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ABSTRACT

In this paper, we present a cost-effective software-developed Global Positioning System (GPS) anti-spoofing approach against
Time Synchronization Attacks (TSAs) and spatial spoofing. We portray two signal-level spoofing characteristics that are
predominantly discovered in aforementioned attacks, namely, spoofing profiles and consistency of modifying signals. While
the spoofing profiles, which basically describe the inflicting signal shapes affecting the GPS observables, have already been
analyzed in our previous research with respect to attacks against timing, this paper still utilizes the idea, yet implements and
showcases the applicability of spoofing profiles in position domain. The extension, in fact, brings the idea of joint TSA and
spatial spoofing. To jointly consider the time and spatial domains, the pseudorange and range rate equations are linearized with
a non-conventional method. An antispoofing technique capable of withstanding TSAs, spatial attacks on single coordinate, and
joint attacks is developed for stationary receiver. To validate the proposed approach, we utilize pre-recorded authentic GPS
signals in the TEXBAT database for data transmission, which are captured by the Software Defined Radio receiver developed at
UTSA. The algorithm is validated in simulations introducing synthetic spoofing and compared against Weighted Least Squares.
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I. INTRODUCTION

Global Navigation Satellite System (GNSS) offers an irreplaceable service on providing Position, Navigation, and Time (PNT)
for various applications. The growing reliance on GNSS has generated growing interest on its authentication, validity, and
security; which are undeniably challenging due to the external interference. Inherently, the GNSS receiver is susceptible to
experiencing a range of disturbances during long-distance satellite-to-receiver communication. The GNSS receiver can thus
become a victim of a third-party harmful hacker, a situation that has been shown to be applicable and plausible by the relevant
literature [1], [2].

This paper considers one of the deliberate GNSS hacking mechanisms commonly referred to as spoofing. Spoofing occurs when
a malicious actor injects disguised counterfeit GNSS signals to a GPS receiver such that the attacked receiver is induced to
produce an imprecise user position, velocity, and time (PVT) solution. Smart grid, an infrastructure that has significant reliance
on timing synchronization via the GPS, becomes a vulnerable target for malicious spoofing actors. In the work of [3], scenarios
where time synchronization attacks (TSAs) lead to failures in power system state estimation are illustrated, which may eventually
cause failure to take a corrective action. Another significant application that has attracted prominent research and heavily hinges
upon the position and velocity estimations of GNSS receivers is unmanned autonomous vehicle (UAV) navigation. The spatial
spoofing research is rich in analyzing attack mechanisms, whose effects are chiefly showcased on UAVs or other vehicles [2],[4].

As much as dangers of spoofing are manifested through research work, a plethora of publications attempt to introduce promising
antispoofing countermeasures [5],[6]. Among the presented methodologies, several target the baseband domain and strive
to capture unpredictable or abnormal behaviors of any sort. More specifically, the relevant research often times utilizes the
observable changes on correlator peaks [7],[8], vector tracking loops [9], or power and automatic gain control [10],[11].
However, such research require supplementary circuitry on top of off-the-shelf receivers, or has to rely on one or more
sophisticated receivers.

On the other hand, certain antispoofing techniques focus on the signal-level layer of GPS receiver. Such techniques strive to
detect anomalies in observable sequences such as Carrier-to-Noise ratio [12], and navigational drift [13],[14]. The present paper
falls in the aforementioned category and exploits common GPS observables, that is, pseudorange and range rate as a pair, to
protect the receiver against malicious spoofing. Moreover, the presented algorithm is cost-effective such that it can run on a
single rudimentary receiver assisted with software routines such as the freely deployed Android software.

In general, the terminology, antispoofing countermeasure, refers to two fundamental actions practiced while handling applied
spoofing attacks. Initially, the algorithm captures abnormal behavior discovered during either baseband or signal-level search;
which commonly referred to as detection. Several mechanisms halt their mission once spoofing detection is attained. Mitigation
goes beyond detection in that it rejects the attack signal and produces accurate PVT estimates.

This paper develops an algorithm that is capable of autonomous spoofing detection and mitigation of joint attacks against time
and position. Specifically, the present work focuses on stationary receivers and with respect the position attack, it provides
an effective method to capture and reject an attack against a single position coordinate. The developed model expands on our
previous work [15] that deals with TSAs only. Additionally, unlike our previous work [14], the optimization approach performs
countermeasure with single iteration while restraining from estimated attack reconstruction stage.

The paper is organized as follows. Section II explains the studied characteristics uncovered in signal-level spoofing along with
summarized linearized measurement equations. Section III presents our improved antispoofing algorithm. Section IV describes
the methodology used to simulate the atack and assess the algorithm. Section V provides numerical results illustrating the
effectiveness of the algorithm in mitigation of joint attacks.

II. SPOOFING ATTACK MODELING

The pseudorange and range rate equations are presented first. Then, we introduce the updated formulation of such equations
whose linearization process is different from the standard one shown in e.g., [16]. Afterwards, two spoofing characteristics that
can be applied to TSAs and spatial attacks in conjunction are described.

1. GPS Measurement Pair

Pseudorange refers to a computed satellite-to-receiver distance, which however differs from the true range. Given the visible

satellite position pn = [xn yn zn]
⊤

and user position pu = [xu yu zu]
⊤

where n = 1, 2, ..., N represents the total
number of visible satellites, the true range is readily computed by using 3-dimensional Euclidean norm. Nonetheless, the
discrepancy in the observed ranges originates from the satellite and receiver clock offsets, respectively denoted by bn and bu.
The pseudorange at every time epoch k = 1, 2, ...,K and for each satellite n is therefore computed via the following:

ρn[k] = ||pn[k]− pu[k]||2 + c(bu[k]− bn[k]) + ǫρn
[k] (1)
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where c represents the speed of light, || · ||2 indicates the l2 norm, and any Gaussian white noise is captured in ǫρn
. Furthermore,

pn[k] and pu[k] denote the position vector represented in Earth-Centered Earth-Fixed (ECEF) x-y-z coordinates at time epoch
k for satellite n and the receiver, respectively. Likewise, bn[k] and bu[k] refer to the aforementioned clock biases due to the local
clock offset on both satellite and receiver ends.

A complementary component in the measurement pair is considered. Specifically, the Doppler rate, or alternatively referred to
as range rate, demonstrates the effect of Doppler shift created between maneuvering satellites and the receiver. The range rate
(ρ̇) is mathematically defined as

ρ̇n[k] = (vn[k]− vu[k])
⊤ ·

pn[k]− pu[k]

||pn[k]− pu[k]||2
+ c(ḃu[k]− ḃn[k]) + ǫρ̇n

[k] (2)

where satellite n’s velocity is shown as vn = [ẋn ẏn żn]
⊤

and the velocity of receiver as vu = [ẋu ẏu żu]
⊤

. During
satellite-to-receiver data communication, the user readily obtains information in regards to all the visible satellites such as

position (pn), velocity (vn), and clock offset and bias (bn and ḃn), which in turn, leaves user PVT variables (pu, vu, bu, and

ḃu) as unknown.

With respect to data acquisition, the two aforementioned measurements are obtained from disparate hardware sources in
the receiver. Theoretically, however, pseudorange and range rate sequence must satisfy the following equation expressing
measurement integrity:

ρ̇[k] =
ρ[k + 1]− ρ[k]

∆t
(3)

where ∆t represents the discretized sampling time during the signal reception. Once measurement data is fully captured on the
receiver, we performed a sanity check examination via using Eq. (3) to attain the validity of acquired data.

The pair of pseudorange and range rate equations needs to be linearized for two reasons. Specifically, pu and vu appear in (1),
(2) under the l-2 norm, which is nonlinear. Although general-purpose nonlinear programming (NLP) solvers are available, a
linearized model can leverage the computational advantages of convex optimization solvers, namely, rapidly calculating PVT
solutions without loss of accuracy. The linearization is performed using Taylor series expansion. Since the present work is
concerned with stationary receivers, eq. (1) and (2) are linearized with respect to a fixed known user position reference, pu,ref ,
and zero velocity reference vu = 0. See [17] for a detailed derivation of the linearization. The resulting model is stated as

{

zρn
[k] = −1⊤

n.ref [k]pu[k] + cbu[k] + ǫρn
[k]

zρ̇n
[k] = vn[k]

⊤Φ[k]pu[k]− 1⊤

n.ref [k]vu[k] + cḃu[k] + ǫρ̇n
[k]

(4)

where

1n.ref [k] =
pn[k]− pu.ref [k]

||pn[k]− pu.ref [k]||2
=

[
xn.ref [k]
yn.ref [k]
zn.ref [k]

]

∈ R3×1

Φn[k] =
(pn[k]− pu.ref [k])(pn[k]− pu.ref [k])

⊤

||pn[k]− pu.ref [k]||32
−

I

||pn[k]− pu.ref [k]||2
∈ R3×3

The system considers 1n.ref and Φn as known vectors since pn is readily provided by satellite and updated on every time epoch
k. Regarding the user position reference, pu.ref , we manually fix it to the initial estimated user position vector as pu[1]. The
linearized system still satisfies the measurement integrity, eq. (3).

In the presence of spoofing, modifying signals are modeled as additive to the measurement pair. The following equations
manifest the conventional representation of spoofed psuedorange and range rate:

zn,s[k] = zρn
[k] + sρn

[k]

żn,s[k] = zρ̇n
[k] + sρ̇n

[k]
(5)

where sρn
and sρ̇n

represent spoofing signals injected on pseudorange and range rate, respectively. The attacked pseudoranges
and pseudorange rates are conventionally provided as inputs to traditional algorithms such as Weighted Least Squares (WLS)
or extended Kalman Filter (EKF), which output the PVT solutions to the end user. Thus, the the abnormal behavior captured in
pseudoranges is transferred on the PVT solutions. In this work, to facilitate spoofing mitigation, we present certain characteristics
of the spoofing signals in the next subsections, namely, spoofing attack order and consistency check.
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2. Spoofing Attack Order

In this subsection, we revisit spoofing profiles that are mainly determined on the basis of the shape of spoofing signal. Specifically,
in our previous work [15], we specifically consider TSAs and examine whether higher-order discrete-time derivatives of the
spoofing signal are sparse, that is, exhibit spike-like behavior. The present paper extends the premise to attacks against a single
position coordinate, and we specifically focus on z domain. Following [15], we analyze the smallest order derivative where
the attack exhibits evident spikes, and define the attack accordingly. For instance, a so-called Type I attack in [13] can be
re-identified as first order attack for the sparsity occurs in velocity domain, or equivalently in the first derivative of position.
Considering the position domain, we define second order and third order attacks with examples depicted in Figure 1. The
second order attack with increasing trend is shown in Figure 1a, whose second derivative (the acceleration) features two spikes
at 100 and 300 seconds. Figure 1b depicts subtle gradual changes akin to third order attack where the sparsity is achieved on
the third derivative (jerk domain).

The chief advantage in defining spoofing profiles for benefiting the development of antispoofing models is the fact that sparsity
appears on the jerk domain for the majority of the attacks reported in the literature. It is worth mentioning that the aforementioned
shapes of first, second, and third order attacks are popularly utilized in spoofing research [18],[19].
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Figure 1: Figure (a) indicates an example of second order attack. The initial sparse spikes appear on the second derivative of position vector,

which is the acceleration domain. Sparsity still is achieved in the jerk domain, where more spikes appear. Figure (b) depicts a subtle gradual

changes, which is an example of third order attack with spike showing up in the jerk domain.

3. Spoofing Consistency

Attack consistency is inspired by the measurement integrity equation (3); and applying the rationale to the spoofing signal, a
consistent attacks is required to satisfy the following condition:

sρ̇[k] ≈
sρ[k]− sρ[k − 1]

∆t
(6)

If the attacks fail to satisfy (6), it can referred to as non-consistent attack.
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An example of consistent attack is TSA [13]. While fulfilling measurement integrity, deviating signals on psuedorange and range
rate are explicitly manifested on clock bias and drift.Particular applications vulnerable to TSAs are electric power grid operations
that are driven by Phasor Measurement Unit (PMU) readings. PMUs are equipped with (stationary) GPS receivers, whose timing
errors translate into voltage and current phase angle deviations. These can subsequently lead to erroneous state estimation for
the power grid [20]. The authentic spoofing database TEXBAT, corroborates the aforementioned TSA characteristics, which
can also be incited with baseband spikes.

In case of spatial spoofing, attack may be defined as consistent or non-consistent depends on the targeted domain. If the spoofer
aims to solely vary a position estimate and leaves the velocity domain intact, that would be an example of a non-consistent
attack. Consistent spatial attack result in modification on position and velocity domains.

This paper considers attacks against two domains: TSA (clock bias b) and single-coordinate position (coordinate z), whereby
time and spatial solutions are simultaneously affected. This condition is called a joint attack. In practical applications, such
complicated spoofing can be achieved by having the receiver hacked by different data sources [21]. For joint attack simulation,
we only examine consistent attack since TSA must be applied with the spoofing integrity.

The ensuing section describes the antispoofing optimization function that can reject any of the aforementioned attacks.

III. ANTI-SPOOFING TECHNIQUE

In this section, we present the suggested anti-spoofing technique to detect and mitigate the aforementioned attack types. To
adequately express the technique, we present a proper GPS dynamic equation along with the linearized measurement equations.

1. GPS Dynamic Equations

The GPS receiver is described by a dynamical system that follows the random walk model [16]:






pu[k]
cbu[k]
vu[k]

cḃu[k]






︸ ︷︷ ︸

xk

=

(
I4×4 ∆tI4×4

04×4 I4×4

)

︸ ︷︷ ︸

Fk






pu[k − 1]
cbu[k − 1]
vu[k − 1]

cḃu[k − 1]






︸ ︷︷ ︸

xk−1

+wk (7)

where Fk is the state transition matrix and wk refers to the state transition noise. Although in a stationary environment, the
position does not vary and the velocities in x, y, z remain zero, eq. (7) is adopted in the present work because xk may contain
deviating signals, and specifically, attacks that modify the solution in the b or z domains. Including the unknwon xk as an
optimization variable may be beneficial towards recovering the authentic PVT solution.

Further, as mentioned earlier, the spoofing signal variables are appended to Eq. (4) for the system to delineate authentic PVT solu-

tions with inflicting signals, with linearized measurement vectors zρ = [zρ1
zρ2

· · · zρN
]
⊤

, zρ̇ = [zρ̇1
zρ̇2

· · · zρ̇N
]
⊤

,
which can be expressed as following:

(
zρ[k]
zρ̇[k]

)

︸ ︷︷ ︸

zk

=

(
EN×3 1N×1 0N×3 0N×1

ΨN×3 0N×1 EN×3 1N×1

)

︸ ︷︷ ︸

Hk






pu[k]
bu[k]
vu[k]

ḃu[k]






︸ ︷︷ ︸

xk

+

(
−zn.ref 1N×1 0N×1 0N×1

ψz 0N×1 −zn.ref 1N×1

)

︸ ︷︷ ︸

Gk






sz[k]
sb[k]
sż[k]
sḃ[k]






︸ ︷︷ ︸

sk

+

(
ǫρn

ǫρ̇n

)

︸ ︷︷ ︸

ǫk

(8)

where

Ψ =








v⊤
1 Φ1

v⊤
2 Φ2

...

v⊤

NΦN







= [ψx ψy ψz] ∈ RN×3
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E =







−x1.ref −y1.ref −z1.ref
−x2.ref −y2.ref −z2.ref

...
...

...
−xN.ref −yN.ref −zN.ref






∈ RN×3

in which sk place-holds captured deviating signals introduced on z-position (sz), velocity, (sż), clock bias (sb), and drift (sḃ).
Such formulation aims to capture the attack introduced onto the clock timing and z-domain. Lastly, ǫk represents the zero mean
Gaussian measurement noise with covariance matrix Rk = diag(σ2

ρ1
, ..., σ2

ρN
, σ2

ρ̇1
, ..., σ2

ρ̇N
) that can determine uncertainties of

observed measurements.

2. Proposed Anti-Spoofing Technique

The proposed anti-spoofing technique utilizes the minimization function that aims to become robust against the spoofing attacks
described in Section II. The following minimization is performed as solver estimates x̂ = [x̂1, ..., x̂K ]⊤ and ŝ = [ŝ1, ..., ŝK ]⊤:

(x̂, ŝ) = argmin
x,s

{
1

2

N∑

k=1

||zk −Hkxk −Gksk||
2

R
−1

k

+
1

2

N∑

k=1

||xk+1 − Fkxk||
2

Q
−1

k

+ λz||Dsz||1 + λb||Dsb||1

}

(9)

where ||x||2M defines a quadratic norm which is equivalently expressed as x⊤Mx. Note that sz = [sz[1], ..., sz[K]] and
sb = [sb[1], ..., sb[K]] are sub-vectors of sk.

Eq. (9) consists of four objectives that serve the anti-spoofing scheme. First summation term is derived from measurement
equation (8). The second term examines the PVT behaviors in relation to the random walk model. The third and fourth terms,
nominally referred to as penalization functions, each represent the higher-order domain where sparse spikes are likely to be
displayed in position and clock aspects, respectively. The first and second terms jointly encourage PVT solutions that satisfy
measurement integrity. With the help of penalization terms, the technique is capable of filtering accurate PVT estimations
against attacks. The matrix D constructs the third-order derivative of the respective sequences and is defined as follows:

Dz = Db =







−1 3 −3 1 ... 0
0 −1 3 −3 ... 0
...

. . .
. . .

. . .
...

...
0 0 ... 3 −3 1







The selection hinges upon the observation that realistic spoofing typically exhibits sparsity in the third-order derivative domain
(jerk).

The performance of the technique depends on the selection of the factors λz and λb. These must be selected for each receiver.
The proper values of λz and λb can tune the level of sparsity that emerges as solution from (9), as well as the relative emphasis
that is placed between the two penalization functions and as well as the among the four objectives in 9. Proper tuning based
on realistic attacks and in representative environments is therefore recommended. Another parameter that affects the quality of
solution is the state noise covariance matrix. This must be set up with appropriate values corresponding to the static receiver.

Overall, the optimization problem in (9) is a convex quadratic program that can be solved with relatively small computational
effort.

Qk =






Qp 0 Qpv 0
⋆ Qb 0 Qbf

⋆ ⋆ Qv 0
⋆ ⋆ ⋆ Qf




 (10)

IV. SIMULATION METHODOLOGY

Previous sections described the importance of emerging dangers in artificially designed spoofing on the GPS receiver. To
simulate and visualize the malignant effect of various spoofing types, we prepared a GPS receiver test bed which incorporate
the wired and wireless signal transmission and reception simulations. Since two integrated receivers are capable of capturing
real-time transmitted signals on run, we chose to insert a pre-recorded GPS signal into the signal generator, namely Clean Static
scenario from TEXBAT database [1]. Interfaced with LabView developed software as well as attached PCIe, the GPS signal
transmitter utilizes NI PXIe-1075 Chassis with a PXIe 5673 RF Signal Generator broadcasting via Vert 900 antenna. Once
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transmitter setup is completed, user has two choices as per the simulation. The unprocessed data is to be directly fed into the
wired lab-produced Software Defined Radio (SDR) [22], which rapidly process the raw data into precise and comprehensible
GPS information for the user. On the other hand, user can opt to deliver the signal over-the-air (OTA) via the connected antenna,
in which Huawei receiver, approximately located about 5-6 meters away from transmitter, captures and processes signal with
GNSSLogger application [23]. The wireless route inherently contains more noise and consequently has higher uncertainties
than the wired method. Thus, wired SDR empowers the PVT processing algorithm i.e. WLS and EKF to deliver more accurate
position and time estimation; and this is manifested in Section V.

In the present paper, we exploit synthetically fabricated spoofing attacks while targeting a single position and time domain,
namely z-domain in ECEF coordinate and clock bias estimation. We initially confirm that our algorithm attains robustness
against TSA in various spoofing profiles as our previous works do [15], then simulation manifests that algorithm also can
detect and mitigate the disturbance which aims to inflict 1) sole z-domain and 2) z-domain and clock bias simultaneously.
Each spoofing scenarios is comprised of first, second, and third order types of attack while maintaining minimum of 600
meters of deviation. The routines processing raw measurements, that are reported from two receiver test beds, as well as PVT
acquisition algorithms, namely, WLS, EKF, and our algorithm are all written in MATLAB language. The MATLAB-friendly
covex optimization modeling software, cvx, is used to solve the quadratic program in the novel algorithm, and is employed in
the effort to estimate the correct PVT solution and the spoofing attack.

V. NUMERICAL RESULTS

This section reports and examines the output of synthetic attack simulations. Both the SDR and the Huawei commercial receiver
accumulate the TEXBAT clean static data, and we added the tailored spoofing scenarios onto the processed pseudorange
pair. Multiple figures depict the outstanding performance of our suggested algorithm, yet numerically compared by using
Root-Mean-Sqaure-Error (RMSE) values against the estimation produced by EKF. The following equation defines the RMSE:

RMSE =

√
√
√
√ 1

K

K∑

k=1

(x̂estimated,i[k]− x̂ground truth,i[k])2 (11)

where i selects the state vector entry corresponding to z, ż The scenarios are comprised with 1) TSA third order consistent attack,
2) spatial z-domain second order non-consistent attack, and 3) joint third order consistent attack. For the sake of simplicity, all
scenarios depict the result of SDR recording, while only second scenario explores the spoofing condition in the Huawei wireless
receiver.

1. Scenario 1: TSA

Figure 2 shows the result of sole TSA spoofing on the SDR receiver. A total of 600 meter magnitude deviation is applied to the
clock bias; and the drift changes accordingly. The third order spoofing profile has the smoothest shape that can have numerous
sparse spikes on the jerk domain. Based on the consistency characteristic of TSA, the deviating shape and magnitude applied on
clock bias are exactly identical to modifying signals on psuedoranges. Though the spoofing setting is identical to the experience
executed in the work of [15], the algorithm based on the minimization of (9), differs from the approach shown in aforementioned
paper.

The primary task of third component in (9) is to filter the estimated attack from the correct PVT solution, xk. We select λb = 10.
The optimization problem acknowledges the abnormal behavior on the bias domain, also by expecting subtle sparse peaks on
jerk. Figure 2a shows the clean (WLS output), attacked (EKF output), and corrected (optimization output) of z position, velocity,
clock bias, and drift estimations. As figure suggests, the corrected solutions all maintained to be less than absolute 20 meters.
Further, the RMSE error on z coordinate is reduced from 389.22 meters to 2.25 meters. Figure 2b depicts the estimated attack,
which turns out to be similar to the applied attack.

2. Scenario 2: Spatial Spoofing

Second scenario explores the second order spatial spoofing where only position estimate gets affected by the pseudorange
deviation. The deviating magnitude gradually increases from 100 to 300 seconds with ultimate amplitude of 600 meters. The
second order spoofing profile expects to show peaks in acceleration and jerk domains. The major improvement made with
respect to our previous approach [15] is attaining robustness against spatial spoofing. Due to measurement linearization, our
algorithm has capability to search more than clock domain.

The plots in Figure 3 express the result of sole spatial spoofing in z-domain, namely, the result of the optimization after applying
the synthetic attack to the replayed CS scenario over the SDR and the Huawei receiver. Even though the Huawei recordings
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Figure 2: These figures depict the result of the optimization under third order TSA spoofing. In Figure 2a, red line shows the EKF estimation

of modified data, blue shows the ground truth obtained by WLS, and green line shows the corrected estimates. Figure 2b indicates the captured

attack on clock bias, whose sparsity is manifested on clock jerk domain.
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Figure 3: These figures depict the result of the optimization under z-domain non-consistent spatial spoofing. The synthetic attack is applied

on the TEXBAT CS scenario, after it is replayed over the SDR [fig. (a)] or the Huawei receiver [fig. (b)]. Due to the evident second order

attack in Figure 3a, sparsity in jerk domain is guaranteed and captured by the optimization problem.

in Figure 3b have more noise than the SDR recordings shown in Figure 3a, both cases successfully captured and mitigated the
attack using a tuning parameter of λz = 10. Further, the RMSE value for the z domain in the SDR case reduced from 389.22
meters to 6.03 meters; and the corresponding one for the Huawei receiver decreased from 357.37 meters to 32.77 meters. Other
variables produced by the optimization such as z-velocity, clock bias, and drift, are estimated very closely to the ground truth.
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3. Scenario 3: Joint Attack

The third spoofing scenario for stationary receiver is the joint TSA and spatial attack. Since TSA is supposed to be a consistent
attack, we simulate an overall consistent joint attack with 600 meters maximum magnitude and third-order profile. The joint
spoofing was only able to be rejected upon tuning of the peanalization terms. Figure 4 indicates that the algorithm successfully
mitigates the attack on any domains of search. The RMSE value has also been reduced similarly to Scenario 1 and 2. This
manifests that the developed algorithm can deny any types of spoofing attack whether that targets singular or multiple domains.
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Figure 4: This figure shows the result of third order consistent joint attack against z-domain and clock timings.

VI. CONCLUSION AND SUMMARY

This paper develops a technique to mitigate joint spoofing against time and single position coordinate in stationary GPS receivers.
To this end, a suitable linearization of the GPS measurement equations is presented and sparsity characteristics of attacks are
reviewed. The technique relies on minimization of a multi-criterion objective that include penalization giving rise to sparse
solutions. Three synthetic spoofing scenarios are successfully mitigated. The resulting RMSE values in each scenario is reduced
significantly versus the EKF estimations, meanwhile the absolute error is small as well.

Our current work [17] focuses on expanding the model to receivers with slow dynamics, successful mitigation of joint attacks

an all PVT domains (x, y, z, b, ẋ, ẏ, ż, and ḃ), analyzing the effects of different attack orders and degrees of consistency, and
validation with authentic spoofed signals from the TEXBAT database, as opposed to synthetic attacks only.
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