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Abstract

The benefits of nucleate pool boiling phenomena and their potential applications on thermal management of various micro-
electronic devices have triggered the development of new approaches that augment the magnitude of heat transfer rate. To
implement these approaches, an accurate estimation of the boiling heat transfer coefficient between the fluid and the heated
surface is often required. The acquisition of the boiling heat transfer coefficient must follow a better understanding of the
bubble ebullition cycle because of its inherent coupling with heat transfer mechanisms involved in this cycle. Bubble ebul-
lition occurs by periodic bubble nucleation on a boiling surface, bubble growth, and subsequent bubble departure from the
surface. Different parameters related to the dynamics of the bubble ebullition cycle, including bubble departure diameter,
bubble waiting period, active nucleation site density, bubble growth period, bubble departure frequency, and bubble growth
rate govern the heat transfer rate in the nucleate pool boiling. Thus, numerous empirical correlations that determine the
boiling heat transfer coefficient have been proposed by many researchers according to different bubble dynamics parameters.
To accurately predict the boiling heat transfer coefficient and boiling heat flux based on the bubble ebullition cycle, under-
standing bubble growth mechanisms and associated dominant parameters is crucial. In this review, different bubble growth
mechanisms during nucleate pool boiling are thoroughly reviewed. Then, bubble dynamics parameters used in different
correlations for determining the boiling heat transfer coefficient are discussed. Semi-empirical and empirical correlations
for determining these parameters are also extensively provided. Additionally, a detailed review of factors affecting bubble
dynamics parameters is provided. Next, different applications of nucleate boiling in cooling systems are reviewed. Overall,
this review includes various correlations from experimental and numerical data, which can be used to better predict the heat
transfer during nucleate boiling.
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Abbreviations Ja Jakob number (p,C, (T, — T,/ pyhyy)

A Area of heated surface (m?) k Thermal conductivity (W/m™ K-

G, Specific heat (kJ kg_1 °Cc~h Nu Nusselt number (hD k™ 1)

Cp Drag coefficient N Number of nucleation sites

Dy Bubble departure diameter (m) ng Active nucleation site density (sites m™~ 2)

D Bubble diameter (m) n, Average cavity density (sites m~?)
D, Cavity diameter (pm) P Pressure (MPa)
dD/dt Bubble growth rate Pr Prandtl number (y,C,,/k))
f Bubble departure frequency (1 s~ ') R, Surface roughness (pm)
g Gravitational acceleration (m s2) R, Cavity radius (pm)
h Heat transfer coefficient (W m™2K™") RY Non-dimensional critical cavity radius
hy, Latent heat of vaporization (J kg™ ') r Bubble radius (m)
I8 Radius of the liquid microlayer under bubble (m)
rt Non-dimensional bubble radius
D Myeongsub Kim T Temperature (K)
kimm@fau.edu ‘ Time (s)
! Ocean and Mechanical Engineering, Florida Atlantic Ly Bubble waiting period (s)
University, 777 Glades Rd, Boca Raton, FL 33431, USA ty Bubble growth period (s)
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rt Non-dimensional time

\%4 Volume (m?)

V4 Bubble departure volume

Greek Letters

0 Contact angle (°)

p Density (kg m™)

A Difference

¢ Dimensionless surface roughness parameter
u Dynamic viscosity (kg m~!s71)

p Half cone angle (°)

E Mean half cone angle (°)

v Kinematic viscosity (m?s™ 1

c Surface tension (N m~ ")

o Thermal boundary layer thickness (m)
a Thermal diffusivity (k/p,C,)(m*s™")
£ Volumetric expansion coefficient (K~ 1)

Superscripts

+ Non-dimensional

Subscripts

C Cavity

L Liquid phase

Max  Maximum

Min Minimum

Nc Natural convection

B Boiling

Sat Saturation condition

Tc Transient conduction
Heating surface

Y Vapor phase

Introduction

The exponential growth in component density of microelec-
tronic devices has demanded innovative cooling method-
ologies to manage a high magnitude of heat fluxes [1-4].
Nucleate boiling has been extensively utilized as an effi-
cient cooling strategy due to the high heat transfer coef-
ficient between liquid and solid for low superheats [5].
Various domestic and industrial applications that involve
high-power electronics utilize nucleate boiling for high
heat removal [6, 7]. Therefore, understanding the nucleate
boiling process is of great importance to further improve
the heat removal capacity while advancing this strategy to
numerous applications [8]. Even though different investiga-
tions regarding nucleate boiling have been performed over
recent years, numerous ambiguities related to the boiling
process still exist. This is mainly due to the high complex-
ity of the boiling process, which involves intermingled phe-
nomena including contact line dynamics, liquid—vapor phase
change, unsteady temperature gradients, and turbulent flows
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[8]. To better understand, a majority of the investigations
on nucleate boiling have been concentrated on the bubble
ebullition cycle, which consists of the continuous incident
of bubble nucleation on a heated surface, bubble growth,
and bubble departure from the surface. During the bubble
ebullition cycle, the total heat transfer from the heated sur-
face to the fluid can be estimated as ~ngg,, . Where n indi-
cates the nucleation site density and g, is an amount of
heat per time transferred by a single bubble ebullition cycle.
Although various approximate correlations and models have
been proposed to calculate ggp.. [9-11], the emergence of
computer simulations and elaborated experiments have ena-
bled researchers to better understand the bubble cycle and
accurately obtain relevant data [12—14]. These advanced
simulations and experiments have revealed that heat trans-
fer mainly takes place by either means of the liquid—vapor
interface through the microlayer or from the bulk surround-
ing liquid [15].

Four heat transfer regimes in pool boiling

The boiling curve, as shown in Fig. 1, is extensively used
for describing mechanisms and regimes of pool boiling
heat transfer [16, 17]. In this curve, the changes of heat flux
from a surface to surrounding liquid are correlated with wall
superheat defined as a difference between wall and liquid
saturation temperature [18-21]. This curve differentiates
four unique regimes of heat transfer at distinct levels of wall
superheat [22-24]. These regimes include (1) a single-phase
(liquid) regime associated with low superheat, (2) a nucle-
ate boiling regime contributed to bubble nucleation at the
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Fig.1 Pool boiling curve that shows the relationship between heat
flux and associated wall superheat (AT=T-T,,) [25]
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surface, (3) a transition boiling regime in which parts of
the surface experience bubble nucleation, whereas the rest
are blanketed with vapor, (4) a film boiling regime associ-
ated with high wall superheat resulting in vapor blanketing
the entire surface. Three crucial transition points delimitate
these four regimes: (1) incipient boiling (onset of boiling)
associated with forming the first bubble on the surface,
(2) the critical heat flux in which localized vapor blankets
replace bubble nucleation by joining together throughout
the surface, and (3) a Leidenfrost point (minimum heat flux)
where breakup in the uninterrupted vapor blanket starts dur-
ing film boiling while reducing wall superheat. Addition-
ally, the highest and lowest heat transfer coefficients can be
estimated based on the boiling curve and transition points,
belonging to the nucleate boiling and film boiling regimes,
respectively.

Among these four regimes, the nucleate boiling is consid-
ered as the most influential regime in practical heat transfer
applications. Since the nucleate boiling regime consists of
the continuous bubble ebullition cycle which leads to con-
tinuous heat transfer, a comprehensive understanding of
bubble formation and its impacts on heat transfer is crucial.
Therefore, a basic background on nucleate boiling and asso-
ciated time-dependent mechanisms of bubble formation will
be discussed in the succeeding sections.

Background on nucleate boiling

In nucleate boiling, bubble nucleation is considered as the
first stage of the bubble ebullition cycle. Based on trapped
vapor theory, air bubbles are trapped by cavities on the sur-
face where these trapping sites work as nucleation sites [26].
During bubble growth, the vapor pressure inside the bubble
is higher than the pressure of the surrounding liquid as a
result of the convex curvature of trapped vapor bubbles in
cavities. When the temperature of the surrounding liquid
equals the saturation temperature, its equilibrium vapor pres-
sure does not match the vapor pressure inside the trapped
bubble. Nonetheless, in the condition of sufficiently super-
heated liquid, its equilibrium vapor pressure is higher than
the bubble vapor pressure that induces bubble growth. Based
on Young—Laplace and Clausius—Clapeyron equations, the
specific condition that leads to bubble growth or nucleation
takes place when the chemical potentials (e.g., specific vol-
ume, enthalpy, and saturation temperature) of the vapor and
the liquid match [27]:

21, Tgat
AT =~ Iv* sat“fg (1)

hngb
When bubble nucleation occurs, the superheat could be
measured by determining the radius of curvature of a nuclea-
tion site (Ry) in Eq. (1). Lorenz and Hsu models are the

two prevalent methods for determining the bubble radius
of curvature [28, 29]. The radius of curvature is obviously
associated with the cavity radius; however, it is not neces-
sarily required to be identical with the cavity radius. For a
specific cavity and liquid, R, could be smaller than, equal to,
and larger than cavity radius, relying on the vapor volume.

Not only the radius of curvature but also the force bal-
ance during bubble growth is another important factor that
affects the nucleate boiling. During bubble nucleation, mul-
tiple forces including buoyancy, shear forces at the interface,
pressure difference between vapor and liquid, surface ten-
sion, and gravitational forces play a critical role in nucleate
boiling. In nucleate boiling, when the buoyancy force over-
comes the surface tension force as well as the gravitational
force, the vapor bubble is detached from the heated surface
while augmenting its size. The bubble size and generation
frequency are the important factors to increase the heat
transfer rate. Likewise, it is a prominent fact that the mag-
nitude of heat removal rate in the nucleate boiling is a func-
tion of time-dependent parameters, called bubble dynamics
parameters, including bubble departure diameter, bubble
departure frequency, bubble growth period, bubble waiting
period, and nucleation site density. Thus, the quantification
of the bubble dynamics parameters is required to accurately
determine the heat transfer rate, and this could be achieved
by understanding the bubble formation, growth, and depar-
ture on the heated surface.

To determine bubble dynamics parameters, various
empirical or semi-empirical correlations have been devel-
oped based on principals of boiling heat transfer, which esti-
mate experimental data of various researchers with minimal
errors [30-33]. The precision of these correlations relies on
how the bubble dynamics parameters are estimated. These
proposed correlations can be used to determine the boiling
heat flux and boiling heat transfer coefficient. The goal of
this paper is to primarily provide a detailed review of cor-
relations for determining bubble radius during its growth
and bubble dynamics parameters in nucleate boiling and
secondarily to review important factors governing the bub-
ble dynamics parameters. Hence, this paper starts reviewing
different bubble growth mechanisms. Secondly, the bubble
dynamics parameters used in different correlations for deter-
mining the boiling heat transfer coefficient are described and
reviewed. In accordance with the information regarding the
bubble dynamics parameters, a detailed review of factors
affecting these parameters is provided. Overall, this review
paper includes various correlations developed by different
studies based on experimental and numerical data in order
to better predict the heat transfer during nucleate boiling.
This review could be worthwhile in developing boiling heat
transfer correlations regarding bubble dynamics parameters.
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Bubble growth mechanisms

Two mechanisms for bubble nucleation and subsequent
growth have been reviewed. The first type is homogenous
nucleation, which takes place in the bulk liquid at upper
levels of supersaturation. Supersaturation is referred to a
condition of which a solution contains more of a dissolved
material than could be dissolved in the solvent under nor-
mal circumstances. The second mechanism is heterogene-
ous nucleation that occurs at surface defects such as cavities
and tiny holes at lower levels of supersaturation. Although
understanding these mechanisms is a crucial step to obtain
accurate modeling in nucleate boiling processes, the bubble
growth is inherently complicated with various forces such
as surface tension, the pressure difference between the vapor
and liquid, shear forces, and the inertia of the ambient lig-
uid. Also, the bubble cycle is time-dependent, which leads
to the variation of mass, momentum, energy equation over
time. Nonetheless, considerable efforts have been made to
promote the understanding of these processes for precise
modeling, and the following sections discuss the two bubble
growth mechanisms.

Homogenous bubble growth

Bubble growth in a superheated liquid is regarded as homog-
enous. Homogeneous bubble growth is mainly governed
by inertial-controlled and heat transfer-controlled growth
mechanisms at different phases during its growth. In the
inertia-controlled bubble growth that is valid only in the
initial stage, heat transfer is neglected. On the other hand,
in the heat transfer-controlled bubble growth which is suit-
able only in the later stage, the influence of inertia on bubble
growth is ignored. For complete modeling of bubble growth,
these two growth mechanisms must be considered.

In the initial stage of bubble growth, a vapor bubble
expands freely when its radius reaches an unstable equi-
librium. During the early stage when the bubble radius is
small, the Laplace—Young equation states that the pressure
differential throughout the interface reaches its highest
value. This results in great inertia terms in the momentum
equation. Meantime, the interface’s temperature approaches
the superheat temperature of the ambient liquid. Thus, the
greatest driving temperature differential is experienced by
heat transfer from the liquid into the vapor bubble. Conse-
quently, inertia or the momentum exchange between liquid
and vapor limit the initial bubble growth [34].

By combining the Rayleigh, Clausius—Clapeyron, and the
continuity equations under the conditions of an incompress-
ible and radially symmetric inviscid flow, the instantaneous
bubble radius in the initial stage of growth is calculated as
follows: The continuity equation is expressed as
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0 2)

where u is the radial velocity in the liquid phase. The fol-
lowing equation is obtained by integrating Eq. (2) over the
interval of (R, r)

a0
) =—|(— 3
u(r,f) = (7 3
The momentum equation for the surrounding liquid is
ou ou ap
”‘(at+”ar>_ or @

By substituting Eq. (3) in Eq. (4)

P (dR)2 ,d?R]  2pR* (dR>2 op
Ahr(L) +rEZ| - oYy =2
2 [ dr ar s \dr or )

Integrating Eq. (5) over the interval of (R, o), the Ray-
leigh equation is obtained as

d’R  3/dR\* _ 1
S oo
e Tala) = 5 ® - a)] ©)
By recalling the Laplace-Young equation
(pg+pv—p1=12§) and substituting p, = 0 in Eq. (6)
b

d°R 3<dR>2= l[p

20
w Tl L= pieo) = =2 | ™

R

where P, — P,(o0) and o are the pressure difference between
water vapor and bulk liquid and surface tension, respectively.
During the early stage of bubble growth, the surface tension
(20/R) is negligible when compared to the pressure differ-
ence (p, — p;(00)). Also, the Clausius—Clapeyron equation
is expressed as

pvhlv [Too - Tsal [pl(oo)”
Tsal [pl(oo)]

Py = pi(o0) = ®)

which is used to determine the pressure difference.
Therefore, the instantaneous bubble radius is expressed as

oo {2200 T Tl |, o
3 h Tsat[pl(oo)]

According to Eq. (9), the bubble radius depends on both
pressure of the bulk liquid and the temperature difference
between the saturation temperature and the temperature of
the bulk liquid.

On the other hand, in the latest stage of bubble growth,
it is known that the inertial force becomes negligible while
the pressure difference significantly reduces (based on the
Laplace—Young’s equation), and the interfacial motion
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becomes slower. Simultaneously, the temperature differ-
ence between the interface and the vapor inside the bubble
decreases. With a lower level of these forces acting on the
bubble, heat transfer governs bubble growth in this stage.

oo, 0T,

T R2or <r or (10)
where u is achieved by Eq. (3). The boundary and the initial
conditions for Eq. (10) are

or, , 0T,
ot " or

T(r,0) = Ty(co),
TR, 1) = Ty (P ) an
T(o0,t) = Ti(00),

The energy balance at the liquid—vapor interface is

aT dR
klE(atr =R)= pvhlva (12)

As a result, the instantaneous bubble radius in the last
stage of growth can be expressed as [34]

R(1) = 2C v/t (13)

where Cy is a constant.
For large Jakob numbers (corresponding to low pressure),
Cy is calculated by [35]

Co=1/2Ja (14)
T

For small Jakob numbers,

Cp = Jz—“ (15)

A complete bubble growth model must contain both the
inertia force and heat transfer as well as make a smooth tran-
sition between these two phases. One of the correlations that
consider both inertia-controlled and heat-transfer-controlled
growth was introduced by Mikic et al. [9]. The bubble radius
is expressed as

= %[(r++1)3/2—(t+)5 —1] (16)
where,

. rDA

= (17)
L tA?

= (18)

. 1/2
A= {2[T1 - Tsat(Pl)]llvpv } (19)

p]Tsat(Pl>

B= (ﬂ)l/zm - <ﬂ> 1/2{ T — T (P) 00 }
z z Ly Py
(20)
where Ja is the Jakob number,

PiCpr [Tl(w) - Tsat(PV)]
Ja =
pvhlv

2y

Jakob number is the ratio of sensible heat to latent heat
absorbed (or released) during the phase change process.

Although this correlation has been widely applied for
describing bubble growth from the bulk superheated liquid,
its inexactness has been reported particularly within the ini-
tial stages at high superheats due to the following reasons: 1.
by supposing that the linearized Clausius—Clapeyron equa-
tion could be utilized for relating temperature and vapor
pressure; 2. by disregarding the surface tension effect on
the internal bubble pressure; and 3. by taking into account a
constant vapor density [36, 37]. To obviate this inaccuracy,
some corrections have been proposed. For instance, Miya-
take et al. [36] suggested to delineate the whole range of
bubble growth in the superheated bulk liquid.

rt = %{1 +%exp[—(t++ 1)1/2]}[(1++ 1)3/2— (t+)% - 1]

(22)
where
= 2 [0 = e 23)
AN? ?
t+=<E> {t—tgl1=exp l(—é) H} 24)
1/2
A [%ﬂ] 25)
3.pm

T ilvpv

B= <2)1/2{ [Tl - Tsat(Pl)]Cp,lF’lo‘ll/z } (26)

2
Perit = > (27)
AP,
or, crit
fy=—" (28)
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Fig.2 Schematic of bubble growth in the cyclic model from a heated
surface [40, 41]

APy =P, (T)) - P, (29)

Here, AP, and 1, are the initial pressure difference between
the exterior and interior of a bubble in Pa and a bubble
growth delay period in second, respectively. Additionally,
Foster [38] and Zuber [39] proposed other correlations for
bubble growth from a superheated liquid’s layer as follows:

r(t) = Cla(at)'/? (30

where C = 2b/\/7r in Zuber [39] or C = \/n in Foster [38]
correlations, respectively. b is a constant equivalent to 1 or
7 /2 and t and a are referred to the time (s) and the thermal
diffusivity (m>s~"), respectively.

Fig.3 Bubble growth from a
heated surface: stage at r=1,

Heterogeneous bubble growth

In heterogeneous bubble growth, growth takes place under
the temperature gradient, while a vapor bubble attaches
itself to a heated surface. The bubble growing procedure
is repeated at a cavity on the heated surface. In this cyclic
process, the bubble starts to nucleate at the cavity, depart
from the cavity, and is freed up into the bulk liquid. The next
bubble will be launched with the minuscule vapor left inside
the cavity by releasing the former bubble from the surface.
Thus, a bubble growth cycle is completed. In detail, Carey
[40] modeled the heterogeneous bubble growth cycle at dif-
ferent stages, as shown in Figs. 2-8.

In the first stage of bubble creation, the former bubble just
leaves the surface at r=t,. The released bubble fractionally
removes the thermal layer, which is the liquid proportion in
the vicinity of the heated surface which has a higher tem-
perature than the bulk liquid temperature. Minuscule vapor
is left by releasing the former bubble, which initiates the
subsequent heterogeneous nucleation process as depicted in
Fig. 3. In the next period of time named “waiting period”
(t,,), the thermal layer requires to be reformed, and the bub-
ble is not growing since the heat is captured by the thermal
layer. Thus, the contact between the hot surface and the lig-
uid bulk leads to the increase in the liquid’s temperature
by transient conduction, therefore creating the superheated
thermal layer until =¢, (Fig. 4). The bubble starts to form
once the thermal layer has been reformed. At this stage, the
inertia-control growth takes place, which leads to an expe-
ditious increase in the bubble radius. The early stage of the
bubble nucleation process is considerably alleviated due
to the existence of a liquid microlayer between the bubble
and the hot surface when compared with growth through
the bulk liquid. Vaporization of the extremely thin liquid at
the bubble-liquid interface considerably helps augment the

Thermal layer

[40, 41]
t=t,
Fig.4 Bubble growth froma oo
heated surface: stage at r=t,
[40, 41]
t=1t,

\7\ Thermal layer removal
Vapor entrapped in cavity

Thermal layer
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bubble diameter, as shown in Fig. 5. Next, the heat transfer
controlled growth takes place, resulting in the formation of
the bubble in a spherical shape, as shown in Fig. 6.

At the departure time at #=1t, =1, the bubble is separated
from the heated surface at its departure diameter, d},. A small
proportion of vapor from the bubble has left in the cavity
that leads to the formation of the subsequent bubble by het-
erogeneous nucleation indicated in Fig. 7.

During the bubble departure from the heated surface, the
bubble strongly magnifies the boiling heat transfer. Histori-
cally, the investigations have been centered on two important
questions about nucleate boiling: first, why the highest heat
transfer coefficients exist in nucleate boiling regimes, and

Fig.5 Bubble growth from a
surface: stage at =1, [40, 41]

-
Microlayer evaporation / \/

Fig.6 Bubble growth from a
surface: stage at t=1; [40, 41]

second, how the bubble formation can be used in thermal
management of electro-mechanical systems. First and fore-
most, at the bubble departure, the bubble removes and car-
ries away a proportion of the thermal layer. Thus, the cold
bulk liquid is combined with a significant proportion of the
superheated liquid. Secondly, the bubble plays the role of
energy mover: the liquid is regionally combined by stirring
action. This mixed procedure is considered “sensible heat
transport” or “locally enhanced convection.” Afterward, due
to removing a proportion of the superheated thermal layer,
a part of bulk liquid with lower temperature can contact the
heated surface, which results in quickly heating up the sur-
face, named transient conduction. Ultimately, heat transfer

Thermal layer

Phase-change at the
bubble/liquid interface

Thermal layer

Fig.7 Bubble growth from a
surface: stage at t=1,

Bubble forming in a
spherical shape

Thermal layer

TN

vs Bubble detachment

Portion of vapour left
in the cavity
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takes place between the bubble and the nearby fluid while
the entire thermal layer is moved away combined with the
bulk liquid. Thus, the bubble turns to liquid when the liquid
temperature is lower than the saturation point. Likewise,
energy can be carried by the bubble and is transferred to the
surrounding liquid by phase change, which called “latent
heat transport.” Figure 8 depicts the three explained mecha-
nisms taking place at the bubble departure, which are con-
sidered the significant processes in the improved boiling heat
transfer coefficients in nucleate boiling.

Lastly, the bubble can be created and reformed with the
assistance of this continuous procedure, which leads to the
formation of the next bubble by heterogeneous nucleation.
Mikic and Rohsenow [9] are considered as two of the first
scholars who developed bubble growth correlations from
the heated surface. However, their model is often not rec-
ommended since it only considers heat-transfer-controlled
growth and ignores the microlayer evaporation. Cole [42]
developed a more accurate empirical correlation for bubble
growth from a heated surface.

5
) = 5]{13/4(0{01/2 @31
Analogously, Cooper [42] presented,

_ 5 Ja 1/2
r(t) = E_Prlo's (at) (32)

Since these correlations take into account the microlayer
evaporation below the bubble, they are considered as reliable
references for bubble growth from a heated surface.

It is known that the cavity size plays another important
role in heterogeneous bubble growth. One of the correlation
widely used in the bubble initiation, growth, and departure
has been proposed by Han and Griffith [43]. They analyzed
the basis of bubble nucleation and growth on a heated

Fig.8 Bubble growth from a
surface: stage at =15 [40, 41]

surface having cavities that play as a nucleation site. They
observed that, when a thermal layer near the nucleation site
is adequately thick, the bubble starts to grow. Under satura-
tion conditions, they ended up finding the maximum and
minimum cavity sizes generating bubbles at a given constant
surface temperature.

1
5 126T,, 2

R m==3 1x|l-—

( c)max,mln 3 { - [ 5thlv(Tw - Tsat) 9

where § is the thermal layer thickness.

Howell and Siegel [44] studied characteristics of bub-
ble formation in a single cavity site with a diameter of
0.1 ~1 mm on a smooth surface during pool boiling. Because
the bubbles grew slowly and had relatively large diameters,
only buoyancy and surface tension forces were crucial at
departure. When the vapor bubble expands over the liquid
thermal layer (R, > ), evaporation takes place from the
fraction of the nucleus surface within the thermal layer,
whereas condensation happens over the remaining fraction
of the nucleus through the thermal layer. They found that
the requirement for growing the vapor bubble is that the
evaporative heat transfer must be higher than the amount of
the condensation that ends up with the succeeding criterion,

40T,
TW - Tsal > ns’ Rc >6 (34)

vy
In case that the nucleus is confined in the thermal layer (

R, < 0), the needed temperature for growing the bubble is
expressed as,

20T,
-T O sat ! R. <6 (35)

T at > >
- pvhlch 1 - Rc/(25) ¢

w

A superior heat transfer between the heated surface
and the surrounding liquid can be achieved by the bubble

“ _/' Locally enhanced convection—
e “_y sensible heat transport
i /’/ S 0.4 P
“~ [ Latentheat | T
! transport | :
s A\\ //

Therrhﬁiailriayer Transient conduction

e Thermal layer
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ebullition cycle. This complex heat transfer process occurs
at different stages of bubble growth through unique phenom-
ena named transient conduction, latent heat transport, and
sensible heat transport. Hence, various factors called bubble
dynamics parameters like departure diameter, growth rate,
and frequency which deal with the bubble ebullition cycle
are crucial elements to be acquired for estimating nucleate
boiling heat transfer.

Bubble dynamics parameters
Bubble departure diameter (D)

One of the vital parameters in determining the nucleate boil-
ing heat transfer coefficient is bubble departure diameter. By
definition, the bubble departure diameter is the ultimate or
equal diameter of the vapor bubble once it detaches from the
heated surface during boiling [33]. Two methods, namely
experimentation and force balance, are generally applied to
determine the bubble departure diameter. With experimen-
tation, images or videos of vapor bubbles during boiling
are taken by a high-speed camera. Then, image processing
software is used to evaluate the images, which lead to the
measurement of the vapor bubble’s equivalent diameter [33].
This estimation can be carried out in a nucleate boiling zone
at low to modest heat flux; however, at a greater heat flux
zone, the collision of multiple bubbles takes place, resulting
in forming a greater bubble in size, which is not a precise
measurement of the bubble departure diameter. With force
balance, the bubble departure diameter can be determined
prior to the departure of the bubble from the heated surface.
Various forces affecting bubble growth can be enumerated,
such as surface tension, drag, inertia, pressure, and buoyancy
forces. Among these, surface tension and drag forces tend to
prevent the bubble from detachment (negative forces), while
buoyancy, inertia, and pressure forces are considered posi-
tive forces that pull the bubble from the heated surface [45].
Figure 9 shows various forces acting on a vapor bubble on
a heated surface. Due to such complexity, different correla-
tions have been developed based on experimental or non-
experimental approaches to determine the bubble departure
diameter. A summary of these correlations is provided in
Table 1. Some correlations are simple with limited applica-
tions, and others are complicated because of the involvement
of geometrical constraints.

A bubble departure diameter (D) correlation for pure
liquid and liquid mixture has been introduced by Fritz [46],
which has been broadly utilized with limited modifications.

f Buoyancy force
Fo

Heating surface

!
’ Surface tension
force, Fg

Surface tension L
force, Fg

Fig.9 Forces acting on a vapor from a heated surface [45]

20
D, = 001460 —=2 36
¢ 8(p = py) (36)

where 0 is 45°for water and 35°for the mixture. Fritz [46]
correlated the bubble departure diameter by balancing buoy-
ancy and surface tension forces, and this correlation is con-
sidered as the basic form of the bubble departure diameter.
They correlated the bubble departure diameter with a contact
angle, surface tension, and thermo-physical properties of
the fluid.

In accordance with experimental investigations, Stan-
iszewski [47] modified Firtz’s correlation with taking into
account the bubble growth velocity since a fast-growing bub-
ble has a greater diameter at the moment of the departure.
Additionally, Suszko and El-Genk [48] measured the bubble
departure diameter, frequency, and transient growth rate in
PF-5060 liquid on rough surfaces during saturation nucle-
ate boiling by using 0.5 W cm~2 heat flux with a high-speed
video camera. The values of bubble departure diameters
on smooth copper (Cu) with an average surface roughness
Ra=0.039 pm and rough Cu surfaces at Ra=0.21-1.79 pm
were calculated to be 655 +40 pm and 438 +17 pm, respec-
tively. Also, they proposed correlations for the departure
bubble diameters on smooth (Eq. (37)) and rough Cu sur-
faces (Eq. (38)) as follows:

Dy =234 +814/1, (37)
Dy =206 +48+/7, (38)

where ty is the bubble growth time (ms).
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Table 1 Correlations of the bubble departure diameter proposed by different researchers

No Reference Correlations Condition
1 Staniszewski [47] _ /2 D Pressure =28 to 41 psi, working
Dy =0.00716 [g(prpv) [l + (0‘4355)] fluid = degassed DI water and ethanol
2 Borinshanskyand p ¢ 2 ] 1/2 -
Fokin [54] 2R, 2R, [ re T ]
6 0.4 1/2
c=(2)E)(5) (i )-ke=oomie| o]
g/ \m=r. )\ n ey 8lpm=py)
3 Ruckenstein [55] D= [3”01%280‘5(/’1* 205 ]Ja4/3 [ 20 ] 1/2 _
d o3/ 8pi=py)
4 Cole and Shulman D. = 0.02080 1 +0.0025(£2 3 Pressure =50-760 mm Hg
= —_—)2
[10] a [z | [+ 0omscy]
5  Hatt d Hall . 3 o \ -
fon and e zﬁgm—pp+D4&aQ§me—m(f)um%f9—§%+%)
6  Cole[10] 2w 12 Pressure =50-760 mm Hg
D, = 0.04Ja[ ]
8m=py)
7 Cole and Rohse- 5 1/2 -
— 5/4| 208
now [57] = Cat| e |
C = 1.5 x 107 for water and C = 4.65 x 10~* for others
8  Van Stralen and 1/3 057174 -
.. _ Ja? a 27
Zijl [58] Dd_263< ) [1+(3Ja) ]
9  Golorin et al. [59] 0,0099% 1569 3 -
— - |
Dy = 8(p=py) + { [g(prﬂ\,)] [0 6011](1] }
10 Kutateladzeand D, = 0.5(1 + 10°C) for C < 0.06 -
Gogonin [60] -1
¢ c= ()] [rem2] [ ]3/2
Pr u 2(p=p,)
11  Kacamastafaogul- s - 12,5 \00 The average deviation of the correlation
. =2.64%x107° | ——— 2t .
lari [32] 2(p—py) P is 33%
12 Gorenflo et al. Jatat 1 2 1] -
(611 Dy = ()1 421
13 Wenzel[62] e \2 (108 05 ) 1/2 Applications for pure liquid and mix-
py=025[1+ (%) ()| [:25] tures
Pr Ar g(m=nr.)
14 Zengetal. [63 s o -
g [63] Ddzz{i<1{2/>[( )Cn+n(n—1)]}(2)
K and n are determined empirically
15  Yangetal. [64] Dy = (3.0557 x 10) 2(Cy pm,; ,7a Pl Effect of gravity has not been considered
vy
In which
2 2
n=wld.y = = [f)] >
o=[1+3G + &
2 3
fo) ~ 1—-P—V1—@]+%D—V1—&]
c=% m=14
R’
16 Leeetal. [65] 7 2 Constant wall temperature, Working
= (50\/271““\/;) fluids: R11 and R113
17 Jamialahmadi D. = 96.75+0.01425(¢) -1 Bulk temperature: 100-110 °C,
et al. [66] = Ing Salt concentration:
NaCl:1-80 kg m™ 3, Na,SO,:1-150 kg
3, KNO;:1-100 kg m~*
18  Kim and Kim [67 /2 DI water and R113 as working fluid
671 Dd__01649[ ] Ja*7 g
8(p—py)
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Table 1 (continued)

No Reference Correlations

Condition

19  Fazel and Shafaee
68 ”lvf’\

20 Phan et al. [69] —1/2
SO ) NG

D = [ 24(sin9)? [ - ]1/2

47\ 2+3cos 0—(cos0)® | g(p—py)

1/2

® >

21 Nametal. [12]

1/3 1/2
1) tan9‘1/6[L]
&m—py)

Focused on the effect of contact angle

Working fluid: DI water. Cu nanostruc-
ture surface used as a surface

22 Lamas et al. [70]

D, = \/0.0027( 1CuAT )0 1 ( n )70‘02460.0279 [L]
d ey oy g(pm=py)

Working fluids: water, R134a, ammonia
and R123, pressure: 0.1-10 bar. Con-
tact angle: 10°-80°

23 Hamzenkhani
etal. [71]

24 Suszko and El-
Genk [53]

Dy =234 +81,/f,

Dy =206 + 48 /1,

cy 1/2
Ddzco[cl+.la02Ca”3<%) H = ]

g(p=py)

25 Bovard et al. [72]

o = 17.952177, ¢, = 0.0172742, ¢; = 1.285607, c; = 0.661205, ¢, = 0.025346

26 Haziand Markus p [
[52] 8(p1=py)

27 Unal[73] Dy = 2.42 x 1075 pO709 4

§

ATwlt ATy,

In whicha = b=
Wit 2oyl ra) 7 T 20

28 Kocamustafaog— Dy =2.64x10" 59( Ap )09
ullari gAp
and Ishii [51]

29 Basuetal. [50]

30 Bae [74] e /D \2 -0.7
Dd=(1+8.34[$ﬂ9_(#)] )

025 0.775
D, = YA nCuAT gnAp
d Apg ) \ ocos oyl ul

= 1,1.3(sin 6,,)°#[0.13¢179107Re 1 0,005] x Ja%st® exp(~0.0065/a,,)

157005 Working fluids: pure water, ethanol,
<z ) ] ethanol/water, NaCl/water and
g4 Na,SO,/water

PF-5060 liquid on rough Cu surfaces

Heat flux:10°-10° W m~2
Working fluid: water, Ethanol, and
Acetone

Focused on the effect of gravity accel-
eration

Working fluids: Water, pressure: 0.1—
17.7 MN m~ % heat flux: 0.47-10.64
MN m™?2

Pressure: 1.03-3.2 bar, heat fluxes:
2.5-90 Wm~?

Additionally, Cho et al. [49] experimentally studied
forces acting on a bubble for determining the bubble

225| @ ° e o *
[ J [ ]
€ 2.00 ®
£
=
Q 1.75
8150 » Cho
% ’ e Koca. <«
o 1.25| <« Basu < < « 1 o«
5 <q <
T 1.00
o
] 075
» > > >
050| »» > > >
11 12 13 14 15 16 17

Effective jacob number/Ja

Fig. 10 Bubble departure diameter based on different correlations
[49]

departure and lift-off from a heated surface. The proposed
model for the departure diameter relies extremely on the
contact angle. The comparison of different models asso-
ciated with the bubble departure diameter is shown in
Fig. 10. The departure diameter was overestimated by the
correlations proposed by Basu [50] and Kocamustafaogul-
lari [51].

On the other hand, Hazi and Markus [52] numerically
investigated bubble growth on a horizontal plate in slow-
moving and stagnant fluid utilizing a lattice Boltzmann
method. Using simulations, the bubble departure frequency
and diameter were estimated, and specifically, in a stagnant
fluid, they found that the departure diameter is proportional
to g~!/2, where g is the gravitational acceleration. Ardon
et al. [53] introduced a model to predict bubble departure
diameters and dynamic contact angles during pool boiling.
According to their model, fluid drag forces have a signifi-
cant effect on the bubble shape rather than surface tension
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forces in the condition of high Jakob numbers (Ja > 100) and
fast-growing bubbles, which leads to a hemispherical shape
in the growth period. On the other hand, the condition of
the slow-growing bubble with low Jakob numbers (Ja < 50)
results in a spherical shape of the bubble.

According to the proposed correlations, it can be roughly
mentioned that most of correlations for the bubble departure
diameter have a general form,

c
L) (39)

Dd=A-JaB-<
PL— Py

where A, B, and C are constant.
Active nucleation site density (n,)

As aforementioned, bubble growth can be categorized
into two nucleation processes, including homogeneous
nucleation and heterogeneous nucleation [75]. The former
describes the creation of bubbles at a vapor-liquid interface
in superheated liquid without a heating surface, vapor nuclei,
and pre-existing gas, while the latter expresses the creation
of bubbles at a vapor-liquid interface with the existence of
vapor or gas in a cavity on a heated surface [33]. In hetero-
geneous nucleation, cavities serve as nucleation sites, and

the quantity of cavities is one of the important parameters of
consideration in heat transfer. Not all the cavities generate
bubbles and, therefore, a minimum cavity radius exists at a
specific heat flux so that the cavities greater than the mini-
mum radius can generate vapor bubbles, named as active
nucleation sites. The active nucleation site density is referred
as the cavities’ number which can form a vapor bubble per a
unit heating surface area.

The active nucleation site density coupled with the bub-
ble departure diameter is closely correlated with the boil-
ing heat flux or the boiling heat transfer coefficient. Many
researchers have developed different correlations to deter-
mine the nucleation site density, as summarized in Table 2.
For instance, the first correlations for the active nucleation
site density were proposed by Gaertner and Westwater [76]
and Micki and Rohsenow [77]. Gaertner and Westwater [76]
performed an experiment associated with pool boiling on a
horizontal flat copper surface by using an aqueous solution
of nickel salts including 20% solids as a working fluid at
atmospheric pressure. The applied ranges of the wall super-
heat and heat flux were from 8.1 to 102.67 °C and from
24.2 to 1687.7 kW m™, respectively. They observed that the
nucleation site density and square of heat flux are propor-
tional. On the other hand, Zou and Jones [78] experimentally

Table 2 Correlations of active nucleation site density proposed by different researchers

No References Correlations

Condition

1 Gaertner and Westwater [76] ngx q-

2 Micki and Rohsenow [77] 1y % [Demax/De]”
40T, ,m=6.5
D, = Iy (Ty=T)

3 Bieretal. [80] D,

Inn, = ln(nmax)[l - (ﬁ)m]

Cornwell and Brown [81]
5  Paul and Abdel-Khalik [82]

ng X (Tw - Tsat)4'5

ng=1.027x 107%g + 15.74

6  Kocamustafaogullari and Ishii i+ = f(,")RF*Y
s p c
[51] nt =
+— =) p+ _ 2R
r= Py RC oDy
7  Yang and Kim [83] ¢
= 1
ng =7 0/ T >
Wen and Wang [84] ng=5x% 10°(1 — cos G)DC_6
9  Benjamin and Balakrishnan 163 1 kpCy
1851 n, = 218.8(Pr) (;) T

_ R,
exp { "L bdp x [ 2exp(—AR )R,
R,

¢—0.4(TW _ Tsal)3

Aqueous solution of nickel salts on copper
surface at atmospheric pressure

Horizontal copper plates, Working fluid:
boiling refrigerants Rl (CFCl;) and
RII5(C,FsCl)

Water on an electrically heated platinum
wire at atmospheric pressure

nD% f(p*) = 2.157 x 107 p*3D(1 4 0.0049p+)*13

Water at 1 atm pressure on Cu surfaces

Distilled water, acetone, n- hexane, and
carbon tetrachloride on aluminum and
stainless steel surfaces

y = (&)” > § =145 - 45(R,P/c) + 0.4R P/c)

kipy Cpl

10 Sakashita and Kumada [86] n=C [(Ja <R )3/10(L)]m
s T “s c R,
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1e7 Active nucleation site density

10 * Contact angle = 38 Degree
+ Contact angle = 45 Degree
0.8

0.6 ,fp'

Active nucleation site density/Sites m—2
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Wall superheat/K

Fig. 11 Active nucleation site density with different wall superheats
based on models developed by Habiki and Ishii [79]

studied nucleation site distributions on stainless steel and
copper heating surfaces with subcooled boiling of R134a. To
achieve reliable results, high-speed cameras were used for
recording bubble images from the heated surfaces. Accord-
ing to their results, the nucleation distributions were fairly
more uniform on the copper surface when compared with
the stainless-steel surface. In another study, Habiki and Ishii
[79] developed a model to estimate the active nucleation
site density with various wall superheats in contact angles
of 38° and 45° (Fig. 11). Based on the figure, the active
nucleation site densities are augmented by increasing the
wall superheat.

Bubble waiting period (t,)

In addition to bubble departure diameter and active nuclea-
tion site density, bubble waiting period is another crucial
parameter that influences the heat transfer rate from a heated
surface through nucleate boiling [33]. A bubble waiting
period is the time period between the bubble departure from
a nucleating cavity and the subsequent bubble initiation from
the same cavity. To determine this period, an equation rely-
ing on the bubble nucleation and potential flow theory prin-
ciples has been introduced by Han and Griffth [43].

t. = 9 (Tw - TOO)RC ’
o (40)
4xay | (T, = T)[1 + 2o/Rop, )

where ¢ and R, are the surface tension and cavity radius,
respectively. T,,, T, and T are referred to the temperature
of wall, bulk liquid, and the heated surface, respectively.

Basu et al. [50] correlated the bubble waiting period as a
function of wall superheat:

t, = 139.1 (AT *" (41)

On the other hand, Philips et al. [8] determined that the
bubble waiting period not only depends on the wall super-
heat, but also thermal diffusivity and liquid subcooling.
Other researchers added more parameters in their correla-
tions such as heat flux, properties of the heated surface, and
bulk liquid velocity [9, 10]. Maity [11] concluded that the
bubble waiting time is increased by increasing the bulk lig-
uid velocity. Another correlation derived by Hsu and Gra-
ham [87] stated that the waiting period depends upon the
thermal boundary layer thickness and the bulk temperature
of the fluid. Hsu and Graham [87] also developed the mini-
mum waiting period with making the bubble equilibrium
temperature curve and the fluid temperature line tangent to
each other like:

t 44T, - T, )T?c? o
w,min ][a]vpzhz (Tw _ TS)4 ( )

v lv

An expression for the bubble waiting period (z,,) and bub-
ble growth period (z,) for pure liquids has been developed by
Van Stralen et al. [11] as follows:

t, = 3tg (43)

In accordance with the equation of bubble waiting period
and bubble growth period, the former is three times greater
than the latter in the equal nucleation cavity.

Bubble growth rate (R(t))

Another significant parameter contributing to the bubble
dynamics parameters is the bubble growth rate, defined as
the modification in bubble size over time [33]. Table 3 sum-
marizes various bubble growth models throughout nucleate
boiling under several conditions such as uniform and non-
uniform temperature fields and different pressures. In the
correlation introduced by [35, 39], the square root of time,
thermal diffusivity, and Jakob number affect bubble growth
rate. It can be observed that this fact is valid for most of the
correlations. Cole and Shulman [42] used % power of the
Jakob number, while Labuntsov et al. [88] proposed square
root of the Jakob number in their bubble growth model. The
table shows that different coefficients have been suggested
in different correlations [89-92]. Moreover, the Prandtl
number, the growth period, and the bubble waiting period
have been involved in the models of the bubble growth rate
introduced by Copper [93], Van Stralen and Sluyter [89], and
Mikic et al. [9], respectively.

The analytical models proposed by Plesset and Zwick
[35] and Zuber and Foster [38] were formulated based on
the heat diffusion from a superheated layer surrounding the
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Table 3 Correlations of the bubble growth rate proposed by different researchers

No Reference Correlations

Condition

1 Firtz and Ende [90]
2 Van Stralen and Sluyter [89]

R(>) = 1.128ar/at
R() = 1.954b [exp ( L )]O'Sja\/a—l,

Pure liquids and binary mixtures

b=constant bubble growth parameter for spherical

bubble b < 0.794

Pl Zwick 172
3 esset and Zwick [35] R() = (1”_2) Ja(an'?

4 Forster and Zuber [38]

5 Zuber [39]

2kAT

R(t) = \/7 x Ja(at)"/? at uniform temperature field

at uniform temperature field

R(t) = \2/—’:? x Ja(ar)'/? Uniform temperature field -

R(t) = \2/—}:7 x Ja(at)'/? [1 - qh—’m'] Non-uniform

temperature field

6 Labunstov et al. [88]

R(t) = \/Zﬂ..la(atz)l/2 Pressure: 1-100 bar

Working fluid: water

B =2c08(6/2)In £ [(1 +cos 0)*(2 — cos )]

7 Cole and Shulman [42]

8  Cooper [93] R = 2,5}%((1[)1/2
T

iki _2 3/2 3/2
9 Mikic et al. [9] R+—§[(t++1)/ — ()3 _1]

= R oo
R" = BZ/A’t T B/A?

[, AThp, 1/ 12
A= [b Tsz..Zn ] B = [l,,_zjazal]

10 Akiyama [91]

11 Chen et al. [92] R* = Kr*", Pressure: 1-10 bar

s R 1/2 % t
* N - o = L
K @) La = [(m—mg] ¢
12 Zhao et al. [94] — 2Ty =Tu)
RO = e Vi
13 Yunetal. [95] — 2b _ _bayt
R() \/;Ja\/a s
B=1,s=2

14 van Stralen et al.[11] R(t) = 0.47 X Ja X Pre Vat

R(t) = Ja*/3 a'/2¢" Jakob number: 2—1040

R(t) = 3Ja*/*(at)'/? High Jakob number -

Water, organic liquids, cryogens and metallic fluids
have been used

Working fluids: water, ethanol, and carbon-tetra-
chloride

Working fluid: DI water, Pressure: 1-10 bar,

bubble. In addition to heat diffusion from the superheated
layer, Yun et al. [95] incorporated the effect of condensation
at the bubble cap for calculating bubble growth rate. Cooper
and Lloyd [93] and van Stralen et al. [11] proposed the bub-
ble growth rate model considering an evaporation layer as
the major source of heat addition to the bubble. From the
formulations presented in Table 3, it can be seen that the
bubble growth rate due to heat transfer from evaporative
and relaxation layers is proportional to ¢!/2. Different model
constants are used to take care of different amounts of heat
transfer from each layer. Roughly, the general form of the

@ Springer

bubble growth R(t) at any time ¢ in terms of constant A and
B can be provided as follows:

R(t) = A[Jax (a)*’| — B[ 9! ] (44)

hlvpv

The first term in the above expression accounts for the
heat transfer contribution either from the evaporative layer,
the superheated layer or from both. The second term repre-
sents the effect of condensation from the bubble dome in
contact with subcooled liquid.
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Bubble growth period (t,)

Bubble growth period is the time interval from the initia-
tion of a vapor bubble in a cavity until it departures from
the cavity, and it significantly influences the magnitude of
heat removed from a heated surface[33]. A correlation for
the bubble growth period in non-uniform temperature fields
in the liquid has been proposed by Zuber [39] and this cor-
relation is a function of the thermal diffusivity of the liquid
phase, bubble departure diameter, and Jakob number (Ja),
expressed as

2
Dd

P — 45
& 16h2(Ja)*q 45)

where b is a constant ranging from 1 to \/g It should be
noted that the bubble growth period is proportional to the
square of the bubble departure diameter. Another correlation
for bubble growth period has been proposed by Hatton and
Hall [56] by utilizing the Plesset and Zwick’s [35] bubble
growth period relation and Zuber’s parameters [39] with the
cavity radius and without the Jakob number.

2 2
h. ) DR
tgzﬁ_oq{(ﬂv lv) d c} (46)

3 8kio Ty

The equation shows that the bubble growth period
depends on the square of the nucleation cavity radius and a
bubble departure diameter. Besides, the dimensionless bub-
ble growth period has been investigated by Lee et al. [65],
which is roughly 60 for constant wall temperature and R11
and R113 working fluid at saturated boiling conditions. They
proposed a correlation of bubble growth period with apply-
ing this dimensionless growth period.

D
1, = 67.5Jaap, = 47)
o

According to this correlation, the bubble growth period
is changed with the bubble departure diameter and Jakob
number with respect to surface temperature.

Bubble departure frequency (f)

Another essential parameter affecting the bubble dynamics
used for determining the boiling heat transfer coefficient is
the bubble departure frequency [33]. The bubble departure
frequency is a strong function of the bubble growth period
(7,) and the bubble waiting period (z,,). It is the reciprocal
of the time interval contributed to two subsequent nuclea-
tions within nucleate boiling. In experiments, the bubble
departure frequency can be measured by counting the overall

number of bubbles generating from a cavity per unit record-
ing time and can be expressed as

_ 1
(ty, +1,)

f (48)

Based on the correlations for ¢, and fgs the wall superheat,
interactions between adjacent bubbles, cavity size, phase
contact angle, and thermophysical properties of fluid have
significant effects on the bubble departure frequency.

Jakob and Linke [96] are pioneers who defined a cor-
relation of the bubble departure frequency with respect to
the bubble waiting period, bubble velocity, bubble growth
period, and bubble departure diameter. A few years later,
Jakob and Fritz [97] found that the product of the bubble
departure diameter and departure frequency is constant dur-
ing pool boiling of liquid nitrogen and water. In another
study, Jakob [97] adjusted the product of the bubble depar-
ture diameter and departure frequency by considering the
thermophysical properties of the working fluid and surface
tension. In his study, it was assumed that the bubble waiting
period and the growth period are equivalent. Later, Jakob’s
correlation was modified by Peebles and Garber [98] and
McFadden and Grassman [99]. In particular, McFadden and
Grassman’s study found that the product of a square root of
bubble departure diameter and bubble departure frequency
(/DY) is constant. Zuber [100] also proposed a modified
Jakob’s correlation [101] by considering the equivalence of
the bubble growth period and waiting period.

Additionally, Hatton and Hall [56] proposed a correla-
tion that shows the dependency of the square of the bub-
ble departure diameter and bubble departure frequency on
the liquid thermal diffusivity. Also, Cole [10] introduced an
expression between departure frequency and bubble depar-
ture diameter respect to the gravity and density ratio under
buoyancy and drag forces. However, in accordance with
the experimental data, the values of surface tension and the
power of bubble departure diameter are substituted by 4/3
and 0.5, respectively. Table 4 provides various correlations
for bubble departure frequency.

Factors affecting the bubble dynamics
parameters

Numerous factors govern bubble dynamics parameters asso-
ciated with the boiling heat transfer. These factors can be
categorized into two fundamental groups, namely active
and passive. Active factors include electric and magnetic
fields, ultrasonic waves, and vibration, while passive fac-
tors include heat flux, thermo-physical properties, contact
angles, wall superheat, liquid subcooling, cavity spacing,
gravity levels, surface roughness, and pressure [110, 111].
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Table 4 Correlations of bubble departure frequency

No References Correlations Condition
1 Jakob and Linke [102] _ fy _

Dy = V| 75]
2 Jakob and Fritz [97] fD,;=0.078 -

3 Jakob [101] D, = [og(pl—pv)]‘/“
d— 2
A

4 Peebles and Garber [98] D, = 1.18[ t ] [gg(pl_pv)] 1/4

(g +1,) o

McFadden and Grassman [99] ﬂ)2~5 =1.75
Zuber [100] ) so(p—py 11/4
1Dy = (%)[ 3 ﬂy)]

A

7  Hatton and Hall [56] fDﬁ = 2847

8 Cole[10] D05 = |:45’(ﬂ1—ﬂv)]1/2
05 = | 2oz

3p

9  Ivey[103] /D% =0.9¢'72
DYt = 0.44g1/4

10 Mikic and Rohsenow [9]

11  Malenkov [104] Dy =" (1 4 )
I oyl

V= [Ddg(ﬂﬁﬂ\») 20 ]%

b 2p4p,) | Dylpi+p,)
12 Katto and Yokoya [105] _ ( 312 )‘1/5[4(5,;,—/;\,)]‘3/5

Arpihy, 8(p=py)
05
30 ,E=11/16
hp=on[ 2| =1

13 Stephan [106]

1
_1lg 4o 2
fDd - ’_' [5 (Dd + 018Dy )]
14 Kumada and Sakashita [107] [gu,—av»]%

15 Sakashita and Ono [108]

1 1
1 4 t, 2 t, 2
fiDy = (z)m\/3nal[(%j%) + (1 + ,fzw)z - 1]

_ H PR
f:06|:g(ﬂ1ﬂ ﬂ»)]z {V][g(pl :;)pl‘l
1

f* =28.89Bo,, + 116.8
— _49_ _ =
Bo,, = Ghy, G= ngpvfns

16 Miglani et al. [109]

17 Hamzekhani et al. [90]

]—025}—]/3

Working fluid: liquid nitrogen

Boiling on stainless steel rod

Pressure: 50-760 mm Hg

The relation is valid in both regions: inertia con-
trolled and heat diffusion-controlled growth

g

Working fluids: water, ethanol and Freon-113
at high heat fluxes and atmospheric pressure

Working fluid: water,
Surface: a horizontal, upward-facing plate
Pressure: 1 atm to 7 MPa,

Working fluid: R-134a

Working fluids: water and water/NaCl at atmos-

f =0.015 ApB 0T q 0.44 ApO2 0TS D 0.88
= V. 6025 Apl).'.’S g0v75 6075 505

pheric pressure

All the mentioned factors are shown in Fig. 12. This section
focuses on a detailed review on the influence of these active
and passive factors on bubble dynamics parameters to bet-
ter predict the boiling heat flux or heat transfer coefficient.

External electric field
The first influential factor in bubble dynamics parameters

and boiling heat transfer is an external electric field in the
working fluid inducing an electrohydrodynamic (EHD)

@ Springer

effect [112—114]. Chubb [112] is a pioneer who applied an
external electric field to improve boiling heat transfer. There-
after, several studies have been carried out into applications
of the EHD effect on studying the bubble dynamics param-
eters and boiling heat transfer. Table 5 summarizes some of
these studies with their main findings. It can be observed
from the table that the EHD effect plays different roles in
their studies because different researchers used various con-
figurations and arrangements of the electrodes.
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Fig. 12 Various factors affecting the bubble dynamics parameters

Table 5 Effects of an external electric field on the bubble dynamics parameters

Researcher ~ Working fluid Electrode/  Number of = Growth Waiting Departure ~ Departure ~ Sup- Enhanced
heater bubbles period period frequency  diameter pressed boiling heat
geometry bubble?  transfer

Ogataand  RI113(R11)+Eth- Mesh Increase NA NA Increase Decrease Yes Yes

Yabe anol electrode,

[115] large
heating
surface

Karayiannis R-123 Rod elec- Increase NA NA NA NA Yes Yes

and Xu trode, tube
[116] bundles
Kwenand  R-113 Plate Increase Decrease Decrease Increase Decrease No Yes
Kim [118] electrode,
heating
wire
Pascual R-123 Mesh Not increase NA NA NA Decrease NA NA
etal.[119] electrode,
platinum
heating
wire
Madadnia R123 Wire Not increase Increase NA Increase Increase Yes Yes
and Koo- electrode,
sha [117] heating
wire
Siedel et al. n-Pentane Mesh Single bub- NA NA NA Increase No Yes
[120] electrode, ble
copper
cylinder
Chenetal. R-113 Mesh Single bub- Increase Decrease Increase Decrease No NA
[121] electrode, ble
brass
block
Gao et al. R-113 Needle Single bub- Increase Increase Decrease Decrease Yes Yes
[112] electrode, ble
small
heating
surface
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Fig. 13 Effect of the electric field on a) the bubble growth rate and b) bubble departure diameter with various heat fluxes. [112]

For instance, Ogata and Yabe [115] utilized an electric
field in their experiment in phase-change fluids. The number
of boiling bubbles and the bubble departure frequency was
increased, and the bubble departure diameter was reduced
once an external electric field was applied. Additionally,
the boiling heat transfer of R-123 was experimented by
Karayiannis and Xu [116] using rod electrodes at a high DC
voltage of 20 kV. The results showed boiling heat transfer
was enhanced more than 4.9 times. Madadnia and Koosha
[117] used a wire electrode and a heating wire to deter-
mine the effects of EHD. According to the study, the EHD
effects on bubble frequency and diameter became evident
once heat flux and electric voltage exceeded 6 kW/m? and
6 kV, respectively. All these studies, including some others
[116-119], the boiling experiments have been performed
with a number of bubbles generated from a large heated
surface, and therefore, statistical methods must be adapted.

Recently, Siedel et al. [120] and Chen et al. [121] studied
the effects of a quasi-uniform electric field on a single bub-
ble generation from an artificial nucleation site. The growth,
departure, and rise of a single bubble with and without an
electric field were studied. They found that the bubble diam-
eter and boiling heat transfer were increased by introducing
the electric field. Contrarily, the departure frequency and
growth rate were not changed considerably. Figure 13 shows
the effect of the electric field on the bubble growth rate and
departure diameter with various heat fluxes. As it can be
observed in the figures, the bubble growth rate increases by
applying external electric field and this increase is obtained
by augmenting the external voltage. Also, Chen et al. [121]
concluded that the bubble departure diameter and growth
rate were increased, while the bubble waiting time was
reduced.
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Fig. 14 The boiling heat transfer coefficient with respect to heat flux
for 0.1% volume concentration nanofluid and base fluid with the
negative magnetic field gradient (the gradient of the magnetic field
decreases from bottom to the top of the boiling chamber) [124]

External magnetic field

An external magnetic field is another factor controlling the
bubble dynamic parameters and the boiling heat transfer
rate, and this field can be generally used once a working
fluid has magnetic particles like Fe,O;. There are few studies
about the effect of the magnetic field on the bubble dynamics
parameters and nucleate boiling [122], and we found contra-
dictory results of the changes in the bubble diameter under
the magnetic fields. For instance, Liu et al. [123] investi-
gated the nucleate boiling of Fe;O,/water nanofluid on a ver-
tical heated bar by applying a non-uniform magnetic field.
They found that the non-uniform magnetic field induced a
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Fig. 15 Effect of ultrasonic power on the bubble departure diameter[125]

decrease in the nominal bubble departure diameter. How-
ever, the magnetic field changes the bubble shape greatly,
eventually leading to an enhancement of the boiling heat
transfer. In their study, the bubble shape was significantly
distorted from the hemispherical structure under the mag-
netic field; it had a wider surface area at the bottom on the
heated surface and became slender toward the top. The wider
surface area of the bubble’s bottom increased the region of
the extreme temperature gradient, resulting in active micro-
layer evaporation and, therefore, faster bubble growth and
higher bubble departure frequency.

On the other hand, some studies have shown a conflicting
effect of the magnetic field on the bubble dynamics param-
eters. Abdollahi et al. [124] performed an experimental
analysis using Fe;O,/water nanofluid with the presence of
the magnetic field during pool boiling. They found that the
magnetic force applied toward the heated surface caused the
bubble to be pulled horizontally such that the bubble was
stretched from the center in a higher magnetic field to the
sides in the lower magnetic field. This change of the bubble
shape results in an increase in the bubble diameter in the
horizontal direction. The increase in bubble diameter with
the magnetic field leads to an increase in the boiling heat
transfer coefficient, as shown in Fig. 14.

Ultrasonic waves

External ultrasonic waves applied through a liquid is another
influencing factor on the bubble dynamics parameters and
nucleate boiling. A few studies have been carried out to
evaluate the role of ultrasonic waves on the bubble dynam-
ics parameters and boiling heat transfer. Kooshechin et al.
[125] performed experiments with surfactants and nanoflu-
ids. The ultrasonic waves increased the bubble departure
diameter and induced a more significant mixing and tur-
bulence in the boiling solution, finally leading to a higher
heat transfer coefficient. Some example figures of their study
are shown in Fig. 15. As shown in the figure, the bubble
diameter increases considerably by increasing the ultrasonic
power from 30 to 60%. They found that more vibrant bubble

(b) 60% power

(c¢) 90% power
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E —— 008 ™=
5 0.0030 | —— 0.47
% —— 0.72
5 — 1
o 0.0025 /
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Fig. 16 Bubble departure diameter of water/ethanol solutions with
respect to heat flux [127]

movements were observed in all directions by increasing
ultrasonic power.

Thermophysical properties of fluid

Thermophysical properties of fluid significantly affect the
correlations of bubble dynamics parameters, particularly
for bubble departure frequency, bubble waiting period,
bubble growth period, and bubble departure diameter. As
an example, Gong et al. [126] found in their experiments
that the smaller bubble departure frequency and lager bub-
ble departure diameter were observed in pure ethane when
compared with pure isobutene during pool boiling. They
also found that the bubble departure frequency and diameter
were changed considerably in the binary mixture of ethane
and isobutene when the concentration increased. Lamas
et al. [70] studied the bubble departure diameter of water,
R134a, and R-123 and found that the diameter were differ-
ent due to the modification in surface tension. In addition to
the surface tension, the changes in interfacial tension were
proven to modify the bubble dynamics parameters in many
studies. Hamzekhani et al. [71] observed a smaller bub-
ble departure diameter in ethanol when compared to water
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Table 6 Summary of the effect of nanofluids in nucleate boiling

Reference Type of nanofluid Heat transfer
enhance-
ment/%

Cieliski et al. [134] Al,O;-water 171

Truong [135] Al,O5-water 56

Muhammad Ali et al. [136] TiO,-water 222

Milanova and Kumar [137] SiO,-water 150-200

Rainho et al. [138] Fe,O;-water 129

Bang et al. [139] Al,O5-water 32

You et al. [140] Al,O5-water 200

Kim et al. [141] TiO,-water 180

Kim and Bang [142] SiO,-water 80

Kim and Bang [142] ZrO,-water 72

Padhye et al. [143] Graphene oxide—water 179

Padhye et al. [143] Graphene-water 84
Hinswankar et al. [144] ZnO-water 70-80
Kathiravan et al. [145] Cu-water 25-50

because of the low interfacial tension between the surface
and liquid. Additionally, Hamzekhani et al. [90] obtained a
decrease and an increase in the bubble departure frequency
and bubble departure diameter, respectively, by increas-
ing the mass fraction of a NaCl solution. A larger bubble
departure diameter has been observed in NaCl solution when
compared to water because of the high interfacial tension in
NaCl solution.

Gao et al. [127] performed an experiment to compare
nucleate boiling characteristics of distilled water and cal-
cium chloride aqueous solutions at sub-atmospheric pres-
sure. They found that increasing the concentration of cal-
cium chloride in the water led to a decrease in the bubble
departure diameter and an increase in the bubble departure
frequency. Hamzekhani et al. [71] performed experiments
to measure the bubble departure diameter of pure water,
ethanol, and different mixtures containing Na,SO,/water,

Table 7 Effect of heat flux on the bubble dynamics parameters

ethanol/water, and NaCl/water. As depicted in Fig. 16, the
bubble diameter augments by increasing the heat flux for all
working fluids. In addition, some research has been done to
understand the effects of modifying thermophysical proper-
ties of fluids on changing the bubble dynamics parameters.
Fazel and Shafaee [68] performed experiments to measure
the bubble departure diameter of NaCl, Na,SO,, and KNO,
solutions and found that among these three solutions, the
largest and smallest bubble departure diameters belong to
NaCl and Na,SO,, respectively. Bovard et al. [72] observed
that the range of bubble departure diameter for methanol
and acetone is between water and ethanol with the modifica-
tion of thermophysical properties of the fluid, affecting the
vapor bubble growth. Moreover, various studies have been
carried out to understand the effect of nanofluid as a work-
ing fluid in the nucleate boiling [19, 21, 128-130]. These
studies used CuO-water [20, 129], graphene oxide—water
(GO-water) [19], zirconia—water [21], Al,O5-water [131],
TiO,-water [132], and glycol-water alumina [130] nano-
fluids as the working fluid in pool boiling. Goodarzi et al.
[19] used GO/H,O nanofluid with different mass fractions
on a small copper disk to measure the boiling heat transfer
coefficient. They found that the presence of the nanoparti-
cles decreased the boiling heat transfer coefficient due to
the creation of a surficial fouling layer on the surface. Wang
et al. [133] experimentally studied a single bubble growth
and departure from a heated surface in nanofluid contain-
ing silica nanoparticles with different mass concentration
(0.15%, 0.1%, and 0.05%). The results showed that the bub-
ble departure frequency increased by augmenting the con-
centration of nanoparticles. However, the bubble departure
diameter was not influenced considerably by the presence of
the nanoparticles. Table 6 provides a summary of the effects
of nanofluids in the nucleate boiling.

Reference Working fluid Bubble depar- Bubble depar- Bubble Bubble Active
ture diameter  ture frequency waiting growth nucleation site
period rate density
Gong et al. [126] Ethane, isobutene, and mixture Increase Increase NA NA NA
Benjamin and Balakrishnan [85]  Distilled water, carbon tet- NA NA NA NA Increase
rachloride, n-hexane, and
acetone
Tong et al. [147] Novec 7100 Increase Increase NA NA Increase
McHale and Garimella [152] FC-77 Increase Increase NA NA Increase
Chien et al. [151] Water Decrease Increase Decrease NA Increase
Judd and Hwang [149] Methylene chloride Decrease Increase NA NA Increase
Nakayama et al. [150] R-11/water Decrease Increase NA NA NA
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Fig. 17 Bubble diameter with respect to time at different wall super-
heats[155]

Heat flux

Bubble departure frequency, bubble departure diameter, and
active nucleation site densities generally increase by increas-
ing the heat flux. Numerous studies investigated the effect of
the heat flux on the departure diameter using various fluids
[66, 68, 71, 72, 126, 146, 147]. For instance, Gong et al.
[126] studied the nucleate boiling heat transfer character-
istics of ethane, isobutene, and their binary mixture. They
found that the trend of departure diameter and frequency in
terms of heat flux for binary mixture is increasing. Moreover,
the identical augmented trend was observed associated with
active nucleation site density and departure frequency [146,
147]. Wang and Dhir [84] and Benjamin and Balakrishnan
[85] reported that the active nucleation site density is aug-
mented by raising the heat flux. Gong and Cheng [148] veri-
fied that the bubble waiting period decreases by increasing
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the heat flux. The bubble departure frequency and the bub-
ble departure diameter increases and decreases, respectively,
by increasing the heat flux [149, 150]. Chien et al. [151]
found that the bubble departure diameter and bubble growth
period were reduced by increasing the heat flux, while the
nucleation site density and bubble frequency were increased.
Table 7 shows a summary of various studies for the effect of
heat flux on the bubble dynamics parameters.

Wall superheat and liquid subcooling
Wall superheat influences the bubble dynamics parameters,
as shown by some researchers. McHale and Garimella [152]

experimentally investigated the impact of increasing wall
superheat and concluded that the nucleation site density,

Bubble growth dynamics at various wall superheats
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Fig. 19 Bubble volume with respect to time in different wall super-
heats (data extracted from Siedel et al. [156])
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Fig. 18 Bubble diameter of distilled water at different superheat temperatures a at P=5.6 kPa and b at P=20 kPa) measured by Gao et al. [127]
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Fig.20 Bubble growth a receding contact angle 48°, advancing 61°, b receding contact angle 54°, advancing 90° [159]

bubble departure frequency, and bubble departure diameter
increase during pool boiling of perfluorinated hydrocar-
bon (FC-77) on rough and smooth surfaces with roughness
amount (Ra) of 0.03 and 5.89 pm. Gong and Cheng [148]
obtained similar outcomes associated with the bubble depar-
ture diameter whereas the bubble growth period reduces
by augmenting wall superheat. Additionally, Zuber [153]
reported that the bubble departure diameter rises by increas-
ing the wall superheat due to a thicker superheated thermal
boundary layer. Furthermore, Dhir et al. [154] numeri-
cally studied the bubble growth rate and bubble departure
diameter in which the results are in a good agreement with
the experimental data of Qiu et al. [155]. As indicated in
their results, the bubble departure diameter and growth
rate increase with a rise in the wall superheat, whereas the
growth period reduces. Moreover, the growth period and
bubble departure diameter increase and decrease, respec-
tively, with increasing the subcooling. The time-dependent
bubble diameter at different wall superheats is shown in
Fig. 17. As it is clear, the bubble diameter is increased, and
the required time to create a bubble is decreased by aug-
menting the wall superheat. Siedel et al. [156] provided the
same results in their experiments on a heated surface with
artificial nucleation sites. In their study, bubble growth with
different wall superheat has been measured (Fig. 18). Fig-
ure 19 shows the bubble growth with respect to time in dif-
ferent wall superheats. According to the results, by raising
the wall superheat, the bubble growth time is considerably
reduced.

@ Springer

Table 8 Experimental data regarding the effect of contact angle on a
bubble departure diameter

Fluid Operating pres- Contact  Bubble departure
sure/x10°Pa angle/° diameter/x10~>m
Water [161] 1 22 1.65
31 1.48
67 1.32
80 0.99
85 0.82
Water [47] 1 43 0.75
1.93 45 0.78
2.76 47 0.82
Water [162] 1 35 1.9
HFE-7100 [163] 1 25 1.1
R11 [65] 1 31 0.7
R113 [65] 1 11 0.8
Contact angle

The angle created by a liquid at the three-phase boundary
in which solid, gas, and liquid meet so that provides the
numerical measurement of wetting of a solid by liquid is
named contact angle. The contact angle is split into two
kinds, namely, static and dynamic contact angles, based on
the three-phase boundary’s movement. The dynamic con-
tact angle can be calculated while the three-phase boundary
is moving. These angels are named advancing and reced-
ing contact angles (maximum and minimum value of static
contact angle). To evaluate the effect of contact angle on
the bubble growth, the influences on a bubble’s departure
and growth on a horizontal heated surface in the period of
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Fig.21 (a) Bubble departure diameter as a function of gravity and (b) Bubble departure frequency as a function of gravity [52]

water and PF5060 pool boiling under normal gravity have
been examined by Abarajith and Dhir [157]. Based on their
results, the departure diameter of PF5060 becomes smaller
with a contact angle of 10°, whereas the water’s diameter
with a contact angle of 35° becomes larger. Additionally,
Mukherjee and Dhir’s numerical model [158] was applied by
Mukherjee and Kandlikar [159] for simulating an individual
vapor bubble growth on a heated wall during nucleate boil-
ing with a dynamic contact angle. The bubble initially grows
with a spherical shape but gradually turns into a hemispheri-
cal shape due to the effect of the high advancing contact
angle. The trend of bubble growth with different contact
angles is shown in Fig. 20.

Also, Adron et al. [48] modeled the dynamic contact
angles during pool boiling with various pressures, work-
ing fluids, and liquid superheats. In their results, the contact
angle has a considerable effect on bubble departure diameter
at high pressures. According to the model, fluid drag forces
have a significant effect on the bubble shape rather than the
surface tension force at high Jakob numbers (higher than

100) and fast-growing bubbles, which leads to a hemispheri-
cal shape in the growth period. On the other hand, the slow-
growing bubble at low Jakob numbers (lower than 50) results
in a spherical shape.

Furthermore, Phan et al. [160] presented a model predict-
ing the relationship between contact angle and bubble depar-
ture on a horizontal surface. In their results, it was concluded
that a function tan~'/¢ describes the relationship between
the bubble departure and contact angle. Table 8 shows some
experimental studies regarding the effect of contact angle on
the bubble departure diameter.

Gravity level

Another influential factor on the bubble dynamics parame-
ters is the gravity level. Dhir et al. [154] numerically studied
the bubble departure diameter and the growth period with
respect to different gravity levels (f, g=gravitational accel-

eration, g, = earth normal gravity) for water with a contact

Table 9 The effects of cavity spacing on the bubble behavior in the nucleate boiling

Reference Working fluid ~ Surface properties

Cavity properties Bubble behavior

Zhang and Shoji [165] Distilled water

Nimkar et al. [166] FC 72 Aluminum heater

C. Hutter et al. [167] FC-72 Silicon wafer

Golobi¢ and Gjerkes [168] Saturated water A thin copper or titanium foil 2.6—4.1 mm

Thin silicon artificial surface Two cylindrical cavities

The bubble departure frequency
rises by varying this ratio
between 1.5 to 2 and decreases
while > =3

Dd

The active nucleation site density

increases with 0.5 mm spacing

0.5, 0.75, and 1 mm cavity
spacing

0.84, 1.2, and 1.5 mm spacing A slightly increase in the bubble
departure diameter is seen for

the two widest spacings
The interactions between two

nucleation sites reduced the

overall activity of both sites
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angle of 54° and PF5060 with a contact angle of 10°. They
showed that the former’s bubble departure diameter and
growth period are Dy ~ g~ and 1, ~ g~*%* while the latter
are Dy ~ g** and 1, ~ g2, respectively. Hazi and
Markus [52] numerically studied impacts of gravity on the
departure frequency and the departure diameter by applying
the lattice Boltzmann method. According to their results, the
bubble departure frequency and the departure diameter are
proportional to g~3/4 and g=!'/? as depicted in Figs. 21a, b,
respectively. Also, Ma et al. [164] numerically investigated
microgravity effects on the bubble dynamics parameters
from a horizontal hydrophilic surface with constant wall
temperature. They found that reducing gravity levels led to
an increase in bubble departure diameter and the bubble
growth time. It was concluded that the pool boiling curve
was significantly influenced by gravity from nucleate boiling
to critical heat flux, and from transition boiling to film
boiling.

Cavity spacing

Cavity spacing is considered another important factor for
controlling the bubble dynamics parameters. Recently, some
investigations into the effect of cavity spacing on the bubble
dynamics parameters have been carried out. Zhang and Shoji

02—
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oqsl ®S1TMPa(N,=0318)
Pl 0447MPa (N, =0.188) .~ b

f Detachment -

Horizontal surface

"% 01

Fig.22 Comparing the bubble departure radius at different pressures
measured by Sakashita [170]

Table 10 A summary of the pressure effect on the bubble behavior

[165] performed experiments pool boiling in distilled water
by forming two cylindrical cavities on a heated surface. They
found that the bubble departure frequency and diameter
increase by increasing a heat flux for the ratio of Di =15

d
which is the ratio of the inter-cavity spacing and the bubble
departure diameter. The bubble departure frequency rises by
varying this ratio between 1.5 to 2 and decreases while

g = 3. Additionally, three surfaces for 64, 100, and 225
d

cavities with 0.5, 0.75, and 1 mm cavity spacing, respec-
tively, have been prepared by Nimkar et al. [166]. It was
concluded that although the bubble departure frequency and
diameter are not dependent on cavity spacing, the active
nucleation site density increases with 0.5 mm spacing. Hut-
ter et al. [167] investigated the bubble behavior from micro
artificial cavities with different spacing (0.84, 1.2, and
1.5 mm spacing between cavities) on a silicon wafer with
respect to wall superheat. They found that the bubble depar-
ture diameters are lightly larger for the cavities with all spac-
ing by increasing superheat. In another study, Golobi¢ and
Gjerkes [168] considered the spacings between active nucle-
ation sites to be 2.6 to 4.1 mm on a thin copper or titanium
foil in saturated water. Based on the results, the interactions
between two nucleation sites reduced the overall activity of
both sites. A summary of the cavity effects on the bubble
behavior in the nucleate boiling is provided in Table 9.

Pressure

The effect of pressure on the bubble dynamics parameters
has been studied by some researchers. For example, the bub-
ble growth rate on cylindrical and flat surfaces during water
pool boiling at high pressure has been experimentally inves-
tigated by Labuntsov et al. [88] and Akiyama et al. [169].
It was concluded that the bubble growth rate decreases by
increasing pressure due to the conduction in the vicinity of
the bubble base and the evaporation at the triple contact line
created at the bubble base. Also, the bubble growth rate for
vertical and horizontal surfaces in the period of water pool
boiling at pressures from 0.35 to 5 MPa has been studied by
Sakashita [170]. Figure 22 shows bubble growth curves at

Reference Working fluid Pressure

Bubble behavior

Gong et al. [126] R170, R600a, and their mixture

Lamas et al. [171] Water, R134a, ammonia, and 0.1-10 bar
R123
Hutter et al. [172] FC-72

Miglani et al R-134a

1, 1.25, and 1.5 atm

813.6 and 882.5 kPa

0.1, 0.3, and 0.5 MPa Bubble size reduces with increasing pressure at constant heat

flux

The bubble departure diameter slightly decreases with increasing
pressure

The bubble departure frequency is slightly reduced by increasing
pressure, but no effect on the bubble departure diameter

The bubble departure diameter reduces and the bubble departure
frequency increases with increasing pressure
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three different pressures for the horizontal heating surface.
As can be seen, the bubble growth rate becomes slower, and
the detachment radius decreases with increasing pressure.
Table 10 summarizes some studies focusing on the pressure
effects on the bubble behavior.

Surface roughness

The surface roughness is considered to be an important fac-
tor in the bubble behavior during boiling as it affects all the
parameters such as the bubble departure diameter, frequency,
and active nucleation site density [173—177]. McHale and
Garimella [152] reported that while a large bubble departure
diameter can be achieved on smooth surfaces than that of
rough surfaces at a specific heat flux, higher active nuclea-
tion site density and departure frequency can be obtained on
rough surfaces when compared to smooth surfaces. Addi-
tionally, Siedel et al. [156] presented similar results of the
bubble departure diameter for rough and polished surfaces.
It was also found that the nucleation site density on a heated
surface increases by increasing the surface roughness. Also,
Suszko and El-Genk [53] performed experiments showing
that higher bubble departure frequency and active nucleation
site density and smaller departure diameter can be achieved
for rough surfaces than smooth surfaces. Nunes et al.[178]
investigated the effect of nanocoated surfaces (Al,05 nano-
particles) on the heat transfer coefficient during the pool
boiling. Based on the results, the coated surface reduced
the heat transfer performance by nearly 29% compared to
uncoated surface mostly because of the formation of the
fouling resistance on the heated surface. Furthermore,
Bovard et al. [72] reported that the bubble departure diame-
ter decreases by increasing the surface roughness for various
heated surfaces. Additionally, some experimental investiga-
tions [179-181] reported that a higher number of bubbles
was observed on nanostructured surfaces than bare surfaces.
An illustration of the difference between bubble generation
on coated and bare surfaces with the identical heat flux is

Table 11 A summary of bubble departure frequencies and diameters on various surfaces

Author Surface Working fluid ~ Conditions Dy/pum f4/Hz
Rini el al. [183] Synthetic diamond plate ~ FC-72 4-10 W cm™2 400-500 -
Ramaswamy et al. [184] Micro-channel Si FC-72 4-12 KAT, 500-700 170-200
El-Genkand Bostanci [185] Smooth Cu HFE-7100 0.5 Wcm™ 2 550 +£70 100
Demiray and Kim [186] Quartz wafer FC-72 5 K, 16 K subcooling 350-500 -
Nimkar et al. [166, 187] Smooth Si FC-72 1-9 W cm™? 260-450 55-68
McHale and Garimella [188, 189] Rough ITO FC-72 Surface roughness 0.261-7.51 pm  400-600 100-200
McHale and Garimella [152] Smooth Al FC-77 2-11 Wem™2 600-2000  40-150
McHale and Garimella [152] Rough Al FC-77 2-11 Wem™2 400-500 80-200
Hutter et al. [172] Si w/artificial cavities FC-72 Cavity size 40—100 pum 200-500 40-80
El-Genk and Ali [160] Micro-porous Cu PF-5060 0.5Wcm™?2 431 +7 36 +£2
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Fig. 25 Example applications requiring high heat-flux cooling methods [16]

shown in Fig. 23. Li et al. [180] performed experiments con-
trolling the nucleation site density on the nanostructured
surface. As shown in Fig. 24, the nucleation site density
on the coated copper surfaces is 30 times higher than bare
surfaces. Table 11 shows a summary of bubble departure
frequencies and diameters on various surfaces in different
studies (Fig. 25).

Application of nucleate boiling

Fundamentals of the bubble growth mechanisms and the
bubble dynamics parameters have promoted nucleate boiling
heat transfer as an efficient cooling technology for micro-
electronics, hybrid vehicle power electronics, and heat
exchangers for hydrogen storage. This section reviews sev-
eral applications of nucleate boiling heat transfer that uses
various bubble dynamics parameters in the control of the
extreme heat flux.

Over recent decades, a critical requirement for novel cool-
ing methods to keep electronic device temperatures securely
below specific restrictions associated with each material has
been created by intensive miniaturization of electronic com-
ponents. At the beginning of the 1980s, a transition from
the fan-cooled heat sink to various single-phase cooling
approaches had taken place. By the mid-1980s, heat dissi-
pation from supercomputers exceeded the capacities of most
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Fig.26 Two-phase immersion cooling of electronic devices via
nucleate boiling

single-phase liquid cooling methods, which approached
100 W ¢cm™2 [190]. To obviate this challenge, researchers
have started to focus on two-phase cooling systems that take
advantage of both sensible and latent heat of the coolant
for higher heat removal when compared with single-phase
methods. In this cooling strategy, nucleate boiling has been
considered the preferred cooling method because a small
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Fig.27 A schematics of a composite spreader for immersion cooling
of high power computer chips by nucleate boiling of dielectric liquids
[193]
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Fig.28 Schematic of the immersion cooling of electronic device
done by Birbarah et al. [194]

increment in wall superheat generally accompanies a sig-
nificant increase in the wall heat flux [191].

During nucleate boiling, once a bubble is formed,
expanded, and detached from a heated surface, it cools down
the surface by removing a portion of hot liquid from the
surface and replacing it with cold liquid from the bulk as
assumed by Forster and Greif [192] or a thin layer of liquid
is trapped by the growing bubbles near the surface which
then evaporates and transfers considerable energy (proposed
by Snyder and Edwards [15]). Regardless of the mechanisms
of the bubble growth, the nucleate boiling heat transfer and
the bubble growth can remove a great amount of heat from
a heated surface. As a result, nucleate boiling heat trans-
fer has been used in some specific cooling systems such as
two-phase immersion cooling systems, heat pipes, and spray
cooling systems.

Micro heat pipe

Heat dissipation part
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181§

Heat absorption part

(Vaporization) Heat insulation part

113

» \\\ Heat output
Wick \

\ \
e \
\
\
Passage for vaporized

working fluid

\
\

Container
Heat input \

Container: Pure copper
Wick: Pure copper mesh
Working fluid: Deionized water

Fig. 29 Working cycle of a micro heat pipe

Two-phase immersion cooling

Two-phase immersion cooling is a new type of cooling
technology for data centers. In this method, electronic com-
ponents are submerged into a bath of water or dielectric
heat-transfer liquid, a much better heat conductor than air
or oil. With a low boiling point (56 °C vs. 100 °C in water),
the fluid boils on the surface of the heat generating compo-
nents, and rising vapor passively takes care of heat transfer
[5]. Two-phase immersion cooling liquids are clean, envi-
ronmentally friendly, and non-flammable. No pumps and jets
are required to keep the hardware at desired operating tem-
perature. Circulation happens passively by the natural pro-
cess of evaporation and without spending any extra energy.
This simplicity eliminates conventional cooling hardware
and results in better cooling efficiency. Compared to tradi-
tional air, water or oil cooling, this passive process results
in the use of much less energy. Figure 26 shows the nucleate
boiling in the two-phase immersion cooling.

In two-phase immersion cooling, dielectric liquid has
been generally utilized. Cooling CPUs and high-power com-
puter chips using nucleate boiling of dielectric liquids like
PF-5060, HFE-7100, and FC-72 benefits not only efficient
mitigation of the impact of hot spots but also leads to low
and uniform surface temperature. To increase the total heat
flux removed via rising the active nucleation site density
with two-phase immersion cooling, considerable research
has been conducted in aiming to enhance nucleate boiling
of dielectric liquids. Ali and EI-Genk [193] used a cop-
per spreader with a surface to remove the heat flux from
a chip, as shown in Fig. 27. They numerically studied the
role of composite spreaders contained Cu micro-porous sur-
faces and Cu substrates for immersion cooling. Saturation
nucleate boiling of PF-5060 dielectric liquid was used to
cool down the spreaders. In their results, the total thermal
power removed from the surface increases by reducing the

@ Springer
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Fig. 30 Working cycle of thermosiphon [196]

Fig. 31 Schematic of the spray cooling process [218]

thickness of the Cu micro-porous and augmenting Cu sub-
strate’s thickness.

Birbarah et al. [194] estimated the convection heat trans-
fer coefficient and heat flux achieved in different dielectric
fluids, water, and a 50/50 in volume mixture of water and
ethylene glycol (WEG) during both nucleate boiling and
natural convection regimes, as shown in Fig. 28. It was
reported that water immersion cooling was successful so
that a 2-kW power converter works at 97.2% efficiency in
deionized water.

@ Springer

Heat pipes

Another application of nucleate boiling in cooling systems
is to utilize heat pipes. The working principle of a heat pipe
is depicted in Fig. 29. They have been initially used for
cooling CPUs and computer devices. Presently, heat pipes
are applied in numerous sectors, including heat exchang-
ers, heating, ventilation and air conditioning (HVAC),
solar thermal and photovoltaic devices, cryogenic systems,
geothermal energy, data-center cooling, residential and
commercial refrigeration systems, and waste-heat recov-
ery [195-197]. For instance, Cui et al.[198] numerically
modeled vapor bubble growth in a flat-plate heat pipe for
microelectronic cooling. They found that the observed bub-
ble (bubble diameter between 10 pm and 0.3 mm) had a
growth rate of 0.71 +£0.19 mm/s. In addition to regular heat
pipes, a gravity-assisted heat pipe named thermosyphons
has been used for cooling purposes. In thermosyphons, the
condensate returns to the evaporator by gravitational forces
(Fig. 30). Many investigations have been performed to iden-
tify thermal characteristics of thermosyphons, and the most
accepted materials in thermosyphons are copper for casing
and helium, nitrogen, and argon [199-201]. Additionally,
various studies have concentrated on increasing the operat-
ing temperature of thermosyphons to accelerate the cooling
process from room temperature to extremely low tempera-
tures [202-204].

Spray cooling

Another application of nucleate boiling is in spray cooling
systems. A spray cooling system contains liquid droplets
generated by pressure or air-assisted atomizers that impinge
on a heated surface. Conventionally, sprays were applied to
cool extremely heated surfaces like those in steel mills in
which film cooling dominates the nucleate boiling. However,
modern applications of spray cooling contain high heat flux
removal from surfaces while keeping low surface superheats
like electronic devices. In this application, nucleate boil-
ing heat transfer is considered a substantial proportion of
heat transfer. To determine different aspects of this cooling
system, broad studies have been carried out with respect
to boiling liquid jets [205-208]. Some investigations have
been performed with circular [209-213] as well as planar
[214-217] jets in both free-surface and submerged configu-
rations. The schematic of the spray cooling system is shown
in Fig. 31.

In addition to jet types, some researchers studied spray
cooling systems with different volumetric fluxes (volumet-
ric flow rate per unit area). Depending on the volumetric
flux, sprays are categorized as dilute, intermediate, or dense
(Fig. 32). A dilute spray has a low volumetric flux with no
interaction among bubbles, while dense spray has a high
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Fig. 32 Schematic of sprays
based on different volumetric
fluxes [16]
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Table 12 Summarizes spray

N X . . Reference Test fluid Surface material Surface size Nozzle array
cooling studies with different
liquids Wang et al. [220] Water Copper 1 x2cm? 1x2
Silk et al. [221] PF-5060 Copper 2 cm? 2x2
Elston et al. [222] FC-72 Glass 2.54 % 2.54 cm? 4x4
Xie et al. [223] R-134a Copper 23.3 x 16 cm? 9%x6
Yan et al. [224] R-134a Copper 15.1 X 13.5 cm? 2x2
Lin et al. [225] FC-72 Copper 2.54 x 7.6 cm? 4x12

Nozzle

Liquid

Vapor

/

Vapor
column

A—d
\ \‘ Heater

Liquid
sublayer

Fig. 33 Mechanism of the spray cooling system used by Narumanchi

etal. [191]

volumetric flux in which a thin film is created by accumu-
lating continuous droplets [198]. Rini et al. [219] carried
out experiments to understand bubble behavior and nucle-
ate boiling in saturated FC-72 spray cooling while studying
the interactions between impinging droplets and bubbles.
The results show that the number of secondary nuclei as
well as the overall heat transfer coefficient increase as the
droplet flux increases, which leads to lower surface tem-
perature for a specific heat flux. Also, S. Narumanchi et al.
[191] numerically investigated the turbulent jet impingement
in nucleate boiling for power electronics cooling. Besides
the interaction between bubbles, the performance of spray
cooling systems greatly depends on the used liquid type.
To understand its effect, different liquids have been used in
spray cooling systems such as water, dielectric fluids (FC-
87, FC-77, FC-72, HFE-7100, PF-5020, and PF-5060),
refrigerants (R-22, R-113, R-600a, and R-134a), and saline
water [16]. Table 12 summarizes spray cooling studies with
different liquids (Fig. 33).
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Conclusions

The primary goal of this paper is to provide a detailed review
on bubble growth characteristics in the nucleate boiling to
assist researchers in developing comprehensive boiling heat
transfer correlations. We first review two types of bubble
growth mechanisms known as homogenous and heteroge-
neous bubble growth. Next, the bubble dynamics param-
eters used in different correlations for determining boiling
heat transfer coefficient are described and reviewed. Semi-
empirical and empirical correlations proposed by various
researchers for determining these parameters are completely
provided. Then, a detailed review on factors affecting these
parameters is performed, and the most recommended cor-
relations were provided in the tables. Furthermore, differ-
ent applications of nucleate boiling in cooling systems have
been reviewed. Based on the review, the following results
can be summarized:

1. Although the proposed correlations are able to estimate
their own experimental data in a reasonable accuracy,
the accuracy of individual correlation is considerably
against other researchers’ experimental data under same
conditions. It happened because these correlations rely
on different affecting parameters including thermophysi-
cal properties of fluid, gravity level, contact angle, heat
flux, and others. Thus, in order to have an accurate pre-
diction, all these parameters must be determined pre-
cisely.

2. Active techniques such as applying external electric,
magnetic, and ultrasonic field to a working fluid signifi-
cantly affect the bubble dynamics parameters, resulting
in the boiling heat transfer enhancement. For instance,
the bubble departure diameter and the bubble growth
rate are increased by applying external electric field in
a working fluid.

3. Nanofluids as working fluids result in the enhanced boil-
ing heat transfer up to 222% compared with water.

It can be clearly noticed that an overall agreement cannot
be observed on the contribution of heat transfer mechanisms
and their influences on the bubble growth during boiling.
Many suggestions have been provided without any agree-
ment between different studies. Thus, a recommended future
study can aim to find the most crucial heat transfer mecha-
nisms in the process of bubble growth. Also, there is a gap in
studies regarding nucleate boiling heat transfer enhancement
when using active and passive methods especially external
electric field, magnetic field, and ultrasonic waves. Further-
more, for the aim of enhancing boiling heat transfer for sur-
face, according to the review studies, porous nanostructures
have shown outstanding possibilities in nucleate boiling heat

@ Springer

transfer and can be considered effective for managing heat
from high heat flux devices. Thus, for obtaining an efficient
design regarding future-generation thermal management, a
powerful model with an ability to estimate the microscopic
heat transfer on micro-porous and nano-porous surfaces and
overall heat transfer performance is required.
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