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Abstract—Increased visibility of the power grid has been the
motivating force for deployment of advanced sensing technologies
such as phasor measurement units (PMUs). PMUs are equipped
with GPS receivers for time synchronization of the voltage and
current measurements. GPS receivers are susceptible to spoofing
attacks, which alter the PMU timing information. This work
develops an algorithm for power system state estimation and at-
tack angle reconstruction with GPS spoofed PMU measurements
aided by pseudo-measurements. Numerical tests performed on
the standard IEEE test networks indicate improvement in the
state estimation accuracy.

Index Terms—Pseudo-measurements, State Estimation, Phasor
Measurement Unit, Global Positioning System

I. INTRODUCTION

There is continuous effort by various stakeholders to mod-

ernize the power grid and equip it with technologies that

enable an array of advanced Wide Area Monitoring, Protection

and Control (WAMPAC) functionalities. Phasor Measurement

Units (PMUs) are among such sensing technologies being

deployed. PMUs measure the nodal voltages and line currents

and utilize the Global Positioning System (GPS) to time-stamp

measurements with very high precision. The aforementioned

feature enables PMU measurements to be time synchronized

across the network. Furthermore, higher sampling rates of

PMUs compared to the traditional Supervisory Control and

Data Acquisition (SCADA) systems make the grid more

visible and assist the network operator in real-time WAMPAC

services.

As PMUs generally utilize unencrypted GPS signals to

achieve synchronization,they are susceptible to cyber-threats

known as GPS spoofing attacks [1]. GPS spoofing entails

malicious agents transmitting unauthorized GPS signals that

mislead the timing information obtained by the PMUs. Such

attacks are also known as Time Synchronization Attacks

(TSAs) [2]. In our previous work, [3]–[5] we have developed

novel measurement models and static or dynamic state esti-

mation (SE) algorithms for GPS-spoofed PMU-instrumented

smart power grids. This work extends our previous efforts to
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evaluate the effect of available pseudo-measurements on the

GPS spoofed power system state estimation.

Several approaches for state estimation under GPS spoof-

ing attacks have been developed in the previous years—see

e.g., [6]–[8]—though pseudo-measurements are not readily

included. Pseudo-measurements amount to additional informa-

tion used to increase the redundancy and improve the quality

of power system state estimation. In the literature, use of

pseudo-measurements to aid the state estimation is seen in the

transmission as well as distribution networks. Some examples

of pseudo-measurements are surveyed next.

Historical profiles of network data, such as loads, can be

used to provide additional information for the state estima-

tion. The survey paper [9] outlines two sets of approaches

for including such pseudo-measurements in the distribution

system state estimation, namely, probabilistic and statistical

approaches on one hand, and learning-based approaches on

the other hand. The probabilistic and statistical approaches use

temporal/spatial correlation and historic load distribution data

to generate the pseudo-measurements—see e.g., [10], [11].

The learning-based approach uses machine learning based

modeling for pseudo-measurement generation, e.g., [12], [13].

Furthermore, zero-injection buses—that is, buses with no

generation and no load—yield equations based on Kirchhoff’s

current law (KCL) that constrain the unknown state that is

being solved for. In case of transmission networks, represen-

tative papers from the classical literature on power system state

estimation such as [14]–[17] and a survey paper [18] describe

the pseudo-measurements arising from zero-injection buses

and the resulting equality constraints. The classical literature

is concerned with solving the non-linear power system state

estimation problem, because the measurements typically arise

from SCADA systems and are nonlinearly related to the

unknown network state. Thus, the classical literature focuses

on numerical issues arising in the state estimation problem.

It is also worth mentioning that SCADA measurements

can be used as pseudo-measurements [19] in the case of

PMU based state estimation, where appropriate weights must

be assigned to the pseudo-measurements via the SCADA

measurement covariance matrix.

This paper contributes to the domain of static power system

state estimation affected by GPS spoofing attacks in the

presence of pseudo-measurements arising from zero-injection

buses. Such pseudo-measurements are the focus of the present978-1-6654-7902-8/22/$31.00 ©2022 IEEE
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work because they are always present as an extra set of mea-

surements, helping to improve the redundancy and hence the

state estimation routine. The resulting pseudo-measurements

yield a set of equality constraints that enter the objective

function in the form of a weighted quadratic penalty term.

The weight can be adjusted to assign relative importance in

fitting the model to the PMU measurements versus satisfying

the KCL equations resulting from the pseudo-measurements.

Although the PMU measurement model is linear, the GPS

spoofing attack renders the overall measurement model non-

convex. The developed algorithm jointly solves for the state

and spoofing-induced attack angle estimates building on the

alternating minimization approach of our previous work [4].

The algorithm developed in this paper is applied on the

standard IEEE 14-, 30-, and 118-bus networks and yields

improved state and attack angle estimates evaluated by various

metrics, compared to previous work in [4].

The structure of this paper is as follows. Section II formu-

lates the PMU measurement and zero-injection bus pseudo-

measurement models. Section III develops the algorithm for

GPS spoofed state estimation including pseudo-measurements.

Numerical tests are detailed in Section IV. Conclusions and

future work are provided in Section V.

II. PMU BASED STATE ESTIMATION

This section describes the network and measurement model,

with and without TSAs and pseudo-measurements.

A. Network Model and PMU Measurements

Let us consider a network with Nb buses connected with Nl

transmission lines. The state vector is the set of nodal voltages

in rectangular co-ordinates defined as v = [vr
> vi

>]> 2
R

2Nb⇥1 where vr and vi collect the real and imaginary parts

Vn,r and Vn,i of the complex voltages at buses n = 1, . . . , Nb.

PMUs are installed at predefined locations in the network [19].

Binary vector a denotes the presence or absence of a PMU on

a given bus such as NPMU = {i 2 {1, 2, . . . , Nb}|ai = 1}.

The set of buses connected to bus n is denoted by Nn

and the number of lines connected to bus n is defined as

Ln = |Nn|. The PMU installed at a bus measures the voltage

phasor at that bus along with the complex currents on the

line directly connected to that bus. These PMU measurements

are represented by the vector zn 2 R
2+2Ln . Also, define

Mn = 2 + 2Ln as the number of distinct real quantities

measured by the PMU at bus n. The noiseless measurement

vector zn 2 RMn is given as follows:

ztruen =

2
664

Vn,r

Vn,i

{Ink,r}k2Nn

{Ink,i}k2Nn

3
775 =

2
664

|Vn| cos(θn)
|Vn| sin(θn)

{|Ink| cos(θInk
)}k2Nn

{|Ink| sin(θInk
)}k2Nn

3
775 (1)

where Ink,r and Ink,i are the real and imaginary parts of the

complex current injected into line (n, k). Furthermore, Vn and

Ink generically denote the voltage and current phasors at bus

n and line (n, k) respectively; and let θn and θInk
denote

the corresponding phasor angles. The noiseless quantities

measured at bus n 2 NPMU comprise the real and imaginary

parts of the nodal complex voltage, appended by the real and

imaginary parts of the complex currents injected to all lines

connected to bus n. Compactly, the measurement vector is

given by ztruen = Hnv, where Hn 2 RMn⇥2Nb is a regression

matrix constructed from the bus admittance matrix [3], [19]. To

make this paper self-contained, details about Hn are provided

in Appendix A. Consequently, the noisy version of ztruen is

denoted as

zn = ztruen +wn = Hnv +wn

where wn ⇠ N (0,Σn) represents an additive Gaussian noise

vector that is assumed independent across PMUs and has a

known positive definite covariance Σn.

The TSA impacted measurement vector with the phase

angle error ∆θn can be written as follows [2]:

zatkn =

2
664

|Vn| cos(θn +∆θn)
|Vn| sin(θn +∆θn)

{|Ink| cos(θInk
+∆θn)}k2Nn

{|Ink| sin(θInk
+∆θn)}k2Nn

3
775+wn (2)

Consequently, combining (2) with (1) yields a bilinear rela-

tionship which can be formulated as given below [3]:

zatkn = Γnz
true
n +wn = ΓnHnv +wn (3)

where Γn 2 RMn⇥Mn is a block diagonal matrix consisting

of 1+Ln blocks and each diagonal block is the 2⇥ 2 matrix⇥
cos∆ θn � sin∆ θn
sin∆ θn cos∆ θn

⇤
. The attacked measurement equation (3)

highlights the fact that measurement is bilinear in trigono-

metric functions of the attack angle and in the state vector.

Section II-B develops matrix models for the pseudo-

measurements. A three-bus network is provided as an example.

B. KCL Equations from Pseudo-Measurements

Buses with no load and no power generation provide

pseudo-measurements. These buses are also called zero-

injection buses and comprise the set Npseudo. Consider for

example the 3-bus system depicted in Fig. 1. For every line,

there is a from and to bus. In this example, line 1 is from

bus 1 to bus 2, line 2 is from bus 1 to bus 3, and line 3 is

from bus 2 to bus 3. This nomenclature follows MATPOWER

[20]. Let if = [if1 , if2 , if3 ]
> collect the complex currents

leaving the from buses and let it = [it1 , it2 , it3 ]
> collect

the complex currents leaving the to buses. Assuming bus 2

is a zero-injection bus, the following KCL equation holds:

it1 + if3 = 0. This is a complex equation, yielding two linear

equalities—one for the real and one for the imaginary parts—

which can be written in a form C2v = 0, where v is the state

vector and C2 is an appropriate matrix corresponding to bus

2. Constraints of this form can be added to the SE problem

formulation to improve the estimate accuracy. This section

gives an example of how to formulate the KCL equations using

network matrices.

Supposing that m is a zero injection bus, a binary matrix

Sm is defined to select the line currents leaving that bus. The

corresponding dimensions are Lm ⇥ 2Nl, where Lm is the
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objective ensures that the KCL equations corresponding to

zero-injection buses are approximately satisfied. It is worth

mentioning that instead of the attack angles ∆θn, the vectors

γn = [γn,1, γn,2]
> are optimization variables. The notations

γn and Γn are used interchangeably, as they both collect the

unknowns γn,1 and γn,2. Constraint (16b) ensures that the

attack angles ∆θn can be uniquely recovered from γn,1 and

γn,2. The aforementioned transformation was first introduced

in [4].

The second objective is introduced with a weight µ > 0,

which is a parameter that can be set by the system operator

solving the SE. The present approach gives the freedom to

place relative significance on minimizing F1 or F2. Specif-

ically, if µ = 0, then the pseudo-measurements are entirely

ignored, and the SE only relies on the PMU measurements.

As µ becomes larger, emphasis is placed in producing a

state estimate v that also approximately satisfies the pseudo-

measurement KCL equations, in addition to minimizing the

PMU measurement residuals.

Problem (16) is a nonconvex, but it can be approximately

solved by an alternating minimization algorithm, building on

our previous work [4]. Specifically, one set of optimization

variables (e.g., γn for n 2 NPMU) is kept fixed and (16) is

minimized with respect to the other variable (in this example,

v). Then, the latter variable (v) is kept fixed, and the min-

imization is performed with respect to γn for n 2 NPMU.

The process is repeated and it guarantees that the resulting

sequence of objective function values (16a) is non-increasing.

The process is terminated when the change in the objective

value is less than a prescribed tolerance. The minimizations

with respect to each variable are described next.

A. Minimization with Respect to the State

When the variables γn for n 2 NPMU are kept fixed, the

optimization in (16a) is an unconstrained quadratic minimiza-

tion written as

minimize
v

(z̃�Bv)>Q�1(z̃�Bv) (17)

where z̃ = [z>0>]>, 0 2 R
2|Npseudo|, Q = blkdiag(Σ̃�1, µI)

(following MATLAB notation for a block diagonal matrix),

and B =


ΓH

�C

�
.

The objective function (17) can be written as a standard

quadratic as follows:

minimize
v

1
2
v>Pv + q>v + r (18)

where
P = 2B>Q�1B

q = �2B>Q�1z̃

r = z̃>Q�1z̃

(19)

The estimated state vector v̂ can be obtained as a solution

to the following linear system of equations:

Pv̂ = �q (20)

Algorithm 1: State Estimation & Attack Reconstruc-

tion with Pseudo-Measurements

Result: State Estimate v̂ and Attack Angle

Reconstruction d∆θ = {∆θn}n2NPMU

Input: zatk
n

Initialization: Solve (20) for v̂ upon setting

γn = [1 0]>

repeat

for n 2 NPMU do
Find the corresponding γn via eq. (24)

end

Update v̂ by solving (20)
until convergence or maximum iterations reached;

B. Minimization with Respect to Attack Angle

The minimization with respect to the attack angle for the

problem in (16) takes the following form:

minimize
γn

�
zatkn �Anγn

�>
Σ�1

n

�
zatkn �Anγn

�

subject to γ>
n γn = 1

(21)

where h>
n,i is the i-th row of Hn (i = 1, 2, . . . ,Mn) and An 2

R
Mn⇥2 is defined as (note that v is fixed in this step)

An =

2
666664

h>
n,1v �h>

n,2v

h>
n,2v h>

n,1v
...

...

h>
n,Mn�1v �hn,Mn

v

hn,Mn
>v h>

n,Mn�1v

3
777775

(22)

Suppose that the covariance Σn is a diagonal matrix with

entries σ2
n,i, i = 1, . . . ,Mn, where

σn,1 = σn,2, σn,3 = σn,4, . . . , σn,Mn�1 = σn,Mn
(23)

In this case, the closed form solution for attack angle can be

calculated as

γn =
�
1/

��A>
nΣ

�1
n zatkn

��
2

�
A>

nΣ
�1
n zatkn . (24)

The previous development is based on Lagrangian duality

theory thoroughly analyzed in [4], which also deals with

the case of nondiagonal covariance Σn. The aim of the

present section is to provide a self-contained exposition of

the computational steps involved in providing the γn-update.

Algorithm 1 summarizes the step to solve the SE problem.

IV. NUMERICAL TESTS

The numerical tests are performed on the IEEE 14-, 30-,

and 118-bus networks named as Case-14, Case-30, and Case-

118, respectively. Table I depicts the PMU locations in the

standard IEEE test networks, obtained with the algorithm

developed in [19]. The performance of the proposed algorithm

is compared to the algorithm in [4] using different values of

µ to evaluate the effect of including pseudo-measurements in

state and attack angle estimation. Four performance criteria are

used for comparison in this paper. The first is the relative state
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TABLE I: Optimal PMU location (a) for IEEE test networks.

Test Case |NPMU| Bus number
IEEE 14 6 2,4,6,7,10,14
IEEE 30 13 2,3,6,10,11,12,15,20,23,25,27,28,29

IEEE 118 94
1–5,7–19,21–25,27–36,40,43,44,46,47,48,
50,51,52,53,55–60,64,65,66,67,6870,71,73,75,76,
77,80–83,85–90,92,94–104,106–111,113–118

TABLE II: Performance of algorithms on Case-14 under attack

on two PMUs.

Method RSEE RAAE NAAE SEN

Algorithm in [4] 0.0165 0.0473 0.4268 0.0651

µ = 0 0.0165 0.0473 0.4268 0.0651

µ = 1 0.0165 0.0473 0.4268 0.0651

µ = 10 0.0165 0.0473 0.4266 0.0650

µ = 100 0.0165 0.0471 0.4252 0.0648

µ = 1000 0.0162 0.0463 0.4182 0.0636

µ = 10000 0.0159 0.0457 0.4122 0.0625

TABLE III: Performance of algorithms on Case-30 under

attack on two PMUs.

Method RSEE RAAE NAAE SEN

Algorithm in [4] 0.0581 0.226 0.944 0.312

µ = 0 0.0581 0.226 0.944 0.312

µ = 1 0.0580 0.226 0.942 0.312

µ = 10 0.0573 0.223 0.931 0.308

µ = 100 0.0524 0.205 0.854 0.282

µ = 1000 0.0436 0.172 0.716 0.235

µ = 10000 0.0406 0.161 0.669 0.218

estimation error (RSEE), which is defined as
||v̂�v||2
||v||2

, where v̂

is the estimated state vector and v is the true state. The second

is the relative attack angle error (RAAE), which is defined as
||d∆θ�∆θ||2

||∆θ||2
, where ∆θ collects the true attack angles for all

PMU buses. The third is the normalized attack angle error

(NAAE), which is defined as
||d∆θ�∆θ||2

|NPMU| . The fourth is state

error norm (SEN), which is given by ||v̂ � v||2.

The Gaussian noise vector is random in this simulation

thus the results are averaged over 100 realizations. The noise

standard deviations of 0.01 for voltages and 0.02 for line

currents are used for Case-14 and Case-30; and respectively

0.1 and 0.2 for Case-118.

Tables II and III denote the performance of algorithms

on Case-14 and Case-30 under attack on two PMUs. The

attack angles for Case-14 are ∆θ6 = 30� and ∆θ14 = 45�,

and for Case-30 they are ∆θ6 = 30� and ∆θ12 = 45�.

TABLE IV: Performance of algorithms on Case-118 under

attack on two PMUs.

Method RSEE RAAE NAAE SEN

Algorithm in [4] 0.0396 0.401 0.590 0.424

µ = 0 0.0396 0.401 0.590 0.424

µ = 1 0.0388 0.400 0.588 0.416

µ = 10 0.0378 0.398 0.585 0.405

µ = 100 0.0374 0.397 0.584 0.400

µ = 1000 0.0373 0.397 0.584 0.400

µ = 10000 0.0373 0.397 0.584 0.400

TABLE V: Performance of algorithms on Case-118 under

attack on 20% of PMUs.

Method RSEE RAAE NAAE SEN

Algorithm in [4] 0.0380 0.361 0.579 0.407

µ = 100 0.0364 0.358 0.575 0.390

Table IV reports the estimation performance under attack on

two PMUs in Case-118. The attack angles are ∆θ36 = 30�

and ∆θ50 = 45� for Case-118. The algorithm in [4] has

identical perfomance with the algortihm in this paper when

µ = 0. The overall trend is that all metrics improve when

µ increases, that is, when sufficient weight is placed on the

pseudo-measurements. This implies that not only the state

estimation accuracy is improved, but also the attack angle is

more accurately reconstructed.

Furthermore, attacks on 20% of PMUs in Case-118 are

considered. Along with the random noise, the location of

the attack is randomized using the MATLAB command

randperm, and the attack angle is also randomly chosen

from a uniform distribution in the interval [�60�, 60�]. The

results in this scenario are presented in Table V, where one

representative value of mu is chosen. It is observed again

that the performance of SE including pseudo-measurements is

better than that of the algorithm in [4].

The resulting Pareto frontiers for the various cases are

depicted in Fig. 2. These are obtained by varying µ and for

one noise realization. Such graphs reveal the tradeoff between

the two objectives and can assist the network operator with

the selection of µ.

V. CONCLUSIONS AND FUTURE WORK

This work develops a state estimation algorithm aided

by pseudo-measurements for PMU-instrumented power grids

vulnerable to GPS spoofing attacks. The pseudo-measurements

come in the form of KCL equations for zero-injection buses,

and the always exist in the network due its topology. Future

work includes accounting for pseudo-measurements in a dy-

namic state estimation framework under GPS spoofing attacks,
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(a)

(b)

(c)

Fig. 2: The Pareto frontier for (a) Case-14; (b) Case-30; and

(c) Case-118. The top left point corresponds to µ = 0 and the

bottom right point corresponds to µ = 10000.

as well as considering the improvements from other types of

pseudo-measurements, such as historical load data or SCADA

measurements.
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APPENDIX A

CONSTRUCTION OF Hn MATRIX

The construction of Hn matrix is based on the line-to-bus

admittance matrix Yfl which is introduced in Section II-C.

The vector of complex currents injected to the lines is ifl with

the entries of Ink,r + jInk,i. The real and imaginary parts of

ifl care given by (9). Comparing the measurement ztrue
n in (1)

and the ifl in (9), the Hn can be written as

Hn =

2
664

eTn 0T

0T eTn
Sn Re (Yfl) �Sn Im (Yfl)
Sn Im (Yfl) Sn Re (Yfl)

3
775 2 R

Mn⇥2Nb (25)

where Sn 2 R
Ln⇥2Nl is a binary matrix selecting the rows of

Yfl leaving from bus n, and en 2 R
Nb is a vector with 1 in

its n-th entry and zero otherwise.
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