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ABSTRACT Blebs are pressure-driven protrusions that have been observed in cells undergoing apoptosis, cytokinesis, or
migration, including tumour cells that use blebs to escape their organs of origin. Here, we present a minimal 1D model of
bleb-driven cell motion that combines a simple mechanical model with turnover kinetics of the actin cortex and adhesions between
the membrane and the cortex. The deterministic version of this model is used to study the properties of individual blebbing
events. We further introduce stochastic turnover of the adhesions, which allows for spontaneous initiation of repeated blebbing
events, thus leading to sustained cell travel. We explore how the main parameters of the system control the properties of the
blebbing events and the speed of cell travel. Finally, we derive a further simplification by deriving a Langevin approximation to
this stochastic model.

SIGNIFICANCE Bleb-driven migration requires spontaneous, repeated blebbing. This study presents a simple model
of cell motility using blebs, and introduces stochastic fluctuations to the membrane-cortex adhesions that can lead to
sustained unidirectional motion. The model presented allows us to identify the determinants of the distance traveled by
cells employing blebs.

INTRODUCTION

Blebs are cellular protrusions that appear as smooth spherical expansions of the membrane formed when it separates from
the underlying actin cortex (see Fig. 1) (top), driven by hydrostatic pressure generated in the cytoplasm by the contractile
actomyosin cortex (1-3). They were originally associated with cells undergoing apoptosis, but have also been observed in
cytokinesis, and in migrating cells. Many cell types can use protrusions such as blebs for motility, including mammalian tumour
cells (4), which can use blebs to force their way through the endothelium and invade new tissues, and metastatic cells, which
can use blebs to escape anti-tumour treatments that rely on protease inhibitors (2). Pressure-driven expansion is faster than
lamellipodial protrusion, and, since such protrusions have no cortex, can occur in any direction and adapt to the shape of the
extracellular environment. There is also data to suggest that such growth requires less energy than lamellipodium formation (2).

The life cycle of the bleb can be divided into three steps: initiation, growth, and retraction. Two mechanisms have been
proposed for initiation: a local decrease in membrane-cortex attachment, or a local rupture of the cortex. They could also be
functioning together (1). Both of these have been observed experimentally in both motile and non-motile blebbing cells (2). The
bleb initially appears devoid of filamentous actin, and grows as cytoplasmic fluid fills the protrusion. Bleb inflation is thought to
be driven by intracellular pressure transients generated by myosin II contraction of the actin cortex (6). Over time, the actin
cortex reassembles at the bleb plasma membrane, and drives cortex retraction: once expansion ceases, ERM (Ezrin, Radixin,
Moesin) proteins (responsible for cortex-membrane adhesion) are recruited to the membrane, followed by actin, actin-bundling
proteins, and lastly contractile proteins (6). In migrating cells, retraction does not always occur, since movement depends on a
stable bleb, and instead the cell body moves forward as a result of contraction at the rear of the cell (1). In such cells, a new bleb
often forms after cortex repolymerization under the membrane (2).

Biochemically, cortex composition is dominated by actin, actin-bundling proteins, and myosin II. High myosin II activity
is critical for the formation of blebs (7). The cortex is linked to the membrane by ERM proteins, which can switch from an
inactivated closed conformation to an active open conformation that exposes an actin binding site and a membrane-targetting
domain (6). Thus, a decrease in membrane-cortex attachment corresponds to ERM proteins returning to the closed conformation.
The actin cortex that remains at the base of the bleb is disassembled by the constitutive turnover of actin (2). An important
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question in bleb dynamics is how cortex reassembly begins. One possibility with some experimental support is that cortex
assembly is constitutive, but slow compared to bleb expansion, so that it can only catch up when the expansion slows down (6).

An important aspect of bleb initiation and growth is that it can be localized to just a part of the cell, so that different parts
of the cell can be mechanically isolated (as they often are chemically) (8). The precise mechanisms that determine where a
bleb is initiated during migration are not known. However, observations suggest that asymmetries in the membrane-cortex
attachment could play a role in determining the cell front: in Walker carcinosarcoma cells, the level of Ezrin (a member of the
ERM family) is elevated at the back of the cell, and reduced at the leading edge, facilitating bleb formation in the front of the
cell (2, 9). Understanding the formation of pressure-driven protrusions and their part in cell travel is important as treatments are
developed for pathologies where cells may employ this type of migration, such as cancer (2) and immune deficiencies. The
precise mechanics of this are not well understood.

In this paper, we present a simple reduced stochastic model of blebbing that can simulate continuous cell movement. The
model consists of a 1D mechanical model in which the front, back and central (nucleus) position are tracked, together with a
turnover model for the actin cortex and adhesion molecules at the front and the back. The breakage and formation of adhesion
bonds are stochastic, so that blebs are initiated spontaneously either at the front or back of the cell. Although our model was
initially conceived as a reduced model of blebbing in general, recent experimental evidence suggests that cells can undergo
blebbing in a narrow 1D channel (10, 11) for which our model should be directly applicable.

There have been many previous modeling studies on blebbing that focus on different aspects of this phenomenon. In a series
of papers Woolley et.al. have developed a continuum mechanical model of blebs based on the assumption of axisymmetric
geometry (12—15). These papers focus primarily on membrane and cortical mechanics. On the other hand, in (16, 17) the
authors introduce a 2D mechanical model of immersed boundary type wherein membrane and cortical structures interact with
the cytosolic and extracellular fluids. In contrast to the above models which focus on mechanical and geometric aspects of
cell blebbing, (5) focuses on the turnover kinetics of the cortex and adhesions. Cortical and adhesion densities defined at
each point of the membrane satisfies an equation expressing their turnover. These protein densities are coupled to a simple
mechanical model of the membrane. The analysis and simulations of all of the above models are confined mostly to the growth
and retraction of a single blebbing event.

In this paper, we introduce a simple model of pressure-driven cell migration model in 1D, which connects sub-cellular
adhesion process and cell migration dynamics. We neglect the geometry of the bleb and focus on how intrinsic noise from
molecular interaction of cortex components can generate stochastic membrane-cortex separation, which allows cells to migrate
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Figure 1: (fop) Schematic figure of cell blebbing mechanism. Stochastically induced local detachment of
cortex-membrane linking proteins drives the membrane expansion. By reconnecting the cortex-membrane
attachment, the inflation retracts back to the steady-state. (bottom) Schematic figure of our bleb-driven cell
migration model in 1D. Local bleb formation dynamics (5) at both ends are coupled with the mechanical
model of the whole cell.
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by hydrostatic pressure. In our model, the cell configuraiton is described by five coordinate locations in one dimension: the
cortical and membrane positions at the front and back, and the position of the nucleus. At the front and back of the cell cortical
and adhesion densities are defined which undergo turnover. The adhesion kinetics in particular is stochastic, making it possible
for the cell to initiate spontaneous blebbing events. The incorporation of this stochastic initiation mechanism allows for the
simulation of repeated blebbing events and thus continuous cell movement. In its simplicity, our mechanical model is analogous
to the (18, 19) where models of low Reynolds number swimmers of Purcell type (20) are adapted to study cell blebbing. The
focus of their study, however, is on the mechanical and hydrodynamical aspects of blebbing, especially as it relates to swimming
efficiency.

There have been a handful of modeling studies in which the full blebbing cycle has been studied, much like our study here.
In (21), the authors incorporate bleb initiation into their axisymmetric mechanical model (12-15) by randomly selecting a bleb
location over the surface of the cell from a given probability distribution. Bleb initiation thus does not arise from an internal
dynamical process. Arguably the most ambitious effort in incorporating cell biological details in a computational model of
blebbing motility is that of (22), in which the authors develop an agent-based model of both membrane and cortex and their
attachment to the underlying substrate, incorporating stochasticity in several different processes. Our model is much simpler
and does not match (22) in its biophysical realism. However, the simplicity of our model allows for a more extensive parameter
study and a clearer conceptual understanding of the mechanisms that may allow blebbing to lead to cell motility.

We also point out that although the aim of this study is to clarify the properties of cell blebbing, the reduced nature of
the model may make it applicable to other modes of pressure-driven cell migration more generally. For example, in (3), it is
suggested that lamellipodial protrusions are pressure-driven, and not driven by actin polymerization.

In the next section (Methods), we describe our model setup. We first describe our differential equation model, which is
formed by combining a turnover model of based on (5) with a mechanical model similar to (23). In the (5) model the position of
the cell is fixed, which is clearly not suitable for our purposes of modeling persistent movement. We allow our cell to move by
introducing coordinates at the front and back position of the cell, as well as the position of the nucleus. At the front and back
of the cells, cortical and adhesion density experience turnover (5). Much like the model in (5), this model exhibits excitable
behavior but also exhibits other dynamical behaviors as studied in the Results. We also study the distance the cell travels when a
blebbing event is induced.

Our parametric study indicates the importance of the membrane water permeability and myosin contraction to bleb formation.
Sufficient water permeability and an appropriate level of myosin contraction is needed for the system to reside within the
excitable regime. When water permeability is too low or when myosin contraction is too high or too low, the deterministic
system loses its excitability, making it difficult to generate blebs.

The above deterministic model is only capable of generating one blebbing event under an external perturbation, particularly
in the excitable regime. As described in the Methods section, we further introduce stochastic fluctuations to the membrane-cortex
adhesion density by taking into account the fact that these links are finite in number. This results in a stochastic-hybrid system
(24, 25). This stochasticity leads to spontaneous blebbing events, which can lead to unidirectional motion in the presence of a
parametric bias between the front and back of the cells. The stochastic bleb initiations are correlated with the kinetics of the
membrane and the actin cortex, in contrast to (21). Our model of bleb-based motility thus constitutes a dynamical system (an
excitable system) in which the cell is stochastically kicked out the basin of attraction of the sedentary state. This is similar to the
spontaneous generation of action potentials through the fluctuation of opening and closing of ion channels, as studied in (24).

To highlight the importance of stochastic fluctuations in our model, we highlight two observations. First, we find that
bleb-driven cell migration is possible even when the underlying deterministic dynamical system is in the bistable regime. In
the deterministic regime, the bleb never heals, but in the stochastic case the bleb will be stochastically driven to heal, thereby
making migration possible. This implies that the cell can utilize a wider parameter range for bleb-driven motility. Second, the
frequency of blebbing is a major contributor to speed, which is determined by the escape probability from basin of attraction of
the steady state. This, again, is a feature that is clearly absent in the deterministic system.

We conclude this Section with a study of the statistics of the blebbing events using a renewal process approximation. We
derive a Langevin equation of cell migration by matching the asymptotic moments of the approximation process. We conclude
our paper with a discussion of our results and future directions.

METHODS

We model the cell as a 1D strip in a narrow channel. This is the situation that corresponds to the experiments of (10, 11). We do,
however, believe that our model captures essential features of blebbing more generally, especially as the cell moves in confined
environments. )

Consider a bounded interval in which the cell lies x5, < x < xL, where x,J; is the front membrane position and x2, is
the back membrane position. In the intracellular region between these two points, the unknowns are the fluid velocity u and
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hydrostatic pressure p, which we will assume to be spatially constant. Other unknown quantities are the adhesion density a,
cortex thickness c, the cortical positions at the front and back x{ b (1), and the nucleus location x (). The adhesion and cortex
densities (a and c), are defined at the front and back of the cell, denoted by a/ , a”, ¢/, c?. A schematic diagram for our model
is given in Fig. | (bottom).

Assembly and Turnover

We model the cortex thickness ¢, following (5), assuming simple first-order kinetics,

dc

i wa-rc, (1)
where w governs cortex assembly, and assumes that new cortex requires adhesion to a nearby membrane. The second term
describes cortex turnover, with rate r. In this context, c is interpreted as a combination of density and spatial thickness, with
arbitrary units.

The cortex is attached to the membrane via ERM (Ezrin, Radixin, Moesin) proteins. We refer to the effect of these proteins
as “adhesions”. We use the model of (5), employing similar first-order kinetics for the adhesion assembly and turnover, and three
additional assumptions: (i) adhesion assembly saturates at high cortex thickness; (ii) adhesion attachment requires proximity
between cortex and membrane, with characteristic distance ¢, that describes the “reach” of the adhesion molecules; and (iii)
adhesion detachment is force dependent, with characteristic breaking force fy. These considerations lead to

da _ konc exp(_lxm - xc| )

B 5

KX — x|
dt  co+c ’

Jo

where ko, and kg are the adhesion assembly and turnover rates respectively, and cg is the cortex thickness at which adhesion
assembly is half-maximal. The numerator «|x,, — x.| follows from the assumption that adhesions collectively behave like
springs with Hookean stiffness k. Note that adhesion turnover is significantly faster than cortex turnover, leading to a separation
of timescales.

Egs. | and 2 are the same at the front and back of the cell, with the appropriate superscripts.

) — koffa exp (

Mechanics

We assume that the pressure p inside the cell and the fluid velocity u are both constant in space. At the front membrane position

x,{l, we have the following condition:

[P1 = p = (peo + dgut) = @ k(x)y = x1) + k() — x5 = D). 3)

The above equation states that the difference in pressure across the membrane at the front is balanced by the adhesion and
membrane forces. The exterior pressure is given by po + dgu, where dy is a drag coeflicient. The pressure p, is the pressure in
the far field, which we take to be the same in the far front and far back of the cell. Since the pressure is defined only up to a
constant, we may take p., = 0 without loss of generality. The drag coeflicient d, represents the resistance of the exterior fluid
to flow, and was used previously in (23). The adhesion force acts between the cortex and the membrane, modeled as a spring
force whose spring constant is proportional to the adhesion density a/ . The membrane force is modeled as a spring connecting
the membrane and the nucleus position, with a natural length of /. Likewise, force balance at the back membrane is given by:

[P)” = p = (peo = dgu) = =a"k(x, = x2) = ki (], = x5 +1) “4)

At the front and back membranes, we also impose the following conditions:

dx},
=n—u=—lpV, )
d b
== [p)”. ©)

The fluid velocity u is spatially uniform (but varying in time), an immediate consequence of our assumption that the fluid in the
narrow channel is a one-dimensional incompressible fluid. The difference in the membrane velocity dx&’b /dt and the fluid
velocity u is given by the transmembrane water flow. This transmembrane water flow in turn is proportional to the difference in
pressure across the membrane interface as given in Eqs. 3 and 4, where { is the water permeability coefficient.
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At the cortex, we have the following force balance equations:

sl e £t

NeCH —— =da K(xm—xc)—O'C (xC —.X'N), (7)
dx?

Tlccbd_tc = a"k(x), = xl) = oc” (xl - xn). ®

Here, we have assumed that the cortex experiences a drag force with respect to the underlying substrate, whose strength is
proportional of the cortical density ¢/+?. This drag force is balanced by the adhesion forces between the cortex and membrane
and the force between the nucleus and cortex. We attribute the latter to the force generated by the actin cytoskeletal network that
permeates the cytosol, which is continuous with the actin cortex underlying the membrane. In our simple model, the actin
network generates a force between the center, which we assume to be the nucleus, and actin cortex residing close to the front
and back of the cell. This force is assumed to be Hookean. We model this as a Hookean spring force whose spring constant is
proportional to the cortical density ¢/ +?, with the coefficient o controlling the strength of actomyosin contractility. The position
of the cell nucleus satisfies the following equation

nNdj—tN = k(i = x5 = 1) + ki (2, —x + D) + e (] —xn) +oc? (b = xp), ©)
where the nucleus is assumed to experience a drag force with respect to the substrate with drag coefficient 1y . The spring force
connectlng the nucleus and the membrane posmons are required for the model cell to maintain a stable fixed length at rest. Fhis
: i W ] - The inclusion of the nucleus in the model is
motivated by observations of the importance of nuclear mechanics for confined cell movement (26). From the point of view of
model behavior, the presence of the nucleus allows for the front and back to be less tightly coupled. Nuclear positioning is
controlled by cytoskeletal elements and the microtubules in particular (27), and we attribute the spring-like force between
nucleus and membrane to these structures in a simplified manner. The incorporation of rest length is a reflection of the assumed
rigidity of the microtubular network.
The above model satisfies the following power identity:

Ka d ock d
(el = ka1 T (k)
(10)
dxk dik, |\’
=2’ Y nk(%) nN( N) +2([p1")?
k=f.b

The above equality is a statement of power balance. The first line is an expression for the power exerted by the spring forces,
and the second line represent viscous and frictional dissipation. The adhesmn and cortical densities a*, c*, k = f, b change in
time according to Eq. 1 and 2), but let us replace these values by constants ao, 0 in the above expressmn (i.e., we consider a
model in which the adhesion and cortical densities are constant). Then, we will have:

dt Py’ 2

Kak O'Ck
4 > (—(x ’C‘)Z+K7m(x51—x1\/—l)2+70(x’g—x1v)2)
(11)

dxk i\’
== 2dg? - ) ncc"(;‘) mv( xN) +¢([p1)?

k=f.b

The above relation is a statement that the elastic energy of the system decreases in time, and shows that the cell should eventually
come to a full stop. The above calculation shows that the dynamics of the adhesions and the cortex is crucial for the model is
exhibit non-trivial dynamics.

Physical parameters are summarized in Table 1.

Non-Dimensionalization and Parameter Estimates

First, we can simplify the fluid equations as follows. Then, subtracting Eq. 3 from Eq. 4, we get that

2dgu = —afk(xm - X7 ) abk(xf; —xf) - Km(x,j; —xy 1) - Km(x,l; —xy +1). (12)
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Table 1: Model Parameters

Symbol Dimensions Meaning

w (A.U.) um? 57! cortex assembly rate constant

r s7! cortex turnover rate constant

kon pum~2s”! adhesion assembly rate

kot g1 adhesion turnover rate

co (A.U) cortex thickness at half-maximal adhesion
0 um adhesion length between cortex and membrane
K pN um™! adhesion spring constant

fo pN adhesion breaking strength

Poo Pa pressure far from the cell

Km Pa yum™! hydrostatic pressure scale

dg Paspum™ fluid drag constant

4 um s~'Pa”! water permeability constant

o Pa(A.U)~! ym! actin-myosin contractility

l pm membrane rest length

e Pas um™! (A.U)"! cortex drag factor

NN Pas um™! nucleus drag factor

We non-dimensionalize the system choosing characteristic cortex thickness c. = cg, characteristic density of adhesions
ae = % (kon ~ 100 um=2s™! (8)), characteristic time 7. = 1 ~ 10 s (28), characteristic length /. = [ ~ 10 um (29),

characteristic pressure p. = Kkl (k ~ 100 Pa,um‘l (8)), and characteristic fluid velocity u. = [r. This results in the

non-dimensional system:

2Dgu = —a’ (x& —x{) - ah(xﬁ’n —xlc’) - Km(xf,.l —xy-—-1)- Km(le —xny +1)

de

YN—— =

dt

6E_1+c

d
d—i:Qa—c

D F

da c (_|xm_xc|) (lxm_xcl)
= exp —aexp | ———=

T (7 - u) = ~al (i~ ) = Ky =2 = 1)

sl oy Foot
Yec! — = =a (X —xz ) = Mc? (xz —xn)

dx
Yee" =& = a”(xy = x0) = McP (x = xn)

Km(x£, —xny - 1) +Km(x£’n —xy+1) +McT (x{ —xN) +Mcb()c£7 —-xN)

iy _ u) = —aP (P, — xP) — Ko, —xy + 1)

13)

(14)

15)

(16)

a7

(18)

(19)

(20)

with 10 non-dimensional parameters defined in Table 2. Note that we use the same labels for all quantities for simplicity, but
these are now non-dimensional. Many of the parameters were already estimated in (5). For the remaining parameters, we obtain
estimates based on matching the cell velocity with that reported in (30). In subsequent sections, we will vary vy, and y,,, within
a specified range to determine their impact on model behavior. The parameters D, and yx are set to a small positive value as
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shown in Table 2 unless indicated otherwise. Indeed, setting D and y to O does not lead to appreciably different results in our
computations. We note that if we set D, = 0, equation (15) becomes a constraint that implicitly determines u as an algebraic
constraint; an explicit equation for u can be obtained by taking the time derivative of (15) and plugging in (16)-(20) in the
resulting equation. The behavior of the model with respect to larger values of yx and D, will be briefly discussed at the end of
the Results section.

Table 2: Nondimensional Parameters

Symbol  Definition Interpretation Estimate Source
Q k‘;’i‘)go cortex intensity 6.5-100 5)
€ ﬁ ratio of cortex turnover and adhesion rates 0.1 5)
D e adhesion reach 0.15-10.23 (5)
F {—2 adhesion bond strength 1.0-6.3 @)
K, % pressure relative to adhesion strength 0.016 - 0.1 %)
M %ﬂi"“ myosin contractility relative to adhesion strength 0.007 - 0.43 ®)
D, d"’%ﬁ("“ fluid drag relative to adhesion strength 107° see text
Ym % ratio of cortex turnover rate and mechanical changes rate 1072 — 107 see text
Ye % drag on cortex relative to adhesion strength 1072 - 107  see text
YN %ﬂlkf“ drag on nucleus relative to adhesion strength 107° see text

Stochastic Model Formulation

We now look at modifying the model system Eqs. 13-20 to include stochastic effects in the adhesion density. Individual adhesion
proteins have two possible conformations: open (when they tether the membrane and cortex together), and closed (when they do
not). To formulate the stochastic model, we think of the adhesion dynamics as a birth-death process, with proteins changing
conformation so that as the system evolves it may increase or decrease the number of proteins attached and hence the adhesion
density. We let a = ak, where « is the per-protein adhesion density and k is the number of proteins, and we replace Eq. 14 with
a Markov chain where the probabilities that a new protein will be attached or detached given by g and % respectively, where

c 1
g(c,a,xpm,xc) = T P (_lem —xcl), 21
1
h(c,a,xm,x.) = aexp (lem - xc|) . (22)

To begin the simulation, we choose an initial, or ‘base’, number of adhesion proteins to be the number of adhesions at steady
state and use that to determine @, which is then kept constant. The steady state is computed using the deterministic system.
To observe the cell blebbing cycle, it is necessary for the initial condition to be chosen so that the system starts close to the
deterministic steady state. The stochastic simulations are then run using a continuous-time Gillespie’s algorithm to update the
number of adhesions attached as the system progresses:

1. Possible events:

¢ ¢1: adhesion forms (k — k+ 1)

e ¢5: adhesion breaks (k — k — 1)
2. Rates:

o r=g(c,a,xm, xc)

* ry=h(c,a,xm,xc)
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3. Fotal =T1+72
4. Time until next event dt,
/0(SI Tiotal (1) dt = —In(RANDU|0, 1]) (23)
At each At, update the integral using the trapezium rule and check the equality. When it holds, go on.

5. ej is selected with probability
Ty

(24)

T'total

to update a = ak.

6. Update all other variables.

RESULTS
Deterministic Model

The model Egs. 13-20 combines the mechanisms of membrane-cortex interaction (force-sensitive adhesion, cortex contractility,
cortex turnover) with force balance in the cell (fluid pressure, membrane and cortex tension). Numerical simulations of the
model reveal several classes of dynamics: stable non-blebbing states, stationary blebbing, and bleb-driven migration. Note that
throughout this section parameters are the same on both sides of the cell. Without loss of generality, we focus on the effect of
perturbations from steady state on the front side, which will then be the ‘leading edge’ of the cell.

For a bleb to form, enough adhesions have to break so that the membrane and cortex will detach. In the blebbing parameter
regime, a large enough perturbation to the steady state, by breaking the adhesions (lowering a/ ), leads to a large excursion of
the cortical density and will result in cell movement. The system thus exhibits excitable behavior, as was documented in (5). A
small perturbation, however, will not lead to bleb formation and subsequent movement. In the non-blebbing parameter regime,
even if all adhesions are removed, the system returns to steady state without the membrane separating enough from the cortex
for the cortex to depolymerize before adhesions reappear. This is a monostable regime, in which the system always returns to
steady state following a perturbation even of large size.

A sample simulation for the bleb-driven migration case is shown in Fig. 2, obtained by setting the system to steady state, and
generating a perturbation at the front of the cell by removing 50% of the adhesions. When this perturbation is significant (enough
adhesions are removed), as in the case shown in Fig. 2, the remaining adhesions are destroyed, and the cortex depolymerizes.
This leads to the membrane detaching from the cortex and protruding. This initial expansion is very rapid compared with
the full life cycle of the bleb, in line with measurements (8). The adhesions subsequently accumulate under the protruding
membrane and the cortex is able to reattach and thicken. Cortex contraction then drives the bleb to heal, returning the system
to equilibrium. It is important to note that while a and ¢ will return to the same initial steady state after the bleb heals, the
positions of the membrane, cortex, and nucleus will have a new steady state. This is because these positions do not have a
reference location (in contrast, for example, to (5)), but rather a reference distance between the various points (in other words,
any parallel translation of a steady state will yield a steady state).

In the blebbing regime we observe four qualitatively different behaviors as shown in Fig. 3: bleb formation and healing on
the side of the perturbation (Fig. 3(a)), a bleb forming but never healing (Fig. 3(b)), a bleb on one side propagating to induce a
bleb on the other side (Fig. 3(c)), or an oscillation where blebs alternate from front to back (Fig. 3(d)). These behaviors are
summarized in Fig. 4.

We can recover most model behaviors by varying the cortex assembly rate 2, and the inverse permeability of the cell
membrane y,,. The transitions between behaviors as these parameters are varied is shown in Fig. 4. We first observe that a
sufficiently high value of € is necessary for the system to be in the blebbing regime (be it excitable, osicllatory, or the secondary
bleb regime). We may understand this as follows. When Q is small, the steady state value of the cortex is small (see Eq. 13),
thus making it easier for the system to go back to steady state after an initial perturbation. Given this quick recovery, there is not
enough time for the cortex to detach from the membrane to form a bleb.

A sufficiently small value of y,, (greater membrane water permeability) is needed for the cell to reside in the excitable
regime. A larger value of y,, pushes the cell into either a monostable regime, the oscillatory or the regime in which secondary
blebs are seen. Larger values of y,, implies that both x,{;b tend to follow the same velocity u (see Eq. 16, 17). Another way
to understand this is through incompressibility. If water permeability is low, then the length of the cell should stay roughly
constant, which implies that the front and back of the cell must move at roughly the same velocity. For small values of Q, this
has a stabilizing effect; a perturbation on the front side is stabilized by the back side which is not experiencing a perturbation.
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Figure 2: Deterministic bleb-driven migration. Plots of a sample simulation with a perturbed initial condition
(al =0.5x al;, where a’, is the value of a/ at steady state). (left) a vs ¢/ trajectory. (right) Membrane,
cortex, and nucleus positions. Parameters used here are Q = 40, € = 0.01, D = 0.15, F = 0.99, M = 0.0081,
Ym =0.8%x 1073, Ky, = 0.1, yn = 1075, 5. = 1074, D, = 107°.

For larger values of Q2 wherein the system is in the blebbing regime, perturbation at the front will tend to lead to blebbing
on the back side as well. We point out that this kind of oscillatory behaviour has been previously observed for protrusions in
fibroblasts which, like blebs, are devoid of actin (31).

Myosin contractility, M, plays a major role in bleb formation and cell travel. As can be seen in Fig. 5 if M is too low,
the system is non-blebbing, in line with experimental evidence (32). When M is above a critical value, the system reaches a
blebbing state. There is a second critical value of M, above which the system is bistable; a bleb will form but will not heal.
The adhesions do not re-form under the membrane, and the system reaches a new steady state with one side of the membrane
permanently detached as shown in Fig. 3(b).

Similar behaviors can be observed by varying the cortical kinetic parameters D and F. We find that if D or F' are too small,
the system becomes bistable, with a second steady state such that the bleb will not heal (see Fig. 3(b)). This can be simply
explained: if the reach of adhesion molecules is too small, adhesions between membrane and cortex cannot reform; similarly, if
F is too small, bonds that do reform are weak and the bleb cannot heal. An increase in K,,, does not lead to larger blebs, though
it does lead to greater displacement.

We next examine how the time course, size and the total displacement per bleb event varies with the parameters of the
system by varying each parameter one by one while fixing the others. Based on this study, we make the predictions shown in
Table 3. We find that as adhesion reach D increases, healing accelerates - the membrane-cortex distance needed for reattachment
is wider, allowing for faster recruitment of adhesions. Similarly, decreases in M lead to faster healing. Increases in K,,, lead to
smaller bleb size, as the overall force pushing the membrane outward decreases.

Table 3: Model Predictions for Experimental Perturbations

Perturbation Parameter Prediction
Decrease adhesion strength K. 7T Smaller blebs
Increase myosin contractility M7 Slower bleb healing
Increase molecular size of adhesion molecules D7 Faster healing

In Figure 6 we plot the dependence of travel distance and duration on the parameters M, F' and D. Further parameter studies
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Figure 3: Various deterministic model behaviors: (a) Single bleb that heals shown in Fig. 2. (b) Bleb forms
but never heals (M = 0.0084). This is the bistable regime. (c) Front bleb drives a secondary bleb at the back
(Q = 44.3). (d) Oscillatory blebbing events alternating from front to back. (y,, = 0.8 x 1072). Sample paths
are initiated at the perturbed a/ = 0.5 x a{s. Other parameters are the same as in Fig. 2.

on travel distance can be found in the Supplementary Material. As M increases in the excitable regime, both the travel distance
and bleb duration increase. Stronger myosin contraction tends to pull the cortex away from the membrane and thus leads to a
longer bleb duration. Although the bleb travel distance does increase, this change is about 10% and thus smaller in proportion
than the change in duration. In this sense, we may say that an increase in M in fact decreases the velocity of the cell. The effect
of D and F is similar in the sense that the change in duration is much larger proportionally than the change in total bleb travel
distance. As D decreases, the total displacement of the cell increases, and bleb healing is slower. It is clear that if the adhesion
reach is very large, it is easy (and fast) for the adhesions to re-form and the cortex to reattach, compared with when the adhesion
reach is small. However, if D becomes too small, the system reaches a stable non-blebbing state. Similarly, as F decreases, the
total displacement of the cell increases, and bleb healing slows down.

While variations on the drag in the cortex and nucleus (y. and yy respectively) do not affect the cell’s ability to form a
bleb, and the system will remain in the blebbing or non-blebbing regime based on the other parameters, variations in drag can
affect the distance traveled. If either drag parameter becomes too large, the net displacement of the cell becomes negligible,
even if the bleb does form. Furthermore, changes in y. and yn can decouple the front and back of the cell, eliminating bleb
propagation between the front and back.

Stochastic Model

Here, we consider a stochastic model in which the adhesions are modeled as being discrete, as described in the Methods section.
In contrast with the deterministic system, the stochastic system does not require an initial perturbation to generate a bleb,
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Figure 4: Phase diagram of the deterministic model over the plane of the cortex intensity € and the inverse
of water permeability y,,. Other parameters are the same as Fig. 2.

but can instead be set initially to the steady state of the deterministic system. Then eventually, stochastic fluctuations make the
adhesion density become low enough for the membrane and cortex to detach and the system to form a bleb. An example is
shown in Fig. 7 (left) overlayed on a deterministic simulation for reference.

A full sample simulation is shown in Fig. 8. Since the system is symmetric between the front and the back, both sides are
equally likely to form a bleb, so that in the long run, the cell does not have an overall displacement (E[total distance] = O for
long simulation times).

To start the stochastic simulation, we first set the system to steady state using the deterministic model to compute the starting
values. As laid out in the methods section, we then let a = ak, where a is constant and k is the number of attached proteins. The
choice of initial k, is key to the frequency of bleb formation, as illustrated in Fig. 9: if the base value of k& is too small, adhesions
are removed too easily and the system becomes erratic; if the base value of k is too large, the adhesions never decrease enough
for the membrane and cortex to detach and for a bleb to form. We choose a value of k in line with measurements of protein
density at the membrane (33).

Model Behaviors

In this section, we discuss the differences in system behaviour in the stochastic and deterministic regimes.

Recall that, in the deterministic regime, cell travel was accomplished in the excitable regime but not in the bistable regime.
In the stochastic regime, bistability (Fig. 3 (b)) is not a deterrent for the cell to travel, as the system is able to escape also the
basin of attraction of the second steady state, as seen in Fig. 7 (right). Then, even for parameter regimes which would be bistable
in the deterministic case, we still get sustained blebbing in the stochastic case. This means, for example, that the values of M for
which sustained travel is possible extends from the excitable into the bistable regime as shown in Fig. 5.

We find that the onset of oscillations, as shown in Fig. 3 (d), shifts when we make the system stochastic. We showed in Fig.
4 that increases in vy, make the system oscillatory. The onset of this oscillations requires a higher value of ,,, in the stochastic
regime than in the deterministic regime. The reason for this is as follows. In the oscillatory regime, simulations suggest that a
stable fixed point and a stable limit cycle coexist. The generation of this limit cycle should be traceable to a subcritical Hopf
bifurcation, possibly through a canard explosion (34). When the value of y,, is small, the stable limit cycle is too close to the
stable steady state in the deterministic phase plane. A noisy periodic trajectory along the deterministic stable limit cycle will
then fall into the basin of the stable steady state thus aborting the oscillatory dynamics. As vy, is increased, the distance between
the stable limit cycle and steady state is increased, and the oscillatory dynamics can persist. A sample stochastic oscillatory
simulation is shown in Fig. 10.
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parameters are the same as Fig. 2. Note that only parameters in the excitable regime are considered.

Introducing Bias

The system, as simulated in Fig. 8, is symmetric, so that the cell does not exhibit net displacements over a long time. Thus, in
order to get a net movement, we bias the cell so that it is more likely to bleb at the front by making the front excitable and the
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Figure 7: Sample stochastic simulation, starting at steady state, with the deterministic case shown for
reference. (left) Parameters are the same as Fig. 2. (right) M = 0.0084.

back monostable in the corresponding deterministic system (the choice of front and back is arbitrary). Then, only the front side
will retain the ability to bleb, and the cell will be able to sustain travel in that specific direction.

There are multiple theories regarding the polarization of a blebbing cell. One such theory suggests that there are fewer
ERM proteins at the side where the bleb forms (3, 9). In our model, this corresponds to having a different, smaller, number of
attached proteins at the front compared to the back (k/ < k”) under assumption that the adhesion constant « is equal on both
sides. To determine the regime (monostable or excitable/bistable) on each side we use the deterministic system and modify
appropriate parameters so that the adhesion density at the front and back of the cell at steady state are different (a{ s <ab). Itis
then expected that the side with the smaller deterministic steady state value of a (and hence smaller initial k) will be more likely
to produce a bleb. Indeed, in examples that we have checked, for steady states with smaller value of steady state value of a, a
smaller perturbation in a was sufficient for the solution to leave the steady state (for example, in Fig. 11, the size of perturbation
necessary to generate a bleb is smaller at the front than at the back). In particular, we choose the parameters with the front in the
excitable regime (blebbing) and the back in the monostable regime (non-blebbing) as determined in the deterministic setting. At
the excitable side (front), noise allows the system to escape the basin of attraction of the steady state, while at the monostable
side (back) the basin of attraction cannot be escaped. We emphasize that the biased deterministic simulations still require a
manual perturbation for the system to initiate a bleb and travel.

To bias the cell, we change the values of some of the parameters so that they are different at the front and back of the cell
(this effectively breaks the symmetry of the system). Since we found that M, F and D control the overall distance traveled, we
test these parameters to bias the cell by choosing M¥ # M? etc. A sample polarized simulation is shown in Fig. 11. Varying the
parameters at the front and back to get different bias magnitudes showed that if k? is less than 4% bigger than k/ the system
does not yield a clear cell polarization.
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Figure 8: Stochastic simulation, starting at steady state. Parameters are the same as Fig. 2.

Determinants of Distance Traveled

Let us now consider the biased system in the deterministic case, such that the front is excitable and the back is monostable. As
discussed in the previous section, low values of M lead to a non-blebbing state, while increasing M takes the system first into
the excitable (blebbing) regime and then into the bistable regime (see also Fig. 5). Simulations show that this trend holds for the
front myosin strength M/ as well. Within the excitable regime, as shown in Fig. 12 (top), M/ leads to an increase in bleb
duration much like the case studied in Fig. 6. The change in travel distance is minimal as M7 is varied is minimal. Thus, the
speed per blebbing event decreases with an increase M/ .

In the stochastic case, however, the overall speed of the cell increases with M J as shown in Fig. 12 (bottom). We find that
even though individual events take longer, as seen in the deterministic simulations, the frequency of blebbing also increases in
the stochastic simulations, so that the cell travels further. A larger value of M f leads to a smaller value of the steady state value
of the adhesion density a/ , thus making the basin of attraction of the stable state smaller with respect to perturbations in a .

If we bias the cell by modifying F or D instead (F/ # F”, or D/ # D"), decreases in F/ or D/ still lead to increases in
the distance traveled in a single event (Figs. 6, 13 (top), and 14 (top)). However, the increase in distance is much smaller in
the biased case. For changes in F or D, the event duration does not change much between the biased and unbiased settings.
Decreasing F/ or D/ any further would lead to the bistable regime. In the stochastic case, cell velocity increases as F/ or D/
decreases, as shown in Figs. 13 (bottom) and 14 (bottom).

Approximation of biased stochastic model

One important feature of the biased stochastic model is that the bleb expansion period takes place in a very short time scale
compared to the overall span of bleb formation, as seen in Fig. 15(a). Such series of events can be approximated by a renewal
process (35, 36). A single bleb event consists of two random variables: the inter-blebbing time A and the traveling distance

14 Manuscript submitted to Biophysical Journal



Reduced Stochastic Modeling of Pressure-Driven Cell Migration

15 k=10 k=100 Stochastic

—— Deterministic

10

- k=300 k=500

\

10

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

af

Figure 9: Stochastic simulation compared with the deterministic case for various choices of initial number of
attached proteins k (T = 15). Parameters are the same as Fig. 2.

Q. Let us label the bleb events by n = 1,2, - - - . We collect the statistics of (A,, Q) from a total of 10° sample paths whose
initial condition is at the steady-state of the deterministic model. Results show that the statistics of (A,,, Q,,) are approximately
independent and identically distributed for all n. This is because each bleb event is generated by stochastically escaping the
same deterministic basin of attraction, as shown in Fig. 7. Another observation is that A,, and Q,, are almost uncorrelated:

COV(An’ Qn)
E[A,]E[Qn]

We thus assume that the two random variables are independent even for the same n. We approximate the discrete statistics of the
random variables by continuous gamma distributions. That is, the distributions of the random variables take the form

~ 0.015.

t X
Plas <= [ g @ar. Fl0s <= [ fo,0a
0 0
where fx (t) = f(t; ax, Bx) is the gamma distribution with shape ax and scale Bx. Therefore, our assumptions imply that

Saw = Jom = fas SO, = fo,. = fo

for all n, m. We estimate (aa,, , 8o, ) by the maximum likelihood estimation, as depicted in the subpanel of Fig. 15(a). Introducing
the blebbing time
Thw=Th1+A,, Tp=0,

then the nucleus position is approximated by the renewal process

X(1) = Y QuH(t =T, (25)

Tn <t

where H(t) is the Heaviside function giving one if ¢ > 0 otherwise zero. Note that the time-averaged speed and variance of the
approximation process can be written in terms of the bleb statistics
E[X(n)] _E[Q]

E
oo = 1i = —_—", 2
v tg?o t E[A] (26)
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Figure 10: Stochastic simulation in the oscillatory regime, starting at steady state. Here, y,, = 0.8 x 107!,
while other parameters are the same as Fig. 2.

and
E[(X(1) —vel)?] Vi +vZ Var[A
o2 o i BLX@) — vt VarlQ] + v VarlA] o7
t—o0 t E[ A]
as derived in the Supporting Materials. Therefore, the asymptotic behavior of the approximation process can be matched by the
following stochastic differential equation

dYt = Voodt + (Tooth, (28)

where W, is a Wiener process.
Numerical comparison in Fig. 15(b) shows that the first moments of the original stochastic model and our approximation
are in good agreement. In particular, the asymptotic slope for both processes converges to the value in Eq. 26 as t — oo.

CONCLUSION

The model presented here considers the bleb formation and healing cycle together with the mechanics of the system to produce
bleb-driven cell migration in a reduced 1D model. We investigate the size of the blebs, the time from formation to healing, and
the distance traveled in individual blebbing events. The stochastic model allows sustained cell travel by repeated blebbing.

We find that myosin contractility, and the molecular reach and strength of adhesions determine the distance traveled by
the cell with a single bleb (Fig. 6). Our model makes predictions about how the distance traveled changes with experimental
perturbations, such as changes in myosin contractility that could be induced by changes in blebbistatin (32).

We also investigate the effect of varying biophysical parameters on bleb size and healing time. In this case, we find that
changes in the molecular reach of adhesions, in the nondimensional parameter D, affect the time taken for the bleb to heal
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Figure 11: Biased stochastic simulation, starting at steady state. M/ = 0.0078, M? = 0.0065. Other
parameters are the same as Fig. 2. Note that the simulation is first run as deterministic to steady state.

as in (5). In contrast with the results in (5), where increases in M abolish blebbing, increases in myosin contractility in our
model lead to a case where the bleb forms, but never heals (see Fig. 3 (b), Fig. 5). We also find that a sufficiently high water
permeability is a crucial parameter for cell bleb-driven cell migration to be possible (Fig 4), a conclusion that is supported by
recent experimental evidence (11).

In contrast to the deterministic model, the stochastic version of the model allows for sustained travel, wherein the intrinsic
stochasticity accorded by the finiteness of the adhesion links lead to repeated blebbing events. Here, the front and back of the
cells are in different parametric regimes so that the cell is given a bias. When the front end of the cell is excitable, a sufficiently
strong stochastic perturbation is amplified to generate a bleb at the front. An increase in M7 lengthens the duration of the
bleb event with a small change in the total travel distance per bleb event, thus leading to a decrease in speed. In the stochastic
case however, the basin of attraction of the steady state becomes smaller which leads to a greater frequency of blebbing events
making the cell travel faster. Interestingly, excitability in the narrow sense is not strictly necessary for persistent travel. Indeed,
it is also possible for the stochastic model to generate sustained travel in the bistable case, as the system can produce enough
noise to escape both basins of attraction in tandem (see Fig. 12). This increases the range of parameters over which the cell is
able to sustain persistent travel.

We point out that what we observe is sustained travel under an externally applied bias. Our model, by itself, does not seem
to be capable of polarization through symmetry breaking. The mathematical reason for this is that, after each bleb, the model
returns to the steady state and thus forgets in which direction the cell had blebbed. Most models of cell polarization require
intracellular signaling cascades (37), which our model does not consider. It would be interesting future direction to combing
cell polarization models with cell blebbing our model.

From a theoretical perspective, we studied a stochastic hybrid system that combines a deterministic system (cell migration
dynamics) with a Markov chain on a discrete space (adhesion proteins assembly and turnover). The stochasticity of the Markov
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Figure 12: (top) Distance traveled and event time for a single bleb in the deterministic case as M/ varies.
(bottom) Average and standard deviation of total distance travelled for time 7 = 100 and number of blebbing
events for the stochastic case as M/ varies with M? = 0.0065. Time step was set at Ar = 0.0001, and the
initial number of adhesions was set to k = 300. Parameters are as in Fig. 2.

process leads to spontaneous excitation (cell bleb event) in which the system escapes from the deterministic basin of attraction
of the stable steady state. Such escape time problems have been studied in the context of cellular neuroscience by applying
Kramer’s rate theory (38, 39) and the large deviation theory (24, 40, 41). Instead of the analytic approximations, we directly
obtain the escape time distribution by Monte Carlo simulation and focus on analyzing the resulting behavior driven by the
series of excitation events.

Furthermore, we derive a simple effective stochastic differential equation of bleb-driven cell migration (Eq. 28) by
approximating our stochastic model with a renewal process and calculating its asymptotic velocity and variance (Eqs. 26
and 27). These kinematic parameters are determined by the statistics of the bleb size and the inter-blebbing time, which can
be obtained directly from experimental data. Thus, this gives us a method to compare the theoretical result generated from
biophysical parameters with experimental data.

There are recent experiments of bleb-driven cell migration in one-dimensional channels, for which our model is directly

18 Manuscript submitted to Biophysical Journal



Reduced Stochastic Modeling of Pressure-Driven Cell Migration

Deterministic Simulation

| |
0.3175 ° 6.5
L J
0.3150
6.0
®
o 0:3125 c
\CJ X e 55 o
& 0.3100 o ©
u S
) 5 50 A&
0.3075 L
® ° 45
0.3050 X
X ®
0.3025 2 x y Bt
[ ]
0.9 1.0 11 1.2 1.3 1.4 15 16
Stochastic Simulation (T =100)
2.5
8
2.0 ®
9
6 =
Q
g 15 i
G 5
S ® i
8 1.0 4 3
£
=]
=
0.5 2
; RN
0.9 1.0 11 172 13 1.4 15 16

Ff

Figure 13: (top) Distance traveled and event time for a single bleb in the deterministic case as F/ varies.
(bottom) Average and standard deviation of total distance travelled for time 7 = 100 and number of blebbing
events for the stochastic case as F/ varies with F? = 1.7. Time step was set at At = 0.0001, and the initial
number of adhesions was set to k = 300. Parameters are as in Fig. 2.

applicable (10, 11). Blebbing is confined to the front and back ends of the cell in this context, and this situation is well-captured
by our model. Insofar as blebbing is seen in this one-dimensional situation, our model can be regarded as simple theoretical
model that captures some of the essential features of blebbing.

It is, however, clear that one of the greatest limitations of our model is that it is one-dimensional. In our 1D model, the blebs
only form at the front and the back. In the case of a 2D or 3D model, blebs can form along any position along the membrane,
and the spatial extent of the bleb that forms will influence the dynamics. The papers (12—15) have considered the cortical and
membrane mechanical aspects of this issue and (16—19) have focused on the intracellular and extracellular hydrodynamic
aspects of this problem. It is hoped that the 2D or 3D situation can also be studied using a similar framework of an excitable
dynamical system combined with a suitable mechanical model, coupled with random perturbations arising from molecular
noise. Indeed, (5) performs simulation on a spatially extended version of the model, although their simulations are deterministic.
Combining a spatially extended excitable model with stochasticity will result in a stochastic PDE, which are generally difficult
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Figure 14: Parameters are as in Fig. 2. (top) Distance traveled and event time for a single bleb in the
deterministic case as D varies. (bottom) Average and standard deviation of total distance travelled for time
T = 100 and number of blebbing events for the stochastic case as D/ varies with D? = 0.159. Time step
was set at At = 0.0001, and the initial number of adhesions was set to £k = 300.

both from an analytical and computational points of view.

SUPPORTING MATERIALS

The derivation of the asymptotic approximation process of the biased stochastic model is available at “link”.
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