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We describe an efficient algorithm to compute solutions for the general two-player Blotto game on n battle-
fields with heterogeneous values. While explicit constructions for such solutions have been limited to specific,
largely symmetric or homogeneous, setups, this algorithmic resolution covers the most general situation to
date: value-asymmetric game with asymmetric budget with sufficient symmetry and homogeneity. The pro-
posed algorithm rests on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor
scaling. An important case which had been out of reach of previous attempts is that of heterogeneous but
symmetric battlefield values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal
solutions exist, and our algorithm samples from an ¢-optimal solution in time O(n?+e%), independently of
budgets and battlefield values. In the case of asymmetric values where optimal solutions need not exist but
Nash equilibria do, our algorithm samples from an ¢-Nash equilibrium with similar complexity but where
implicit constants depend on various parameters of the game such as battlefield values.
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1 INTRODUCTION

A century ago, Emile Borel published his seminal paper on the theory of play and integral equations
with skew symmetric kernels [Bor21], see also [? , Page 157]. While perhaps not as conspicuous, it
predates von Neumann’s monumental work on the theory of games of strategy [von28] by several
years. In this work, Borel describes what is now called the Blotto game and introduces the notions
of strategy, mixed strategies and even foresees the fruitful interactions between game theory and
economics that are to be observed throughout the century. As such, the Blotto game is consid-
ered to be the genesis of modern game theory [Fré53, Nak06]. Despite its prestigious pedigree,
equilibrium strategies for this game are only known in special cases.

Blotto is a resource-allocation game in which two players competes over n different battlefields
by simultaneously allocating resources to each battlefield. The following two additional character-
istics are perhaps the most salient features of the Blotto game:

(1) Winner-takes-all: For each battlefield, the player allocating the most resources to a given
battlefield wins the battlefield.

(2) Fixed budget: each player is subject to a fixed—and deterministic—budget that mixed strate-
gies should satisfy almost surely.

Despite its apparent simplicity the Blotto game captures a variety of practical situations that
extend far beyond the context of the above military terminology. These include political strategy
[Mye93, LP02, MMTO05], network security [LHSR15, FSM21], and various forms of practical auction
markets [MS15, HM17].

The goal of this paper is to efficiently construct a Nash equilibrium for this game or, when they
exist, an optimal strategy.

Prior work. Despite its century-long existence, Nash equilibria for the Blotto game are only
known under various restrictions on the main parameters of the problem: the budget of each
player and the value given to each battlefield.

e Budget. A large fraction of the literature considers the case where the players have sym-
metric budgets, starting with the original problem of Borel [Bor21] and in most of the main
contributions throughout the twentieth century [Bor21, BV38, Gro50, GW50, Las02, Tho18].
The case of symmetric budgets is well understood except in the setup where players may
disagree on the value of battlefield that was recently introduced [KR21].

o Battlefields. When the two players have a different budget the situation becomes more com-
plex as the poorest will have to forfeit some battlefields. In this case, only partial results
are known. To understand what “partial” means, recall that full generality of the battlefield
values occurs when (i) players may assign a different value to a given battlefield—we say
that the values are asymmetric—and (ii) these values may vary across battlefield—we say
that the battlefields are heterogeneous. Partial results are known for symmetric values. Even
under this simplifying assumption, the case of heterogeneous battlefields remains poorly
understood, except in the case of two battlefields [MM15]. In the case of more than two bat-
tlefields, Nash equilibria are known for homogeneous battlefields [Rob06] or under stringent
assumptions on the battlefield values [SLS14] that essentially reduce to the homogeneous
case.

We refer the reader to Table 1 for a survey of recent advances. While we tackle the most general
setup to date, we stress that an important case was not covered by prior literature: the case of asym-
metric budget, heterogeneous and symmetric values. Indeed, in this case, the game is constant-sum
and optimal strategies exist. Our results also cover the case of asymmetric values introduced very
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recently in [KR21] but this setup leads to only Nash equilibria rather than optimal strategies. When-
ever possible, we conflate the two setups and simply refer to a solution to the Blotto.

A discrete version of the Blotto game where both budgets and allocations are required to be
integral was also introduced in Borel’s original paper [Bor21]. Explicit optimal solutions were
provided in [Har08] for the homogeneous and symmetric version of the discrete game; see also
[HVLS12] for partial solutions in the asymmetric-value case. More recently, this discrete version
has seen significant computational advances [ADH*19, Bea22]. Conceptually, this line of work is
close to the present paper in the sense that it provides an algorithm to sample from approximate
solutions. Moreover, the discrete Blotto game can be seen as a discretization of the continuous
version of interest here and that could be quantified using the arguments of Section 4. However
carrying out this analysis, for instance based on [Bea22, Theorem 4.2], leads to worse dependence
on n and ¢ compared to Theorem 12 here. More strikingly, the complexity bound of Theorem 12
does not depend on budgets or battlefield values while this dependence is polynomial in the bounds
for discrete Blotto. The two lines of work also differ in more profound ways. First and foremost,
the approach employed here is fundamentally different: it aims at mixing known solutions for
the related Lotto game while solutions to the discrete Blotto games are more agnostic so that it is
unclear what the marginals of the resulting strategy are. In particular, the present approach allows
us sample from e-Nash equilibria in the asymmetric-value case whereas this setup is currently out
of reach for solutions to the discrete Blotto game.

Finally, note that our approach also yields new (existential) results for the discrete Blotto game.
Since they are not the focus of our contribution, they are relegated to the appendix.

Our contributions. All of the above solutions for two-player games have consisted in construct-
ing explicit solutions. Because of the budget constraints, these strategies can be decomposed in
two parts: marginal distributions that indicate which (random) strategy to play on each battlefield
and a coupling that correlates the marginal strategies in such a way to ensure that the budget
constrained is satisfied almost surely.

The first question may be studied independently of the second by considering what is known
as the (General) Lotto game [BC80]. In this game the budget constraint need only be enforced in
expectation with respect to the randomization of the mixed strategies. While this setup lacks a
defining characteristic of the Blotto game (fixed budget), it has the advantage of landing itself to
more amenable computations. Indeed, unlike the Blotto game, a complete solution to the Lotto
game was recently proposed in [KR21] where the authors describe an explicit Nash equilibrium in
the most general case: asymmetric budget, asymmetric and heterogeneous values.

Inlight of this progress a natural question is whether the marginal solutions discovered in [KR21]
can be coupled in such a way that the budget constraint is satisfied almost surely. We provide a
positive answer to this question by appealing to an existing result from the theory of joint mix-
ability [WW16]. Mixability asks the following question: Can n random variables X, ..., X, with
prescribed marginal distributions X; ~ P;, be coupled in such a way that var(X; +--- + X,) = 0.
Joint mixability is precisely the step required to go from a Lotto solution to a Blotto one by coupling
the marginals of the Lotto solution in such a way that the budget constraint is satisfied.

In this paper we exploit a simple and new connection between joint mixability and the theory
of multi-marginal couplings that has recently received a regain of interest in the context of optimal
transport [AC11, DMGN17, ABA20]. In multi-marginal optimal transport, the goal is to optimize a
cost over the space of couplings with given marginals. Unlike the case of two marginals that arises
in traditional optimal transport, this question raises significant computational challenges and of-
ten leads to NP-hardness [ABA21]. In the language of optimization, joint mixability merely asks
if the set of constraints is nonempty. We propose an algorithmic solution to the Blotto problem
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by efficiently constructing a coupling that satisfies the budget constraint almost surely and can be
easily sampled from. Our construction relies on three key steps: first we reduce the problem to a
small number of marginals to bypass the inherent NP hardness of multi-marginal problems, second
we discretize the marginals and finally, we employ a multi-marginal version of the Sinkhorn algo-
rithm [Sin64, SK67] to construct a coupling of the discretized marginals. After a simple smoothing
step, we produce a sampling with continuous marginals that are close to the ones prescribed by
the Lotto solutions and from which it is straightforward to sample. Furthermore, we quantify the
combined effect of discretization error and of the Sinkhorn algorithm on the value of the game,
effectively leading to an approximate Nash equilibrium and even to an approximately optimal so-
lution in the case of symmetric values.

We exhibit tight—or near-tight in the asymmetric values case—conditions for the mixability of
specific Lotto solutions into Blotto solutions; see Corollaries 6 and 7 below. While these conditions
are reasonable and cover most cases, some heavily skewed games, either in terms of budget asym-
metry or values inhomogeneity, are not covered by our results. We leave it as an open question to
exhibit Lotto strategies that can be mixed into Blotto ones even for such games.

The rest of this paper is organized as follows. In the next section, we recall the solution for the
Lotto game and show that they can be turned into solutions for the Blotto game. This existential
result simply appeals to existing results of joint mixability. We move from an existential to an
algorithmic result in Section 3 by proceeding in three steps: first we reduce the problem to the
case n = 4, then we discretize the problem and finally we apply Sinkhorn algorithm to couple
the resulting marginals in a appropriate fashion. The main product of Section 3 is Algorithm 8
which shows how to sample from an approximate solution to the Blotto game. Finally, we provide
a detailed complexity analysis for this algorithm in Section 4, showing in particular, that it runs in
time polynomial in the parameters of the Blotto game and the approximation error . Finally, our
techniques also yield new results for the discrete Blotto game largely studied by [Har08, HVLS12]
that are of independent interest. We postpone them to the appendix.

NoTaTION. For any integer n, define [n] = {1,...,n}. We use 1 to denote an all-ones vector or
tensor. Note that the dimension of this vector will be clear from the context but may vary across
occurrences. For any two vectors x, y, we denote their entrywise (Hadamard) product x ® y and
their entrywise division x @ y whenever y has only nonzero entries. For any two real numbers a, b
we denote by a V b their maximum and by a A b their minimum.

2 SOLUTIONS FOR BLOTTO AND LOTTO GAMES

The goal of this section is to describe the Blotto game and its connection to the Lotto game for
which explicit solutions are known. We first recall a solution for the Lotto game derived in [KR21]
and show that it can be readily turned into a Blotto solution using the theory of joint mixability.

2.1 The Blotto game

The classical two-player Blotto game is formalized as follows. Two players, respectively denoted
by A and B, are competing over n > 2 battlefields denoted by i € [n]. Since we focus on two-player
games where both players obey the same rules, it will be convenient when describing the game to
denote by P € {A, B} either player and by P the other player so that (P, P) € {(A, B), (B, A)}.

The datum of a Blotto game is as follows. Player P € {A, B} has a total budget of Tp > 0 to
allocate across the n battlefields. Moreover, she valuates battlefield i € [n] to vp; > 0 which may
differ from vp ;. Without loss of generality, we assume that T4 > Tp to break symmetry and that

Z VA = Z ug; =1 (1)
i€[n] i€[n]
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Indeed, multiplying the value of all battlefields by the sames’ constant has no impact on the players’

strategies.
The rules of the Blotto game are as follows. A pure strategy for player P is an allocation vector
xp = (xp1,...,%xp,) where xp; > 0 is the amount allocated to battlefield i € [n]. A mixed strategy

for player P is a probability distribution over pure strategies. A salient feature of the Blotto game is
thata player P is constrained to playing strategies that satisfy the budget constraint: xp 1 +. .. xp, <
Tp. In turn, admissible mixed strategies for the Blotto games are random vectors Xp € R" such
that

n
ZXp,i < Tp almost surely. (2)
i=1

Given two pure strategies xp and xp for players P and P respectively, player P wins battlefield
i € [n] if xp; > xp; and receives a reward vp; > 0. Ties xp; = xp; are broken arbitrarily as they
are are irrelevant for our analysis.

The existence of Nash equilibria is a consequence of standard game theoretic arguments [Ren99].
Unfortunately, these general results say little about the structure of equilibrium strategies. At the
end of this section, we make partial progress towards this question by describing the marginals of
such equilibrium strategies. However, these remain existential results in essence.

This is in stark contrast with the associated Lotto game, described in the following section,
where the hard budget constraint is dropped in favor of a constraint in expectation, and whose
explicit solutions have been computed.

2.2 The associated Lotto game

A Lotto game has the same data and rules as its associated Blotto game except for the almost sure
budget constraint (2) which is relaxed to the following expected budget constraint:

ZE[XP’i] <Tp (3)
i=1

This relaxation greatly simplifies the game. In fact, Kovenock and Roberson [KR21] have re-
cently elicited an explicit characterization of a non-trivial Nash equilibrium for the most general
version of the Lotto game to date; see Table 1. In the rest of Section 2.2, we describe their solution
in details since it is the basis for ours.

Finding an optimal strategy for the Lotto game amounts to finding a stationary point for an
optimization problem subject to constraints of the form (3). Because of linearity of expectation,
the associated Lagrangian is decomposed as the sum of n terms, one per battlefield, that are each
mathematically equivalent to an “all-pay” auction whose solutions are well known.

More explicitly, Nash equilibria of the Lotto problem depend on two parameters y > 0 and
A > 0, that are set later on. First, given any y > 0, consider the subsets of battlefields N'(y) that
are at least y-times more valuable to A than to B:

0

; A,
N(y)={ie[n], == > y}.
UBi

Given a scaling parameter 4 > 0 to be defined later, the mixed strategy of player A at equilibrium
prescribes to allocate a (random) budget of Xy ; to battlefield i with distribution given by:
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Continuous | Asymm. | Heterogeneous | Asymm. | More than 3 | Complete
Strategy Budget Values Values | Battlefields Results
[BV338] v X X X X v
[GW50] v X X X v v
[Wei12] Vv X X X v Vv
[Gro50] v X v X v v
[Las02] v X v X v v
[Tho18] v X v X v v
[GW50] v v v X X v
[Rob06] Vv Vv X X v Vv
[MM15] Vv Vv v X X Vv
[SLS14] Vv Vv v X v X
[KR21] v v Vv Vv v X
This paper | v | v | v | v | v | v |

Table 1. Variants of the continuous Blotto game and their solutions. The last column, “complete results” in-
dicates whether results obtained hold with possibly strong assumptions on the different values (for instance,
there always exist more than 3 battlefields with the exact same value).

Unif [o, YoB; itieN(y
Xui ~ A
A,i

(1— oA )50+ﬁumf [o“i] ifi¢ N(y).
YUB,i YUB,i A

where &y denotes the Dirac point mass at 0.
The strategy of player B is given by

(1 _ YUB,i) S0 + V2B Unif [0, &] ifieN(y),
Xp; ~ VA, UAi A

OA
Unif [o, ;‘] ifig N(y)
Note that the strategy of A and B are the same except that the roles of v4 ; and yvp; are switched. In
that sense, y plays the role of an “exchange” rate that accounts for discrepancies between budgets
and valuations across the two players.

It remains to find the parameters y and A using the budget constraints. For this set of strategies,

saturating the total budget constraint (2) readily yields the following two equations:

YuB,i (vai)? 1 (04,)?
M= ), 5+ ), o =g ) (rom) At @)
) igN(y) VOB i=1 YUB.i
(yug;i)? VA (YUBl)
AT = . — = . 5
-y s S o 0

ieN(y) igN(y)

Any pair (y, 4) solving the above system of two equations yields a Nash equilibrium. It remains
to show that such solutions may be computed efficiently. Observe that eliminating A from the
equations yields the following nonlinear equation in y:
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2 2

UB,' UA,'
fo) =7 |Ta Z 5 - |- V*Ts B +yTa Z vai — I ” l
iEN(y) M iEN(y) i#N(y) igN(y) D
n og . n VA 11123 .
¥ ,i ¥
=yTa Y [P Aoas| = Ts Y| === Y2 =2 Avag| =0 (6)
-1 VA, = UBi VA

Any solution y* to this equation readily yields a unique A* by plugging it into either (4) or (5);
both equations will yield the same solution by (6). In turn, the existence and efficient computation
of solutions y* to (6) are ensured by the following proposition. The bounds on y* presented in
the following proposition depend on the distance between the vectors of battlefield values v, :=
(va1,..-,0an)andop := (vB1,...,0UB,). Interestingly the natural measure of distance that emerges
is the y2-divergence that commonly arises in information theory and statistics; see e.g. [PW22].
The y?-divergence y?(ullv) between two probability vectors u = (uy, ..., u,) and v = (v1,...,0,)
is defined by

n uz n ” 2
SUCEIIESY LR
i=1 ! i=1 \ !

It is clear that y?(ullv) > 0 with equality if and only if u = 0.

ProrosITION 1. Equation (6) has the following properties:

(1) It always has at least one and at most 3n + 3 solutions y*.
(2) Any solution y* satisfies

Tp 1

5 TB 2
B <y <Bas
Ta T+ 2Coglon =" TA( X~ (vallog))

(3) Computing all solutions can be done in O(nlog n) operations.

The proof is based on standard computations, hence postponed to Appendix B.2, with the asso-
ciated Algorithm 2.

REMARK 2. In case of symmetric values, that is when va; = vp; = v;, the game is constant-sum
and each player has a then unique' optimal strategy given by a unique pair (y*, \*) [KR21]. In fact,
in that case, the unique (y*,A*) can be computed analytically as y* = Tg/Ta and A* = Tg/(2T3);
this can be easily seen from Proposition 1 (point 2.), since y*(vallvg) = x?(vpllva) = 0. With these
parameters, the optimal strategy of player A is to choose X4 ; uniformly at random on [0, 2Tv;] and
that of player B is to forfeit each battlefield with probability 1 — % and, to choose Xp,; uniformly at
random on [0, 2T4v;] on battlefield i if not forfeited.

2.3 From Lotto to Blotto

In the previous section, we described how to compute solutions of a Lotto game. To turn a strategy
for the Lotto game into a strategy for the Blotto game, one can couple the marginal strategies of
a Lotto game, effectively turning the constraint (3) on the expected budget into the almost sure
budget constraint (2).

Stated otherwise, a solution to the associated Lotto game induces a solution to the original Blotto
game if the random variables {X4 ;};e[n] (and similarly {Xp;};) are jointly mixable [WW16].

n the case of the Lotto game, it is natural to call a strategy an equivalence class of strategies with the same marginals.
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DEFINITION 3. A family of k random variables Z1, . .., Zy. ‘with finite expectations is jointly mix-
able if there exists a coupling & such that if (Z,...,Zy) ~ «,

k
Z Z; = E[Z;], almost surely.

In that case, the coupling 7 is called a joint mix.

Obviously, not all random k-tuples variables are jointly mixable. Take for example Z;, Zo and
Z3 to be Bernoulli with parameter 1/2. Then E[Z7] + E[Z;] + E[Z3] = 3/2 whereas there is no
coupling of the Z;s such that their some equals a fractional number.

While the full characterization of jointly mixable distribution is a complex question, some con-
ditions, either sufficient or necessary, for joint mixability have been derived. The following propo-
sition is a simple extension of a result of [WW16] (see also, [Zim20]) on the mixability of distribu-
tions with monotone densities.

ProrosITION 4. Fori=1,...,k, letp; € [0,1], b; > O be fixed parameters and let Z; be a random
variable with distribution given by the following mixture:

Zi~ (1 —pi)(SQ +piUnif [O,bl] . (7)
Then Zy,. .., Zx are jointly mixable if and only if

k
1
b; < = ibi 8
maxbi< g ) p ®)

This proposition is a consequence of few computations; its proof is delayed to Section B.3.

We are now in a position to state the main result of this section: the marginal distributions of the
Lotto game described above are jointly mixable into a solution to the Blotto game. To that end, we
instantiate Proposition 4 to the parameters of the marginal distributions described in Section 2.2.

THEOREM 5. Let y*, A* be the parameters of Nash equilibrium of the Lotto game described in Sec-
tion (2.2). Then the marginal distributions can be coupled into a Nash equilibrium for the correspond-
ing Blotto game if and only if

max(y*vp; Ava;) < A'Tp. 9)
i€[n]

Inequality (9) is simply an instantiation of (8), hence details are postponed to Section B.3

Condition (9) of the previous theorem relies on the values y*, A* that define the solution of the
Lotto game. In light of the bounds obtained in Proposition 1, these parameters may be eliminated
to produce a sufficient condition for the existence of said solution for Blotto games with symmet-
ric values. Recall that in this case, the game is constant-sum so a solution is, in fact, an optimal
strategy. This result is captured in the following corollary which is a straightforward consequence
of Theorem 5.

COROLLARY 6. Assume symmetric values: va = vg = v. Then the marginal distributions of the
optimal Lotto strategy described in Section 2.2 with y* = Tg/T4 and A* = TB/(2T1§) can be coupled
into an optimal strategy for the corresponding Blotto game if and only if

T

maxov; < —.
i€[n] 2T,

In fact a sufficient condition may be derived in the case of non-symmetric values.



Vianney Perchet, Philippe Rigollet, and Thibaut Le Gouic 8

COROLLARY 7. Assume that battlefield are balanced in the sense that there exits r € (0,1) such
that
x*(vallos) v x*(vslloa) < r?
Then, the marginal distributions of the optimal Lotto strategy described in Section 2.2 can be coupled
into an optimal strategy for the corresponding Blotto game as long as

maxuvg; < E(l -r).
ieln] 2TA

The proof of this result is based solely on computations; it is postponed to Section B.4

Note that the result of Corollary 7 is tight in the sense that if r — 0 it recovers the result of
Corollary 6. It is unclear whether the dependence in 7 is sharp in our result and it is an interesting
question to address in future work.

Under rather general conditions, the above two corollaries show the existence of solutions with
marginal distributions of the Lotto game derived in [KR21]. It remains to show that such a coupling
may be realized efficiently. This is done in the next section.

3 AN EFFICIENT ALGORITHM TO COMPUTE SOLUTIONS

Deriving solutions, either optimal strategies in the constant-sum setting or Nash equilibria, re-
mains one of the major open problems surrounding the Blotto game. Previous attempts at this task
have focused on deriving an explicit coupling between marginals. This is possible in specific cases.
For example, several explicit couplings between n random variables X; ~ Unif[0,1],i = 1,...,n
are known [KS06, RU02]. In particular, this provides a solution to some Blotto problems with suffi-
cient symmetry. However, this explicit approach fails for more general problems, and, in particular
in the important case of asymmetric budget such as the one covered in Corollary 6. In this paper,
we take another route by describing the efficient Algorithm LoTrTo2BLOTTO, Wwhose pseudo-code
is postponed to the Appendix B.1, that computes an e-approximate solution with time complexity
which is polynomial in n and 1/e.

In light of the previous section, our goal is to find an algorithm that efficiently computes a
coupling between the marginal Lotto strategies described above. This task faces two major hurdles.

On the one hand, the continuous nature of the marginals described above does not lend itself to
efficient algorithms which typically work with discrete quantities. Instead, we propose to simply
discretize the marginals at a scale of order ¢ > 0. In particular, this prevents us from replicating
exactly the marginals of the Lotto game but we can show that the error employed in said discretiza-
tion remains of the same order once propagated to the utility of a given player.

On the other hand, the mere description of a coupling between n discrete marginals on O(1/¢)
atoms is an object of size O(1/¢"), which is exponential in the number n of battlefields. To over-
come this limitation, we develop a careful scheme that allows us to reduce the problem to the case
of 4 marginals instead of n.

Finally, we employ recent developments in computational optimal transport, to couple our 4
marginals using a variant of Sinkhorn iterations [Sin64, SK67, Cut13].

3.1 Reductions

The typical size of a coupling with n marginals is exponential in n. While this issue is, in general,
hopeless to overcome, we can exploit some of the structure of the problem at hand. Indeed, a similar
principle has been recently employed in multi-marginal optimal transport to devise polynomial-
time algorithms under additional structure [ABA20]. More specifically, we reduce our problem to
the case where there are only four marginals which remain mixable if the original marginals are
mixable.
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This reduction is done in two steps. Recall that the marginals for the Lotto game described in
Section 2.2 are either uniform distributions or mixtures of a uniform distribution with a Dirac
point mass at zero. Our first step reduces to the case where n — 1 marginals are uniform and only
one is a mixture as above. In our second step, we further reduce to the case where there are three
uniform marginals and one mixture.

Throughout this section we focus on player A for brevity. Reductions for player B are analogous.

3.1.1 Step 1: reduction to a single mixture. The marginal distributions described in Section 2.2
consist of | N (y*)| uniform distributions and n — [N (y*)| mixtures of a uniform distribution and
a Dirac point mass at 0 and our goal is to efficiently couple them into a joint mix coupling 7z that
has these marginals and satisfies the Blotto budget constraint. For clarity, we also regard uniform
distributions as mixture distributions albeit with weight zero on the point mass. Otherwise, we say
that a distribution is a strict mixture. The goal of this first step is to reduce this coupling problem
to the case where there are n — 1 uniform distributions and one single strict mixture. To that end,
we show that such a coupling 7 may be obtained as a mixture of n joint mixes 7y, k = 1,...,n:

7T=zn:qkﬂk, qr = 0, quzl
k=1 k

where the marginal distributions of 7y consist of at most one strict mixture, the rest being uniform
distributions. Moreover, this decomposition can be computed efficiently as the solution of a simple
greedy procedure.

LEMMA 8. Let y*, A* be the parameter of a solution for the Lotto game and assume that the mixa-
bility condition (9) holds. Then, there exists a family m1, . .., 7, of couplings and a set of non negative
weights qx > 0, Y} qx = 1 such that

1) The marginal distributions of (X* Jxk oy~ 7 are given b
3 A An 8 y

oA A (Y™ 0B,) ]

10

X4, ~ (1= p{)d0 + ' Unif [0, -

for somepgk) € [0,1],i,k € [n] with at most one p;k) in (0,1) for each k.
2) Each coupling mi,k = 1,...,n is a joint mix
pling
(3) The mixture of couplings

T = Z qk 7Tk - (10)
k=1

is a solution for the Blotto game.

(4) The total complexity of computing the weights qk,pfk), i,k € [n] scales as O(n2 log n)

Note that the mixture of couplings 7 in (10) is necessarily a joint mix as a mixture of joint mixes.
To sample from it, Player A, simply samples 7 with probability g; and plays according to the
strategy prescribed by it.

The geometric proof of this lemma is delayed to Section B.5, along with the pseudo-code of
associated Algorithm Decomp.

LEMMA 9. Fixt € R}, T e R and let H = {x € R" s.t. {£,x) = T} be an affine hyperplane. For
any point x € C, = H N [0,1]", define supp(x) := {i € [n],x; € (0,1)}; then there exist 6 € [0,1],
an extreme point y € C, and another vector yj € C, satisfying supp(y) & supp(x) (in particular, y
belongs to some m-face of C,, where m = |supp(7)| < |supp(x)|) such that

x=0y+(1-0)7.
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The overall complexity of computing y, §j and 9 is of order O(nlog n).

The proof of this Lemma is based on simple geometric arguments, and is postponed to Section
B.6 with the associated pseudo-code of Algorithm EXTREMIZE.

3.1.2 Step 2. Reduction to four random variables. The previous step reduces the joint mixability
problem of n general mixtures, to a simpler one where at most one strict mixture is involved. Still,
computing—in fact even describing—a coupling of n variables requires generically exponential (in
n) time and memory. To overcome this limitation, we reduce the number of random variables from
n to a constant number.

The following Lemma states that each 7z can be realized as the coupling of 3 new uniform
random variables and a strict mixture, thus reducing the mixability question from n to only 4
random variables. A careful inspection of the proof of Lemma 10 below indicates that the reduction
may lead to three marginals rather than four. In that case, two marginals are uniform and one is
a strict mixture. To handle this case, some adjustments are needed; in particular—and obvisouly—
with the size of the resulting coupling. However, extensions from four to three marginals are
straightforward and we omit this case for clarity.

LEmMA 10. Fixn > 4, k € [n], and assume without loss of generality that the last marginal of the
coupling myx from Lemma 8 is a strict mixture. Then (Xa1,...,Xan) ~ 7k may be constructed from
three uniform random variables Y1, Yo, Y3 and a partition Iy L I; U Iy U I3 = [n — 1] as follows. Set
Xa,i =0 foralli € Iy, and

Xai=0:Y;, iel;, je{l,2,3},
where 01, ...,0,-1 € [0,1] are such that
Ze,- =1, j=123.
iel;
In particular, it holds that

n-1
ZXA,,- =Y +Yo+Ys almost surely,
i=1

and (Y1, Y2, Y3, Xan) are jointly mixable. The support of Y; is [0, b7] where

*
w Y UBi UA
by = N

iel;

Moreover, the 0;’s, the sets I, and the parameters of the distributions of Y1, Yo, Y3 can each be computed
in constant time.

The proof of this Lemma, based on standard mixability arguments, is postponed to Section B.7,
with the pseudo-code of the corresponding Algorithm REpUC.

Note that any joint mix of (Y1, Y, Y3, X4 ,) readily yields a joint mix of (X4 1,...,Xan) by defin-
ing Xa; = 0;Y;(;), where j(i) € [3] is the unique integer such that i € T;;).

3.2 Discretization

The problem of finding a solution for the Blotto game has been reduced to the construction of
a coupling of (at most) four random variables, three of them being uniform over some intervals
and the fourth one being a mixture between a Dirac mass at zero and some uniform distribution.
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Throughout this section we denote these random variables as Y1, ..., Yy for simplicity; in the no-
tation of the previous section, they correspond to Y1, Y, Y3, and X4 , respectively.

Unfortunately, even in this simple case, finding explicit, closed-form, couplings appears to be
possible only under stringent additional conditions that limit the scope of the Blotto game. To
overcome this limitation, we take an algorithmic approach, describing an efficient way to find an
approximate solution. To that end, we obviously need to work with discrete random variables and
describe here a coupling between these discretized random variables.

Let (Y1, Y2, Y3, Yy) ~ @ be jointly mixed so that

Yi+Yo+Ys+Y,=T4. (11)
Moreover, let h > 0 be some (small) discretization parameter. Define the quantized random vari-
ables Y; by
- Yi| | . Ta |Ta-Yy4
Yi=|— =123 Yo=— - . 12
R e (12

Our goal is to compute any of the joint distributions D(@) of the vector Y = (Y1, Ya, Y3, Y;) when
@ ranges over joint mixes.

As a first step towards this goal, note that these discretized random variables need not be jointly
mixable. Indeed, in general we have Y1+ Yy +Ys < [ (Y1 +Ya+Y3)/h] but equality may fail to hold
because of discretization errors. To account for these, let € € {0, 1,2} be defined as

e=(Ta/h—Ys) - (Y1 + Y2 +Y3), (13)

and consider the augmented random vector ¥, = (X, ¢). In light of (13), Y, € R? lives almost
surely on a four dimensional subspace. As such, its distribution may be represented by a 4-tensor
(Tijke) With entries given by

Fijke:IP(?l =l',?2 =j,?3=k,€=€).

In particular, note that e € {0,1,2} while i, Z,k each range in a set of integers of size ©(1/h).
Using (13) we can read off the distribution of Y4 from this tensor.
This tensor is subject to four sets of linear constraints, one for each of the marginal constraints
given in (12). They are given by
D Tjke=P(h=0)Vi, D Tijke=P(h=/)Vj, > Tyee=P(¥s=k)Vk,
jke ike ije
and, in light of (13), by
Z Tjjke = P(Ta/h— Yy = £) VE.
i+j+k+e=t
Note that indeed, any draw from a distribution that satisfies the above constraints yields a ran-
dom vector (Y1, Ya, Ys, ). Defining Y4 by solving (13) yields a vector Y ~ D(®) for some joint mix

@ defined as above. In other words, Y is indeed the discretization of random variables drawn from
a joint mix (though it need not be jointly mixable itself).

Since the random variables Y}, for j € [3], constructed at the previous step have a support equal

to [0, b’;] where b} = ier, y*ff LA U)‘[‘,ji , the reduced (to 4 random variables) and discretized problem

reduces to finding some tensor (Ijj.) with 3 - V% + 1J . Vf + 1J . lbf’ + 1J entries satisfying at

b’
most 4 - {ma; L+ 1J linear constraints. Although this can be done simply via linear programming

(hence polynomially in A~!, more precisely in O(1/h®%) with Vaidya’s algorithm), a quite efficient
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and more popular way is to use a variant of Sinkhorn-Knopp algorithm that quickly finds approx-
imated solutions. This is more relevant as this linear program is already some approximation of
the original problem, hence there is no point of solving it exactly.

The pseudo-code of the Algorithm DiscRETIZE can be found in Section B.8

3.3 Tensor scaling using Sinkhorn iterations

In light of the previous sections, we have reduced our problem to that of finding coupling in the
form of a 4-tensor (Tjjke,i € [di],j € [d2].k € [ds3],e € {0,1,2}) with non-negative entries
subject to marginal constraints. We approach this problem from a computational perspective and
propose and algorithm that converges rapidly to a feasible solution. To describe this algorithm,
recall that its input are four probability vectors ji; € ]Rdf,j =1,...,4,withdy =dy +do +d3 + 2
that represent the probability mass functions of the discretized random variable 1?1, 172, 173, Ta/h— 174
defined in the previous section: fi;. = ]P(f/j =4, j=1,...,3 fa. =P(Ta/h - f/j =).
The linear constraints take the form

fi(l) = Z Fijke = ﬁl,i \7/1 € [dl] 5 (14)
jke

f‘](2) = Z Fijke = ﬁ?,j \7/] € [d2] 5 (15)
ike

fk(3) — Z Tyike = fizk Vk € [ds], (16)
ije

0= 3 Tyke = fu Ve € [dd]. (17)
i+j+k+e=t

Denote by G the set of tensors I' = (I} ji.) that satisfy these constraints.

To solve this problem, we propose to project the all-ones tensor 1 onto G using the Kullback-
Leibler (KL) divergence. Recall that the KL divergence between two nonnegative tensors I', I is
given by

T
KL(TIT) = ) Tijee log (r’,’ )
ijke ijke
In particular, KL(T||1) is simply the (negative) entropy H(T') of I' and we aim to solve the convex
optimization problem
{,Ileig H(T) = Z Tijke 10g (Tijke) -
ijke
While many algorithms are available to solve this problem [Bub15], its specific structure can be
exploited efficiently. Indeed, first order optimality conditions imply that any optimal I" must be of
the form

Tijke = &1i - &oj - &3 * Enivjrkses (18)

for some scaling vectors &; € (0, OO)df, j =1,...,4. This representation readily calls for an iterative
tensor scaling algorithm similar to the Sinkhorn algorithm [Sin64, SK67, Cut13]. Tensor scaling has
been investigated in more classical setups [LHCJ20, ABA20] that slightly differ from the present
setup because the fourth marginal constraint takes a special form. Nevertheless, the implementa-
tion of Algorithm SINKHORN remains straightforward and is presented in Section B.9. Its analysis
is also a straightforward extension of that for the traditional matrix case [AWR17]. More specif-
ically, following the exact same lines as the one of Theorem 4.3 in [LHC]J20], we readily get the
following result.
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PRrROPOSITION 11. Define
fmin = min ;.
i = s etalopagro
Algorithm SINKHORN terminates and returns a tensor T such that 3.7, [T — fi;||1 < n after at most
32071 (1 = log fimin) iterations. Moreover, each marginal T') of T has positive entries that sum to one
and hence is a probability vector.

What have we accomplished so far? Through several reductions and a tensor scaling algorithm,
given the datum of a Blotto game, we are able to compute a joint distribution that corresponds to
an approximate solution. In Section 4, we evaluate the accuracy of this approximation in terms of
the value of the game by showing that the various approximations (discretization and numerical
precision of the algorithm) do not blow up when propagated back into the reductions. Before that,
we investigate an important operational question: how to sample a strategy from the resulting
coupling T'.

3.4 From coupling to sampling

Finding an efficient construction of (approximate) equilibria or optimal strategies is only relevant
if it can be associated to some efficient sampling method so that a player may query a sampler
and receive the allocation (X4 1, ..., Xa ) that they should play on each battlefield. In light of the
various reduction steps employed above, it is sufficient to sample a 4-tuple

(Y1, Yo, Y3,¢) € [0,b5/h] x [0,b3/h] x [0,b%/h] x {0,1,2}

from the output I' of Algorithm SiNkHORN. Indeed, from (1?1, Yo, Ya, €), we obtain the random vari-
ables Y;,i = 1,...,4 that are approximately distributed from the joint mix @ as follows.
To ensure that the marginal distributions are continuous, let U ~ Unif[0, 1] and define

~ e U ~ e U ~ e U
/=M +5+5)hAb], Yy=Ya+ s+ )hAbs Yy=(Ys+ -+ )hADbS
1 ( 1 3 3) 2 ( 2 3 3) 2 3 ( 3 3 3) 3
To correct for potential boundary effects, define S = Y| + Y + Y, and
Ta—S Ta—-b;-S
AT (S <Ty— bZ}%.
Thentake V1 =Y/ +{, Y2 =Y;+{, Y3 =Y, +{,and Y, = Ty — (Y1 + Yo + Y3).
We call this procedure the smoothing procedure. Finally, as mentioned before, just define X4 ; =
0;Y;(;), where j(i) € [3] is the unique integer such that i € 7j(;.
Note that the random variable U ~ Unif[0, 1] is superfluous and theoretical results would follow
by taking U = 0. Its role is simply to ensure, for cosmetic reasons, that the random marginal
distributions are continuous apart from the potential point mass at zero.

{=1{S> T4}

It remains to sample (Yy, Yo, Y3, &) from the output T' of Algorithm SinkmORN. This is quite
straightforward in light of the factored form of T'. Indeed, recall that the coupling output by Algo-
rithm SINKHORN has the form (18).

Lijke = &1i- E2j - &3k - Enivjakre, Vi € [di1],j € do,k € [d3],e € {0,1,2}
As a consequence, we can draw from T as follows:
(1) Set 1:/1 =i € [d1] with probability proportional to & ;
(2) Set Y5 = j € [d2] with probability proportional to & ;
(3) Set Y3 = k € [d3] with probability proportional to {3k
(4) Conditionally on (Y1, Y2, Y3), sete = e € {0, 1, 2} with probability proportional to &, j ,7. 7. .
The pseudo-code of Algorithm SAMPLE can be found in Section B.10.
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4 APPROXIMATION ERRORS AND COMPUTATIONAL COMPLEXITY

The construction of the previous section relies on various approximations, each of them inducing
some error that can be mitigated at the cost of additional computational complexity by tuning the
discretization parameter h of Section 3.2 and the tolerance parameter 5 in Algorithm SINKHORN. In
this section we study the computational complexity required to reach an e-approximate solution.

4.1 From approximate strategies to approximate solutions

Note that the very notion of “approximate solution” strongly depends on whether the problem is
value-symmetric (v4; = vp; for all i) or -asymmetric (va; # vp; for some i). Indeed, in the former
case, the game is constant-sum and optimal strategies do exist. This is no longer true in the latter
case where only Nash equilibria are considered. As a consequence, we can consider approximation
of a single optimal strategies in value-symmetric games, while we will have to consider approxi-
mations of a pair of equilibrium strategies in value-asymmetric ones. In the following two sections,
we consider each case separately. In the remaining, we shall focus the analysis on Player A, but it
is almost identical for player B; hence we do not repeat it for the sake of clarity.

4.1.1 The value-symmetric case. A value-symmetric Blotto game, where vy ; = vp; = v; for all i is
constant-sum and optimal strategies exist for each player. In particular, this allows us to provide
strong approximation guarantees by controlling how sub-optimal the expected utility of a player
is.

To check this well-known fact on our specific instance, consider the utility of player A. Set two
equilibrium parameters y* = Tg/Ty < 1 and A* = T/ (QTX) (see Corollary 6) defining an optimal
strategy and observe that N (y*) = [n] since y* < 1. For i € [n], let Xa; ~ Unif[0, 2T40;] denote
the amount allocated by player A to battlefield i according to this optimal strategy and denote by
Fy4; its cumulative distribution function (cdf). The expected utility (a.k.a. reward) of player A if
player B chooses allocation xg = (xp;); depends only on the sequence F4 = (Fap1,...,Fan) of
marginal cdfs rather than the whole coupling. It is given by

Us(F )Zn: P(Xa; > )Zn:(lF( ))12’1: Ay Ib
A\L'A, XB £ UA,i A,i XB,i £ 0 ‘A,i\XB,i £ Uj 2TA = .
where we used the fact that the v;’s sum to 1 and the xp;’s sum to at most Tg. Moreover, if B
employs the mixed strategy Xg 1, ..., Xpn described in Corollary 6, the utility of player A, denoted
U (Fa, Fp), changes as follows. Let Ua ;, Ug; ~ Unif[0, 2T40;] be a sequence of uniform random
variables such that U, ; is independent of Ug;. In particular, P(Ua; > Ug;) = .5 and

n n

_n-I (1= Fa, I NN Pt > U
(LIA(FA, FB) = (1 TA) ;01(1 FA,I(O)) + TA ;UIIP(UA,I > UB,,)
:(1_E)+T_B=1_T_B_
Ta 2Ty 2Ty

In particular, the strategy of player A given in Corollary 6 is optimal and its optimal utility is given
by 1- TB/(QTA).

To estimate the cost of the various approximations incurred by player A, let X,Z? ~ PZ'Z denote
the strategy on battlefield i € [n]. The notation is meant to emphasize that the approximation
error stems from two sources: the precision level n of Algorithm SINKHORN and the grid size
h of discretization procedure in Section 3.2. In particular, we write Pg”(i) := Pa;. Cognizant of
this approximation error, player A may take advantage of the suboptimality of the strategy of
player A and respond with best-response strategy denoted Xg’" = (Xg:'{, e ,Xg:Z). As aresult, the
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suboptimality gap of player A’s expected utility is controlled as follows
n n

Ua(Fa, Fp) - ‘LIA(Fh’”,F,Z"’) = Z 0 lP(Xa,; > Xp,i) — Z 0; ]P(X > Xh”)

i=1 i=1

n n
h, h, h,
< Z 0P (Xa; > XB,?) - Z UiIP(XA,;'] > XB,?)

i=1 i=1

n
< Zvi sup [IP(XA,,- > x) — IP(XZ’? > x)]
i=1

x>0

where in the first inequality, we use the fact that Xp is an optimal response for B when A plays
Xa.
It will be convenient in the sequel to further bound the above quantity using the co-Wasserstein

distance—see [San15, Section 5.5.1]—between P4 ; and PA '17 , denoted Wy, (Pga ;, PZ"Z ). Indeed, to show

that Weo (P4, PZ"Z) < o for some w > 0, it is sufficient to exhibit a coupling of X4 ;, XZ’? such that
[Xai — XZ’;’| < o almost surely. Below, we often do so implicitly as such couplings are, in all
instances, trivial.

Fix @ > 0 and assume Wy, (PA,,-,PZ’;.’) < w. Then for any w > 0, we have

%

P(Xa; > x) — IP(X >x) <P(x<Xai<x+w)<

Yo
where we used the fact that X4; ~ Unif[0, y*v;/A*]. The above two displays together yield that
the suboptimality gap for player A is controlled as

« N
hn phyy _ A h,
Uq(Fa, Fg) — UA(F U,FB ’7) < F Z Woo(PA,i,PA,?) .
i=1
Recall that Step 1 in the reduction consists in decomposing P4 ; as a mixture of (at most) n

other distributions, i.e., Pa; = 2 quzgkl.). Accordingly, we also have constructed PZ"Z as a mixture

=3 quZ’7’<k). It follows readily from the definition of W, that that

Woo(PAz, ) < quW (P(k), hU(k))

In particular controlling each term on the right-hand side uniformly in k results in the same control

on the desired error. Therefore, without loss of generality, we may assume that Plf‘ki) = P4; and

PZ'Z 0= Ph'l.] so as to keep the notation light. Moreover, as above, we assume without loss of

generality the last marginal P4 5, is the only strict mixture.

4.1.2  The value-asymmetric case. When values are asymmetric, the game is no longer constant-
sum and we shift our focus from optimal strategies to Nash equilibria. In this context the notion
of approximation is more subtle and has to be carried out jointly for both players.

For any set of marginal cdfs G4 = (Ga1,...,Gan) andGg = (Ggy1, .- .,Gpn), denote by Ua(Ga, Gg)
the expected utility of player A if player A plays according to strategy G4 while player B plays
according to strategy B.

A pair (Fa, Fp) is a Nash equilibrium if

Ua(Fa, Fg) > Us(Gay, Fp), for all admissible G4 .
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Writing
Ua(Fa, Fp) = Un(Fa, Fp) — Ua(F}", Fp) + Ua(F¥", F) — U (FP", FR7) + U (FL, FRT),
Ua(Ga, Fs) = Ua(Ga, Fs) = Un(Ga, ") + Un(Ga, Fy")
it readily follows from the above two displays that
(I/IA(F ,Fh”) +¢> Us(Ga, F '7) for all admissible G4,

where, using similar computations as above,

Z

4.2 Control of the errors

21*
W (PAls )+ W (PBL» ,7)

*

In both cases, symmetric or asymmetric values, a control of the approximation error follows from
controlling Wy, (Pa, PZ'Z) In the rest of this section, we sightly abuse notation and write W, (X, Y)
when the distributions of the random variables X and Y are clear from the context.

Recall that for any i € [n] since Xa,; = 0;Yk(;) and similarly for the approximate versions, for
some fixed 6; € [0, 1], we have for any h, > 0 that

h, _
Weo (Pais P7) = 0:Weo (Y, Y (1)

where Y; is the result of the reductions and is defined in Lemma 10 while Y; is the output the
smoothing procedure and is defined in Section 3.4.

Recall that the discrepancy between Y; and the target Y; stems from three approximations: dis-
cretization error (h > 0), numerical error (n > 0), and the error due to smoothing step. The
error coming from the smoothing step is easy to control: for any j € [4], we have W (Y},Y)) <
W (Y}, hY;) + h. We have proved that

h, ~
Woo(Pais Py7) < 0;Weo (Yi), BYj (i) + Oih (19)

As a result, it is sufficient to control the discretization error and the numerical error at the level
of the variables Y;. To emphasize the presence of these errors, we employ the same notation as for

PZ'Z and write f/] = f/;l’” for h > 0, n > 0. By the triangle inequality, we have

N N ho o oh
Weo (Y, hY;) < Weo (), BY) + Weo (RY O, Y})

discretization error numerical error

The discretization error is trivial to control. Indeed, in light of the coupling provided by (12), we
get that

Weo (Y}, hY0) < h (20)

Finally, to control the numerical error Woo(hf/jh’o, hl?jh’n), recall that the tolerance > 0 in Algo-
rithm SINKHORN controls the #; error between the current marginals and the targets. Hence, we
need to bound the co-Wasserstein distance by the # distance. This is quite straightforward since

f/;l’” has bounded support for > 0. Indeed, recall from Lemma 10 that for any j € [4] we have
that ¥/ € [0,b%/h], where

5 1 5
b= = Z(y UB;i) NUA;.

iel;
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Hence, Woo(hf/}l’o, hl?jh’”) < b;‘.ry, and we have proved that
h *
Weo (PA,i»PA”;-]) < 20;h+ Gibk(i)r] .

In particular, for the value-symmetric case, since

*

Y Y
by = — § <,
k() = 3 A o s

k(i)

we get the following simple bound

0y
Wes (P PYT) < 20,0+ =L

Since };; 6; = 4, the suboptimality gap for player A is controlled as

x n *
U (Fa) — Ua(FP) < ;— > WeolPas PYY) < 8%%1 +4n. 1)
i=1

In the value-asymmetric case, we get a suboptimality for player A smaller than

UA,i

8
EA = (16 + — max
y* i uBi

) Ah+ (8}/* + 4 max UA’i) n (22)

UB,i

and, with symmetric arguments, a suboptimality for player B smaller than

i\ A"h i
&g = 16+8maxUB’ — + 8+4max03’ n.
iovai) Y A

4.3 Computational complexity

In this section, we tally the complexity required to achieve either e-suboptimality gap in the value-
symmetric case or an e-Nash equilibrium in the value-asymmetric case.

Before making this distinction recall the various steps that were employed, together with their
computational complexity.

Lotto Step. Computing one (and, actually, all) pair of parameters (y, A) requires O(nlogn)
operations, see Proposition 1.

Step 1: Computing all couplings 7; and their associated convex weights qx requires O(n?)
operations; see Lemma 8.

Step 2: Given some coupling 7, computed at step 1, the reduction from n to only 4 random
variables requires O(n?) operations; see Lemma 10.

Step 3: The discretization step is computationally costless.

10g<1/ﬂmin) )

Step 4: The Sinkhorn algorithm requires O( operations; see Proposition 11. Since

the marginal distributions p; are h-discretizations of either uniform on an interval of size

at most 3 £ Avf’i < %, or uniform on interval of length U/{‘;i with weight yf‘zj’; -, it holds that
Hmin = hy)f. At each iteration of Sinkhorn, all the components of the tensor are computed,

hence a complexity, per iteration, in O((ﬁy—/;)3>.

Step 5: The sampling cost comes from the reconstruction of the budget allocation from the 4
random variables, constructed at Step 2 and sampled from the coupling computed at step 4.
The sampling step has a linear cost with respect to the discretization size O(hy—;*) while the
reconstruction complexity scales linearly with respect to the number of battlefields O(n) .

We are now in a position to state our main theorems. We begin with the symmetric-value case
for player A. The result for player B is completely analogous and therefore omitted.
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THEOREM 12. Consider the two-player Blotto game on n battlefields with symmetric values vy, . . ., v,
where player A has budget Ty and player B has budget Tg < T4 and assume that these data satisfy
the conditions of Corollary 6. Fix e > 0 and let n = ¢/4 and h = €T4 /8. Then the procedure described
in Algorithm SAMPLE samples from an e-suboptimal strategy for player A in time

o (n2 . 1°g(i/£))
£

ProoF. Note first that the preprocessing cost associated to steps 1 through 4 is O(n?).
To compute the cost of Sinkhorn iterations, observe that the parameters n and h are chosen in
such a way that each term on the right-hand side of (21) is equal to £/2:

A* £
8= h=dp=-
v L

N Rt e v\ (16)?
min = = T d =|\— .
K v 16 o (hﬂ*) ( £ )
Moreover, since n = ¢/8, we get that the total complexity of Sinkhorn iterations is
3 -
*\" log (1/fimin _3log (1 _
ol(X) o8 imin) | _ ,(,-slog(1/e) _ 0 (¢ 1og(1/6))
hA* n €

Finally, the last step has a total cost of O(n+¢) which is negligible with respect to the combination
of previous steps. m]

Hence,

It is worth noting that in the value-symmetric case, the computational complexity of our proce-
dure is independent of the datum of the problem (budgets and values) under the normalization (1).
Note that this normalization merely scales the utility and should of course affect the desired accu-
racy parameter ¢.

We now move to the asymmetric-value case and characterize the complexity of our procedure
to compute an e-Nash equilibrium for the Blotto game. As above, we focus on player A only.

THEOREM 13. Consider the Blotto game on n battlefields with asymmetric values vp1,...,0py,
P e {A, B}, where player P € {A, B} has budget Tp, with Tg < Ty and assume that these data satisfy
the conditions of Corollary 6. Define

UA,i UB,i
m=max —V —.
I UBj UA,i
Fix e > 0 and let
€ A
24m’ A*48m

Then Algorithm Lorto2BLOTTO samples from an e-Nash equilibrium in time

ol (2) ()

Proor. Note first that the preprocessing cost associated to steps 1 through 4 is O(n?).
To compute the cost of Sinkhorn iterations, observe that the parameters n and h are chosen in
such a way that each term on the right-hand side of (22) are smaller than ¢/2:

8
(16 + —*m) Ah, (4y* +2m) n < %
14
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h* e v\ (48m)?
~mi]ﬂ 2 — = — 5 d =|\— .
H v dsme (h)t*) ( e )

Together with the prescribed value of n and since y* < m because of Proposition 1, we get that
the total complexity of Sinkhorn iterations is

£\ 3 -
o (%) log(l’;llmm) =O((?)4log(?))

Finally, the last step has a total cost of O(n+¢) which is negligible with respect to the combination
of previous steps. ]

Hence,
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A THE DISCRETE CASE

During the construction of an approximated solution of the classical Blotto game, we had to resort
to some discretization, and we implicitly proved that some discrete random variables were jointly
mixable. Quite unfortunately, this result can not be directly generalized to solve the discrete, pure
count Blotto game (where Lotto solutions were computed explicitly [Har08]).
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We recall that in the discrete pure count Blotto problem, the budget of each player T4 and Tg
are non-negative integers and that the amount allocated by players to battlefields, x4; and xg ,
are also non-negative integers. Finally, explicit solutions of the Lotto problem are only available
in the pure count problem, when vs; = vp; = 1, hence we shall focus on this case. In discrete
Lotto/Blotto, the probability of equal forces x4; = xp; is positive and if this happens, we will still
assume that both players wins the battlefield with probability 1/2.

[Har08] described optimal strategies in the associated Lotto game with the following additional
notations. The average budget per battlefield are denoted by a = T4 /n and b = Tg/n, the uniform
distribution on even integers between 0 and 2m is denoted by U = Unif{0, 2, ..., 2m} while U" =
Unif{1,3,...,2m — 1} is the uniform distribution on even integers between 1 and 2m — 1. Those
strategies are described in [Har08, Fig. 1].

He also introduced the term of a “feasible” distribution, to indicate that n random variable of
that distribution are jointly mixable. He then proved the following

PROPOSITION 14. o I[fTy = mn then U" is "feasible" if and only if Ty and n have the same
parity
o IfTy = mn then U" is "feasible" if and only if X4 is even
o IfTy=mn+rwithl <r <n-1then (1 - L)UM+ LU is "feasible"

As a consequence, [Har08] characterized Nash equilibrium of the discrete Blotto problem in the
following three cases:

(1) If T4 = Tg (because of the first and third rows of [Har08, Fig. 1])
(2) f mn < Tg < Ta < (m+ 1)n for some m € IN (because of the third row of [Har08, Fig. 1])
(3) If mn =T < Ty < (m+ 1)nfor some m € NN, if Xj is even (because of the fourth row of
[Har08, Fig. 1])
Now, let us state the following Proposition 15 that will imply the above 3 points. The proof, rather
technical (yet algorithmic) is postponed.

PROPOSITION 15. Discrete random variables Unif{0, ..., &} are jointly mixable if and only if their
continuous counterparts Unif [0, ;] are jointly mixable and Y ; ¢; is even.

This proposition allows us to describe solutions of the discrete Blotto game.

THEOREM 16. Assume Xp is even and X, has the same parity than n, then the optimal strategies
of the discrete Blotto game are given by [Har08, Fig. 1]. Moreover those strategies can be computed
using the same algorithmic approach as in Proposition 15.

Proor. We will prove the theorem first when Ty = mn for some m € IN and then when Tz <
mn < Ty, again for some m € IN. The other cases are already covered [Har08].

1. If Tg < mn = Ty, then the optimal strategy of Player A is U", which is feasible if T4 and n
have the same parity. Indeed, since U" = Unif{1,...,2m—1} = 1+ 2Unif{0,...,m — 1}, the
problem reduces to mixing n random variables of law Unif{0,. .., m — 1}; this requires that
n(m—-1) =Ty —nis even.

Player B marginals are (1— %)50 + % U;’/’e. So it remains to prove that those random variables
are jointly mixable. In particular, this holds if (1 — %)50 + %Unif{(), ...,2m} are jointly
mixable by choosing appropriate weights on U" and U}".

In the continuous case (i.e., if uniform distributions are over [0, m] instead of {0, m}), [Rob06]
constructed explicit couplings between such random variables by reducing to coupling of
uniform continuous random variables. We apply the exact same techniques, yet we just need
to ensure that the intervals of the continuous uniform distributions start and end on integers
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and that the sums of lengths are always even. But this immediately happens as soon as X4 /n
is an integer.

Indeed, all the couplings introduced in [Rob06] involves uniform random variables over
intervals [a;, fi] where a;, f; € {0,2m,Xp — 2m,bn — 4m, ...}. As a consequence, all interval
lengths are even if Tg = bn is even, which implies that the discrete uniform variables over
{ai, ..., Bi} are jointly mixable.

2. In the second case, the strategy of player B is to jointly mix n random variables of distribution

(1- %)50 + %Unif{O, 2,...,2m} which is equivalent to mixing n distributions (1 — %)50 +
% Unif{0,1,..., m}. Using again, exactly as above, the construction based on the continuous
couplings of [Rob06], this is possible as soon as Tp is even.
On the other hand, Player A marginals are (1 — &)U + aU™*!, thus we need to prove that
(1-a)Unif{0, m—1}+aUnif{0, m} are jointly mixable. To ensure this, one just need to select
na battlefields at random and to allocate Unif{0, m} on them (and Unif{0, m—1} on the n—na
remaining battlefields). As a consequence, we end up in mixing ne uniforms Unif{0, m} and
n — ne uniforms Unif{0, m — 1}, which is possible as soon as nam+ (n—na)(m—1) =Ty —n
is even, i.e., if T4 and n have the same parity.

These two claims give the result. O
We finally prove Proposition 15

ProoF or PrRopPosSITION 15. The proof of the necessary part of the condition is identical to the
continuous case. The only difference is the fact that ) ; must be even. This is naturally implied
by the fact that ) X; is always an integer, hence Y, EX; = 3 £;/2 should also be an integer if these
random variables are jointly mixable.

It only remains to prove this statement for n > 3 as the case n = 2 is trivial. Moreover, proving
the statement for n > 3 can be be reduced to the case n = 3 with a simple induction over n, as in
the continuous case [WW16]. Indeed, since Unif{0,..., £}, Unif{0,..., &} and Unif{0,...,f; +£}
are jointly mixable (because they satisfy the condition of the Proposition for n = 3), it is possible
to reduce the joint mixability of n uniform to only 3. As a consequence, we will solely focus on
n = 3 and and we assume wlog that ; < £, < #3

The proof will be based on another induction on the maximal size £3. We will distinguish three
cases, depending on whether #; = fo = f3,0r ) < o = 3, 0r £ < f3.

First case: #; = £ = ¢3 (in particular, this implies that #1, f2, £3 are even since #; + to + £3 = 34;
is even by assumption).

If £; = 2, then the uniform coupling on the triplets (0, 1,2), (1,2,0) and (2,0, 1) proves joint
mixability. If £ = 4, then considering the uniform distribution on the following set

{(3,3,0); (3,0,3): (0,3,3): (4,1,1): (1,4, 1): (1, 1,4);
(0,2,4): (2,4,0); (4,0,2): (2,2, 2)}

is sufficient to prove joint mixability. From now on, we shall assume that #; = f» = £3 > 6.
Consider the coupling defined by

14
X~ 8, XpT ~ Unif{% +1,6 -1} and

_ 3 . .
Xy = 54 — X3 ~ Umf{E1 +1,6 —1}.
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Then it immediately follows that Xll’_ + X21’_ + XB}’_ = %{’1. Similarly, this property holds with the
following alternative coupling
!
XM, XD~ Unif{l,% ~1} and
1 %
Xot = 2o - X2t ~ Unif {1, = - 1}.
2 2
We define similarly the coupling (X?’i)ie[g] and (X?’i)ie[g] where the role of Xj is exchanged
with X, and, respectively, X3. We also define the last coupling X} = 6 .
2

Then X; can be decomposed as follows:

1 2 -5
Xi:[ 1{ZXZ‘"+ZX{C’++{,_ X?}+f1 1Yi,
1+ Ke[3] 31 1+

where Y; ~ Unif{1,..., £ }. A simple induction gives the joint mixability of {X1, X, X3}

Second case: #; < £, = f3 (in particular, this implies that # is even). There are two specifics
cases 1 = 2 and £, € {3,4} that are constructed explicitly as follows.
If £; = 2 and £, = £3 = 3, a joint mixability coupling is
1 1
5 (5<0,3,1) +6(0,1,3) +(2,20) + 5(2,0,2)) * 5 (5(1,3,0) +6(1,03) +(1,12) + 5(1,2,1))

while if £/ = 2 and #» = 3 = 4, a valid coupling is

2

R (5<2,3,o) +8(2,03) +60,41) +(0,1,4) + 5(1,2,2))

1
T (5(1,0,4) +8(1,40) + 80,32 +6(221) + 5(1,1,3))
For the other cases, we consider similar couplings as above, i.e.,
t-
XS’_ ~ 50, X23_ ~ Unif{[g - El,fg - 1} and

Y2 s
X13a_ =l + 51 —X23’_ ~ Umf{;l + Lfl}

and also
{
X3t~ 8, X3 ~ Unif{l, 51} and

0

X3,+ —
! 2

t
X3 ~ Unif{O,El ~1}.

We define XI.Q’i similarly.
If £; > 4, we introduce the following random variables (the case #; = 2 is detailed just below)
Yl ~ 5%,Y12 ~ Unif{0, 6}, Y ~ Unif{0, £}
and ! ~ Unif{0, &}
and similarly
Yy ~ Unif{1,6 —1},YZ ~ Unif{% +1,6 - % —1},Y3 ~ Unif{1,6 - 1}
and Yy ~ Unif{1,£ — 1}
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and
£ £
Yd ~ Unif{l, 65 — 1}, Y? ~ Unif{1, 6 — 1}, Y ~ Unif{% + 1,6 — 51 -1}
and Yy ~ Unif{1,6 - 1}
So that we can decompose
1
3+ 1
where the probability are defined by

Xj:

XPT X+ X2+ XPT) + pr Y+ X7+ psY + pl

3 1 2 bh-h-1 dps =1
—HZ;P3—P2—[3+1 0 anc pa = _[3+1
Those couplings are well defined and satisfy the theorem length condition, hence we will be able
to proceed by induction.

It remains to consider the case where #; = 2 (plugging #; = 2 in the above construction would
give py < 0 which is obviously impossible).

We define the variables

p1 —pP1—p2—P3

Z} ~ & and Z7 ~ Unif{0,2}
and similarly
Zy ~ Unif{2,6 — 2}, and Z3 ~ Unif{2, & — 2}
and
Z3 ~ Unif{2,6 — 2} and Z3 ~ Unif{2, & — 2}

So that we can decompose

Xi:

3,— 3, 2,— 2,
B T THXPTH X +quZ) + g2t

where the probability are defined by
4 6
= d = 1 _—_—— = 1 e —
f3+1 and g2 f3+1 a f3+1

and the result also follows by induction.

q1

>

Third case: i < #; < f3. We are going to proceed by induction (on the maximal length) as
before, and we consider the following couplings

X; =8, X; ~ Unif{w,ﬁ}
and X7 = W -X5 = Unif{O,%}
and the similar one
X; =6, X; ~ Uniffo, L2225
and Xj = W -X; = Unif{w,ﬁ}

It remains to introduce the following random variables
6 +1t4— 103 H+1t3—0
+1

Y ~ Unif{ 5 , 5 —-1}, Y? ~Unif{0,6}

and Y ~ Unif{0, £}



Vianney Perchet, Philippe Rigollet, and Thibaut Le Gouic

and similarly
b0+l -1 b +{3—°¢
Yl ~ Unif{0,&), Y2 ~ Unif{2" R 2t -1

and Y5 ~ Unif{0, &}

and
Ys ~ Unif{l,65 =1}, Y2 ~ Unif{l,6 -1}
and Y3 ~ Unif{1,¢ — 1}.

So that we can decompose

1 _
Xi= —— (X7 +X) + prY} + po Y7 + psY}

f3+1
where the probability are defined by
» 1 f-6-1 » 1 fH-64-1
1= TAtrts 40 P27 Titlatls | 1
b+ 1 2t 1] f3+1122*+1
andpgzl— —pl—pg

f3+1

25

The proof relies on a simple induction by noticing that {Y}', Y5, Y; } satisfies the theorem condition
(as soon as p; > 0) since these three random variables are uniform over intervals of respective

lengths #3 — fo — 2, £ and £3 — 2 (in particular, £ is the maximum of these 3 quantities, necessarily

tr = 3 — 1 and p; = 0). Similarly {Y?2, Y22, Y32} and {Y3, Y23, Y33} satisfy the theorem condition as

well.

B OMITTED PROOFS AND ALGORITHMS
B.1 Algorithm Lotto2BLOTTO

O

We provide the simple pseudo-code of the main algorithm; it is decomposed into several procedures

described in subsequent sections.

ALGORITHM 1: LorTo2BLOTTO

Data: Length & weight vectors b € R} and p € [0, 1]”, budget T, approximation levels 7, ;
Result: Allocation vector X € RY;

{(p(j), qj)}j < Decome(b, T, p) > Couplings with one strict mixture
Sample j* = j with probability qj;
(Io, I1, In, I3, I4) < Repuc(b, p(j*)) > Reduction to 4 random variables

for i € [4] do
| b} — Yjer, bj;p;f — Xjer, Pjs

end

(11, p2, 13, j1a) < DIscRETIZE((b], b3, b3, b}), 3. h) > Appropriate Discretization
(&1, &2, &3, &4) < SINKHORN( (1, 2, 13, p14), 1) > Numerical computations
X  SampLE((£1, &9, &3, E4), T, b, (X0, 11, 12, I3, 14), h) > Reconstruction and sampling

Output: X > A valid allocation
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B.2 Proof of Proposition 1 and associated Algorithm LotTo

ALGORITHM 2: LoTTO
Data: Battlefield values v, ; and vpg ;, budgets T4 and Tp;
Result: Vector b = (b;);e[n] and probability vector p € [0, 1]";

y<—01<0,ke0 > Initialization
Sort {&' ie[n ]} > Sort to get degree 3 polynomial equation to solve
while y =0 do

o2
Sk« rOOtS(YTA Zl 1%aitYy TA Zl k+l UA: -1p Zl 172 i - TB}/2 Z?=k+l Z’B,i)?
for g € S do

| y —gl {y € Z‘;’; Z‘;:ﬁ ]} > Keep valid root of degree 3 polynomial
end
ke—k+1 vAk
Bk
end
(v4)?
A TA b 2 1(}/031) A ;33'1. 5
for i€ [n] do
| bi — yz;f’ A )L , pi — ;};;’l Al > Description of Lotto strategies
end
Output: (b, p) > lenghts of uniforms and associated weights

Proor. First, reorder the battlefields by increasing reward ratios v4 ;/vp; so we can assume that

0 0 0
A,1< A,2<'”S A,n

UB1  UB2 UBn

Recall that f(y) is the left-hand side of (6). We first observe that f is continuous on R. Indeed,
f is obviously continuous on each open interval

(UA,i UA,i+1 )

UB,i’ UB,i+1

To check that it is continuous at y;, := va,/vB,,, note that for y in a small enough neighborhood
of yi,, we have

| {io+1,...,n} ify >y,
N(y)_{{io,...,n} ify <vyi,-

Hence f is left-continuous at y;,. Moreover, we can check right-continuity by observing that

n 02 n io io 02 )
B Al
yl_lgl fly) = ylo (TA Z on y,OTB Z uB,;i + Vi, Ta ZUA,i —1Tp Z ons = f(yio)

Y>Yio i=ig+1 i=ig+1 i=1 i=1

where the last identity can be readily checked by substitution.
Having proved that f is continuous, note that for y large enough we have that N(y) = 0 so that

n n 2

FO) =yTa ) vai=Ts )| =2 — +o0.

. y—o00
i=1 i-1 UBi ¥
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Moreover, for y > 0 small enough, we have N(y) = [n] so that

w Tzn:@ —Tzn: -———>—Tzn: <0
v2 =v|ia " B )  UBi o B UB,i .

i=1 i=1 i=1

Hence, by the intermediate value theorem, there exists y* > 0 such that f(y*) = 0. Moreover, ob-
serve that if one sets N(y) = [N] for N € {0,..., n}, with the convention that [0] = 0, Equation (6)
becomes a polynomial equation of degree three with at most three solutions denoted yn ;,i = 1,2, 3.
Hence, y* € Uy_o{yn.1, YN2, YN,3} can take at most 3n + 3 values.

We now check the bounds on the possible values of y*. To that end, recall from (6) that
- VA 0% .
f) = Z (YTA - TB—’I) : (YQ—’I A UA,i) :
=1 UB,i VA,

To prove the an upper bound on y*, observe that

2 2 2
VA, Tg va, Ug,i Tp Tp

}/TA —Tg— >0 Y2 = — }/2— ANVA;i 2 =] vAi ANvA;i = =] YA,
UB,i Ta g, VA Ta Ta

where the last identity follows from the assumption that Tg < T4.
It yields

Ts\* ¢ VA (18 2 2
f 2|2 T =Ts 2 Joai= (] - 0T =T+ X @allon))

Th) +A UB,i
Therefore, if
Tp
y> T—(l + x*(vallog)),
A

then f(y) > 0, which yields the desired upper bound on y*.
To prove the lower bound on y*, we proceed essentially in the same fashion:

) Tg v vp o5

Ai B UVA,i B,i B,i

}/IA—IB SO — }/S— — }/2—/\UA’j=)/2—.
UB,i Ta vp,i VA, UAi

It yields

n 2

VA, YBi

f <y (yTA - TB;j) =P (U i @lloa) Ty = To)
i=1 ! ot

Therefore, if
Ts 1
< T
Ta 1+ x*(vglloa)
then f(y) < 0, which yields the desired lower bound on y*.
To complete the proof of the proposition, it remains to observe that the computational complex-
ity is dominated by sorting reward ratios which costs O (nlog n) operations since finding roots of

degree three polynomials for each of O(n) polynomials costs O(1) time.

e if Xg = X4 and % = Z‘;‘" , which implies that v4 ; = vp; (as they both sum to 1).

Y
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B.3 Proofs of Proposition 4 and Theorem 5
B.3.1  Proof of Proposition 4.

Proor. Note first that (8) is necessary. Indeed, denote by max € [k] any index such that byax =

max; b; and assume Z, ..., Zi are coupled so that
1

.:E: ZZi 23-251 HE[ZZi] = 5 .:E: j)ibi a.s

ie[k] ie(k] i€[k]
We have for § > 0 small enough,
Pinaxd = P(Ziax > binax(1=6) S P( D Zi > bnax(1-9)) = Z pibi > binax(1 = )) .

ie[k] le[k]

Hence

5 O pibi > bax(1-8)
ielk]
since the above deterministic inequality holds with positive probability, it holds with probability
one for all § > 0. Letting § — 0 yields (8).
To show that (8) is sufficient, recall from [WW 16, Theorem 3.2] that a collection of random vari-
ables Zy, ..., Zx where Z; is a continuous random variable, with non-increasing density function
and supported on the interval [0, b;] are jointly mixable if and only if

maxb; < E[Z; Z b; — maxb;.
i€lk] iclk] iclk] i€lk]

In particular, if E[Z;] = p;b;/2, these two inequalities reduce to (8).
Unfortunately the Z;s do not have a density so we use the following approximation. For i € [k],
let ¢ < b; and

Z; ~ (1 = q5)Unif [0, e] + ¢;Unif [0, b;],

where g € (0,1) is chosen precisely so that Z; has the same expectation and the same support
as Z;. Moreover, Z; has a monotone decreasing density and hence the Z{ are jointly mixable un-
der condition (8) resulting in a coupling 7° over the product space [[;¢[x][0, b;]. By Prokhorov’s
theorem, letting ¢ — 0 implies that Z;, ..., Zi are jointly mixable.

m]

B.3.2  Proof of Theorem 5.

Proor. Recall that the marginal strategy Z; of player A on battlefield i has a distribution of the
form (7) with

pi=1, b; = Y;’f”’, ifi e N(y")
A UA,i .
i= =, bi = —, ifi¢ N(y")
p Y*UBJ' A* }/
Plugging this values into (8) yields
* . . * . 02 .
max Y 95 V max PA < 1 Y OB + Al =14,
ieN@yH A* igN(y?) A* 2 A* A*y*up

ieN(y*) igN(y*)
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where the last equality follows from the saturation of the budget constraint in (4). It is easy to
check that

max y'og; V max va; = max(y OB NUA;)
ieN(y) igN(y) ie[n]

Similarly, we get using (5) that
max(y vp; Aoa;) < A'Tp,
i€[n]
is a necessary and sufficient condition for mixability the Lotto strategy of player B into a Blotto

strategy. The proof can then be concluded by recalling that T4 > Tp.
m]

B.4 Proof of Corollary 7
Proor. Using (5), we get

n 2
A Tp (vvsi)? L. 1 UB,i
= g ANoa;i =2 = y"A— g =~ AUA; .
” 2)/ ons VA 2 B Y v ) Lo, VA,

Next, observe that
n 2 n 2

Upi UB,i -
Z — ANvpi = Z —]l(UA,i > vp;) + Z 04,i1(va; < 0B;)
o1 VA i=1 i=1
n n
= Z i > 0p;) +1 - ZUA,i]l(UA,i > 0B,;)
i=1 i=1
n v, 2
=1- ZUA,,- 1- L(vai > vBi) -
=1 A
Noting now that 1 — x? < 2 — 2x for x € [0, 1], we get for x = vp;/v4; that
LI n OB
Z BLpgy 21— ZUA,i (1 - —l) 1(vai > vpi) =1—-TV(va,0B),
im1 YA i=1 VA

where TV denotes the total variation distance and is defined as
1 n
TV(va,0B) = 3 ; |oai —vBil -

Using Pinsker’s and Jensen’s inequalities, see, e.g.,[Tsy09, Chapter 2], we get the classical result

1
TV(va,0B) < §VX2(UB||UA) <

Next, note that Proposition 1 yields
alyl 1T 1 Ty 1
v*  Tal+x*(vlloa)  Tp 1+ x*(vallop) ~ Tal+r?
Hence we have established that
ATy Tp 1-r/2 TB
y* T 24 14712
Together with (9), this completes our proof.

N~

(1—r).



Vianney Perchet, Philippe Rigollet, and Thibaut Le Gouic 30

ALGORITHM 3: DEcomp
Data: length vector b € R, budget T, weights vector p = (pi);e[n] € [0, 1]™;

Result: (at most) n vectors p(k) € [0, 1]™ and weights g € [0, 1];

k<0 > Initialization
while supp(p) > 2 do
k—k+1;
(p), k), 0r) < ExtrEMIZE(D, T, p) > Find an extreme point ptk)
p —pk);
qr — qk_1% (1-6r_1) > Compute convex weight of p*)
end
Output: {(pW, qj);Jj € [k]} > (a coupling with its convex weight)

B.5 Proof of Lemma 8 and Algorithm Decomp

Proor. Throughout this proof we write

B 1, ifie N
Pi= Al ifig N(yY)

Y*uBi’

so that the ith marginal of r is given by

Y'uBi Avai
A*

Note that (10) consists in representing 7 as a convex combination of couplings. To obtain this

representation we are going to appeal to Carathéodory’s theorem. However the latter requires

finite dimension so we first make the following observation: the map p*) = (p;k), cees p,(,k) ) > g,

(resp. p = (p1,...,pn) > ) is linear and injective. Therefore, (10) is sufficient to produce the

decomposition
p= Z g™ . (23)
k

Furthermore, we need 7 to be satisfy the budget constraint (3) of the Lotto game. The saturation of
this constraint translates into the constraint pk € H,k =1,...,n,where H is the affine hyperplane

in R" defined by
n *
Y UBi AUa,
= R" : E i——— =T, 24
H {xe 2. X o A} (24)

(1 —pi)(SQ +piUnif [O,

As a result, we must ensure that p(k) € C, = HN[0, 1]"; see Figure 1 for a representation of this
constraint set. Since this set has dimension n — 1, Carathédory’s theorem ensures the existence of
a decomposition (23) where p¥) are extreme points of C,. In particular, each such extreme point
has at most one coordinate in (0, 1); this completes the proof of point 1.

Note that (23) readily ensures that 1 is a solution for the Lotto game. Moreover, since p(¥) € H by
construction, we have that marginals of 73 automatically satisfy the mixability condition. Hence,
we can choose 7y to be a joint mix; this completes the proof of point 2. As stated above, this readily
implies that 7 defined in (10) is a joint mix and hence a solution for the Blotto game; this completes
the proof of point 3.

It remains to find an efficient algorithm that outputs decomposition (10). The algorithm is ini-
tialized at p € C,, = H N [0, 1]". From there, we use Lemma 9 to construct two points p,pM €
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=

p(»

Fig. 1. Starting from p, the first step computes a first extreme point pW). Then p is written as a convex
combination ofp(l) and 15(1). The latter is decomposed (iteratively) into p(2) and then p(3).

H N 9[0,1]" such that p = 6;p™ + (1 - 8;)p™, for some 6, € [0,1], where p(!) is an extreme
point of C, and p'V) belongs to a face %, of dimension n; < n. We repeat this procedure as follows.
Define by C,, = H N, so that pV) € C,,. Hence, using again Lemma 9, it may be decomposed
as PV = 0,p@ + (1 - 02)p@ for some 6, € [0,1] and p? is an extreme point of C, while
f)(Q) € Cp,, where C,, is the intersection of H with a face 7, of [0,1]" of dimension ny < nj.
Moreover,
p=6p" +(1-61)6:p? +(1-61)(1-62)p?
Iterating this procedure yields the decomposition
N+1

p=> 0 []-0p?,
1

i= j<i-1

with the convention that Oy;; = 1 and where N < n and the p(j)s are extreme points of Cy,.
Moreover, one can readily check that for any sequence 61, ... 60y € [0,1], On4+1 = 1, it holds

N+1
Zei ]_[ (1-6,)=1,
i=1  j<i-1

which gives the result by defining gx = 0k [1;<x—1(1 = 0)).
As we appealed at most n times to Lemma 9, the overall complexity of this algorithm is of order
O(n%logn). o

B.6 Proof of Lemma 9 and Algorithm DEcomp

Proor. Assume that the coordinates of £ are sorted as 4 < f» < ... < {,. For any subset
S ¢ [n], we denote its associated indicator vector by 15 = (1{i € §}); € {0,1}".
First, notice that there exists some ¢ € [0, 1] such that the following vector y belongs to C, NH:

y:=x0 ]lm(x) +(1,1,...,1,&,0,...,0) © ]]-supp(x)’
————

k-1 terms
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ALGORITHM 4: EXTREMIZE
Data: vector b = (bi)ie[,,] € R", budget T € Ry, vector x € R";
Result: 2 vectors y, , convex weight 6;

te—0ke—0,z—x0l1l—— > Initialization
supp(x)
while t < T do
| ke—k+lizez+13y 0Lt — z'b > Find the index with non {0, 1} component
end
& — %; ye—z-¢1 (k) > Compute explicitly the extreme point y
: xizyi}—xi
§ « min;cg {xTyyi}x;e — %5;
g x+n(x-y);
Output: (y, 7, 6) > (two vectors, one convex weight)

where supp(x) = [n]\supp(x) is the complement of the support of x. The reason is simply that
x0 ﬂm(x) <x<x0O ]lm(x) +(1,...,1)o ﬂsupp(x) R

where the inequalities are component wise.
We now introduce g = x + §(x — y), where § € R, is defined by

1{x; > y;} — x;
§=906p:= min §;, withd;:= M .
iesupp(x) Xi — U;

Then 7 belongs to H as x and y are two vectors of this affine hyperplane. Moreover, as ;+ = min n;,
it also holds that 7 € [0, 1]" and gj;+ = 1{x;+ > y;.}, and therefore supp(g) C supp(x)\{i*}. Finally,
one just needs to define 8 = §/(1 + §).

The construction of those quantities requires sorting the coordinates of ¢, finding the k-th co-
ordinate of y, say, by binary search (computing the value of ¢ is immediate as the value of y ¢ is
linear in py) and finding i*. m]

B.7 Proof of Lemma 10 and Algorithm Repuc

Proor. Write for simplicity X; = X4 ; and
Xi ~ (1 —pi)(SQ +piUnif[O, bl] s

where p; € {0,1} fori € [n—1],p, € [0,1],and b; = (yvp; Ava;) /A% If p; = 0, then X; is almost
surely equal to 0 and this random variable can be removed from the analysis; we might therefore
assume that p; > 0 for all i.

The joint mixability condition (8) rewrites as

n-1

2max by < Z; bi + pubn (25)

Without loss of generality, assume that by < by < ... < b,_; and define X352 ~ Unif[0,b; +

bo]. Note that {X7, X2, —Xj2} are jointly mixable (for instance, consider X; = blelbzXN and X5 =
ble2b2X12)’ and {X12, X3, ..., Xy} are also jointly mixable if
n-1

2 max{max by, by + b2} < Z bi + pnbn (26)

i=1
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ALGORITHM 5: REDUC
Data: length vector b € R”, weights p € [0, 1]";
Result: 5 sets of indices;

Io— 0,11 — |n],Io—0,I3— 0,74 0 > Initialization of sets
for i€ [n] do
if p; = 1 then
| Ig«— IgU{i}, I1 — L\{i} > Dirac masses not treated, index removed
else
if p; € (0,1) then
| I <« {i}, 1 « 1\{i} > At most one strict mixture
else
| I(i) « {i} > End of initialization
end
end
end
while | 71| > 3 do
i1 « argmin;eyz, bi, I1 « I1\{i1}, io < argmin;c 7, b; > i1, i: 2 smallest uniform lengths
bi, < bi, +b;,, I (i2) « I (i2) U I (i1) > 2 uniforms combined in 1
end
m = |11}, denote I = {i],..., i} };
for j € [m] do
| Ij I(i;f) > (At most) 3 sets of combined indices
end
Output: (Zo, I1, 12, I3, I4) > (Dirac, 3 sets of uniforms - possibly empty-, a strict mixture)

On the one hand, if by + by < b,_; then (26) follows readily from (25). On the other hand, if
b1 +by>b,_1andn—1 > 4 then

n—1

2(by +b2) < by +bo+bs+by < b1+b2+Zbk+t(")bn

k=3
so that (25) is satisfied. The result follows from sequentially iterating this construction. Indeed,
recall that X7 is a variable created by mixing together X; and X5. At a further step, this variable
might be mixed again with another one, ending up with a set of, at least, 3 variables mixed together.
At the end of the procedure, there are at most 3 remaining random variables Y}, that are joint mix
of (disjoints) subsets of X;.

We denote by J; the set of indices of variables that are mixed to form Y; and, for any index

i € I;, we just need to define 6; = Zkbji e O
eZj

B.8 Algorithm DiscrRETIZE

B.9 Algorithm SINKHORN
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ALGORITHM 6: DISCRETIZE

Data: 4 lengths b € R+, positive weight p4 € (0, 1), discretization parameter h;
Result: 4 vectors y; € ]Rii with d; = I_%’J +1;
forie [3] do
bt
pie— £ (L.t - Lb—”,ij)
L \ﬁ/._/

b*
L5 Jtimes

end

.
e pag(F - Ll Lo 1)+ (1= pa)(0....,0,1);
i S——

L % Jtimes
Output: (p1, o, 43, pa) > (4 discrete ditributions)

ALGORITHM 7: SINKHORN

Data: Marginals yi; € RY,j=1,...4
Precision level > 0;
Result: A Coupling T, represented by (&1, &2, €3, €4) € R% x R% x R% x R%, with marginals such
that 1, [T = |y < s
T 1 € R1xd2xdsx3 > Initialization
fe—1eRM & —1eR® 8« 1eR%B; & 1 eR%,
while X;cq) llwi — Lilli > 7 do
7« argmax KL(y;||Ti);

i€[4] B
Le—&op ol > Matrix scaling
Tijke = &1i - &2, - &3k Eivjakre Yii ko€ > Computation of coupling

end
Output: (&1, &2, &3, &4)

B.10 Algorithm SAMPLE
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ALGORITHM 8: SAMPLE

Data: Coupling (£1, &9, &3, é4), budget T € R4, length vector b € RY, sets of indices (Xo, 11, 12, I3, 11),
precision h ;
Result: An allocation vector X € RY;

Set {ja} = Iy; b) « bj, > Initialization
Sample Y1 ~ &, Yo ~ &, Y3 ~ &3 > Sampling from computed coupling
Sample ¢ = e € {0, 1, 2} with proba. 54,}71+172+)73+e;

Sample U ~ Unif[0, 1] > smoothing
foric [3] do

b (_ZJEL bj;
Yi’<—(Yi+§+%)h/\b;“
end
S« Y1’+Y2’+Yé;

{ 1S > Ty IS 1S < T - b3 18155,
foric [3] do
Y; Y/ +{;
for j € I; do
Xj= % Y; > Reconstruction of uniforms
end
end
for j € Iy do
| Xj=0 > Dirac masses set at 0
end
X, =T - Y1+ Y2+ 13) > Budget saturation

Output: X
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