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We describe an e!cient algorithm to compute solutions for the general two-player Blotto game on ! battle-
"elds with heterogeneous values. While explicit constructions for such solutions have been limited to speci"c,
largely symmetric or homogeneous, setups, this algorithmic resolution covers the most general situation to
date: value-asymmetric game with asymmetric budget with su!cient symmetry and homogeneity. The pro-
posed algorithm rests on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor
scaling. An important case which had been out of reach of previous attempts is that of heterogeneous but
symmetric battle"eld values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal
solutions exist, and our algorithm samples from an "-optimal solution in time Õ(!2 + "−4), independently of
budgets and battle"eld values. In the case of asymmetric values where optimal solutions need not exist but
Nash equilibria do, our algorithm samples from an "-Nash equilibrium with similar complexity but where
implicit constants depend on various parameters of the game such as battle"eld values.
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1 INTRODUCTION

A century ago, Emile Borel published his seminal paper on the theory of play and integral equations
with skew symmetric kernels [Bor21], see also [? , Page 157]. While perhaps not as conspicuous, it
predates von Neumann’s monumental work on the theory of games of strategy [von28] by several
years. In this work, Borel describes what is now called the Blotto game and introduces the notions
of strategy, mixed strategies and even foresees the fruitful interactions between game theory and
economics that are to be observed throughout the century. As such, the Blotto game is consid-
ered to be the genesis of modern game theory [Fré53, Nak06]. Despite its prestigious pedigree,
equilibrium strategies for this game are only known in special cases.
Blotto is a resource-allocation game in which two players competes over ! di#erent battle"elds

by simultaneously allocating resources to each battle"eld. The following two additional character-
istics are perhaps the most salient features of the Blotto game:

(1) Winner-takes-all: For each battle"eld, the player allocating the most resources to a given
battle"eld wins the battle"eld.

(2) Fixed budget: each player is subject to a "xed—and deterministic—budget that mixed strate-
gies should satisfy almost surely.

Despite its apparent simplicity the Blotto game captures a variety of practical situations that
extend far beyond the context of the above military terminology. These include political strategy
[Mye93, LP02,MMT05], network security [LHSR15, FSM21], and various forms of practical auction
markets [MS15, HM17].
The goal of this paper is to e!ciently construct a Nash equilibrium for this game or, when they

exist, an optimal strategy.

Prior work. Despite its century-long existence, Nash equilibria for the Blotto game are only
known under various restrictions on the main parameters of the problem: the budget of each
player and the value given to each battle"eld.

• Budget. A large fraction of the literature considers the case where the players have sym-
metric budgets, starting with the original problem of Borel [Bor21] and in most of the main
contributions throughout the twentieth century [Bor21, BV38, Gro50, GW50, Las02, Tho18].
The case of symmetric budgets is well understood except in the setup where players may
disagree on the value of battle"eld that was recently introduced [KR21].

• Battle!elds. When the two players have a di#erent budget the situation becomes more com-
plex as the poorest will have to forfeit some battle"elds. In this case, only partial results
are known. To understand what “partial" means, recall that full generality of the battle"eld
values occurs when (i) players may assign a di#erent value to a given battle"eld—we say
that the values are asymmetric—and (ii) these values may vary across battle"eld—we say
that the battle"elds are heterogeneous. Partial results are known for symmetric values. Even
under this simplifying assumption, the case of heterogeneous battle"elds remains poorly
understood, except in the case of two battle"elds [MM15]. In the case of more than two bat-
tle"elds, Nash equilibria are known for homogeneous battle"elds [Rob06] or under stringent
assumptions on the battle"eld values [SLS14] that essentially reduce to the homogeneous
case.

We refer the reader to Table 1 for a survey of recent advances. While we tackle the most general
setup to date, we stress that an important case was not covered by prior literature: the case of asym-
metric budget, heterogeneous and symmetric values. Indeed, in this case, the game is constant-sum
and optimal strategies exist. Our results also cover the case of asymmetric values introduced very
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recently in [KR21] but this setup leads to onlyNash equilibria rather than optimal strategies. When-
ever possible, we con$ate the two setups and simply refer to a solution to the Blotto.
A discrete version of the Blotto game where both budgets and allocations are required to be

integral was also introduced in Borel’s original paper [Bor21]. Explicit optimal solutions were
provided in [Har08] for the homogeneous and symmetric version of the discrete game; see also
[HVLS12] for partial solutions in the asymmetric-value case. More recently, this discrete version
has seen signi"cant computational advances [ADH+19, Bea22]. Conceptually, this line of work is
close to the present paper in the sense that it provides an algorithm to sample from approximate
solutions. Moreover, the discrete Blotto game can be seen as a discretization of the continuous
version of interest here and that could be quanti"ed using the arguments of Section 4. However
carrying out this analysis, for instance based on [Bea22, Theorem 4.2], leads to worse dependence
on ! and " compared to Theorem 12 here. More strikingly, the complexity bound of Theorem 12
does not depend on budgets or battle"eld values while this dependence is polynomial in the bounds
for discrete Blotto. The two lines of work also di#er in more profound ways. First and foremost,
the approach employed here is fundamentally di#erent: it aims at mixing known solutions for
the related Lotto game while solutions to the discrete Blotto games are more agnostic so that it is
unclear what the marginals of the resulting strategy are. In particular, the present approach allows
us sample from "-Nash equilibria in the asymmetric-value case whereas this setup is currently out
of reach for solutions to the discrete Blotto game.
Finally, note that our approach also yields new (existential) results for the discrete Blotto game.

Since they are not the focus of our contribution, they are relegated to the appendix.

Our contributions. All of the above solutions for two-player games have consisted in construct-
ing explicit solutions. Because of the budget constraints, these strategies can be decomposed in
two parts: marginal distributions that indicate which (random) strategy to play on each battle"eld
and a coupling that correlates the marginal strategies in such a way to ensure that the budget
constrained is satis"ed almost surely.
The "rst question may be studied independently of the second by considering what is known

as the (General) Lotto game [BC80]. In this game the budget constraint need only be enforced in
expectation with respect to the randomization of the mixed strategies. While this setup lacks a
de"ning characteristic of the Blotto game ("xed budget), it has the advantage of landing itself to
more amenable computations. Indeed, unlike the Blotto game, a complete solution to the Lotto
game was recently proposed in [KR21] where the authors describe an explicit Nash equilibrium in
the most general case: asymmetric budget, asymmetric and heterogeneous values.
In light of this progress a natural question is whether themarginal solutions discovered in [KR21]

can be coupled in such a way that the budget constraint is satis"ed almost surely. We provide a
positive answer to this question by appealing to an existing result from the theory of joint mix-
ability [WW16]. Mixability asks the following question: Can ! random variables #1, . . . ,#! with
prescribed marginal distributions #" ∼ $" , be coupled in such a way that var(#1 + · · · + #!) = 0.
Joint mixability is precisely the step required to go from a Lotto solution to a Blotto one by coupling
the marginals of the Lotto solution in such a way that the budget constraint is satis"ed.
In this paper we exploit a simple and new connection between joint mixability and the theory

ofmulti-marginal couplings that has recently received a regain of interest in the context of optimal
transport [AC11, DMGN17, ABA20]. In multi-marginal optimal transport, the goal is to optimize a
cost over the space of couplings with given marginals. Unlike the case of two marginals that arises
in traditional optimal transport, this question raises signi"cant computational challenges and of-
ten leads to NP-hardness [ABA21]. In the language of optimization, joint mixability merely asks
if the set of constraints is nonempty. We propose an algorithmic solution to the Blotto problem
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by e!ciently constructing a coupling that satis"es the budget constraint almost surely and can be
easily sampled from. Our construction relies on three key steps: "rst we reduce the problem to a
small number of marginals to bypass the inherent NP hardness of multi-marginal problems, second
we discretize the marginals and "nally, we employ a multi-marginal version of the Sinkhorn algo-
rithm [Sin64, SK67] to construct a coupling of the discretized marginals. After a simple smoothing
step, we produce a sampling with continuous marginals that are close to the ones prescribed by
the Lotto solutions and from which it is straightforward to sample. Furthermore, we quantify the
combined e#ect of discretization error and of the Sinkhorn algorithm on the value of the game,
e#ectively leading to an approximate Nash equilibrium and even to an approximately optimal so-
lution in the case of symmetric values.
We exhibit tight—or near-tight in the asymmetric values case—conditions for the mixability of

speci!c Lotto solutions into Blotto solutions; see Corollaries 6 and 7 below. While these conditions
are reasonable and cover most cases, some heavily skewed games, either in terms of budget asym-
metry or values inhomogeneity, are not covered by our results. We leave it as an open question to
exhibit Lotto strategies that can be mixed into Blotto ones even for such games.
The rest of this paper is organized as follows. In the next section, we recall the solution for the

Lotto game and show that they can be turned into solutions for the Blotto game. This existential
result simply appeals to existing results of joint mixability. We move from an existential to an
algorithmic result in Section 3 by proceeding in three steps: "rst we reduce the problem to the
case ! = 4, then we discretize the problem and "nally we apply Sinkhorn algorithm to couple
the resulting marginals in a appropriate fashion. The main product of Section 3 is Algorithm 8
which shows how to sample from an approximate solution to the Blotto game. Finally, we provide
a detailed complexity analysis for this algorithm in Section 4, showing in particular, that it runs in
time polynomial in the parameters of the Blotto game and the approximation error ". Finally, our
techniques also yield new results for the discrete Blotto game largely studied by [Har08, HVLS12]
that are of independent interest. We postpone them to the appendix.

Notation. For any integer !, de"ne [!] = {1, . . . ,!}. We use 1 to denote an all-ones vector or
tensor. Note that the dimension of this vector will be clear from the context but may vary across
occurrences. For any two vectors % ,&, we denote their entrywise (Hadamard) product % # & and
their entrywise division % $& whenever & has only nonzero entries. For any two real numbers ',(
we denote by ' ∨ ( their maximum and by ' ∧ ( their minimum.

2 SOLUTIONS FOR BLOTTO AND LOTTO GAMES

The goal of this section is to describe the Blotto game and its connection to the Lotto game for
which explicit solutions are known. We "rst recall a solution for the Lotto game derived in [KR21]
and show that it can be readily turned into a Blotto solution using the theory of joint mixability.

2.1 The Blo!o game

The classical two-player Blotto game is formalized as follows. Two players, respectively denoted
by) and *, are competing over ! ≥ 2 battle"elds denoted by + ∈ [!]. Since we focus on two-player
games where both players obey the same rules, it will be convenient when describing the game to
denote by $ ∈ {),*} either player and by $̄ the other player so that ($, $̄) ∈ {(),*), (*,))}.
The datum of a Blotto game is as follows. Player $ ∈ {),*} has a total budget of ,# > 0 to

allocate across the ! battle"elds. Moreover, she valuates battle"eld + ∈ [!] to -#," > 0 which may
di#er from -#̄," . Without loss of generality, we assume that ,$ ≥ ,% to break symmetry and that∑

" ∈[! ]

-$," =
∑
" ∈[! ]

-%," = 1 (1)
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Indeed,multiplying the value of all battle"elds by the sames’ constant has no impact on the players’
strategies.
The rules of the Blotto game are as follows. A pure strategy for player $ is an allocation vector

%# = (%#,1, . . . , %#,!) where %#," > 0 is the amount allocated to battle"eld + ∈ [!]. A mixed strategy
for player $ is a probability distribution over pure strategies. A salient feature of the Blotto game is
that a player $ is constrained to playing strategies that satisfy the budget constraint: %#,1+. . . %#,! ≤
,# . In turn, admissible mixed strategies for the Blotto games are random vectors ## ∈ R! such
that

!∑
"=1

##," ≤ ,# almost surely. (2)

Given two pure strategies %# and %#̄ for players $ and $̄ respectively, player $ wins battle"eld
+ ∈ [!] if %#," > %#̄," and receives a reward -#," > 0. Ties %#," = %#̄," are broken arbitrarily as they
are are irrelevant for our analysis.
The existence of Nash equilibria is a consequence of standard game theoretic arguments [Ren99].

Unfortunately, these general results say little about the structure of equilibrium strategies. At the
end of this section, we make partial progress towards this question by describing the marginals of
such equilibrium strategies. However, these remain existential results in essence.
This is in stark contrast with the associated Lotto game, described in the following section,

where the hard budget constraint is dropped in favor of a constraint in expectation, and whose
explicit solutions have been computed.

2.2 The associated Lo!o game

A Lotto game has the same data and rules as its associated Blotto game except for the almost sure
budget constraint (2) which is relaxed to the following expected budget constraint:

!∑
"=1

E[##," ] ≤ ,# (3)

This relaxation greatly simpli"es the game. In fact, Kovenock and Roberson [KR21] have re-
cently elicited an explicit characterization of a non-trivial Nash equilibrium for the most general
version of the Lotto game to date; see Table 1. In the rest of Section 2.2, we describe their solution
in details since it is the basis for ours.
Finding an optimal strategy for the Lotto game amounts to "nding a stationary point for an

optimization problem subject to constraints of the form (3). Because of linearity of expectation,
the associated Lagrangian is decomposed as the sum of ! terms, one per battle"eld, that are each
mathematically equivalent to an “all-pay” auction whose solutions are well known.
More explicitly, Nash equilibria of the Lotto problem depend on two parameters . ≥ 0 and

/ ≥ 0, that are set later on. First, given any . ≥ 0, consider the subsets of battle"elds N(.) that
are at least .-times more valuable to ) than to *:

N(.) = {+ ∈ [!],
-$,"
-%,"
≥ .} .

Given a scaling parameter / ≥ 0 to be de"ned later, the mixed strategy of player) at equilibrium
prescribes to allocate a (random) budget of #$," to battle"eld + with distribution given by:
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Continuous Asymm. Heterogeneous Asymm. More than 3 Complete
Strategy Budget Values Values Battle"elds Results

[BV38] ! ! ! ! ! !

[GW50] ! ! ! ! ! !

[Wei12] ! ! ! ! ! !

[Gro50] ! ! ! ! ! !

[Las02] ! ! ! ! ! !

[Tho18] ! ! ! ! ! !

[GW50] ! ! ! ! ! !

[Rob06] ! ! ! ! ! !

[MM15] ! ! ! ! ! !

[SLS14] ! ! ! ! ! !

[KR21] ! ! ! ! ! !

This paper ! ! ! ! ! !

Table 1. Variants of the continuous Blo!o game and their solutions. The last column, “complete results” in-
dicates whether results obtained hold with possibly strong assumptions on the di"erent values (for instance,
there always exist more than 3 ba!lefields with the exact same value).

#$," ∼




Unif

[
0,
.-%,"
/

]
if + ∈ N(.)(

1 −
-$,"
.-%,"

)
00 +

-$,"
.-%,"

Unif

[
0,
-$,"
/

]
if + ∉ N(.) .

,

where 00 denotes the Dirac point mass at 0.
The strategy of player * is given by

#%," ∼




(
1 −

.-%,"
-$,"

)
00 +

.-%,"
-$,"

Unif

[
0,
.-%,"
/

]
if + ∈ N(.) ,

Unif

[
0,
-$,"
/

]
if + ∉ N(.)

.

Note that the strategy of) and * are the same except that the roles of -$," and.-%," are switched. In
that sense, . plays the role of an “exchange" rate that accounts for discrepancies between budgets
and valuations across the two players.
It remains to "nd the parameters . and / using the budget constraints. For this set of strategies,

saturating the total budget constraint (2) readily yields the following two equations:

/,$ =

∑
" ∈N(&)

.-%,"
2

+
∑

"∉N(&)

(-$,")
2

2.-%,"
=
1

2

!∑
"=1

(.-%," ) ∧
(-$," )

2

.-%,"
, (4)

/,% =

∑
" ∈N(&)

(.-%," )
2

2-$,"
+

∑
"∉N(&)

-$,"
2

=
1

2

!∑
"=1

(.-%," )
2

-$,"
∧ -$," . (5)

Any pair (. , /) solving the above system of two equations yields a Nash equilibrium. It remains
to show that such solutions may be computed e!ciently. Observe that eliminating / from the
equations yields the following nonlinear equation in . :
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1 (.) : = .3
*+
,
,$

∑
" ∈N(&)

-2%,"
-$,"

-.
/
− .2,%

∑
" ∈N(&)

-%," + .,$
∑

"∉N(&)

-$," −,%
∑

"∉N(&)

-2$,"
-%,"

= .,$

!∑
"=1

(
.2

-2%,"
-$,"
∧ -$,"

)
−,%

!∑
"=1

-$,"

-%,"

(
.2

-2%,"
-$,"
∧ -$,"

)
= 0 (6)

Any solution .∗ to this equation readily yields a unique /∗ by plugging it into either (4) or (5);
both equations will yield the same solution by (6). In turn, the existence and e!cient computation
of solutions .∗ to (6) are ensured by the following proposition. The bounds on .∗ presented in
the following proposition depend on the distance between the vectors of battle"eld values -$ :=

(-$,1, . . . , -$,!) and -% := (-%,1, . . . , -%,!). Interestingly the natural measure of distance that emerges
is the 22-divergence that commonly arises in information theory and statistics; see e.g. [PW22].
The 22-divergence 22(3‖-) between two probability vectors 3 = (31, . . . ,3!) and - = (-1, . . . , -!)
is de"ned by

22 (3‖-) =
!∑
"=1

32
"

-"
− 1 =

!∑
"=1

(
3"
-"
− 1

)2
-" .

It is clear that 22(3‖-) ≥ 0 with equality if and only if 3 = - .

Proposition 1. Equation (6) has the following properties:

(1) It always has at least one and at most 3! + 3 solutions .∗.
(2) Any solution .∗ satis!es

,%
,$

1

1 + 22(-% ‖-$)
≤ .∗ ≤

,%
,$

(1 + 22(-$‖-%))

(3) Computing all solutions can be done in O(! log!) operations.

The proof is based on standard computations, hence postponed to Appendix B.2, with the asso-
ciated Algorithm 2.

Remark 2. In case of symmetric values, that is when -$," = -%," = -" , the game is constant-sum
and each player has a then unique1 optimal strategy given by a unique pair (.∗, /∗) [KR21]. In fact,
in that case, the unique (.∗, /∗) can be computed analytically as .∗ = ,%/,$ and /∗ = ,%/(2,

2
$ );

this can be easily seen from Proposition 1 (point 2.), since 22(-$‖-% ) = 22(-% ‖-$) = 0. With these
parameters, the optimal strategy of player ) is to choose #$," uniformly at random on [0, 2,$-" ] and

that of player * is to forfeit each battle!eld with probability 1 − '!
'"

and, to choose #%," uniformly at

random on [0, 2,$-" ] on battle!eld + if not forfeited.

2.3 From Lo!o to Blo!o

In the previous section, we described how to compute solutions of a Lotto game. To turn a strategy
for the Lotto game into a strategy for the Blotto game, one can couple the marginal strategies of
a Lotto game, e#ectively turning the constraint (3) on the expected budget into the almost sure
budget constraint (2).
Stated otherwise, a solution to the associated Lotto game induces a solution to the original Blotto

game if the random variables {#$," }" ∈[! ] (and similarly {#%," }" ) are jointly mixable [WW16].

1In the case of the Lotto game, it is natural to call a strategy an equivalence class of strategies with the same marginals.
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Definition 3. A family of 4 random variables 51, . . . ,5( with !nite expectations is jointly mix-
able if there exists a coupling 6 such that if (51, . . . ,5() ∼ 6 ,

(∑
"=1

5" =

(∑
"=1

E[5"], almost surely.

In that case, the coupling 6 is called a joint mix.

Obviously, not all random 4-tuples variables are jointly mixable. Take for example 51,52 and
53 to be Bernoulli with parameter 1/2. Then E[51] + E[52] + E[53] = 3/2 whereas there is no
coupling of the 5"s such that their some equals a fractional number.
While the full characterization of jointly mixable distribution is a complex question, some con-

ditions, either su!cient or necessary, for joint mixability have been derived. The following propo-
sition is a simple extension of a result of [WW16] (see also, [Zim20]) on the mixability of distribu-
tions with monotone densities.

Proposition 4. For + = 1, . . . ,4 , let 7" ∈ [0, 1], (" > 0 be !xed parameters and let 5" be a random
variable with distribution given by the following mixture:

5" ∼ (1 − 7")00 + 7"Unif [0,("] . (7)

Then 51, . . . ,5( are jointly mixable if and only if

max
1≤"≤(

(" ≤
1

2

(∑
"=1

7"(" (8)

This proposition is a consequence of few computations; its proof is delayed to Section B.3.
We are now in a position to state the main result of this section: the marginal distributions of the

Lotto game described above are jointly mixable into a solution to the Blotto game. To that end, we
instantiate Proposition 4 to the parameters of the marginal distributions described in Section 2.2.

Theorem 5. Let .∗, /∗ be the parameters of Nash equilibrium of the Lotto game described in Sec-
tion (2.2). Then the marginal distributions can be coupled into a Nash equilibrium for the correspond-
ing Blotto game if and only if

max
" ∈[! ]

(.∗-%," ∧ -$,") ≤ /∗,% . (9)

Inequality (9) is simply an instantiation of (8), hence details are postponed to Section B.3
Condition (9) of the previous theorem relies on the values .∗, /∗ that de"ne the solution of the

Lotto game. In light of the bounds obtained in Proposition 1, these parameters may be eliminated
to produce a su!cient condition for the existence of said solution for Blotto games with symmet-
ric values. Recall that in this case, the game is constant-sum so a solution is, in fact, an optimal
strategy. This result is captured in the following corollary which is a straightforward consequence
of Theorem 5.

Corollary 6. Assume symmetric values: -$ = -% = - . Then the marginal distributions of the
optimal Lotto strategy described in Section 2.2 with .∗ = ,%/,$ and /∗ = ,%/(2,

2
$ ) can be coupled

into an optimal strategy for the corresponding Blotto game if and only if

max
" ∈[! ]

-" ≤
,%
2,$

.

In fact a su!cient condition may be derived in the case of non-symmetric values.
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Corollary 7. Assume that battle!eld are balanced in the sense that there exits 8 ∈ (0, 1) such
that

22(-$‖-%) ∨ 22(-% ‖-$) ≤ 8 2

Then, the marginal distributions of the optimal Lotto strategy described in Section 2.2 can be coupled
into an optimal strategy for the corresponding Blotto game as long as

max
" ∈[! ]

-%," ≤
,%
2,$

(1 − 8 ) .

The proof of this result is based solely on computations; it is postponed to Section B.4
Note that the result of Corollary 7 is tight in the sense that if 8 → 0 it recovers the result of

Corollary 6. It is unclear whether the dependence in 8 is sharp in our result and it is an interesting
question to address in future work.
Under rather general conditions, the above two corollaries show the existence of solutions with

marginal distributions of the Lotto game derived in [KR21]. It remains to show that such a coupling
may be realized e!ciently. This is done in the next section.

3 AN EFFICIENT ALGORITHM TO COMPUTE SOLUTIONS

Deriving solutions, either optimal strategies in the constant-sum setting or Nash equilibria, re-
mains one of the major open problems surrounding the Blotto game. Previous attempts at this task
have focused on deriving an explicit coupling between marginals. This is possible in speci"c cases.
For example, several explicit couplings between ! random variables #" ∼ Unif [0, 1], + = 1, . . . ,!
are known [KS06, RU02]. In particular, this provides a solution to some Blotto problems with su!-
cient symmetry. However, this explicit approach fails for more general problems, and, in particular
in the important case of asymmetric budget such as the one covered in Corollary 6. In this paper,
we take another route by describing the e!cient Algorithm Lotto2Blotto, whose pseudo-code
is postponed to the Appendix B.1, that computes an "-approximate solution with time complexity
which is polynomial in ! and 1/".

In light of the previous section, our goal is to "nd an algorithm that e!ciently computes a
coupling between the marginal Lotto strategies described above. This task faces twomajor hurdles.
On the one hand, the continuous nature of the marginals described above does not lend itself to

e!cient algorithms which typically work with discrete quantities. Instead, we propose to simply
discretize the marginals at a scale of order " > 0. In particular, this prevents us from replicating
exactly the marginals of the Lotto game but we can show that the error employed in said discretiza-
tion remains of the same order once propagated to the utility of a given player.
On the other hand, the mere description of a coupling between ! discrete marginals on O(1/")

atoms is an object of size O(1/"!), which is exponential in the number ! of battle"elds. To over-
come this limitation, we develop a careful scheme that allows us to reduce the problem to the case
of 4 marginals instead of !.
Finally, we employ recent developments in computational optimal transport, to couple our 4

marginals using a variant of Sinkhorn iterations [Sin64, SK67, Cut13].

3.1 Reductions

The typical size of a coupling with ! marginals is exponential in !. While this issue is, in general,
hopeless to overcome, we can exploit some of the structure of the problem at hand. Indeed, a similar
principle has been recently employed in multi-marginal optimal transport to devise polynomial-
time algorithms under additional structure [ABA20]. More speci"cally, we reduce our problem to
the case where there are only four marginals which remain mixable if the original marginals are
mixable.
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This reduction is done in two steps. Recall that the marginals for the Lotto game described in
Section 2.2 are either uniform distributions or mixtures of a uniform distribution with a Dirac
point mass at zero. Our "rst step reduces to the case where ! − 1 marginals are uniform and only
one is a mixture as above. In our second step, we further reduce to the case where there are three
uniform marginals and one mixture.
Throughout this section we focus on player) for brevity. Reductions for player * are analogous.

3.1.1 Step 1: reduction to a single mixture. The marginal distributions described in Section 2.2
consist of |N (.∗) | uniform distributions and ! − |N (.∗) | mixtures of a uniform distribution and
a Dirac point mass at 0 and our goal is to e!ciently couple them into a joint mix coupling 6 that
has these marginals and satis"es the Blotto budget constraint. For clarity, we also regard uniform
distributions as mixture distributions albeit with weight zero on the point mass. Otherwise, we say
that a distribution is a strict mixture. The goal of this "rst step is to reduce this coupling problem
to the case where there are ! − 1 uniform distributions and one single strict mixture. To that end,
we show that such a coupling 6 may be obtained as a mixture of ! joint mixes 6( ,4 = 1, . . . ,!:

6 =

!∑
(=1

9(6( , 9( ≥ 0,
∑
(

9( = 1

where the marginal distributions of 6( consist of at most one strict mixture, the rest being uniform
distributions. Moreover, this decomposition can be computed e!ciently as the solution of a simple
greedy procedure.

Lemma 8. Let .∗, /∗ be the parameter of a solution for the Lotto game and assume that the mixa-
bility condition (9) holds. Then, there exists a family 61, . . . , 6! of couplings and a set of non negative
weights 9( ≥ 0,

∑
( 9( = 1 such that

(1) The marginal distributions of (#(
$,1, . . . ,#

(
$,!) ∼ 6( are given by

#(
$," ∼ (1 − 7 (()

" )00 + 7 (()
" Unif

[
0,
-$," ∧ (.∗-%," )

/∗

]

for some 7 (()
" ∈ [0, 1], +,4 ∈ [!] with at most one 7 (()

" in (0, 1) for each 4 .
(2) Each coupling 6( ,4 = 1, . . . ,! is a joint mix
(3) The mixture of couplings

6 =

!∑
(=1

9(6( . (10)

is a solution for the Blotto game.

(4) The total complexity of computing the weights 9( , 7
(()
" , +,4 ∈ [!] scales as O

(
!2 log!

)
.

Note that the mixture of couplings 6 in (10) is necessarily a joint mix as a mixture of joint mixes.
To sample from it, Player ), simply samples 6( with probability 9( and plays according to the
strategy prescribed by it.
The geometric proof of this lemma is delayed to Section B.5, along with the pseudo-code of

associated Algorithm Decomp.

Lemma 9. Fix ℓ ∈ R!+, , ∈ R and let H = {% ∈ R! s.t. 〈ℓ, %〉 = , } be an a"ne hyperplane. For
any point % ∈ C! = H ∩ [0, 1]!, de!ne supp(%) := {+ ∈ [!],%" ∈ (0, 1)}; then there exist ; ∈ [0, 1],
an extreme point & ∈ C! and another vector &̄ ∈ C! satisfying supp(&̄) ! supp(%) (in particular, &̄
belongs to some<-face of C! where< = |supp(&̄) | < |supp(%) |) such that

% = ;& + (1 − ; )&̄ .
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The overall complexity of computing &, &̄ and ; is of order O(! log!).

The proof of this Lemma is based on simple geometric arguments, and is postponed to Section
B.6 with the associated pseudo-code of Algorithm Extremize.

3.1.2 Step 2. Reduction to four random variables. The previous step reduces the joint mixability
problem of ! general mixtures, to a simpler one where at most one strict mixture is involved. Still,
computing—in fact even describing—a coupling of ! variables requires generically exponential (in
!) time and memory. To overcome this limitation, we reduce the number of random variables from
! to a constant number.

The following Lemma states that each 6( can be realized as the coupling of 3 new uniform
random variables and a strict mixture, thus reducing the mixability question from ! to only 4

random variables. A careful inspection of the proof of Lemma 10 below indicates that the reduction
may lead to three marginals rather than four. In that case, two marginals are uniform and one is
a strict mixture. To handle this case, some adjustments are needed; in particular—and obvisouly—
with the size of the resulting coupling. However, extensions from four to three marginals are
straightforward and we omit this case for clarity.

Lemma 10. Fix ! ≥ 4, 4 ∈ [!], and assume without loss of generality that the last marginal of the
coupling 6( from Lemma 8 is a strict mixture. Then (#$,1, . . . ,#$,!) ∼ 6( may be constructed from
three uniform random variables =1,=2,=3 and a partition I0 0 I1 0 I2 0 I3 = [! − 1] as follows. Set
#$," = 0 for all + ∈ I0, and

#$," = ;"=) , + ∈ I) , > ∈ {1, 2, 3} ,

where ;1, . . . , ;!−1 ∈ [0, 1] are such that∑
" ∈I#

;" = 1, > = 1, 2, 3 .

In particular, it holds that

!−1∑
"=1

#$," = =1 + =2 + =3 almost surely,

and (=1,=2,=3,#$,!) are jointly mixable. The support of =) is [0,(
∗
) ] where

(∗) =
∑
" ∈I#

.∗-%,"
/∗
∧
-$,"
/∗

Moreover, the ;" ’s, the setsI) , and the parameters of the distributions of=1,=2,=3 can each be computed
in constant time.

The proof of this Lemma, based on standard mixability arguments, is postponed to Section B.7,
with the pseudo-code of the corresponding Algorithm Reduc.

Note that any joint mix of (=1,=2,=3,#$,!) readily yields a joint mix of (#$,1, . . . ,#$,!) by de"n-
ing #$," = ;"=) (") , where > (+) ∈ [3] is the unique integer such that + ∈ I) (") .

3.2 Discretization

The problem of "nding a solution for the Blotto game has been reduced to the construction of
a coupling of (at most) four random variables, three of them being uniform over some intervals
and the fourth one being a mixture between a Dirac mass at zero and some uniform distribution.
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Throughout this section we denote these random variables as =1, . . . ,=4 for simplicity; in the no-
tation of the previous section, they correspond to =1,=2,=3, and #$,! respectively.
Unfortunately, even in this simple case, "nding explicit, closed-form, couplings appears to be

possible only under stringent additional conditions that limit the scope of the Blotto game. To
overcome this limitation, we take an algorithmic approach, describing an e!cient way to "nd an
approximate solution. To that end, we obviously need to work with discrete random variables and
describe here a coupling between these discretized random variables.
Let (=1,=2,=3,=4) ∼ ? be jointly mixed so that

=1 + =2 + =3 + =4 = ,$ . (11)

Moreover, let ℎ > 0 be some (small) discretization parameter. De"ne the quantized random vari-
ables =̃" by

=̃" =

⌊
="
ℎ

⌋
, + = 1, 2, 3 , =̃4 =

,$
ℎ
−

⌊
,$ − =4

ℎ

⌋
. (12)

Our goal is to compute any of the joint distributions D(?) of the vector =̃ = (=̃1, =̃2, =̃3, =̃4) when
? ranges over joint mixes.

As a "rst step towards this goal, note that these discretized random variables need not be jointly
mixable. Indeed, in general we have =̃1 + =̃2 + =̃3 ≤ 1(=1 +=2 +=3)/ℎ2 but equality may fail to hold
because of discretization errors. To account for these, let " ∈ {0, 1, 2} be de"ned as

" = (,$/ℎ − =̃4) − (=̃1 + =̃2 + =̃3) , (13)

and consider the augmented random vector =̃+ = (#̃ , "). In light of (13), =̃+ ∈ R5 lives almost
surely on a four dimensional subspace. As such, its distribution may be represented by a 4-tensor
(Γ" )(*) with entries given by

Γ" )(* = P(=̃1 = +, =̃2 = > , =̃3 = 4, " = A) .

In particular, note that A ∈ {0, 1, 2} while +, > ,4 each range in a set of integers of size Θ(1/ℎ).
Using (13) we can read o# the distribution of =̃4 from this tensor.
This tensor is subject to four sets of linear constraints, one for each of the marginal constraints

given in (12). They are given by∑
)(*

Γ" )(* = P(=̃1 = +) ∀+ ,
∑
"(*

Γ" )(* = P(=̃2 = > ) ∀> ,
∑
" )*

Γ" )(* = P(=̃3 = 4) ∀4 ,

and, in light of (13), by ∑
"+)+(+*=ℓ

Γ" )(* = P(,$/ℎ − =̃4 = ℓ) ∀ℓ .

Note that indeed, any draw from a distribution that satis"es the above constraints yields a ran-
dom vector (=̃1, =̃2, =̃3, "). De"ning =̃4 by solving (13) yields a vector =̃ ∼ D(?) for some joint mix
? de"ned as above. In other words, =̃ is indeed the discretization of random variables drawn from
a joint mix (though it need not be jointly mixable itself).

Since the random variables=) , for > ∈ [3], constructed at the previous step have a support equal

to [0,(∗) ] where(
∗
) =

∑
" ∈I#

&∗,!,$
-∗ ∧

,",$

-∗ , the reduced (to 4 random variables) and discretized problem

reduces to "nding some tensor (Γ" )(*) with 3 ·
⌊
.∗
1

ℎ + 1
⌋
·
⌊
.∗
2

ℎ + 1
⌋
·
⌊
.∗
3

ℎ + 1
⌋
entries satisfying at

most 4 ·
⌊
max.∗#

ℎ + 1
⌋
linear constraints. Although this can be done simply via linear programming

(hence polynomially in ℎ−1, more precisely in Õ(1/ℎ8,5) with Vaidya’s algorithm), a quite e!cient
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and more popular way is to use a variant of Sinkhorn-Knopp algorithm that quickly "nds approx-
imated solutions. This is more relevant as this linear program is already some approximation of
the original problem, hence there is no point of solving it exactly.
The pseudo-code of the Algorithm Discretize can be found in Section B.8

3.3 Tensor scaling using Sinkhorn iterations

In light of the previous sections, we have reduced our problem to that of "nding coupling in the
form of a 4-tensor (Γ" )(*, + ∈ [B1], > ∈ [B2],4 ∈ [B3], A ∈ {0, 1, 2}) with non-negative entries
subject to marginal constraints. We approach this problem from a computational perspective and
propose and algorithm that converges rapidly to a feasible solution. To describe this algorithm,
recall that its input are four probability vectors C̃ ) ∈ R0 # , > = 1, . . . , 4, with B4 = B1 + B2 + B3 + 2

that represent the probability mass functions of the discretized random variable =̃1, =̃2, =̃3,,$/ℎ−=̃4
de"ned in the previous section: C̃ ), · = P(=̃) = ·), > = 1, . . . , 3, C̃4, · = P(,$/ℎ − =̃) = ·).
The linear constraints take the form

Γ̄
(1)
" :=

∑
)(*

Γ" )(* = C̃1," ∀+ ∈ [B1] , (14)

Γ̄
(2)
) :=

∑
"(*

Γ" )(* = C̃2, ) ∀> ∈ [B2] , (15)

Γ̄
(3)
(

:=
∑
" )*

Γ" )(* = C̃3,( ∀4 ∈ [B3] , (16)

Γ̄
(4)
ℓ :=

∑
"+)+(+*=ℓ

Γ" )(* = C̃4,ℓ ∀ℓ ∈ [B4] . (17)

Denote by G the set of tensors Γ = (Γ" )(*) that satisfy these constraints.
To solve this problem, we propose to project the all-ones tensor 1 onto G using the Kullback-

Leibler (KL) divergence. Recall that the KL divergence between two nonnegative tensors Γ, Γ′ is
given by

KL(Γ‖Γ′) =
∑
" )(*

Γ" )(* log

(
Γ" )(*

Γ′
" )(*

)

In particular, KL(Γ‖1) is simply the (negative) entropy H(Γ) of Γ and we aim to solve the convex
optimization problem

min
Γ∈G

H(Γ) =
∑
" )(*

Γ" )(* log
(
Γ" )(*

)
.

While many algorithms are available to solve this problem [Bub15], its speci"c structure can be
exploited e!ciently. Indeed, "rst order optimality conditions imply that any optimal Γ must be of
the form

Γ" )(* = D1," · D2, ) · D3,( · D4,"+)+(+* , (18)

for some scaling vectors D ) ∈ (0,∞)0 # , > = 1, . . . , 4. This representation readily calls for an iterative
tensor scaling algorithm similar to the Sinkhorn algorithm [Sin64, SK67, Cut13]. Tensor scaling has
been investigated in more classical setups [LHCJ20, ABA20] that slightly di#er from the present
setup because the fourth marginal constraint takes a special form. Nevertheless, the implementa-
tion of Algorithm Sinkhorn remains straightforward and is presented in Section B.9. Its analysis
is also a straightforward extension of that for the traditional matrix case [AWR17]. More specif-
ically, following the exact same lines as the one of Theorem 4.3 in [LHCJ20], we readily get the
following result.
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Proposition 11. De!ne
C̃min = min

" ∈[4], ),1̃$,#≠0
C̃", ) .

Algorithm Sinkhorn terminates and returns a tensor Γ such that
∑4

"=1 ‖Γ̄
(") − C̃" ‖1 ≤ E after at most

32E−1(1− log C̃min) iterations. Moreover, each marginal Γ̄ (") of Γ has positive entries that sum to one
and hence is a probability vector.

What have we accomplished so far? Through several reductions and a tensor scaling algorithm,
given the datum of a Blotto game, we are able to compute a joint distribution that corresponds to
an approximate solution. In Section 4, we evaluate the accuracy of this approximation in terms of
the value of the game by showing that the various approximations (discretization and numerical
precision of the algorithm) do not blow up when propagated back into the reductions. Before that,
we investigate an important operational question: how to sample a strategy from the resulting
coupling Γ.

3.4 From coupling to sampling

Finding an e!cient construction of (approximate) equilibria or optimal strategies is only relevant
if it can be associated to some e!cient sampling method so that a player may query a sampler
and receive the allocation (#$,1, . . . ,#$,!) that they should play on each battle"eld. In light of the
various reduction steps employed above, it is su!cient to sample a 4-tuple

(=̃1, =̃2, =̃3, ") ∈ [0,(∗1/ℎ] × [0,(∗2/ℎ] × [0,(∗3/ℎ] × {0, 1, 2}

from the output Γ of Algorithm Sinkhorn. Indeed, from (=̃1, =̃2, =̃3, "), we obtain the random vari-
ables =" , + = 1, . . . , 4 that are approximately distributed from the joint mix ? as follows.
To ensure that the marginal distributions are continuous, letF ∼ Unif [0, 1] and de"ne

= ′1 = (=̃1 +
"

3
+
F

3
)ℎ ∧ (∗1, = ′2 = (=̃2 +

"

3
+
F

3
)ℎ ∧ (∗2, = ′3 = (=̃3 +

"

3
+
F

3
)ℎ ∧ (∗3.

To correct for potential boundary e#ects, de"ne G = = ′1 + =
′
2 + =

′
3 and

H = 1{G > ,$}
,$ − G

3
+ 1{G < ,$ − (

∗
4}
,$ − (

∗
4 − G

3
.

Then take =̄1 = = ′1 + H , =̄2 = = ′2 + H , =̄3 = = ′3 + H , and =̄4 = ,$ − (=1 + =2 + =3).
We call this procedure the smoothing procedure. Finally, as mentioned before, just de"ne #$," =

;"=̄) (") , where > (+) ∈ [3] is the unique integer such that + ∈ I) (") .
Note that the random variableF ∼ Unif [0, 1] is super$uous and theoretical results would follow

by taking F = 0. Its role is simply to ensure, for cosmetic reasons, that the random marginal
distributions are continuous apart from the potential point mass at zero.

It remains to sample (=̃1, =̃2, =̃3, ") from the output Γ of Algorithm Sinkhorn. This is quite
straightforward in light of the factored form of Γ. Indeed, recall that the coupling output by Algo-
rithm Sinkhorn has the form (18).

Γ" )(* = D1," · D2, ) · D3,( · D4,"+)+(+* , ∀+ ∈ [B1], > ∈ B2,4 ∈ [B3], A ∈ {0, 1, 2}

As a consequence, we can draw from Γ as follows:

(1) Set =̃1 = + ∈ [B1] with probability proportional to D1,"
(2) Set =̃2 = > ∈ [B2] with probability proportional to D2, )
(3) Set =̃3 = 4 ∈ [B3] with probability proportional to D3,(
(4) Conditionally on (=̃1, =̃2, =̃3), set " = A ∈ {0, 1, 2}with probability proportional to D4,2̃1+2̃2+2̃3+* .

The pseudo-code of Algorithm Sample can be found in Section B.10.
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4 APPROXIMATION ERRORS AND COMPUTATIONAL COMPLEXITY

The construction of the previous section relies on various approximations, each of them inducing
some error that can be mitigated at the cost of additional computational complexity by tuning the
discretization parameterℎ of Section 3.2 and the tolerance parameter E in Algorithm Sinkhorn. In
this section we study the computational complexity required to reach an "-approximate solution.

4.1 From approximate strategies to approximate solutions

Note that the very notion of “approximate solution” strongly depends on whether the problem is
value-symmetric (-$," = -%," for all +) or -asymmetric (-$," ≠ -%," for some +). Indeed, in the former
case, the game is constant-sum and optimal strategies do exist. This is no longer true in the latter
case where only Nash equilibria are considered. As a consequence, we can consider approximation
of a single optimal strategies in value-symmetric games, while we will have to consider approxi-
mations of a pair of equilibrium strategies in value-asymmetric ones. In the following two sections,
we consider each case separately. In the remaining, we shall focus the analysis on Player ), but it
is almost identical for player *; hence we do not repeat it for the sake of clarity.

4.1.1 The value-symmetric case. A value-symmetric Blotto game, where -$," = -%," = -" for all + is
constant-sum and optimal strategies exist for each player. In particular, this allows us to provide
strong approximation guarantees by controlling how sub-optimal the expected utility of a player
is.
To check this well-known fact on our speci"c instance, consider the utility of player ). Set two

equilibrium parameters .∗ = ,%/,$ ≤ 1 and /∗ = ,%/(2,
2
$ ) (see Corollary 6) de"ning an optimal

strategy and observe that N(.∗) = [!] since .∗ ≤ 1. For + ∈ [!], let #$," ∼ Unif [0, 2,$-" ] denote
the amount allocated by player ) to battle"eld + according to this optimal strategy and denote by
I$," its cumulative distribution function (cdf). The expected utility (a.k.a. reward) of player ) if
player * chooses allocation %% = (%%," )" depends only on the sequence I$ = (I$,1, . . . , I$,!) of
marginal cdfs rather than the whole coupling. It is given by

U$ (I$, %%) =
!∑
"=1

-$,"P(#$," > %%," ) =
!∑
"=1

-"
(
1 − I$," (%%," )

)
= 1 −

!∑
"=1

-" ∧
%%,"

2,$
≥ 1 −

,%
2,$

.

where we used the fact that the -" ’s sum to 1 and the %%," ’s sum to at most ,% . Moreover, if *
employs the mixed strategy #%,1, . . . ,#%,! described in Corollary 6, the utility of player), denoted
U$ (I$, I%), changes as follows. Let F$,",F%," ∼ Unif [0, 2,$-"] be a sequence of uniform random
variables such thatF$," is independent ofF%," . In particular, P(F$," > F%," ) = .5 and

U$ (I$, I%) =
(
1 −

,%
,$

) !∑
"=1

-"
(
1 − I$," (0)

)
+
,%
,$

!∑
"=1

-"P(F$," > F%," )

=
(
1 −

,%
,$

)
+

,%
2,$

= 1 −
,%
2,$

.

In particular, the strategy of player) given in Corollary 6 is optimal and its optimal utility is given
by 1 −,%/(2,$).

To estimate the cost of the various approximations incurred by player ), let #
ℎ,3
$," ∼ $

ℎ,3
$," denote

the strategy on battle"eld + ∈ [!]. The notation is meant to emphasize that the approximation
error stems from two sources: the precision level E of Algorithm Sinkhorn and the grid size
ℎ of discretization procedure in Section 3.2. In particular, we write $0,0

$," := $$," . Cognizant of
this approximation error, player ) may take advantage of the suboptimality of the strategy of

player ) and respond with best-response strategy denoted #ℎ,3
% = (#

ℎ,3
%,1 , . . . ,#

ℎ,3
%,!). As a result, the
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suboptimality gap of player )’s expected utility is controlled as follows

U$ (I$, I%) −U$ (I
ℎ,3
$ , I

ℎ,3
% ) =

!∑
"=1

-"P(#$," > #%," ) −
!∑
"=1

-"P(#
ℎ,3
$," > #

ℎ,3
%," )

≤
!∑
"=1

-"P(#$," > #
ℎ,3
%," ) −

!∑
"=1

-"P(#
ℎ,3
$," > #

ℎ,3
%," )

≤
!∑
"=1

-" sup
4>0

[
P(#$," > %) −P(#

ℎ,3
$," > %)

]

where in the "rst inequality, we use the fact that #% is an optimal response for * when ) plays
#$.

It will be convenient in the sequel to further bound the above quantity using the∞-Wasserstein

distance—see [San15, Section 5.5.1]—between$$," and $
ℎ,3
$," , denotedJ∞($$," , $

ℎ,3
$," ). Indeed, to show

thatJ∞ ($$," , $
ℎ,3
$," ) ≤ K for some K ≥ 0, it is su!cient to exhibit a coupling of #$,",#

ℎ,3
$," such that

|#$," − #
ℎ,3
$," | < K almost surely. Below, we often do so implicitly as such couplings are, in all

instances, trivial.
Fix K > 0 and assumeJ∞ ($$," , $

ℎ,3
$," ) ≤ K . Then for any K ≥ 0, we have

P(#$," > %) −P(#
ℎ,3
$," > %) ≤ P(% < #$," < % + K) ≤

/∗K

.∗-"
,

where we used the fact that #$," ∼ Unif [0,.∗-"//
∗]. The above two displays together yield that

the suboptimality gap for player ) is controlled as

U$ (I$, I%) −U$ (I
ℎ,3
$ , I

ℎ,3
% ) ≤

/∗

.∗

!∑
"=1

J∞($$," , $
ℎ,3
$," ) .

Recall that Step 1 in the reduction consists in decomposing $$," as a mixture of (at most) !

other distributions, i.e., $$," =
∑

( 9($
(()
$," . Accordingly, we also have constructed $

ℎ,3
$," as a mixture

$
ℎ,3
$," =

∑
( 9($

ℎ,3,(()
$," . It follows readily from the de"nition ofJ∞ that that

J∞($$," , $
ℎ,3
$," ) ≤

∑
(

9(J∞($
(()
$," , $

ℎ,3,(()
$," ).

In particular controlling each term on the right-hand side uniformly in4 results in the same control

on the desired error. Therefore, without loss of generality, we may assume that $ (()
$," = $$," and

$
ℎ,3,(()
$," = $

ℎ,3
$," so as to keep the notation light. Moreover, as above, we assume without loss of

generality the last marginal $$,! is the only strict mixture.

4.1.2 The value-asymmetric case. When values are asymmetric, the game is no longer constant-
sum and we shift our focus from optimal strategies to Nash equilibria. In this context the notion
of approximation is more subtle and has to be carried out jointly for both players.
For any set ofmarginal cdfsL$ = (L$,1, . . . ,L$,!) andL% = (L%,1, . . . ,L%,!), denote byU$ (L$,L%)

the expected utility of player ) if player ) plays according to strategy L$ while player * plays
according to strategy *.
A pair (I$, I%) is a Nash equilibrium if

U$ (I$, I%) ≥ U$ (L$, I%), for all admissible L$ .
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Writing

U$ (I$, I%) = U$ (I$, I%) −U$ (I
ℎ,3
$ , I%) + U$ (I

ℎ,3
$ , I%) −U$ (I

ℎ,3
$ , I

ℎ,3
% ) + U$ (I

ℎ,3
$ , I

ℎ,3
% ) ,

U$ (L$, I%) = U$ (L$, I%) −U$ (L$, I
ℎ,3
% ) + U$ (L$, I

ℎ,3
% )

it readily follows from the above two displays that

U$ (I
ℎ,3
$ , I

ℎ,3
% ) + " ≥ U$ (L$, I

ℎ,3
% ), for all admissible L$ ,

where, using similar computations as above,

" ≤
!∑
"=1

-$,"

[
/∗

.∗-%,"
J∞($$," , $

ℎ,3
$," ) +

2/∗

-$,"
J∞($%," , $

ℎ,3
%," )

]

4.2 Control of the errors

In both cases, symmetric or asymmetric values, a control of the approximation error follows from

controllingJ∞ ($$," , $
ℎ,3
$," ). In the rest of this section, we sightly abuse notation and writeJ∞(# ,= )

when the distributions of the random variables # and = are clear from the context.
Recall that for any + ∈ [!] since #$," = ;"=( (") and similarly for the approximate versions, for

some "xed ;" ∈ [0, 1], we have for any ℎ,E ≥ 0 that

J∞($$," , $
ℎ,3
$," ) = ;"J∞(=) (") , =̄) (") )

where =) is the result of the reductions and is de"ned in Lemma 10 while =̄) is the output the
smoothing procedure and is de"ned in Section 3.4.
Recall that the discrepancy between =̄) and the target =) stems from three approximations: dis-

cretization error (ℎ > 0), numerical error (E > 0), and the error due to smoothing step. The
error coming from the smoothing step is easy to control: for any > ∈ [4], we haveJ∞ (=) , =̄) ) ≤

J∞(=) ,ℎ=̃) ) + ℎ. We have proved that

J∞($$," , $
ℎ,3
$," ) ≤ ;"J∞ (=) (") ,ℎ=̃) (") ) + ;"ℎ (19)

As a result, it is su!cient to control the discretization error and the numerical error at the level
of the variables =̃) . To emphasize the presence of these errors, we employ the same notation as for

$
ℎ,3
$," and write =̃) = =̃

ℎ,3
) for ℎ > 0, E ≥ 0. By the triangle inequality, we have

J∞(=) ,ℎ=̃) ) ≤J∞(=) ,ℎ=̃
ℎ,0
) )︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸

discretization error

+J∞(ℎ=̃
ℎ,0
) ,ℎ=̃

ℎ,3
) )︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸

numerical error

.

The discretization error is trivial to control. Indeed, in light of the coupling provided by (12), we
get that

J∞(=) ,ℎ=̃
ℎ,0
) ) ≤ ℎ (20)

Finally, to control the numerical errorJ∞(ℎ=̃
ℎ,0
) ,ℎ=̃

ℎ,3
) ), recall that the tolerance E > 0 in Algo-

rithm Sinkhorn controls the ℓ1 error between the current marginals and the targets. Hence, we
need to bound the ∞-Wasserstein distance by the ℓ1 distance. This is quite straightforward since

=̃
ℎ,3
) has bounded support for E ≥ 0. Indeed, recall from Lemma 10 that for any > ∈ [4] we have

that =̃
ℎ,3
) ∈ [0,(∗)/ℎ], where

(∗) =
1

/∗

∑
" ∈I#

(.∗-%," ) ∧ -$," .
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Hence,J∞ (ℎ=̃
ℎ,0
) ,ℎ=̃

ℎ,3
) ) ≤ (∗)E, and we have proved that

J∞ ($$," , $
ℎ,3
$," ) ≤ 2;"ℎ + ;"(

∗
( (")E .

In particular, for the value-symmetric case, since

(( (") =
.∗

/∗

∑
5 ∈I% ($)

-5 ≤
.∗

/∗
,

we get the following simple bound

J∞($$," , $
ℎ,3
$," ) ≤ 2;"ℎ +

;".
∗E

/∗
.

Since
∑

" ;" = 4, the suboptimality gap for player ) is controlled as

U$ (I$) −U$ (I
ℎ,3
$ ) ≤

/∗

.∗

!∑
"=1

J∞($$," , $
ℎ,3
$," ) ≤ 8

/∗

.∗
ℎ + 4E . (21)

In the value-asymmetric case, we get a suboptimality for player ) smaller than

"$ =

(
16 +

8

.∗
max

"

-$,"
-%,"

)
/∗ℎ +

(
8.∗ + 4max

"

-$,"
-%,"

)
E (22)

and, with symmetric arguments, a suboptimality for player * smaller than

"% =

(
16 + 8max

"

-%,"

-$,"

)
/∗ℎ

.∗
+

(
8 + 4max

"

-%,"

-$,"

)
E .

4.3 Computational complexity

In this section, we tally the complexity required to achieve either "-suboptimality gap in the value-
symmetric case or an "-Nash equilibrium in the value-asymmetric case.
Before making this distinction recall the various steps that were employed, together with their

computational complexity.

Lotto Step. Computing one (and, actually, all) pair of parameters (. , /) requires O(! log!)
operations, see Proposition 1.

Step 1: Computing all couplings 6( and their associated convex weights 9( requires O(!2)
operations; see Lemma 8.

Step 2: Given some coupling 6( computed at step 1, the reduction from ! to only 4 random
variables requires O(!2) operations; see Lemma 10.

Step 3: The discretization step is computationally costless.

Step 4: The Sinkhorn algorithm requires O(
log (1/1̃min)

3 ) operations; see Proposition 11. Since

the marginal distributions C" are ℎ-discretizations of either uniform on an interval of size

at most
∑ &∗,!,$

-∗ ≤
&∗

-∗ , or uniform on interval of length ,",$

-∗ with weight ,",$

&∗,!,$
, it holds that

C̃min ≥
ℎ-∗

&∗ . At each iteration of Sinkhorn, all the components of the tensor are computed,

hence a complexity, per iteration, in O
(
(
&∗

ℎ-∗ )
3
)
.

Step 5: The sampling cost comes from the reconstruction of the budget allocation from the 4
random variables, constructed at Step 2 and sampled from the coupling computed at step 4.

The sampling step has a linear cost with respect to the discretization size O(
&∗

ℎ-∗ ) while the
reconstruction complexity scales linearly with respect to the number of battle"elds O(!) .

We are now in a position to state our main theorems. We begin with the symmetric-value case
for player ). The result for player * is completely analogous and therefore omitted.
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Theorem 12. Consider the two-player Blotto game on! battle!elds with symmetric values -1, . . . , -!
where player ) has budget ,$ and player * has budget ,% ≤ ,$ and assume that these data satisfy
the conditions of Corollary 6. Fix " > 0 and let E = "/4 and ℎ = ",$/8. Then the procedure described
in Algorithm Sample samples from an "-suboptimal strategy for player ) in time

O

(
!2 +

log(1/")

"4

)

Proof. Note "rst that the preprocessing cost associated to steps 1 through 4 is O(!2).
To compute the cost of Sinkhorn iterations, observe that the parameters E and ℎ are chosen in

such a way that each term on the right-hand side of (21) is equal to "/2:

8
/∗

.∗
ℎ = 4E =

"

2

Hence,

C̃min ≥
ℎ/∗

.∗
=

"

16
, and

(
.∗

ℎ/∗

)3
=

(
16

"

)3
.

Moreover, since E = "/8, we get that the total complexity of Sinkhorn iterations is

O

((
.∗

ℎ/∗

)3
log (1/C̃min)

E

)
= O

(
"−3

log (1/")

"

)
= O

(
"−4 log(1/")

)

Finally, the last step has a total cost of O(!+") which is negligible with respect to the combination
of previous steps. "

It is worth noting that in the value-symmetric case, the computational complexity of our proce-
dure is independent of the datum of the problem (budgets and values) under the normalization (1).
Note that this normalization merely scales the utility and should of course a#ect the desired accu-
racy parameter ".

We now move to the asymmetric-value case and characterize the complexity of our procedure
to compute an "-Nash equilibrium for the Blotto game. As above, we focus on player ) only.

Theorem 13. Consider the Blotto game on ! battle!elds with asymmetric values -#,1, . . . , -#,! ,
$ ∈ {),*}, where player $ ∈ {),*} has budget,# , with ,% ≤ ,$ and assume that these data satisfy
the conditions of Corollary 6. De!ne

# = max
"

-$,"

-%,"
∨
-%,"

-$,"
.

Fix " > 0 and let

E =
"

24#
, ℎ =

.∗

/∗
"

48#
.

Then Algorithm Lotto2Blotto samples from an "-Nash equilibrium in time

O

(
!2 +

(
#

"

)4
log

(
#

"

))

Proof. Note "rst that the preprocessing cost associated to steps 1 through 4 is O(!2).
To compute the cost of Sinkhorn iterations, observe that the parameters E and ℎ are chosen in

such a way that each term on the right-hand side of (22) are smaller than "/2:(
16 +

8

.∗
#

)
/∗ℎ, (4.∗ + 2#) E ≤

"

2
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Hence,

C̃min ≥
ℎ/∗

.∗
=

"

48#
, and

(
.∗

ℎ/∗

)3
=

(
48#

"

)3
.

Together with the prescribed value of E and since .∗ ≤ # because of Proposition 1, we get that
the total complexity of Sinkhorn iterations is

O

((
.∗

ℎ/∗

)3
log (1/C̃min)

E

)
= O

((
#

"

)4
log

(
#

"

))

Finally, the last step has a total cost of O(!+") which is negligible with respect to the combination
of previous steps. "
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A THE DISCRETE CASE

During the construction of an approximated solution of the classical Blotto game, we had to resort
to some discretization, and we implicitly proved that some discrete random variables were jointly
mixable. Quite unfortunately, this result can not be directly generalized to solve the discrete, pure
count Blotto game (where Lotto solutions were computed explicitly [Har08]).
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We recall that in the discrete pure count Blotto problem, the budget of each player ,$ and ,%
are non-negative integers and that the amount allocated by players to battle"elds, %$," and %%, ) ,
are also non-negative integers. Finally, explicit solutions of the Lotto problem are only available
in the pure count problem, when -$," = -%," = 1, hence we shall focus on this case. In discrete
Lotto/Blotto, the probability of equal forces %$," = %%," is positive and if this happens, we will still
assume that both players wins the battle"eld with probability 1/2.
[Har08] described optimal strategies in the associated Lotto game with the following additional

notations. The average budget per battle"eld are denoted by ' = ,$/! and ( = ,%/!, the uniform
distribution on even integers between 0 and 2< is denoted byF6

* = Unif{0, 2, ..., 2<} whileF6
7 =

Unif{1, 3, ..., 2< − 1} is the uniform distribution on even integers between 1 and 2< − 1. Those
strategies are described in [Har08, Fig. 1].
He also introduced the term of a “feasible” distribution, to indicate that ! random variable of

that distribution are jointly mixable. He then proved the following

Proposition 14. • If ,$ = <! then F6
7 is "feasible" if and only if ,$ and ! have the same

parity
• If ,$ =<! then F6

* is "feasible" if and only if #$ is even
• If ,$ =<! + 8 with 1 ≤ 8 ≤ ! − 1 then (1 − 8

! )F
6
* + 8

!F
6+1
7 is "feasible"

As a consequence, [Har08] characterized Nash equilibrium of the discrete Blotto problem in the
following three cases:

(1) If,$ = ,% (because of the "rst and third rows of [Har08, Fig. 1])
(2) If<! < ,% < ,$ < (< + 1)! for some< ∈ N (because of the third row of [Har08, Fig. 1])
(3) If<! = ,% < ,$ < (< + 1)! for some< ∈ N, if #% is even (because of the fourth row of

[Har08, Fig. 1])

Now, let us state the following Proposition 15 that will imply the above 3 points. The proof, rather
technical (yet algorithmic) is postponed.

Proposition 15. Discrete random variables Unif{0, . . . , ℓ" } are jointly mixable if and only if their
continuous counterparts Unif [0, ℓ" ] are jointly mixable and

∑
" ℓ" is even.

This proposition allows us to describe solutions of the discrete Blotto game.

Theorem 16. Assume #% is even and #$ has the same parity than !, then the optimal strategies
of the discrete Blotto game are given by [Har08, Fig. 1]. Moreover those strategies can be computed
using the same algorithmic approach as in Proposition 15.

Proof. We will prove the theorem "rst when ,$ = <! for some< ∈ N and then when ,% <

<! < ,$, again for some< ∈ N. The other cases are already covered [Har08].

1. If ,% < <! = ,$, then the optimal strategy of Player ) is F6
7 , which is feasible if ,$ and !

have the same parity. Indeed, sinceF6
7 = Unif{1, . . . , 2< − 1} = 1 + 2Unif{0, . . . ,< − 1}, the

problem reduces to mixing ! random variables of law Unif{0, . . . ,< − 1}; this requires that
!(< − 1) = ,$ − ! is even.
Player * marginals are (1− .

6 )00+
.
6F6

7/*
. So it remains to prove that those random variables

are jointly mixable. In particular, this holds if (1 − .
6 )00 + .

6Unif{0, . . . , 2<} are jointly
mixable by choosing appropriate weights on F6

7 and F6
* .

In the continuous case (i.e., if uniform distributions are over [0,<] instead of {0,<}), [Rob06]
constructed explicit couplings between such random variables by reducing to coupling of
uniform continuous random variables. We apply the exact same techniques, yet we just need
to ensure that the intervals of the continuous uniform distributions start and end on integers



Vianney Perchet, Philippe Rigollet, and Thibaut Le Gouic 22

and that the sums of lengths are always even. But this immediately happens as soon as#$/!
is an integer.
Indeed, all the couplings introduced in [Rob06] involves uniform random variables over
intervals [M" , N"] where M" , N" ∈ {0, 2<,#% − 2<,(! − 4<, ...}. As a consequence, all interval
lengths are even if ,% = (! is even, which implies that the discrete uniform variables over
{M" , . . . , N"} are jointly mixable.

2. In the second case, the strategy of player * is to jointly mix! random variables of distribution
(1 − .

6 )00 +
.
6Unif{0, 2, . . . , 2<} which is equivalent to mixing ! distributions (1 − .

6 )00 +
.
6Unif{0, 1, . . . ,<}. Using again, exactly as above, the construction based on the continuous
couplings of [Rob06], this is possible as soon as ,% is even.
On the other hand, Player ) marginals are (1 − M)F6

7 + MF6+1
7 , thus we need to prove that

(1−M)Unif{0,<−1}+MUnif{0,<} are jointly mixable. To ensure this, one just need to select
!M battle"elds at random and to allocateUnif{0,<} on them (andUnif{0,<−1} on the !−!M
remaining battle"elds). As a consequence, we end up in mixing !M uniforms Unif{0,<} and
! −!M uniforms Unif{0,< − 1}, which is possible as soon as !M< + (! −!M) (< − 1) = ,$ −!
is even, i.e., if ,$ and ! have the same parity.

These two claims give the result. "

We "nally prove Proposition 15

Proof of Proposition 15. The proof of the necessary part of the condition is identical to the
continuous case. The only di#erence is the fact that

∑
ℓ" must be even. This is naturally implied

by the fact that
∑
#" is always an integer, hence

∑
E#" =

∑
ℓ"/2 should also be an integer if these

random variables are jointly mixable.
It only remains to prove this statement for ! ≥ 3 as the case ! = 2 is trivial. Moreover, proving

the statement for ! > 3 can be be reduced to the case ! = 3 with a simple induction over !, as in
the continuous case [WW16]. Indeed, since Unif{0, . . . , ℓ1},Unif{0, . . . , ℓ2} andUnif{0, . . . , ℓ1+ ℓ2}
are jointly mixable (because they satisfy the condition of the Proposition for ! = 3), it is possible
to reduce the joint mixability of ! uniform to only 3. As a consequence, we will solely focus on
! = 3 and and we assume wlog that ℓ1 ≤ ℓ2 ≤ ℓ3

The proof will be based on another induction on the maximal size ℓ3. We will distinguish three
cases, depending on whether ℓ1 = ℓ2 = ℓ3, or ℓ1 < ℓ2 = ℓ3, or ℓ2 < ℓ3.

First case: ℓ1 = ℓ2 = ℓ3 (in particular, this implies that ℓ1, ℓ2, ℓ3 are even since ℓ1 + ℓ2 + ℓ3 = 3ℓ"
is even by assumption).
If ℓ1 = 2, then the uniform coupling on the triplets (0, 1, 2), (1, 2, 0) and (2, 0, 1) proves joint

mixability. If ℓ1 = 4, then considering the uniform distribution on the following set{
(3, 3, 0); (3, 0, 3); (0, 3, 3); (4, 1, 1); (1, 4, 1); (1, 1, 4);

(0, 2, 4); (2, 4, 0); (4, 0, 2); (2, 2, 2)
}

is su!cient to prove joint mixability. From now on, we shall assume that ℓ1 = ℓ2 = ℓ3 ≥ 6.
Consider the coupling de"ned by

#1,−
1 ∼ 00, #1,−

2 ∼ Unif{
ℓ1
2
+ 1, ℓ1 − 1} and

#1,−
3 =

3

2
ℓ1 − #

1,−
2 ∼ Unif{

ℓ1
2
+ 1, ℓ1 − 1}.
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Then it immediately follows that #1,−
1 + #1,−

2 + #1,−
3 =

3
2
ℓ1. Similarly, this property holds with the

following alternative coupling

#1,+
1 ∼ 0ℓ1 , #1,+

2 ∼ Unif{1,
ℓ1
2
− 1} and

#1,+
3 =

1

2
ℓ1 − #

1,+
2 ∼ Unif{1,

ℓ1
2
− 1}.

We de"ne similarly the coupling (#2,±
" )" ∈[3] and (#3,±

" )" ∈[3] where the role of #1 is exchanged
with #2 and, respectively, #3. We also de"ne the last coupling #0

" = 0 ℓ$
2

.

Then #" can be decomposed as follows:

#" =
1

ℓ1 + 1

{ ∑
(∈[3]

#(,−
" +

∑
(∈[3]

#(,+
" +

2
ℓ$
2
− 1

#0
"

}
+
ℓ1 − 5

ℓ1 + 1
=",

where =" ∼ Unif{1, . . . , ℓ1}. A simple induction gives the joint mixability of {#1,#2,#3}

Second case: ℓ1 < ℓ2 = ℓ3 (in particular, this implies that ℓ1 is even). There are two speci"cs
cases ℓ1 = 2 and ℓ2 ∈ {3, 4} that are constructed explicitly as follows.
If ℓ1 = 2 and ℓ2 = ℓ3 = 3, a joint mixability coupling is

1

6

(
0 (0,3,1) + 0 (0,1,3) + 0 (2,2,0) + 0 (2,0,2)

)
+

1

12

(
0 (1,3,0) + 0 (1,0,3) + 0 (1,1,2) + 0 (1,2,1)

)
while if ℓ1 = 2 and ℓ2 = ℓ3 = 4, a valid coupling is

2

15

(
0 (2,3,0) + 0 (2,0,3) + 0 (0,4,1) + 0 (0,1,4) + 0 (1,2,2)

)

+
1

15

(
0 (1,0,4) + 0 (1,4,0) + 0 (0,3,2) + 0 (2,2,1) + 0 (1,1,3)

)
For the other cases, we consider similar couplings as above, i.e.,

#3,−
3 ∼ 00, #3,−

2 ∼ Unif{ℓ2 −
ℓ1
2
, ℓ2 − 1} and

#3,−
1 = ℓ2 +

ℓ1
2
− #3,−

2 ∼ Unif{
ℓ1
2
+ 1, ℓ1}

and also

#3,+
3 ∼ 0ℓ3 , #3,−

2 ∼ Unif{1,
ℓ1
2
} and

#3,+
1 =

ℓ1
2
− #3,−

2 ∼ Unif{0,
ℓ1
2
− 1}.

We de"ne #2,±
" similarly.

If ℓ1 ≥ 4, we introduce the following random variables (the case ℓ1 = 2 is detailed just below)

= 1
1 ∼ 0 ℓ1

2

,= 2
1 ∼ Unif{0, ℓ1},=

3
1 ∼ Unif{0, ℓ1}

and = 4
1 ∼ Unif{0, ℓ1}

and similarly

= 1
2 ∼ Unif{1, ℓ2 − 1},=

2
2 ∼ Unif{

ℓ1
2
+ 1, ℓ2 −

ℓ1
2
− 1},= 3

2 ∼ Unif{1, ℓ2 − 1}

and = 4
2 ∼ Unif{1, ℓ2 − 1}
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and

= 1
3 ∼ Unif{1, ℓ3 − 1},=

2
3 ∼ Unif{1, ℓ3 − 1},=

3
3 ∼ Unif{

ℓ1
2
+ 1, ℓ2 −

ℓ1
2
− 1}

and = 4
3 ∼ Unif{1, ℓ3 − 1}

So that we can decompose

#" =
1

ℓ3 + 1
(#3,−

" + #3,+
" + #2,−

" + #2,+
" ) + 71=

1
" + 72=

2
" + 73=

3
" + 7"4

where the probability are de"ned by

71 =
4

ℓ3 + 1

1

ℓ1
, 73 = 72 =

2

ℓ3 + 1

ℓ2 − ℓ1 − 1

ℓ1
and 74 = 1 −

4

ℓ3 + 1
− 71 − 72 − 73

Those couplings are well de"ned and satisfy the theorem length condition, hence we will be able
to proceed by induction.
It remains to consider the case where ℓ1 = 2 (plugging ℓ1 = 2 in the above construction would

give 74 < 0 which is obviously impossible).
We de"ne the variables

5 1
1 ∼ 01 and 5 2

1 ∼ Unif{0, 2}

and similarly
5 1
2 ∼ Unif{2, ℓ2 − 2}, and 5 2

2 ∼ Unif{2, ℓ2 − 2}

and
5 1
3 ∼ Unif{2, ℓ2 − 2} and 5 2

3 ∼ Unif{2, ℓ3 − 2}

So that we can decompose

#" =
1

ℓ3 + 1
(#3,−

" + #3,+
" + #2,−

" + #2,+
" ) + 915

1
" + 925

2
"

where the probability are de"ned by

91 =
2

ℓ3 + 1
and 92 = 1 −

4

ℓ3 + 1
− 91 = 1 −

6

ℓ3 + 1
,

and the result also follows by induction.

Third case: ℓ1 < ℓ2 < ℓ3. We are going to proceed by induction (on the maximal length) as
before, and we consider the following couplings

#−3 = 00, #−2 ∼ Unif{
ℓ3 + ℓ2 − ℓ1

2
, ℓ2}

and #−1 =
ℓ3 + ℓ2 + ℓ1

2
− #−2 = Unif{0,

ℓ1 + ℓ2 − ℓ3
2

}

and the similar one

#−3 = 0ℓ3 , #−2 ∼ Unif{0,
ℓ1 + ℓ2 − ℓ3

2
)}

and #−1 =
ℓ3 + ℓ2 + ℓ1

2
− #−2 = Unif{

ℓ1 + ℓ3 − ℓ2
2

, ℓ1}

It remains to introduce the following random variables

= 1
1 ∼ Unif{

ℓ1 + ℓ2 − ℓ3
2

+ 1,
ℓ1 + ℓ3 − ℓ2

2
− 1}, = 2

1 ∼ Unif{0, ℓ1}

and = 3
1 ∼ Unif{0, ℓ1}
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and similarly

= 1
2 ∼ Unif{0, ℓ2}, = 2

2 ∼ Unif{
ℓ1 + ℓ2 − ℓ3

2
+ 1,

ℓ2 + ℓ3 − ℓ1
2

− 1}

and = 3
2 ∼ Unif{0, ℓ2}

and

= 1
3 ∼ Unif{1, ℓ3 − 1}, = 2

3 ∼ Unif{1, ℓ3 − 1}

and = 3
3 ∼ Unif{1, ℓ3 − 1}.

So that we can decompose

#" =
1

ℓ3 + 1
(#−" + #+

" ) + 71=
1
" + 72=

2
" + 73=

3
"

where the probability are de"ned by

71 =
1

ℓ3 + 1

ℓ3 − ℓ2 − 1
ℓ1+ℓ2+ℓ3

2
+ 1

, 72 =
1

ℓ3 + 1

ℓ3 − ℓ1 − 1
ℓ1+ℓ2+ℓ3

2
+ 1

and 73 = 1 −
2

ℓ3 + 1
− 71 − 72

The proof relies on a simple induction by noticing that {= 1
1 ,=

1
2 ,=

1
3 } satis"es the theorem condition

(as soon as 71 > 0) since these three random variables are uniform over intervals of respective
lengths ℓ3 − ℓ2 − 2, ℓ2 and ℓ3 − 2 (in particular, ℓ2 is the maximum of these 3 quantities, necessarily
ℓ2 = ℓ3 − 1 and 71 = 0). Similarly {= 2

1 ,=
2
2 ,=

2
3 } and {= 3

1 ,=
3
2 ,=

3
3 } satisfy the theorem condition as

well. "

B OMITTED PROOFS AND ALGORITHMS

B.1 Algorithm Lotto2Blotto

Weprovide the simple pseudo-code of themain algorithm; it is decomposed into several procedures
described in subsequent sections.

ALGORITHM 1: Lotto2Blotto

Data: Length & weight vectors b ∈ R!
+ and p ∈ [0, 1]! , budget , , approximation levels E,ℎ;

Result: Allocation vector # ∈ R!
+;

{(p( )) ,9 ) )} ) ← Decomp(b,, , p) ⊲ Couplings with one strict mixture
Sample >∗ = > with probability 9 ) ;

(I0,I1,I2,I3,I4) ← Reduc(b,p( )∗) ) ⊲ Reduction to 4 random variables
for + ∈ [4] do

(∗" ←
∑

) ∈I# ( ) ; 7
∗
) ←

∑
) ∈I# 7 ) ;

end
(C1, C2, C3, C4) ← Discretize(((∗1,(

∗
2,(
∗
3,(
∗
4), 7

∗
4,ℎ) ⊲ Appropriate Discretization

(D1, D2, D3, D4) ← Sinkhorn((C1, C2, C3, C4),E) ⊲ Numerical computations
# ← Sample((D1, D2, D3, D4),, , b, (I0,I1,I2,I3,I4),ℎ) ⊲ Reconstruction and sampling
Output: # ⊲ A valid allocation
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B.2 Proof of Proposition 1 and associated Algorithm Lotto

ALGORITHM 2: Lotto

Data: Battle"eld values -$," and -%," , budgets,$ and ,% ;

Result: Vector b = ((" )" ∈[! ] and probability vector p ∈ [0, 1]! ;
. ← 0, / ← 0, 4 ← 0 ⊲ Initialization
Sort

{ ,",$

,!,$
; + ∈ [!]

}
⊲ Sort to get degree 3 polynomial equation to solve

while . = 0 do

S( ← roots
(
.,$

∑(
"=1 -9," + .

3,$
∑!
"=(+1

,2
!,$

,",$
−,%

∑(
"=1

,2
",$

,!,$
−,%.

2 ∑!
"=(+1

-%,"

)
;

for O ∈ S( do

. ← O1
{
. ∈ [

,",%

,!,%
,
,",%+1

,!,%+1
]
}

⊲ Keep valid root of degree 3 polynomial

end

4 ← 4 + 1 ⊲ Move to next interval between two ratios ,$,(
,!,%

end

/ ← 1
'"

1
2

∑!
"=1(.-%," ) ∧

(,",$ )
2

&,!,$
;

for + ∈ [!] do

(" ←
&,!,$
- ∧

,",$

- , 7" ←
,",$

&,!,$
∧ 1 ⊲ Description of Lotto strategies

end
Output: (b,p) ⊲ lenghts of uniforms and associated weights

Proof. First, reorder the battle"elds by increasing reward ratios -$,"/-%," so we can assume that

-$,1
-%,1
≤

-$,2
-%,2
≤ · · · ≤

-$,!
-%,!

Recall that 1 (.) is the left-hand side of (6). We "rst observe that 1 is continuous on R. Indeed,
1 is obviously continuous on each open interval(

-$,"
-%,"

,
-$,"+1
-%,"+1

)

To check that it is continuous at ."0 := -$,"0/-%,"0 , note that for . in a small enough neighborhood
of ."0 , we have

N(.) =

{
{+0 + 1, . . . ,!} if . > ."0
{+0, . . . ,!} if . ≤ ."0 .

Hence 1 is left-continuous at ."0 . Moreover, we can check right-continuity by observing that

lim
&→&$0
&>&$0

1 (.) = .3"0

(
,$

!∑
"="0+1

-2%,"
-$,"

)
− .2"0,%

!∑
"="0+1

-%," + ."0,$

"0∑
"=1

-$," −,%

"0∑
"=1

-2$,"
-%,"

= 1 (."0)

where the last identity can be readily checked by substitution.
Having proved that 1 is continuous, note that for . large enough we have thatN(.) = ∅ so that

1 (.) = .,$

!∑
"=1

-$," −,%

!∑
"=1

-2$,"
-%,"
−−−−→
&→∞

+∞ .
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Moreover, for . > 0 small enough, we have N(.) = [!] so that

1 (.)

.2
= .

(
,$

!∑
"=1

-2%,"
-$,"

)
−,%

!∑
"=1

-%," −−−→
&→0

−,%

!∑
"=1

-%," < 0 .

Hence, by the intermediate value theorem, there exists .∗ > 0 such that 1 (.∗) = 0. Moreover, ob-
serve that if one setsN(.) = [P ] forP ∈ {0, . . . ,!}, with the convention that [0] = ∅, Equation (6)
becomes a polynomial equation of degree three with at most three solutions denoted.: ," , + = 1, 2, 3.
Hence, .∗ ∈

⋃!
:=0{.: ,1,.: ,2,.: ,3} can take at most 3! + 3 values.

We now check the bounds on the possible values of .∗. To that end, recall from (6) that

1 (.) =
!∑
"=1

(
.,$ −,%

-$,"
-%,"

)
·

(
.2

-2%,"
-$,"
∧ -$,"

)
.

To prove the an upper bound on .∗, observe that

.,$ −,%
-$,"
-%,"
≥ 0 ⇐⇒ . ≥

,%
,$

-$,"
-%,"

⇐⇒ .2
-2%,"
-$,"
∧ -$," ≥

(
,%
,$

)2
-$," ∧ -$," =

(
,%
,$

)2
-$," ,

where the last identity follows from the assumption that ,% ≤ ,$ .
It yields

1 (.) ≥

(
,%
,$

)2 !∑
"=1

(
.,$ −,%

-$,"
-%,"

)
-$," =

(
,%
,$

)2
·
(
.,$ −,% (1 + 22(-$‖-%)

)

Therefore, if

. >
,%
,$

(1 + 22(-$‖-%)) ,

then 1 (.) > 0, which yields the desired upper bound on .∗.
To prove the lower bound on .∗, we proceed essentially in the same fashion:

.,$ −,%
-$,"
-%,"
≤ 0 =⇒ . ≤

,%
,$

-$,"
-%,"

=⇒ .2
-2%,"
-$,"
∧ -$," = .2

-2%,"
-$,"

.

It yields

1 (.) ≤ .2
!∑
"=1

(
.,$ −,%

-$,"

-%,"

)
-2%,"
-$,"

= .2
(
(1 + 22(-% ‖-$)) · .,$ −,%

)

Therefore, if

. <
,%
,$

1

1 + 22 (-% ‖-$)
,

then 1 (.) < 0, which yields the desired lower bound on .∗.
To complete the proof of the proposition, it remains to observe that the computational complex-

ity is dominated by sorting reward ratios which costs O(! log!) operations since "nding roots of
degree three polynomials for each of O(!) polynomials costs O(1) time.
e if #% = #$ and

,",1

,!,1
=

,",'

,!,'
, which implies that -$," = -%," (as they both sum to 1).

"
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B.3 Proofs of Proposition 4 and Theorem 5

B.3.1 Proof of Proposition 4.

Proof. Note "rst that (8) is necessary. Indeed, denote bymax ∈ [4] any index such that (max =

max" (" and assume 51, . . . ,5( are coupled so that

∑
" ∈[( ]

5" =

∑
" ∈[( ]

E[5"] =
1

2

∑
" ∈[( ]

7"(" a.s.

We have for 0 > 0 small enough,

7max0 = P(5max > (max(1 − 0)) ≤ P
( ∑
" ∈[( ]

5" > (max(1 − 0)
)
= P

(1
2

∑
" ∈[( ]

7"(" > (max(1 − 0)
)
.

Hence
1

2

∑
" ∈[( ]

7"(" > (max(1 − 0)

since the above deterministic inequality holds with positive probability, it holds with probability
one for all 0 > 0. Letting 0 → 0 yields (8).
To show that (8) is su!cient, recall from [WW16, Theorem 3.2] that a collection of random vari-

ables 51, . . . ,5( where 5" is a continuous random variable, with non-increasing density function
and supported on the interval [0,("] are jointly mixable if and only if

max
" ∈[( ]

(" ≤
∑
" ∈[( ]

E[5"] ≤
∑
" ∈[( ]

(" −max
" ∈[( ]

(" .

In particular, if E[5" ] = 7"("/2, these two inequalities reduce to (8).
Unfortunately the 5"s do not have a density so we use the following approximation. For + ∈ [4],

let " < (" and

5 ;
" ∼ (1 − 9;" )Unif [0, "] + 9;" Unif [0,("] ,

where 9;" ∈ (0, 1) is chosen precisely so that 5 ;
" has the same expectation and the same support

as 5" . Moreover, 5 ;
" has a monotone decreasing density and hence the 5 ;

" are jointly mixable un-
der condition (8) resulting in a coupling 6; over the product space

∏
" ∈[( ] [0,("]. By Prokhorov’s

theorem, letting " → 0 implies that 51, . . . ,5( are jointly mixable.
"

B.3.2 Proof of Theorem 5.

Proof. Recall that the marginal strategy 5" of player ) on battle"eld + has a distribution of the
form (7) with

7" = 1, (" =
.∗-%,"
/∗

, if + ∈ N(.∗)

7" =
-$,"
.∗-%,"

, (" =
-$,"
/∗

, if + ∉ N(.∗)

Plugging this values into (8) yields

max
" ∈N(&∗)

.∗-%,"
/∗
∨ max

"∉N(&∗)

-$,"
/∗
≤

1

2

*+
,

∑
" ∈N(&∗)

.∗-%,"
/∗

+
∑

"∉N(&∗)

-2$,"
/∗.∗-%,"

-.
/
= ,$ ,
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where the last equality follows from the saturation of the budget constraint in (4). It is easy to
check that

max
" ∈N(&∗)

.∗-%," ∨ max
"∉N(&∗)

-$," = max
" ∈[! ]

(.∗-%," ∧ -$," )

Similarly, we get using (5) that

max
" ∈[! ]

(.∗-%," ∧ -$," ) ≤ /∗,% ,

is a necessary and su!cient condition for mixability the Lotto strategy of player * into a Blotto
strategy. The proof can then be concluded by recalling that,$ ≥ ,% .

"

B.4 Proof of Corollary 7

Proof. Using (5), we get

/∗,%
.∗

=
1

2.∗

!∑
"=1

(.∗-%," )
2

-$,"
∧ -$," ≥

1

2

(
.∗ ∧

1

.∗

) !∑
"=1

-2%,"
-$,"
∧ -$," .

Next, observe that
!∑
"=1

-2%,"
-$,"
∧ -$," =

!∑
"=1

-2%,"
-$,"

1(-$," > -%," ) +
!∑
"=1

-$,"1(-$," ≤ -%," )

=

!∑
"=1

-2%,"
-$,"

1(-$," > -%," ) + 1 −
!∑
"=1

-$,"1(-$," > -%," )

= 1 −
!∑
"=1

-$,"

(
1 −

(
-%,"
-$,"

)2)
1(-$," > -%," ) .

Noting now that 1 − %2 ≤ 2 − 2% for % ∈ [0, 1], we get for % = -%,"/-$," that

!∑
"=1

-2%,"
-$,"
∧ -$," ≥ 1 −

!∑
"=1

-$,"

(
1 −

-%,"
-$,"

)
1(-$," > -%," ) = 1 − TV(-$, -%) ,

where TV denotes the total variation distance and is de"ned as

TV(-$, -%) =
1

2

!∑
"=1

|-$," − -%," | .

Using Pinsker’s and Jensen’s inequalities, see, e.g.,[Tsy09, Chapter 2], we get the classical result

TV(-$, -%) ≤
1

2

√
22(-% ‖-$) ≤

8

2

Next, note that Proposition 1 yields

.∗ ∧
1

.∗
≥

,%
,$

1

1 + 22(-% ‖-$)
∧
,$
,%

1

1 + 22 (-$‖-% )
≥
,%
,$

1

1 + 8 2
.

Hence we have established that

/∗,%
.∗
≥

,%
2,$

1 − 8/2

1 + 8 2
≥

,%
2,$

(1 − 8 ) .

Together with (9), this completes our proof.
"
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ALGORITHM 3: Decomp

Data: length vector b ∈ R!
+, budget , , weights vector p = (7")" ∈[! ] ∈ [0, 1]! ;

Result: (at most) ! vectors p(() ∈ [0, 1]! and weights 9( ∈ [0, 1];
4 ← 0 ⊲ Initialization
while supp(p) > 2 do

4 ← 4 + 1;

(p(() , p̄(() , ;( ) ← Extremize(b,, ,p) ⊲ Find an extreme point p(()

p← p̄(() ;

9( ← 9(−1
<%
<%−1

(1 − ;(−1) ⊲ Compute convex weight of p(()

end

Output: {(p( )) ,9 ) ) ; > ∈ [4]} ⊲ (a coupling with its convex weight)

B.5 Proof of Lemma 8 and Algorithm Decomp

Proof. Throughout this proof we write

7" =

{
1, if + ∈ N(.∗)
,",$

&∗,!,$
, if + ∉ N(.∗)

so that the +th marginal of 6 is given by

(1 − 7" )00 + 7"Unif

[
0,
.∗-%," ∧ -$,"

/∗

]
.

Note that (10) consists in representing 6 as a convex combination of couplings. To obtain this
representation we are going to appeal to Carathéodory’s theorem. However the latter requires

"nite dimension so we "rst make the following observation: the map p(() = (7 (()
1 , . . . ,7 (()

! ) ↦→ 6( ,
(resp. p = (71, . . . ,7!) ↦→ 6) is linear and injective. Therefore, (10) is su!cient to produce the
decomposition

p =

∑
(

9(p
(() . (23)

Furthermore, we need 6( to be satisfy the budget constraint (3) of the Lotto game. The saturation of
this constraint translates into the constraint p( ∈ H ,4 = 1, . . . ,!, whereH is the a!ne hyperplane
in R! de"ned by

H =

{
% ∈ R! :

!∑
"=1

%"
.∗-%," ∧ -$,"

2/∗
= ,$

}
(24)

As a result, we must ensure that p(() ∈ C! = H∩ [0, 1]!; see Figure 1 for a representation of this
constraint set. Since this set has dimension ! − 1, Carathédory’s theorem ensures the existence of
a decomposition (23) where p(() are extreme points of C!. In particular, each such extreme point
has at most one coordinate in (0, 1); this completes the proof of point 1.
Note that (23) readily ensures that6 is a solution for the Lotto game.Moreover, since p(() ∈ H by

construction, we have that marginals of 6( automatically satisfy the mixability condition. Hence,
we can choose 6( to be a joint mix; this completes the proof of point 2.As stated above, this readily
implies that 6 de"ned in (10) is a joint mix and hence a solution for the Blotto game; this completes
the proof of point 3.
It remains to "nd an e!cient algorithm that outputs decomposition (10). The algorithm is ini-

tialized at p ∈ C! = H ∩ [0, 1]!. From there, we use Lemma 9 to construct two points p(1) , p̄(1) ∈



Vianney Perchet, Philippe Rigollet, and Thibaut Le Gouic 31

C!

H

p(1)

p(2)

p(3)= p̄(2)

p

p̄(1)

Fig. 1. Starting from p, the first step computes a first extreme point p(1) . Then p is wri!en as a convex
combination of p(1) and p̄(1) . The la!er is decomposed (iteratively) into p(2) and then p(3) .

H ∩ Q[0, 1]! such that p = ;1p
(1) + (1 − ;1)p̄

(1) , for some ;1 ∈ [0, 1], where p(1) is an extreme
point of C! and p̄(1) belongs to a face F!1

of dimension !1 < !. We repeat this procedure as follows.
De"ne by C!1

= H ∩ F!1
so that p̄(1) ∈ C!1

. Hence, using again Lemma 9, it may be decomposed
as p̄(1) = ;2p

(2) + (1 − ;2)p̄
(2) for some ;2 ∈ [0, 1] and p(2) is an extreme point of C! while

p̄(2) ∈ C!2
, where C!2

is the intersection of H with a face F!2
of [0, 1]! of dimension !2 < !1.

Moreover,

p = ;1p
(1) + (1 − ;1);2p

(2) + (1 − ;1) (1 − ;2)p̄
(2)

Iterating this procedure yields the decomposition

p =

:+1∑
"=1

;"
∏
)≤"−1

(1 − ; ) )p
(") ,

with the convention that ;:+1 = 1 and where P ≤ ! and the p( )) s are extreme points of C!.
Moreover, one can readily check that for any sequence ;1, . . . ;: ∈ [0, 1], ;:+1 = 1, it holds

:+1∑
"=1

;"
∏
)≤"−1

(1 − ; ) ) = 1 ,

which gives the result by de"ning 9( = ;(
∏

)≤(−1(1 − ; ) ).
As we appealed at most ! times to Lemma 9, the overall complexity of this algorithm is of order

O(!2 log!). "

B.6 Proof of Lemma 9 and Algorithm Decomp

Proof. Assume that the coordinates of ℓ are sorted as ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓ! . For any subset
S ⊂ [!], we denote its associated indicator vector by 1S = (1{+ ∈ S})" ∈ {0, 1}

! .
First, notice that there exists some "( ∈ [0, 1] such that the following vector& belongs to C!∩H :

& := % # 1supp(4) + (1, 1, . . . , 1︸!!!!!︷︷!!!!!︸
(−1 terms

, "( , 0, . . . , 0) # 1supp(4) ,
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ALGORITHM 4: Extremize

Data: vector b = ((")" ∈[! ] ∈ R
! , budget , ∈ R+, vector % ∈ R!;

Result: 2 vectors &, &̄, convex weight ; ;
R ← 0; 4 ← 0, S ← % # 1

supp(4)
⊲ Initialization

while R < , do
4 ← 4 + 1; S ← S + 1{( } # 1supp(4) ; R ← S=b ⊲ Find the index with non {0, 1} component

end

" ′ ← =−'
.%

; & ← S − " ′1{( } ⊲ Compute explicitly the extreme point &

0 ← min" ∈S
1{4$ ≥>$ }−4$

4$−>$
; ; ← ?

1+? ;

&̄ ← % + E (% − &);
Output: (&, &̄, ;) ⊲ (two vectors, one convex weight)

where supp(%) = [!]\supp(%) is the complement of the support of % . The reason is simply that

% # 1supp(4) ≤ % ≤ % # 1supp(4) + (1, . . . , 1) # 1supp(4) ,

where the inequalities are component wise.
We now introduce &̄ = % + 0 (% − &), where 0 ∈ R+ is de"ned by

0 = 0"∗ := min
" ∈supp(4)

0" , with 0" :=
1{%" ≥ &" } − %"

%" − &"
.

Then &̄ belongs toH as % and& are two vectors of this a!ne hyperplane. Moreover, as E"∗ = minE" ,
it also holds that &̄ ∈ [0, 1]! and &̄"∗ = 1{%"∗ ≥ &"∗}, and therefore supp(&̄) ⊂ supp(%)\{+∗}. Finally,
one just needs to de"ne ; = 0/(1 + 0).
The construction of those quantities requires sorting the coordinates of ℓ , "nding the 4-th co-

ordinate of &, say, by binary search (computing the value of "( is immediate as the value of &=ℓ is
linear in 7( ) and "nding +∗. "

B.7 Proof of Lemma 10 and Algorithm Reduc

Proof. Write for simplicity #" = #$," and

#" ∼ (1 − 7" )00 + 7"Unif [0,("] ,

where 7" ∈ {0, 1} for + ∈ [! − 1], 7! ∈ [0, 1], and (" = (.∗-%," ∧ -$,")//
∗. If 7" = 0, then #" is almost

surely equal to 0 and this random variable can be removed from the analysis; we might therefore
assume that 7" > 0 for all + .
The joint mixability condition (8) rewrites as

2max
(

(( ≤
!−1∑
"=1

(" + 7!(! (25)

Without loss of generality, assume that (1 ≤ (2 ≤ . . . ≤ (!−1 and de"ne #12 ∼ Unif [0,(1 +

(2]. Note that {#1,#2,−#12} are jointly mixable (for instance, consider #1 =
.1

.1+.2
#12 and #2 =

.2

.1+.2
#12), and {#12,#3, . . . ,#!} are also jointly mixable if

2max{max
(≥3

(( ,(1 + (2} ≤
!−1∑
"=1

(" + 7!(! (26)
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ALGORITHM 5: Reduc

Data: length vector b ∈ R!
+, weights p ∈ [0, 1]! ;

Result: 5 sets of indices;
I0 ← ∅, I1 ← [!], I2 ← ∅, I3 ← ∅, I4 ← ∅ ⊲ Initialization of sets
for + ∈ [!] do

if 7" = 1 then
I0 ← I0 ∪ {+}, I1 ← I1\{+} ⊲ Dirac masses not treated, index removed

else
if 7" ∈ (0, 1) then

I! ← {+}, I1 ← I1\{+} ⊲ At most one strict mixture
else

I(+) ← {+} ⊲ End of initialization
end

end

end

while |I1 | > 3 do
+1 ← argmin" ∈I1 (" , I1 ← I1\{+1}, +2 ← argmin" ∈I1 (" ⊲ +1, +2: 2 smallest uniform lengths
("2 ← ("2 + ("1 , I(+2) ← I(+2) ∪ I(+1) ⊲ 2 uniforms combined in 1

end

< = |I1 |, denote I1 = {+∗1, . . . , +
∗
6};

for > ∈ [<] do
I) ← I(+∗) ) ⊲ (At most) 3 sets of combined indices

end
Output: (I0,I1,I2,I3,I4) ⊲ (Dirac, 3 sets of uniforms - possibly empty-, a strict mixture)

On the one hand, if (1 + (2 ≤ (!−1 then (26) follows readily from (25). On the other hand, if
(1 + (2 > (!−1 and ! − 1 ≥ 4 then

2((1 + (2) ≤ (1 + (2 + (3 + (4 ≤ (1 + (2 +
!−1∑
(=3

(( + R
(!)(!

so that (25) is satis"ed. The result follows from sequentially iterating this construction. Indeed,
recall that #12 is a variable created by mixing together #1 and #2. At a further step, this variable
might be mixed again with another one, ending up with a set of, at least, 3 variables mixed together.
At the end of the procedure, there are at most 3 remaining random variables =) , that are joint mix
of (disjoints) subsets of #" .
We denote by I) the set of indices of variables that are mixed to form =) and, for any index

+ ∈ I) , we just need to de"ne ;" =
.$∑

%∈I#
.%
. "

B.8 Algorithm Discretize

B.9 Algorithm Sinkhorn
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ALGORITHM 6: Discretize

Data: 4 lengths (∗" ∈ R+, positive weight 74 ∈ (0, 1), discretization parameter ℎ;

Result: 4 vectors C" ∈ R
0$
+ with B" = 1

.∗$
ℎ 2 + 1;

for + ∈ [3] do

C" ←
ℎ
.∗$

(
1, . . . , 1︸!!︷︷!!︸
1
(∗
$
ℎ 2times

,
.∗
1

ℎ − 1
ℎ
.∗
1

2
)

end

C4 ← 74
ℎ
.∗$

(.∗
4

ℎ − 1
ℎ
.∗
4

2, 1, . . . , 1︸!!︷︷!!︸
1
(∗
4

ℎ 2times

)
+ (1 − 74)(0, . . . , 0, 1);

Output: (C1, C2, C3, C4) ⊲ (4 discrete ditributions)

ALGORITHM 7: Sinkhorn

Data:Marginals C ) ∈ R0 # , > = 1, . . . 4;

Precision level E > 0;

Result: A Coupling Γ, represented by (D1, D2, D3, D4) ∈ R
01 ×R02 ×R03 ×R04 , with marginals such

that
∑4
"=1 ‖Γ̄

(") − C" ‖1 ≤ E ;

Γ ← 1 ∈ R01×02×03×3 ⊲ Initialization
D1 ← 1 ∈ R01 ; D2 ← 1 ∈ R02 ; D3 ← 1 ∈ R03 ; D4 ← 1 ∈ R04 ;

while
∑
" ∈[4] ‖C" − Γ" ‖1 > E do

T ← argmax
" ∈[4]

KL(C" ‖Γ" );

D@ ← D@ # C@ $ Γ̄@ ⊲ Matrix scaling
Γ" )(* = D1," · D2, ) · D3,( · D4,"+)+(+* , ∀+, >,4, A ⊲ Computation of coupling

end
Output: (D1, D2, D3, D4)

B.10 Algorithm Sample
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ALGORITHM 8: Sample

Data: Coupling (D1, D2, D3, D4), budget , ∈ R+, length vector b ∈ R!
+, sets of indices (I0,I1,I2,I3,I4),

precision ℎ ;

Result: An allocation vector # ∈ R!
+;

Set { >4} = I4; (∗4 ← ( )4 ⊲ Initialization

Sample =̃1 ∼ D1 , =̃2 ∼ D2 , =̃3 ∼ D3 ⊲ Sampling from computed coupling
Sample " = A ∈ {0, 1, 2} with proba. D

4,2̃1+2̃2+2̃3+*
;

Sample F ∼ Unif [0, 1] ⊲ smoothing
for + ∈ [3] do

(∗" ←
∑

) ∈I$ ( ) ;

= ′" ← (=̃" +
;
3 + A

3 )ℎ ∧ (
∗
"

end

G ← = ′1 + = ′2 + = ′3;

H ← 1{G > , }'−B3 + 1{G < , − (∗4}
'−.∗

4
−B

3 ;

for + ∈ [3] do
=̄" ← = ′" + H ;

for > ∈ I" do

# ) =
. #

.∗$
=̄" ⊲ Reconstruction of uniforms

end

end

for > ∈ I0 do
# ) = 0 ⊲ Dirac masses set at 0

end

# )4 = , − (=̄1 + =̄2 + =̄3) ⊲ Budget saturation
Output: #
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