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Abstract—Increased visibility of the power grid has been the
motivating force for deployment of advanced sensing technologies
such as phasor measurement units (PMUs). PMUs are equipped
with GPS receivers for time synchronization of the voltage and
current measurements. GPS receivers are susceptible to spoofing
attacks, which alter the PMU timing information. This work
develops an algorithm for power system state estimation and at-
tack angle reconstruction with GPS spoofed PMU measurements
aided by pseudo-measurements. Numerical tests performed on
the standard IEEE test networks indicate improvement in the
state estimation accuracy.

Index Terms—Pseudo-measurements, State Estimation, Phasor
Measurement Unit, Global Positioning System

I. INTRODUCTION

There is continuous effort by various stakeholders to mod-
ernize the power grid and equip it with technologies that
enable an array of advanced Wide Area Monitoring, Protection
and Control (WAMPAC) functionalities. Phasor Measurement
Units (PMUs) are among such sensing technologies being
deployed. PMUs measure the nodal voltages and line currents
and utilize the Global Positioning System (GPS) to time-stamp
measurements with very high precision. The aforementioned
feature enables PMU measurements to be time synchronized
across the network. Furthermore, higher sampling rates of
PMUs compared to the traditional Supervisory Control and
Data Acquisition (SCADA) systems make the grid more
visible and assist the network operator in real-time WAMPAC
services.

As PMUs generally utilize unencrypted GPS signals to
achieve synchronization,they are susceptible to cyber-threats
known as GPS spoofing attacks [1]. GPS spoofing entails
malicious agents transmitting unauthorized GPS signals that
mislead the timing information obtained by the PMUs. Such
attacks are also known as Time Synchronization Attacks
(TSAs) [2]. In our previous work, [3]-[5] we have developed
novel measurement models and static or dynamic state esti-
mation (SE) algorithms for GPS-spoofed PMU-instrumented
smart power grids. This work extends our previous efforts to
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evaluate the effect of available pseudo-measurements on the
GPS spoofed power system state estimation.

Several approaches for state estimation under GPS spoof-
ing attacks have been developed in the previous years—see
e.g., [6]-[8]—though pseudo-measurements are not readily
included. Pseudo-measurements amount to additional informa-
tion used to increase the redundancy and improve the quality
of power system state estimation. In the literature, use of
pseudo-measurements to aid the state estimation is seen in the
transmission as well as distribution networks. Some examples
of pseudo-measurements are surveyed next.

Historical profiles of network data, such as loads, can be
used to provide additional information for the state estima-
tion. The survey paper [9] outlines two sets of approaches
for including such pseudo-measurements in the distribution
system state estimation, namely, probabilistic and statistical
approaches on one hand, and learning-based approaches on
the other hand. The probabilistic and statistical approaches use
temporal/spatial correlation and historic load distribution data
to generate the pseudo-measurements—see e.g., [10], [11].
The learning-based approach uses machine learning based
modeling for pseudo-measurement generation, e.g., [12], [13].

Furthermore, zero-injection buses—that is, buses with no
generation and no load—yield equations based on Kirchhoff’s
current law (KCL) that constrain the unknown state that is
being solved for. In case of transmission networks, represen-
tative papers from the classical literature on power system state
estimation such as [14]-[17] and a survey paper [18] describe
the pseudo-measurements arising from zero-injection buses
and the resulting equality constraints. The classical literature
is concerned with solving the non-linear power system state
estimation problem, because the measurements typically arise
from SCADA systems and are nonlinearly related to the
unknown network state. Thus, the classical literature focuses
on numerical issues arising in the state estimation problem.

It is also worth mentioning that SCADA measurements
can be used as pseudo-measurements [19] in the case of
PMU based state estimation, where appropriate weights must
be assigned to the pseudo-measurements via the SCADA
measurement covariance matrix.

This paper contributes to the domain of static power system
state estimation affected by GPS spoofing attacks in the
presence of pseudo-measurements arising from zero-injection
buses. Such pseudo-measurements are the focus of the present
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work because they are always present as an extra set of mea-
surements, helping to improve the redundancy and hence the
state estimation routine. The resulting pseudo-measurements
yield a set of equality constraints that enter the objective
function in the form of a weighted quadratic penalty term.
The weight can be adjusted to assign relative importance in
fitting the model to the PMU measurements versus satisfying
the KCL equations resulting from the pseudo-measurements.

Although the PMU measurement model is linear, the GPS
spoofing attack renders the overall measurement model non-
convex. The developed algorithm jointly solves for the state
and spoofing-induced attack angle estimates building on the
alternating minimization approach of our previous work [4].
The algorithm developed in this paper is applied on the
standard IEEE 14-, 30-, and 118-bus networks and yields
improved state and attack angle estimates evaluated by various
metrics, compared to previous work in [4].

The structure of this paper is as follows. Section II formu-
lates the PMU measurement and zero-injection bus pseudo-
measurement models. Section III develops the algorithm for
GPS spoofed state estimation including pseudo-measurements.
Numerical tests are detailed in Section IV. Conclusions and
future work are provided in Section V.

II. PMU BASED STATE ESTIMATION

This section describes the network and measurement model,
with and without TSAs and pseudo-measurements.

A. Network Model and PMU Measurements

Let us consider a network with IV, buses connected with [V;
transmission lines. The state vector is the set of nodal voltages
in rectangular co-ordinates defined as v = [v,. v;T]T €
R2Mox1 where v, and v; collect the real and imaginary parts
Vi, r and V,, ; of the complex voltages at buses n = 1,..., N;.
PMUs are installed at predefined locations in the network [19].
Binary vector a denotes the presence or absence of a PMU on
a given bus such as Npyu = {i € {1,2,..., Np}a; = 1}
The set of buses connected to bus n is denoted by N,
and the number of lines connected to bus n is defined as
L,, = |N,|. The PMU installed at a bus measures the voltage
phasor at that bus along with the complex currents on the
line directly connected to that bus. These PMU measurements
are represented by the vector z, € R2T2Ln. Also, define
M, = 2+ 2L, as the number of distinct real quantities
measured by the PMU at bus n. The noiseless measurement
vector z,, € RM»is given as follows:

Vnﬁr
Vn,i
{Ink,r}ke/\/’n,
{Lnk,i tren,

[Vi| cos(6r)
|Va|sin(6,,)
{[Ink| cos(br,,.) b ren,
{{Znk|sin(br,,,.) bren,

where 1,1, and I, ; are the real and imaginary parts of the
complex current injected into line (n, k). Furthermore, V,, and
I.i generically denote the voltage and current phasors at bus
n and line (n,k) respectively; and let 6,, and 6;_ , denote
the corresponding phasor angles. The noiseless quantities

true __
n

ey

measured at bus n € Apyy comprise the real and imaginary
parts of the nodal complex voltage, appended by the real and
imaginary parts of the complex currents injected to all lines
connected to bus n. Compactly, the measurement vector is
given by z!™"¢ = H,,v, where H,, € RM»*2Nv i5 a regression
matrix constructed from the bus admittance matrix [3], [19]. To
make this paper self-contained, details about H,, are provided
in Appendix A. Consequently, the noisy version of z'™® is
denoted as

__ Strue

Zn =2,  +w,=H,v+w,

where w,, ~ N(0,X,,) represents an additive Gaussian noise
vector that is assumed independent across PMUs and has a
known positive definite covariance X,,.

The TSA impacted measurement vector with the phase
angle error Af,, can be written as follows [2]:

|Vi| cos(6y, + AB,,)

we_ | [Valsin(0, + Ag,)
" | { k| cos(Or,,,, + Aby) bren,
{|Ink| Sin(elﬂk + Aen)}kENn

Consequently, combining (2) with (1) yields a bilinear rela-
tionship which can be formulated as given below [3]:

+w, (2

zfltk =T,z +w, =T, H,v+w, 3)

where T, € RM»*M= jg a block diagonal matrix consisting
of 1+ L,, blocks and each diagonal block is the 2 X 2 matrix
Lo oy, ]. The attacked measurement equation (3)
highlights the fact that measurement is bilinear in trigono-
metric functions of the attack angle and in the state vector.
Section II-B develops matrix models for the pseudo-

measurements. A three-bus network is provided as an example.

B. KCL Equations from Pseudo-Measurements

Buses with no load and no power generation provide
pseudo-measurements. These buses are also called zero-
injection buses and comprise the set /\/pseudo. Consider for
example the 3-bus system depicted in Fig. 1. For every line,
there is a from and to bus. In this example, line 1 is from
bus 1 to bus 2, line 2 is from bus 1 to bus 3, and line 3 is
from bus 2 to bus 3. This nomenclature follows MATPOWER
[20]. Let iy = [if,,if,,i,]  collect the complex currents
leaving the from buses and let iy = [y, ,4s,,4s,]" collect
the complex currents leaving the fo buses. Assuming bus 2
is a zero-injection bus, the following KCL equation holds:
14, +1y, = 0. This is a complex equation, yielding two linear
equalities—one for the real and one for the imaginary parts—
which can be written in a form Cov = 0, where v is the state
vector and Cs is an appropriate matrix corresponding to bus
2. Constraints of this form can be added to the SE problem
formulation to improve the estimate accuracy. This section
gives an example of how to formulate the KCL equations using
network matrices.

Supposing that m is a zero injection bus, a binary matrix
S, is defined to select the line currents leaving that bus. The
corresponding dimensions are L,, x 2N;, where L,, is the
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Fig. 1: An example of 3-bus system

number of lines connected to bus m. The 2N; x 1 complex
network flow vector is defined as follows:

. i . ) . ) ) 4T
1 = Lf:| = [Zfl fy  Ufs Uy Mty Zts] “4)
Then, the vector of currents leaving bus 2 is given as follows:

0 01 00O

. . - T
Soin = [if, 1] ,where Sy = 00010 o®

For each zero-objection bus, two KCL equations are derived
corresponding to the real and imaginary parts of the currents
leaving the bus:

17Ssip, =0 (6)
178yif,; =0 (7)

where 1 denotes vector of all ones. Section II-C describes how
to write the KCL equations in terms of the state vector.

C. Pseudo-Measurement Linear Constraints

In this section, the KCL equations for all zero-injection
buses in the network are cast in the form Cv = 0. Specifi-
cally, the complex 2/N; X N line-to-bus admittance matrix is
Yy = [Y}'— Y/ ]T, where Y and Y, are the from and to
branch admittance matrices that can be easily extracted from
MATPOWER. The N, x 1 complex state vector is denoted by
v = v, + jv;. The complex network flow vector ig is given

as follows:
. il Y]
n=[i] =[] ®

Separating real and imaginary parts of ig, it follows that

iﬂJ- . Re(Yﬁ) —Im(Yﬂ) Vi (9)
iﬂ’i o Im(Yﬂ) RC(YH) V;
For zero-injection bus m, the vectors of complex, real and

imaginary parts of currents leaving bus m are respectively
given as S,,ig, Syin,r, and S,,ia s, where S,,, is defined in

Section II-B. The two equations stemming from KCL for zero-
injection buses are given as follows:

17S,ig, =0 (10)
178,,ip; =0 (11)
These can be organized in matrix form
el o
and invoking (9)
1ISmRe(Yﬂ) —1TTS7,LIm(Yﬂ)} {v} _0 (13)
1'S,,Im(Yg) 1'S,,Re(Yq) v;
Eq. (13) can be compactly written as follows
C,v=0 (14)

Upon concatenating all C,,, matrices for the zero-injection
buses in the network, the matrix C € R2Wpseudolx2No g
formulated, yielding the set of KCL equations Cv = 0. Sec-
tion III develops the GPS spoofed state estimation including
pseudo-measurements.

III. GPS SPOOFED STATE ESTIMATION INCLUDING
PSEUDO-MEASUREMENTS

This section formulates and solves the GPS spoofed SE
problem including pseudo-measurements. The aim is to solve
for a state estimate and attack angle estimates that fit the model
in (3) to the PMU measurements z,, as well as approximately
satisfy the pseudo-measurement KCL equations Cv = 0.

Introduce first the auxiliary variables +,, ; = cosAf,, and
Vn,2 = sin Ad,,. The model fit to the measurements is captured
by the least squares residual

Ny

Z an (2% — T, H,v) & 1 (z* - T, H,v) =
n=1

(z—THv) 7! (z—THv) (15)

where I',, is a block diagonal matrix that includes 2 x 2
blocks [J71 7"2] on the diagonal; z € R is formulated
by concatenating vectors z,, for all PMUs and M is the total
number of measurements defined as M = Zne Nowo M, =
Y neNoay (2 1+ 2Ly); H is formulated by concatenating ma-
trices H,, for all PMUs (n € Npyu); T'is an M x M
block diagonal matrix with diagonal blocks I',, for all PMUs
(n € Npmu); and X1 denotes an M x M block diagonal
matrix with diagonal blocks X ! for all PMUs (n € Npwuu).

The SE problem is thus formulated as a bi-criterion mini-
mization as follows

minimize  (z— THv)' X' (z — THv) +4||Cv]||?
Va{')’n}nG!\/’pMU N——
F1 F2
(16a)

subject to v,/ v, =1, n € Npmu, (16b)

The first objective function represents the residuals from fitting
the system model to the PMU measurements, while the second

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 21,2022 at 20:21:09 UTC from IEEE Xplore. Restrictions apply.



objective ensures that the KCL equations corresponding to
zero-injection buses are approximately satisfied. It is worth
mentioning that instead of the attack angles A#f,,, the vectors
Yo = [fyml,fymg]T are optimization variables. The notations
~. and T'), are used interchangeably, as they both collect the
unknowns 7,1 and 7,2. Constraint (16b) ensures that the
attack angles Af,, can be uniquely recovered from -y, ; and
Yn,2. The aforementioned transformation was first introduced
in [4].

The second objective is introduced with a weight y > 0,
which is a parameter that can be set by the system operator
solving the SE. The present approach gives the freedom to
place relative significance on minimizing F; or Fy. Specif-
ically, if 4 = 0, then the pseudo-measurements are entirely
ignored, and the SE only relies on the PMU measurements.
As 1 becomes larger, emphasis is placed in producing a
state estimate v that also approximately satisfies the pseudo-
measurement KCL equations, in addition to minimizing the
PMU measurement residuals.

Problem (16) is a nonconvex, but it can be approximately
solved by an alternating minimization algorithm, building on
our previous work [4]. Specifically, one set of optimization
variables (e.g., v, for n € Npmu) is kept fixed and (16) is
minimized with respect to the other variable (in this example,
v). Then, the latter variable (v) is kept fixed, and the min-
imization is performed with respect to ~, for n € Npmuy.
The process is repeated and it guarantees that the resulting
sequence of objective function values (16a) is non-increasing.
The process is terminated when the change in the objective
value is less than a prescribed tolerance. The minimizations
with respect to each variable are described next.

A. Minimization with Respect to the State

When the variables ~,, for n € Npyu are kept fixed, the
optimization in (16a) is an unconstrained quadratic minimiza-
tion written as

minimize (z— Bv)' Q7 !(z — Bv)

amn

where 2 = [2707]T, 0 € R2Wrsentol Q = blkdiag(X~, uI)
(following MATLAB notation for a block diagonal matrix),
and B = T'H .
-C
The objective function (17) can be written as a standard
quadratic as follows:

minimize %VTPV +q'v+r (18)
v
where
P=2B'Q'B
q=-2B'Q 'z (19)

r=z'Q 'z

The estimated state vector ¥V can be obtained as a solution
to the following linear system of equations:

PV = —q (20)

Algorithm 1: State Estimation & Attack Reconstruc-
tion with Pseudo-Measurements
Result: State Estimate v and Attack Angle
Reconstruction A0 = {A0, } ey
Input: z**
Initialization: Solve (20) for v upon setting
Tn = [1 OiT
repeat
for n € N, pyy do
| Find the corresponding -, via eq. (24)
end
Update v by solving (20)
until convergence or maximum iterations reached,

B. Minimization with Respect to Attack Angle
The minimization with respect to the attack angle for the
problem in (16) takes the following form:

minimize (z’ffk — An'yn)—r E;l (zf“ltk — An'yn)

Tn 21)
subject to 'y,I Yo =1

where hrTm' isthe i-throwof H,, (i = 1,2,...,M,) and A,, €

RMnx2 g defined as (note that v is fixed in this step)
hrTL,iv _hrTL,zv
h;ygv h;';lv
A, = : (22)
hvi,]\/[n—lv —hy, A, v
hy, v, TV hI,Mnfiv

Suppose that the covariance 3,, is a diagonal matrix with
entries 02 ., =1,..., M, where

n,i’

On,1 =0n,2,0n,3 = 0n4,-- (23)

s

<y O0n,M,—1 = On,M,

In this case, the closed form solution for attack angle can be
calculated as
o = (1/]|A,) B, 235, A =, 128

n n

(24)

The previous development is based on Lagrangian duality
theory thoroughly analyzed in [4], which also deals with
the case of nondiagonal covariance 3,,. The aim of the
present section is to provide a self-contained exposition of
the computational steps involved in providing the =, -update.
Algorithm 1 summarizes the step to solve the SE problem.

IV. NUMERICAL TESTS

The numerical tests are performed on the IEEE 14-, 30-,
and 118-bus networks named as Case-14, Case-30, and Case-
118, respectively. Table I depicts the PMU locations in the
standard IEEE test networks, obtained with the algorithm
developed in [19]. The performance of the proposed algorithm
is compared to the algorithm in [4] using different values of
1 to evaluate the effect of including pseudo-measurements in
state and attack angle estimation. Four performance criteria are
used for comparison in this paper. The first is the relative state
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TABLE I: Optimal PMU location (a) for IEEE test networks.

Test Case | [Npmu|| Bus number

IEEE 14 6 2,4,6,7,10,14

IEEE 30 13 2,3,6,10,11,12,15,20,23,25,27,28,29
1-5,7-19,21-25,27-36,40,43,44,46,47,48,

IEEE 118 | 94 50,51,52,53,55-60,64,65,66,67,6870,71,73,75,76,
77,80-83,85-90,92,94-104,106-111,113-118

TABLE II: Performance of algorithms on Case-14 under attack
on two PMUs.

Method RSEE | RAAE | NAAE SEN
Algorithm in [4] | 0.0165 | 0.0473 | 0.4268 | 0.0651
pn=0 0.0165 | 0.0473 | 0.4268 | 0.0651
p=1 0.0165 | 0.0473 | 0.4268 | 0.0651
pn=10 0.0165 | 0.0473 | 0.4266 | 0.0650

p =100 0.0165 | 0.0471 | 0.4252 | 0.0648

@ = 1000 0.0162 | 0.0463 | 0.4182 | 0.0636

© = 10000 0.0159 | 0.0457 | 04122 | 0.0625

TABLE III: Performance of algorithms on Case-30 under

attack on two PMUs.

Method RSEE | RAAE | NAAE | SEN
Algorithm in [4] | 0.0581 0.226 0.944 0.312
p=0 0.0581 0.226 0.944 0.312
p=1 0.0580 0.226 0.942 0.312
pw=10 0.0573 0.223 0.931 0.308

p =100 0.0524 0.205 0.854 0.282

© = 1000 0.0436 0.172 0.716 0.235

© = 10000 0.0406 0.161 0.669 0.218

estimation error (RSEE), which is defined as % where v

is the estimated state vector and v is the true state. The second
is the relative attack angle error (RAAE), which is defined as
%, where A0 collects the true attack angles for all
PMU buses. The third is the normalized attack angle error
(NAAE), which is defined as %. The fourth is state
error norm (SEN), which is given by ||V — v||2.

The Gaussian noise vector is random in this simulation
thus the results are averaged over 100 realizations. The noise
standard deviations of 0.01 for voltages and 0.02 for line
currents are used for Case-14 and Case-30; and respectively
0.1 and 0.2 for Case-118.

Tables II and III denote the performance of algorithms
on Case-14 and Case-30 under attack on two PMUs. The
attack angles for Case-14 are Afg = 30° and Afy4 = 45°,
and for Case-30 they are Afg = 30° and Af#, = 45°.

TABLE 1V: Performance of algorithms on Case-118 under
attack on two PMUs.

Method RSEE | RAAE | NAAE | SEN
Algorithm in [4] | 0.0396 0.401 0.590 0.424
p=0 0.0396 0.401 0.590 0.424
p=1 0.0388 0.400 0.588 0.416
pn=10 0.0378 0.398 0.585 0.405

p =100 0.0374 0.397 0.584 0.400

© = 1000 0.0373 0.397 0.584 0.400

© = 10000 0.0373 0.397 0.584 0.400

TABLE V: Performance of algorithms on Case-118 under

attack on 20% of PMUs.

Method RSEE | RAAE | NAAE | SEN
Algorithm in [4] | 0.0380 0.361 0.579 0.407
p =100 0.0364 0.358 0.575 0.390

Table IV reports the estimation performance under attack on
two PMUs in Case-118. The attack angles are Afss = 30°
and Af5y = 45° for Case-118. The algorithm in [4] has
identical perfomance with the algortihm in this paper when
# = 0. The overall trend is that all metrics improve when
1 increases, that is, when sufficient weight is placed on the
pseudo-measurements. This implies that not only the state
estimation accuracy is improved, but also the attack angle is
more accurately reconstructed.

Furthermore, attacks on 20% of PMUs in Case-118 are
considered. Along with the random noise, the location of
the attack is randomized using the MATLAB command
randperm, and the attack angle is also randomly chosen
from a uniform distribution in the interval [—60°,60°]. The
results in this scenario are presented in Table V, where one
representative value of mu is chosen. It is observed again
that the performance of SE including pseudo-measurements is
better than that of the algorithm in [4].

The resulting Pareto frontiers for the various cases are
depicted in Fig. 2. These are obtained by varying p and for
one noise realization. Such graphs reveal the tradeoff between
the two objectives and can assist the network operator with
the selection of .

V. CONCLUSIONS AND FUTURE WORK

This work develops a state estimation algorithm aided
by pseudo-measurements for PMU-instrumented power grids
vulnerable to GPS spoofing attacks. The pseudo-measurements
come in the form of KCL equations for zero-injection buses,
and the always exist in the network due its topology. Future
work includes accounting for pseudo-measurements in a dy-
namic state estimation framework under GPS spoofing attacks,
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Fig. 2: The Pareto frontier for (a) Case-14; (b) Case-30; and
(c) Case-118. The top left point corresponds to . = 0 and the
bottom right point corresponds to . = 10000.

as well as considering the improvements from other types of
pseudo-measurements, such as historical load data or SCADA
measurements.
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APPENDIX A
CONSTRUCTION OF H,, MATRIX

The construction of H,, matrix is based on the line-to-bus
admittance matrix Ygq which is introduced in Section II-C.
The vector of complex currents injected to the lines is ig with
the entries of I,,x , + jlnk . The real and imaginary parts of
i care given by (9). Comparing the measurement z™* in (1)
and the ig in (9), the H,, can be written as

el 0T
H — 07 e, € RMnx2Ns (25)
"= | 8,Re(Yn) —S,Im(Yq)
S,Im(Ya) S, Re(Yq)

where S,, € RE»*2Nt js a binary matrix selecting the rows of
Y leaving from bus n, and e, € R™* is a vector with 1 in
its n-th entry and zero otherwise.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 21,2022 at 20:21:09 UTC from IEEE Xplore. Restrictions apply.



