilling the nonoverlapping
condition dictating that a given instance must appear in
one and only one of the three sets. The time-segmented
SWAN-SF data set with its nonoverlapping partitions can
help models circumvent these issues. Another approach is
to limit the random sampling to unique HARP series or
NOAA active regions, as studied in detail by Campi et al.
(2019), among others.

4. On Performance Metrics: In solar flare forecasting, class
imbalance is intrinsic and at least some of the metrics
chosen for verification of performance should not be
susceptible to or biased by it. As previous studies have
shown (e.g., Woodcock 1976; Bloomfield et al. 2012;
Bobra & Couvidat 2015), TSS is not affected adversely
by class imbalance. Hence, we also recommend using this
metric for flare prediction, at least in binary (.e.,
nonprobabilistic) forecasting. This said, HSS2 should
also be used, as it quantifies how a model performs in
comparison to the random-guess model. HSS?2 is affected
by class imbalance, however, in perfectly balanced data
HSS1 =HSS2=TSS. It is also possible that a specific
task (with a particular objective) may call for a different,
or even a new, metric.

5. On Comparison of Models: Different models (i.e., fitted
algorithms) are not precisely comparable unless they (1)
are trained on the same data set, (2) with identical
normalization techniques, (3) with identical sampling
strategies, and (4) with identical class-imbalance reme-
dies, if any. The use of a benchmark data set allows
satisfying the first condition toward producing compar-
able studies on flare forecasting. In this study, we
highlighted the importance of the other three conditions.

There are many further interesting avenues to be discovered
that we plan to exploit in future studies. Results reported here
are based on a small set of five time series statistics (median,
variance, skewness, kurtosis, and last-value). There was no
consistent effort to find the best-performing features that could
potentially boost the models’ performance. Some of them could
be based on, for example, the first and second derivatives of the
time series, those that keep track of the general trends in time
series, up-surges and down-slides, features that compare
different parts of the time series, and many others. To be able
to benefit from a long list of features, a feature selection
algorithm is needed that must be carefully guided and
augmented by domain expertise. Time series of the best
selected features could, besides improving flare forecasting in
operational settings, help solar physicists better understand the
triggering mechanism(s) of solar flares. Interpretable machine-
learning methods, rather than “black-box™ solutions, could be
paramount for this purpose and should be given priority
(Lipton & Steinhardt 2018; Marcus 2018; Rudin 2019).
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Hard-to-interpret methodologies often based on deep learning
may, on the other hand, be problematic for solar flare
forecasting, given the limited amount of data available, where
millions of positive sample instances are typically needed (e.g.,
Goodfellow et al. 2016).

In such efforts, well-curated benchmark data sets have been
found to be instrumental. With the SWAN-SF, for example, we
have and will continue to run large numbers of experiments in a
relatively short time and with considerable efficiency. Bench-
mark data sets, adhering to well-defined data collection and
integration policies, can always be further enhanced and
expanded, offering valuable services to interested communities.
We hope that this and other recent works raise awareness
within this and other domains dealing with class imbalance and
temporal coherence in their respective forecasting problems
(Ahmadzadeh et al. 2019a; He & Georgoulis 2019; Sadykov
2019; Nita et al. 2020). Interdisciplinarity is a key common
element of such pursuits, so extended applicability may provide
clues, or even viable solutions, for future diverse forecast
efforts and other real-world problems.
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within the Directorate for Computer and Information Science
and Engineering, the Division of Astronomical Sciences within
the Directorate for Mathematical and Physical Sciences, and
the Division of Atmospheric and Geospace Sciences within the
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Appendix

For convenience, all acronyms and notations used in this
work are listed in Tables 2 and 3.

Table 2
List of All Acronyms Used in This Manuscript
Acronym Full Name
NOAA National Oceanic and Atmospheric Administration
GOES Geostationary Operational Environmental Satellite
SWAN-SF  Space Weather data ANalytics for Solar Flare; benchmark data
produced by Georgia State University’s Astroinformatics
Cluster
SVM Support vector machine; a family of statistical learning models
TSS True skill score (Hanssen & Kuipers 1965)
HSS1 Heidke skill score (Heidke 1926)
HSS2 Updated Heidke skill score (Balch 2008)
GS Gilbert’s success ratio, also known as Gilbert skill score or
equitable threat score (Gilbert 1884)
DI Doolittle index (Doolittle 1885)
us; An undersampling method indexed ith in Table 1
oS; An oversampling method indexed ith in Table 1
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Table 3

List of All Notations Used in This Manuscript
Notation Description
X,M,C,B, A Used both as the GOES flare class label and as the set of all instances of one class.
N Used both as the nonflaring class label and as the set of all nonflaring instances.
XM Used both as the flaring class label (instances from X and M) and as the set of all X- and M-class instances.
CBN Used both as the nonflaring class (instances from C, B, and N) and as the set of all C-, B-, and N-class instances.
|- Set cardinality; e.g., |X| indicates the number of X-class flares.
Tobs Temporal observation window; a time interval during which the values of a set of magnetic field parameters are observed.
Torea Temporal prediction window; a time interval that is labeled according to the strongest flare class recorded in that period.
T Temporal step size in the moving-window approach used for slicing the time series.
t; Time series with index i.
e Statistical event, such as flaring or nonflaring.
P(e) Probability of the statistical event e.
)4 Positive class label of an instance; in flare-forecasting context, it points to a data point that is predicted as flaring.
n Negative class label of an instance; in flare-forecasting context, it points to a data point that is predicted as nonflaring.
tp True positive (hit); a correct classification of an instance that is labeled as positive.
/2 False positive (false alarm); an incorrect classification of an instance that is labeled as negative.
n True negative (correct rejection); a correct classification of an instance that is labeled as negative.
fn False negative (miss); an incorrect classification of an instance that is labeled as positive.
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